

The data required by KAM consist primarily of the coordinates
of points in the linkage a t design position and the magnitudes
of input positions, motions, and forces. Position, motion, and
force results are displayed in standardized formats. To calculate
special parameters of interest, or to exhibit the results in a special
way, the user can provide supplementary programs that further
process the normal output.

Class of KAM applications

In a linkage, the rigid members function together as an integrated
mechanism because member actions are limited by physical
interconnections. In a planar linkage, action is confined to two
dimensions; in a spatial linkage, action in three dimensions nlay
occur.

For analytical purposes, a physical connection can be treated
as a vector constraint, and a fixed-length line between two con-
straints can be formulated as a vector l ink . A rigid member with
two constraints is normally treated as a link. A rigid member
with more than two constraints may be treated as a body in which
three selected points suffice to define a coordinate system. If
additional points on the member are of analytical concern, these
points of interest can be related to the coordinate system of the
member body.

In the simplest case, a linkage can be treated as one vector
loop. In other cases, a useful analysis requires more than one loop.
Although a linkage must have a t least one independent loop
that requires position data as an input, it may also have dependent
loops that are specified by way of incident loops.

Because it restricts the action of a pair of links, a constraint
in a linkage is also called a pair. The constraints considered in
KAM are of six kinds: revolute, prismatic, cylindric, spheric,
planar, and universal. Each of these pairs requires one or more
independent variables to specify the relative position of two links
connected by the pair. These variables are the degrees of freedom
(d.f.) of the pair. The general nature of these pairs is shown
in Figure 1.

The Gruebler criterion4 for a linkage is a function of the number
of links, number of pairs, and the d.f. of each pair. The criterion
equals zero for a locked linkage, one for a constrained linkage, and
two or more for an unconstrained linkage.

KAM is basically designed to treat constrained linkages of
three, four, or five links. This permits the analysis of a wide
variety of linkages of practical interest. Moreover, by means
of a few special rules, certain linkages with two degrees of freedom
can be reduced to the category of constrained linkages.

Although computers have previously been applied to linkage
analysis, the programs have used techniques of very limited
power, and have often limited their scope to position solutions.
Denavit and hart en be^^'^ have described a computer procedure

Figure 1 Six constraints

REVOLUTE

rl
PRISMATIC -k&l
CYLINDRIC 6
SPHERIC n
PIANAR

UNIVERSAL %!=

any single-loop linkage from simple input parameters, but their
method depends upon iterative processing of a product of several
large matrices. By contrast, the method used in RAM gives closed-
form position solutions to eight categories of single-loop, two or
three-dimensional linkages. The solutions can also be used step-
by-step for position determination of multiloop linkages. Most
practical linkages fall into either one of the eight categories
or into a combination of them. The method reduces motion and
force analysis to the solution of simultaneous linear equations.

A useful classification of existing and potential areas for the
application of computers to mechanical design has been made
by Knappe,‘ who distinguishes between kinematic type synthesis,
kinematic size synthesis, kinematic analysis, component design,
methematical model generation, and dynamic analysis.

Very little exists in the way of defined logical or mathematical
approaches for treating type synthesis. Ordinarily, the major
engineering effort is in the redesign of existing mechanisms, ,
and a computer procedure for type synthesis would find limited
application-this is true, for example, in the automotive industry.
Recently, kinematic size synthesis has received considerable atten-
tion. For example, computer procedures have been developed
to select gear trains for a needed gear ratio,’ and the synthesis
of cams seems to be adequately handled by polynomial methods.’
Linkages present the most formidable synthesis problem. For
linkages, Freudenstein and Sandor’ have developed new synthesis
methods, and industry has made some use of these methods.
However, except for the simplest 4-bar planar mechanisms,
mathematical procedures for synthesis rely on linearization of
highly non-linear equations and subsequent use of iteration to
a solution. No one procedure as yet combines the desirable features
of broad application, simplicity of use, and high reliability.
Again, the need for size synthesis of linkages in industry is largely
restricted to those engineers responsible for original design effort.

A look at the packaging function of automotive engineering
demonstrates the value of KAM for geometric problems. Starting
with given specifications, such as wheelbase and maximum height
and length, and a selection of components such as engine, transmis-
sion, and suspensions, the packaging group must “fit” components
with a chassis and a body. Fitting is partly a routing and placement
problem and partly a kinematic analysis problem. Several of the
first components to be placed in the package design are linkages,
for example, the driveline, the steering, and the front and rear
suspensions. The space required for motion of these components
is one of the most difficult factors to deal with in the packaging
effort.

