This paper discusses a control method for reducing the operating
costs of a production system by continual modification of the planning
operations.

The method improves resource allocations by adjusting the mathe-
matical model of the production system to actual system performance.

The results of some preliminary experimental work with a simulated
fabrication shop are presented.
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Methods for allocating resources in shops with fabrication activ-
ities are generally based on a particular mathematical model
of the shop activities. The methods often assume that the model
is completely accurate and that the shop activities are invariant.
In practice, however, one or both of these assumptions may
be invalid.

The method described here continually modifies the resource
allocation program on the basis of past and current system
performance. This method has been experimentally implemented
in the form of an 1BM 7094 program used in conjunction with
a resource allocation program.' An evaluation of the method in
a simulated fabrication shop indicated a definite improvement
in the optimization technique.

In allocating the resources, an economic production system
should be composed of the principal functions shown in Figure 1.2
Planning for the initial period is based on the forecasting function,
which uses historic sales data to determine seasonal, trend, and
smoothing factors, as well as available statistical data descriptive
of the product line. For subsequent planning periods, the resource
allocator compares the actual demand of the previous planning
period with factors from the forecasting function to predict the
demand for the eurrent period. Data from the previous period
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parameters are adjusted initially to give the best performance,
and no further modification of these parameters is required.
If the behavior of the shops changes with time, the controller
must continually modify the parameters to update the model.
The modification may be accomplished either automatically by
a computer or by human inspection and intervention.

It is worthwhile to note that the choice of the parameters
to be modified and the criterion of goodness for the model are
somewhat arbitrary. However, once the parameters have been
chosen, they are modified according to a suitable control method
which is discussed below.

The main objective in adjusting the mathematical model to
better approximate the shops is, of course, to reduce the actual
operating costs of the entire production process as much as
possible. Therefore, the most meaningful control criterion aims
at model changes that will result in a reduction of production
costs. When the operating costs of the system have been brought
to a minimum, the closest model approximation of the shops has
also been found.

An adaptive control method has been designed for use with
control a fabrication job shop. For a given set of economic conditions
method (sales forecast, actual demand, ete.), it is assumed that the total

production costs (labor, inventory, and backlog costs) are the

output of a linear system. As inputs to this linear system, certain

variable key model parameters are chosen. These parameters

should be selected on the basis of their effect on production costs.

Figure 3 shows how a controller provides a simple feedback loop.

. It should be emphasized that the assumption of a linear

Figure 3 Control foop system is only used as a first approximation. In all probability

KEY MODEL PRODUCTION ’

PARAVELERSY  ners costs _ a highly complex process cannot be adequately described by a

linear system. However, the result obtained by use of a simple

linear-systems analysis can then be improved by a suitable non-

linear system that provides a closer approximation of the actual
CONTROLLER production process.

In general, the number of key model parameters is determined
by the number of state variables. These variables define the min-
imum number of system variables necessary to fully describe
the state of the system. If the state variables are known, the
entire future of the system is a function of inputs. For a free-
falling body, for example, position and velocity (or some non-
singular linear transformation of the two) are the state variables.
In addition to position and velocity, any other variable would
be completely redundant. However, one of these variables alone
would be insufficient to predict the future state.

We formulate our linear system as follows:

x(t + 1) = Ax(f) + Bu(y), t=1,2,3, -

where x(f) is the vector of state variables at time £, u(f) is the
vector of the key parameters to be varied, and A and B are
matrices (assumed time-invariant in our case). We also assume
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that the production cost z(?) is a linear function of x(¢) and u(?), i.e.,

2(t + 1) = b’x(t) + eud,

where b’ and ¢ are constant veectors. The unknown matrices
A and B and the vectors b’ and e’ are estimated by a least-squares
technique. We assume that the parameter vector is constrained
between two values, u™™ < u(f) < u™~, irrespective of time.

It is our main objective to minimize the total production
cost over T periods. First, we consider the production process
for the first period. If the state of the system at time ¢ = 1 (the
beginning of period 1) is x(1), and the vector of parameters
is u(1), the state of the system at time ¢{ = 2, x(2), is given by

x(2) = Ax(1) + Bu(l),

and the cost at time ¢ = 2, 2(2), is given by
2(2) = b’x(1) -+ e'u(l).

Similarly,

x(3) = Ax(2) + Bu(2),

and

2(3) = b'x(2) + e'u(2).

By substituting x(2), as given above, we get
x(3) = A’%(1) + ABu(l) + Bu(2)

2(3) = b’Ax(1) + b'Bu(l) + e'u(2).

