


The  data required by KAM consist primarily of the coordinates 
of points  in the linkage a t  design position and  the magnitudes 
of input positions, motions, and forces. Position, motion, and 
force results  are displayed in  standardized  formats. To calculate 
special parameters of interest, or to exhibit the results  in  a special 
way, the user can provide supplementary programs that  further 
process the normal output. 

Class of KAM applications 

In  a linkage, the rigid members function  together  as an integrated 
mechanism because member actions are limited by physical 
interconnections. In a planar linkage, action is confined to two 
dimensions; in  a spatial linkage, action  in  three dimensions nlay 
occur. 

For analytical purposes, a physical connection can be treated 
as a vector constraint, and a fixed-length line between two con- 
straints can be formulated as a vector l ink .  A rigid member with 
two constraints is normally treated as a link. A rigid member 
with more than two constraints  may be treated  as  a body in which 
three selected points suffice to define a coordinate system. If 
additional  points  on the member are of analytical concern, these 
points of interest can be related to  the coordinate system of the 
member body. 

In  the simplest case, a linkage can be treated  as one vector 
loop. In other cases, a useful analysis requires more than one loop. 
Although a linkage must  have a t  least one independent loop 
that requires position data  as  an  input, it may also have  dependent 
loops that  are specified by way of incident loops. 

Because it restricts the action of a pair of links, a constraint 
in a linkage is also called a pair. The constraints considered in 
KAM are of six kinds: revolute, prismatic, cylindric, spheric, 
planar, and universal. Each of these pairs requires one or more 
independent variables to specify the relative position of two links 
connected by  the pair. These variables are  the degrees of freedom 
(d.f.) of the pair. The general nature of these pairs is shown 
in  Figure 1. 

The Gruebler criterion4 for a linkage is a  function of the number 
of links, number of pairs, and  the d.f. of each pair. The criterion 
equals zero for a locked linkage, one for a constrained linkage, and 
two or more for an unconstrained linkage. 

KAM is basically designed to  treat constrained linkages of 
three, four, or five links. This  permits the analysis of a wide 
variety of linkages of practical  interest. Moreover, by means 
of a few special rules, certain linkages with two degrees of freedom 
can be reduced to  the category of constrained linkages. 

Although computers  have previously been applied to linkage 
analysis, the programs have used techniques of very limited 
power, and have often limited their scope to position solutions. 
Denavit  and hart en be^^'^ have described a  computer procedure 
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any single-loop linkage from simple input parameters, but  their 
method depends upon iterative processing of a  product of several 
large matrices. By  contrast, the method used in RAM gives closed- 
form position solutions to eight categories of single-loop, two or 
three-dimensional linkages. The solutions can also be used step- 
by-step for position determination of multiloop linkages. Most 
practical linkages fall into either one of the eight categories 
or into  a combination of them. The method reduces motion and 
force analysis to  the solution of simultaneous linear equations. 

A useful classification of existing and potential  areas for the 
application of computers to mechanical design has been made 
by Knappe,‘ who distinguishes between kinematic type synthesis, 
kinematic size synthesis, kinematic analysis, component design, 
methematical model generation, and dynamic analysis. 

Very little exists in the way of defined  logical or mathematical 
approaches for treating  type synthesis. Ordinarily, the major 
engineering effort is in the redesign of existing mechanisms, , 
and  a computer procedure for type synthesis would  find limited 
application-this is true, for example, in  the automotive  industry. 
Recently, kinematic size synthesis has received considerable atten- 
tion.  For example, computer procedures have been developed 
to select gear trains for a needed gear ratio,’ and  the synthesis 
of cams seems to be adequately handled by polynomial methods.’ 
Linkages present the most formidable synthesis problem. For 
linkages, Freudenstein  and Sandor’ have developed new synthesis 
methods, and  industry  has made some  use of these methods. 
However, except for the simplest 4-bar planar mechanisms, 
mathematical procedures for synthesis rely on linearization of 
highly non-linear equations and subsequent use of iteration  to 
a solution. No one procedure as  yet combines the desirable features 
of broad application, simplicity of use, and high reliability. 
Again, the need for size synthesis of linkages in  industry is largely 
restricted to those engineers responsible for original design effort. 

A look at  the packaging function of automotive engineering 
demonstrates the value of KAM for geometric problems. Starting 
with given specifications, such as wheelbase and maximum height 
and length, and a selection of components such as engine, transmis- 
sion, and suspensions, the packaging group must “fit” components 
with a chassis and a body. Fitting is partly  a  routing  and placement 
problem and  partly  a kinematic analysis problem. Several of the 
first components to be placed in the package design are linkages, 
for example, the driveline, the steering, and  the  front  and rear 
suspensions. The space required for motion of these components 
is one of the most difficult factors to deal with in the packaging 
effort. 