At other stages in the packaging effort, and also in design
of the individual components, the position, motion, and forces
of a host of other linkages must be determined. Throttle and
brake linkages, door and hood hinges, window lifts, windshield
wipers, and even the human body as a linkage have all been

i

I 202 BITONTI, COOPER, FRAYNE AND H A N S E N

Figure 4 Overall KAM logic

AND POSITION SOLUTION
KAM TRANSLATION

DESCRIPTION

STATIC

LANGUAGE
DECK

GENERATOR
PLEX

\ I

KAM

SOLUTION
POSITION

IBM
1620 ’

POSITION
OUTPUT

OPTIONAL ROUTINES

POSITION

MODEL PLEX

FORCE

MOTION

SOLUTION
1620 OUTPVT

force, torque, velocity, and acceleration. All output is in standard
format to facilitate further processing if desired. Normally, the
results of an engineering analysis are most useful in graphic form.
Typical needs of a linkage designer might be a plot of input angles
or lengths versus positions of some key point, or a plot of input
angles versus the projected angles of a link. Such graphs are not
provided by KAM, but can easily be drawn from the KAM output.
However, KAM can provide a line sketch of the entire system,
as well as perspective views of such a sketch.

The set of seven programs mentioned in Tablc 3 are included
in RAM to facilitate the programming of FORTIZAN output programs.
Two of these programs assist in the display of results on the
1627 Plotter. The other five calculate geometric parameters based
on the coordinates of points in the linkage system.

KAM is an open-ended system, as illustrated by the ability
to integrate FORTRAN output programs. The system design
recognizes that the K ~ M language is purely descriptive, and that
the linkage descriptions, and the position, motion, and force
analyses, are subject to complete standardization. The lower half
of Figure 4 illust~rates the optional calculations which the user
can request for the particular design to be evaluated. Because
this flexibility is most needed in the area of output, once KAM

has calculated positions, motions, and forces for the described

system
adaptation

Figure 5 Typical vector repre-
sentation of simple 4-bar mecha-
nism a C

, - s + t + C = O

position
solution

208

rebound envelope. Loops are solved one a t a time; independent
loops are solved first and followed by the solution of depcndent
loops.

More complicated than Types I and I1 are the mechanisnls
of Type 111. Type IIIb mas considered but not included in the
design of KAM. A typical example of Type IIIa, the automotive
rear suspension, has five vector loops that must be solved simulta-
neously. It is interesting to note that K . ~ M can perform a force
analysis of such a nlechanisn1, provided that position data is
available. Reference 10 further illushtes Type I1 and Type 111
mechanisms.

The first phase of position solution selects the nlethod and
determines the sequence of mathematical solution. To accomplish
this, the program draws upon the fundamental systenls concepts,
namely, the plex organization of topology and the table of KAM

algorithms. The system topology is examined loop by loop for a
match with an entry in the table of KAM algorithms. Folloming
a match, the Tetrahedron Solution required for position solution
is extracted from the table and placed in the loop bead of the plex.
Additional data, such as the required simultaneous dot products
and vector unknowns, are extracted from the table and placed in
the plex. All bodies named in the program are examined and
appropriate data are cntered in the plex; one by one, each body
beconles fixed in space as the result of solving one or more loops.
I n addition to the originally given topology, the plex a t this
point contains data that indicate a solution method and sequence
for the second phase of the position solution.

Figure 7 shows a general outline of the second phase of position
solution. The first steps in the housekeeping function are to read
the plex, and then the data, into memory. The point data that
are read into the position solution section of KAM may constitute
any set of points in the range of the given mechanism. However,
the KAM system treats this set as the design or static condition
of the mechanism, and then, by scanning the linkage data, relates
all parameters and variables describing the mechanism to the set.
In housekeeping, each loop is scanned in sequence of solution
and all vectors for links and constraints are computed. After
these vectors are found and stored in the metric arrays of the plex,
a second scan is undertaken and angular data pertinent to the
description of loops are computed from the results of the first pass
and the connectivity indicated by the plex. In a third scan, points
of interest on defined bodies are assigned polar coordinates
relative to a reference frame defined by the three points that
fix the body in space.