The total cost at the end of two periods is given by

2(2) +2(3) = (b" + b’ A)x(1) + (V'B + eHu(l) + eu(2).

We now want to choose the parameter vectors u(1l) and u(2)
in such a manner as to minimize 2(2) + 2(3). It is obvious that
u(1) affects only the second term of the three terms forming the
sum, and u(2) affects only the third term of the sum. Since the
first term is a function of only the initial state of the system
x(1), it is also clear that this term is independent of u(1) and u(2).
For minimum cost, we choose u(l) to minimize (b’B + e’)u(1)
and choose u(2) to minimize e'u(2). Supposing that €’ and u(2)
are both 1 X m vectors, (e, s, -+ , €,) and (uy, s, * -+, Uy)
respectively, we have

e'u(2) = ey + eu, + -0+ el

The problem is now to choose each u, (¢ = 1, 2, --- , m)
in such a way as to minimize e’u(2). This is achieved by taking
u; = w ™ if e, is negative, and by taking u, = u}™" if e, is positive.
We minimize the second term in the same way, using the vector
(b’B + ') instead of e’. If the 7th component of this vector
is positive, we set u; = w7, and if the ith component is negative,

max

we set u;, = u; .
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In a similar way we find:
x(4) = Ax(3) + Bu(3)
= A’%(1) + A’Bu(l) + ABu(2) + Bu(3).
2(4) = b'x(3) + eu(3)
= b’A’x(1) + b’ABu(l) + b’Bu(2) + e’u(3).
Then,
22) +2(3) +2(4) =b'(J + 4 + 49)x(1)
+ (b’'B + b’AB + e')u(l)
+ (b'B + €)u(2) + eu(3),

and minimization is achieved as above. In general, for T periods,

20 2@ + - T+ 1) = b 3 4 e

+ [b(Ti‘, A“‘)B + e’]u(l)

+ [b/(i A’_’)B + e':|u(2)

t=1

+ [b'B 4+ e'lu(l) + e'u(T + 1).

Minimization of the production costs is performed term by term,
starting with the second term of the right hand side of the above
equation, in a similar manner as shown for the first few periods.
The control method described was programmed for the 7094,
and several experiments were performed by use of a simulated
job shop that incorporated actual factory data. A random number
generator simulated five different operating conditions of the
shop. A resource allocation program was used to allocate resources
over a 12-month period, and actual production costs were re-
corded as the simulated shop was run according to this plan.
The only reason for simulating the shop was the unavailability
of the facilities which otherwise could have been used directly.
Rates of labor, inventory, and backlog were selected as the
key parameters for the mathematical model. First, these param-
eters were varied in a random manner, and the resulting produc-
tion costs were recorded. Then a linear system approximation
of the entire process was made, using a least-squares regression.
Finally, the control strategy was formulated as described above
and then programmed. To minimize the production costs over
twelve monthly periods, the parameters were changed, at the
beginning of each period, in accordance with our control method.
For each of the five operating conditions in the shop, the net
operating costs for the resource allocations were computed. The
costs included all factors affected by changes in the resource
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allocator, such as overtime, hiring and dismissal, inventory, ete.
Fixed costs were not taken into consideration. In comparison
to resource allocations based on a non-changing mathematical
model, an average 9.3 percent reduction in production costs was
achieved by use of the control method described. The results
are shown in Table 1. It should be noted that these results were
achieved with a linear systems approximation. A closer approxima-
tion of the actual production process could be provided by a
suitable non-linear system.

Table 1 Experimental results

Control | Production Fized Net improvement
case (hours) cost (dollars) (percent)

No
control 26,056 $70,351 | $121,548 | $51,197 None None

25,393 68,561 | 116,266 | 47,705 | $3,492 | 7.3%
25,938 70,032 | 116,550 | 46,518 | 4,679 | 10.1
25,270 63,220 | 114,706 | 46,477 | 4,720 | 10.1
25,535 68,945 | 116,543 | 47,508 | 3,599 | 7.6
26,466 71,458 | 117,390 | 45932 | 5,265 | 11.5

Average 46,846 4,351 9.3

FOOTNOTES

1. When these tests were defined, the methods of Holt, Modigliani et al. were
available; see Holt, Modigliani, Muth, and Simon, Planning Production,
Inventories, and Work Force, Prentice-Hall, Englewood Cliffs, New Jersey
(1960). However, the methods described in Part IV of this paper have
been developed since and may be used instead.

. This figure is a simplified version of the control scheme of Part I of this
paper and emphasizes the functions discussed here.
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