One housekeeping scan finds universal joints in the mechanism.
These constraints must be treated by a sinmltaneous solution
of two dot products, and each solution has two answers. Therefore,
a solution mode based on static position is established for later
use in selecting correct answers as the mechanism is moved
through its range.

PIlOGRAbI FOR LIiYKAGE ANALYSIS

Figure 7 General flow chart for
position solution, phase 2

CON-ROI LOGIC

1 r ” G 2 COhlPLETtLY SOLVFO’

EXTRACT

I I CASE SOIUTION

1 - SELECT C O Q R F C i ANSWER

ESTABLISH POINTS

I + SO1 VE BODIES

I
I ,

ARE A I L IOOPS OF

211

Some links may be bent, in which case a simultaneous solution
of dot products establishes the axes as constant vectors. By the
same operation, the axes of certain constraints can be found and
treated either as constant vectors or as known unit vectors of
slide-type constraints. Since two answers are possible for each
operation, the solution mode is established from static data, as
for the universal constraint.

All but two of Chace’s Tetrahedron Solutions have more than
one answer: two have four, one has eight, and the rest have
two answers. However, the actual static position of a mechanism
is mathematically unique, and defines criteria from which the
single correct answer can be selected for subsequent positions
of the mechanism. These criteria are determined and stored in
the plex. Because the solution criteria may change for different
sets of point data, they must be calculated for each set of input
point data. The same reasoning holds for the solution criteria
established for the simultaneous solution of dot products.

Length incrementation in KAM simply requires a change in
the scalar magnitude of a vector, the unit vector remaining
unchanged. However, for angular input, the vector changes
orientation and must be re-established as a constant vector for
the case solution. A reference frame, established from the revolute
and adjacent input link for each loop that requires angular input,
is saved in the plex. In KAM, a given loop can have either angular
input or linear input, but not both.

The control logic performs the looping functions of a FORTRAN

“L>o” statement and establishes increments for subsequent use
in solution and output functions of KAM. Data required for these
purposes are stored in the plex. After a loop has been selected
for solution by the control logic, the solution string found by
phase 1 is extracted from the plex.

Links and constraints not classified as unknown by the solution
string are treated as known vectors and summed into one constant
vector as required.

Once the required data have been established, a branch is
taken to one of eight case solutions. If an error occurs in the case
solution indicating that the mechanism is going through an
imaginary range, an error message yields pertinent data, the
input variable is incremented, and calculations are resumed.
This process continues until either a real range is again entered
or the complete range of the mechanism is satisfied.

For case solutions with more than one answer, a test is made
on each answer, using the same function that determined the
solution mode a t housekeeping time. If the answer is inappropriate,
then the case-solution error routine is executed.

After the correct answer is selected, the point data in the
loop are found by adding each vector, in sequence, to a given
fixed or ground point. These new points become fixed points
for dependent loops or bodies subsequently to be solved. Some
loops have constraints that are not required in solving the loop,

212 BITONTI, COOPER, FRAYNE A N D HANSEN

but are required to fix bodies in space. These constraints, as well
as those bodies which have three fixed points, were found by phase
one and their solution points placed in the plex. Phase two solves
them at this time.

1 After the body solutions, a test determines whether all loops
~ have been solved. If no, control passes back to the block that ’ extracts the solution string. If yes, an output routine is entered.

Subsequently, the control logic tests whether the range is satisfied.
If not, the linkage is solved for a new value of the input variable,
and so on until the range is satisfied.

important knowledge about the performance characteristics of solution
the linkage. They may also be used in computing other element
properties, such as inertia and stress. The mathematical and
programming procedures needed to obtain these motions are
discussed here. The mathematical procedure, again based on
Chace’s work, permits motion analysis of all linkages within
the scope of KAM. In contrast to approximate solutions, such as
seen in “finite differencing” techniques, the mathematical methods
to be discussed reduce the problem to a set of simultaneous linear
equations that give an exact solution at any linkage position.
A principle used throughout is that each order of motion is
dependent only on motion quantities having the same or lower
order of motion. For example, velocity (first order motion) is
dependent on input velocity and on position (zeroth order motion).

Two fundamental conditions hold for the motion of a linkage. motion
These, a linear condition and an angular condition, are written equations
as two vector equations for each loop in the mechanism. In final
form, the equations yield the same coefficient matrix for both
velocity and acceleration, although the constant vector differs
for each. Thus the coefficient matrix, once found, can be used
to obtain both orders of motion.

vectors is zero for each loop in the mechanism. For a summary equations
of notation, see Table 7. The velocity vector is the time-derivative
of ri. Thus,

V = Dr = (Dr)i + o X r

The velocities and accelerations of linkage elements yield motion

Represent each link by a position vector ri ; the sum of such velocity

r .

Since all unit vectors, 6i,i-, , are known from the posit,ion solution,
all absolute rotational velocity vectors, a,1 are expressed as a
sum of relative rotational velocit,ies, o ; , ~ - ~ . Thus for example,
aal = wZ1 + os*. The fundamental linear condition for velocity,
for a vector loop of n links, can be written

i = l

This equat,ion contains t,ern~s of translational velocity due to

PROGRAM FOR LINKAGE ANALYSIS 213

Table 7 Summary of notation

U

U

U

a . b

rn and rr

Magnitude: a scalar, non-directional quantity
Unit vector: a vector of unit magnitude
Product of a magnitude 11. and a unit vector fi. Thus u = uii
Dot product of a and b. If p is the smaller angle between the
two vectors, a b = ab (cos p)
Postion vectors relative to the nth reference frame
Ground reference frame: three mutually perpendicular unit
vectors that obey the right-hand rule and have a fixed orienta-
tion relative to ground
Angles specifying the direction of a unit vector with respect
to a ground reference frame
Dummy variable vectors
A reference _frame having instantaneous position defined rela-
tive to i, 3, k
Shorthand for the derivative d/dt
Unit vector of rotation of link i with respect to link i - 1
Absolute angular velocity of link i with respect to ground
An input velocity, also written 021
An input scalar, also written Dr2
Angular acceleration; subscripts as for w; for spatial motion
this a represents only partial angular acceleration'
Force exerted on body or link i by body or link j with com-
ponenk Si, ,., j f , <, j t , ,., j":, ,., f:, ,., f:, in the direction indicated
by superscripts
Torque exerted on body or link i by body or link j with
components 7: ,{, T : , <, T : , ,., T : , i, T : , i, T : , in the direction in-
dicated by superscripts
Force output
Force input
Torque output
Torque input
Vector from center point of constraint i to center point of
constraint j
Vector from center point, of constraint i to orltput and input
fnrc-rs

rotation (a x r) as well as terms of pure translational velocity
((Dr) i) . Many of the terms may be either zero or known inputs;
the existence of terms is dependent on constraint types in the
linkage and on the location of fixed links in the loop.

A second condition expresses the fundamental angular condi-
tion for motion.

Equation 3 states that the sum of thc relative angular velocities
of a linkage loop is zero.

For solution purposes, (2) and (3) are rewritten as Equations 4
and l i :

2 7 = a (D Y J ~ ~ + 2 1 = 3 [~ ~ , , - ~ ~ i , j - 1 x 2 %=I r.1

In (4), Dr, or w~~ represent possible scalar inputs; in any in-
dependent loop, one of these will be zero because the linkage
has only a single freedom. In a dependent loop, Dr, and wZ1
may be unknowns and would appear on the left side of the equation.

(5)

Again, wZ1 represents the scalar input and would be zero for pure
translational input.

of (2) and (3) . For each link vector rj, the acceleration is written: equations
The acceleration equations are obtained by taking derivatives acceleration

+ C (w , - l . l X w , , - ~) X r, , =:+

and

C a i . z - l X rl = wjl X r, .

Thus, for a vector loop of n links:

i

t = a

Note the sinlilarity in (2) and (6). The first and second terms
of (6) express the normal and tangential accelerations, respectively.
All Ti, Dr,, and oil are known from the position and velocity
solutions.

The differentiation of (3) establishes a second equation for
acceleration.

where

and

2i.i-l = G t , i - l ; ai.i-1 = D o i * ; - l .

Again, note the similarity between (7) and the angular velocity
equation (X).

The number of scalar equations for acceleration is identical
to the number of scalar equations for velocity. Since the coeffi-
cients of the vclocity and acceleration equations are identical,

The equations discussed above are used to obtain the relative
motion of an motions of link i with respect to link i-1 for all links in the
arbitrary point mechanism. To obtain the absolute motion of link i with respect

to ground, the relative motions are summed. Once these are
established, the motion of points of interest can be computed
by summing all motions from ground to the point.

Equations 2 and 3 are written for each loop in the mechanism.
For an n-loop spatial linkage, 6n scalar equations are obtained
by taking scalar products of the original 2n vector equations and
the i, 3, k unit vectors. Thus, 6n unknown motions can be com-
puted for spatial linkages. For planar linkages, a computed
auxiliary reference frame (a, @, O) allows the plane of action
to be oriented arbitrarily in space, and the 2n vector equations
give 3n scalar equations. Scalar products between (2) and 5.
and Q yield 3n equations, while the scalar product of (3) and
O yields n equations.

Unknown motions can be classified into two categories.

scalar Unknown translational motions: Dri for velocity and D2ri
unknowns for acceleration, (i = 2, . . . n).

Unknown relative angular motions: w i , i - l for velocity and
Dwi ,i"l for acceleration, (i = 2, - n).

For a single independent spatial loop, any conlbination of the
scalars D"ri (for n z = 1, 2) and D " w ~ , ~ - , (for m = 0, l), up to
a maximum of six, may be unknowns. However, a maximum
of three D"ri and six D"w; , scalars can be present in this case.

A spatial loop with more than six unknowns can be solved
using additional "constraints" on the loop. In a multiloop system,
the added constraints on a given loop take the form of another
loop that shares a portion of the given loop. The number of equa-
tions, hence the number of unknowns, is limited by the total
number of loops. Thus, linkages comprised of a series of loops
can have more than one degree of freedom and more unknowns.
Again, if its motion is determinate, a single loop linkage can have
only one degree of freedom. Spin degrees of freedom, created when
two ball joints connect a link, create extraneous degrees of freedom
that are eliminated in KAM by replacing one of the ball joints
by a universal joint.

For both planar and spatial mechanisms, the number of
equations for linear and angular conditions is shown in Table 8.
Also illustrating the general matrix form, the matrix is divided
into two sections, the top being used for the linear conditions
and the bottom for the angular conditions.

Each constraint in a vector loop describing a linkage introduces
one, two, or three unknowns, as shown in Table 9. The directions
of the unit vectors associated with these unknown magnitudes
are known from the position solution. I n conjunction with the
link vectors, the components of the unit vectors representing
direction become equation coefficients. For example, a revolute
constraint introduces one unknown and this unknown may appear

216 BITONTI, C O O P E R , F R A T N E A N D H A N S E N

in six equations. Thus, a revolute constraint for one spatial loop
introduces six coefficients into the matrix.

applied at the same constraint. In addition, the input constraint program
for motion must be a ground constraint with one degree of freedom,
i.e., a revolute or a prismatic. The linear motion of points of
interest is represented by a vector to the point from the ground.
All other outputs represent the relative and absolute motions of
link i with link i - 1 and link i with respect to ground, respectively.

The KAM motion processor executes the mathematical com-
putations outlined above, solves the resulting set of linear equa-
tions, and outputs the velocities and accelerations of the linkage
elements. This processor consists of the phases for input and
initialization, for a scan, for a determination of velocities, and
for a determination of unknown accelerations.

For KAM, the input for both position and motion must be the motion

Table 8 The general form of the coefficients matrix
NUMBER OF
SCALAR EQUATIONS

SPATIAL PLANAR

I I
3n

i i
I I L L

The input and initialization phase reads the model plex.
The number of input motions is determined from the model,
and a corresponding number of velocity and acceleration mag-
nitudes are read. The direction of motion is established, by the
right-hand rule, from points in the plex. Point coordinates for
the particular linkage position being analyzed are read as needed.

A motion topology table, a shorthand plex particularly suited
to motion analysis, is constructed during a scan of the plex.
The scan phase also tests various characteristics of the linkage
to govern the content of the motion table. Entries are made
in the motion table for each degree of freedom of each constraint
of each loop.

The velocity phase of the motion processor builds the motion
velocity Coefficient matrix and computes the velocity constant vector;
phase entries are made for degree of freedom within constraint within

loop. When an input constraint is found, the entire vector is
computed. Depending on the type of freedom indicated in the
motion table, coefficient entries can be of three types. These are
pure rotational velocity, pure translational velocity, or transla-
tional velocit,y due to rotation. Finally, the set of linear equations
is solved for scalar unknowns, and velocity vectors are then
formed with the aid of unit vectors obtained from the data
portion of the plex.

The motion processor enters its acceleration phase with all
acceleration positions and velocities computed and available. The acceleration
phase phase uses the coefficient matrix (actually stored in its inverse

form) given by the velocity phase. The acceleration phase uses
the motion table for control of the calculations, as does the
velocity phase. However, to obtain the acceleration constant
vector, individual constraint routines are used because of the
great number and variety of terms to be computed, These con-
straint routines are based on the entries in a special table. The
program proceeds from constraint to constraint in the motion
table and then repeats the process for all loops.

A matrix multiplication is performed to obtain the desired
solution vector; the relative acceleration vectors are computed,
stored, and then summed to obtain the absolute accelerations
of each link.

In addition to the motion of all links, the program can calculate
the motion of up to three “points of interest,” such as points
on a coupler. One subprogram serves to compute both the velocity
and acceleration of these points, the logic being shared by unique
arithmetic operations for each type of motion. The program is
executed immediately after the velocity phase, as well as following
the acceleration phase. The output of this phase consists of the
motion vector drawn from the first constraint in the loop to
the point and represents the absolute linear motion of the point.
The magnitude of this vector is also output.

force Applied to a linkage, the two well-known conditions for static
solution equilibrium of each body or link are that, (1) the sum of the

Table 10 Matrix for force unknowns in spatial linkage

Force
Location

Unknowns

At i

A t i + l

Body Constraints

A t i + 1

Body Constraints

3

f" f i fk

1 0 0
0 1 0
0 0 1

-1 0 0
0 -1 0
0 0 -1

-1 0 0
0 -1 0
0 0 -1

0 T k "Ti

-r, 0 ri
r i --Ti 0
0 r, -ri

rj --Ti 0
-rk 0 T i

Force Dimensions

n 1

f fo (output)

Summary
A technique for analyzing two- and three-dimensional linkages
by solving vector equations for position, motion, and force was
programmed for a digital computer. A model plex that treats
a linkage as one or more vector loops is generated. The program
selects the applicable equations for position solution. Algorithms
are simplified by storing linkage information in the form of a
tree-organized plex.

The vector equations employed in finding the velocities and
accelerations are not obtained through differentiation of the
position solution equations, but consist of vector relationships
expressing fundamental linear and angular conditions. Motion
can be calculated for each consecutive position computation,
given an input motion. Because the problem of finding velocity
and acceleration for linkage elements reduces to one of solving
a set of simultaneous linear equations, the solutions are exact
and iteration is not required.

Vector algebra is also used to obtain linear equations that
define forces and torques. The coefficients for the linear equations
are generated by an algorithm that scans the linkage plex and
related tables. As in the case of motion, analysis reduces to the
problem of solving a set of simultaneous linear equations.

CITED REFERENCES AND FOOTNOTE

1. M. A. Chace, Development and Application of Vector Math,ematics for
Kinematic Analysis of Three Dimensional Mechanisms, Doctor's Disserta-
tion, University of Michigan (1964).

222 BITONTI, COOPER, F R A Y N E A N D HANSEN

2. S. A. Brown, C. E. Drayton, and B. Mittman, “A description of the APT
language,” Communications of the A C M 6, No. 11 (November 1963).

3. D. T. Ross and J. E. Rodriguez, “Theoretical foundations for the com-
puter-aided design system,” A F I P S Conference Proceedings 23, Spring
Joint Computer Conference (1963).

4. For a description of the criterion, see R. S. Hartenberg and J. Denavit,
“Analysis of spatial linkages by matrix methods,” The Technological
Institute, Northwestern University (September 1963).

5. J. Denavit and R. S. Hartenberg, “A kinematic notation for lower pair
mechanisms based on matrices,” Journal of Applied Mechanics, ASME
Transactions (1955).

6. L. F. Knappe, “A computer oriented mechanical design system,” ASME
Paper 64-MECH-30 (1964).

7. H. G. ApSimon, “Algorithm for a gear-train problem,” I B M Systems
Journal 3, No. I, 95-103 (1964).

8. D. A. Stoddart, “Polydyne cam design,” Machine Design (January 1953).
9. F. Freudenstein and G. N. Sandor, “Synthesis of path generating mech-

anisms by means of a programmed digital computer,” ASME Trans-
actions, Journal of Engineering for Industry (May 1956).

10. Kinematic Analysis Method, SP-272, Society of Automotive Engineers
(May 1965). This bulletin contains six related but separate papers pre-
sented a t the SAE Mid-Year Meeting by F. Bitonti, D. W. Cooper, D. N.
Frayne, and H. Hansen.

PROGRAM FOR LINKAGE ANALYSIS 223