At other  stages  in the packaging effort, and also in design 
of the individual components, the position, motion, and forces 
of a host of other linkages must be determined. Throttle  and 
brake linkages, door and hood  hinges,  window lifts, windshield 
wipers, and even the  human body as a linkage have  all been 
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Figure 4 Overall KAM logic 
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force, torque, velocity, and acceleration. All output is in  standard 
format  to  facilitate  further processing if desired. Normally, the 
results of an  engineering analysis are most useful in graphic  form. 
Typical needs of a  linkage designer might be a plot of input angles 
or lengths  versus positions of some key  point, or a  plot of input 
angles  versus the projected angles of a link.  Such  graphs are  not 
provided by KAM, but can easily be drawn  from  the KAM output. 
However, KAM can  provide  a line sketch of the  entire  system, 
as well as perspective views of such  a  sketch. 

The  set of seven  programs  mentioned  in  Tablc 3 are included 
in RAM to facilitate  the programming of FORTIZAN output programs. 
Two of these  programs  assist in  the display of results  on the 
1627 Plotter.  The  other five calculate geometric parameters based 
on  the coordinates of points  in  the linkage  system. 

KAM is an  open-ended system, as illustrated  by  the  ability 
to  integrate FORTRAN output programs. The  system design 
recognizes that  the K ~ M  language  is  purely  descriptive, and  that 
the linkage  descriptions, and  the position, motion, and force 
analyses, are  subject  to complete  standardization.  The lower  half 
of Figure 4 illust~rates the optional  calculations which the user 
can  request for the  particular design to be evaluated. Because 
this flexibility is most needed in the  area of output, once KAM 

has  calculated positions, motions, and forces for the described 
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rebound  envelope. Loops are solved one a t  a time;  independent 
loops are solved first and followed by  the solution of depcndent 
loops. 

More  complicated than  Types I and I1 are  the mechanisnls 
of Type 111. Type  IIIb mas considered but  not included in  the 
design of KAM. A  typical  example of Type  IIIa,  the  automotive 
rear suspension,  has five vector loops that  must be solved simulta- 
neously. It is interesting  to  note  that K . ~ M  can  perform  a force 
analysis of such a nlechanisn1, provided that position data is 
available.  Reference 10 further  illushtes  Type I1 and  Type 111 
mechanisms. 

The first  phase of position  solution  selects the nlethod and 
determines  the sequence of mathematical  solution. To accomplish 
this, the program  draws  upon the  fundamental  systenls concepts, 
namely, the plex organization of topology and  the  table of KAM 

algorithms. The system  topology is examined loop by loop for a 
match  with an  entry in the  table of KAM algorithms. Folloming 
a match, the  Tetrahedron Solution  required  for  position  solution 
is extracted  from the  table  and placed in  the loop bead of the plex. 
Additional data, such as  the required  simultaneous  dot  products 
and vector  unknowns, are  extracted  from  the  table  and placed in 
the plex. All bodies named  in the program are examined and 
appropriate  data  are  cntered  in  the plex;  one by one, each  body 
beconles fixed in space as  the result of solving one  or  more loops. 
I n  addition  to  the originally  given  topology, the plex a t  this 
point  contains data  that indicate  a  solution  method  and  sequence 
for the second phase of the position  solution. 

Figure 7 shows a general  outline of the second phase of position 
solution.  The first steps  in  the housekeeping function  are  to  read 
the plex, and  then  the  data,  into memory. The point data  that 
are read  into  the position  solution  section of KAM may  constitute 
any  set of points  in the range of the given  mechanism.  However, 
the KAM system  treats  this  set as the design or  static condition 
of the mechanism, and  then,  by  scanning  the linkage data, relates 
all  parameters  and  variables describing the mechanism to  the  set. 
In housekeeping, each  loop  is  scanned in sequence of solution 
and  all  vectors for  links and constraints  are  computed.  After 
these  vectors  are found and  stored  in  the  metric  arrays of the plex, 
a second scan is undertaken  and  angular  data  pertinent  to  the 
description of loops are computed  from the results of the first  pass 
and  the connectivity  indicated by  the plex. In  a third scan,  points 
of interest  on defined bodies are assigned  polar  coordinates 
relative to a reference frame defined by the  three  points  that 
fix the body  in space. 

One housekeeping scan finds universal  joints in  the mechanism. 
These  constraints  must be treated  by a sinmltaneous  solution 
of two dot  products,  and  each solution  has  two  answers.  Therefore, 
a solution  mode  based on  static position is established  for later 
use  in  selecting  correct  answers as  the mechanism is moved 
through  its  range. 

PIlOGRAbI FOR LIiYKAGE ANALYSIS 

Figure 7 General flow chart for 
position solution, phase 2 
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Some links may be bent,  in which case a  simultaneous  solution 
of dot products  establishes the axes as  constant vectors. By  the 
same  operation, the axes of certain  constraints  can  be  found and 
treated  either  as  constant  vectors or as known unit  vectors of 
slide-type  constraints.  Since  two  answers are possible for  each 
operation, the solution  mode is established  from static  data,  as 
for  the universal  constraint. 

All but two of Chace’s Tetrahedron Solutions have more than 
one  answer:  two  have  four,  one  has  eight,  and the rest  have 
two  answers.  However, the  actual  static position of a  mechanism 
is mathematically  unique, and defines criteria  from which the 
single correct  answer  can  be selected for  subsequent  positions 
of the mechanism.  These  criteria are  determined  and  stored  in 
the plex. Because the solution  criteria may change  for  different 
sets of point  data,  they  must  be calculated  for  each set of input 
point data.  The same  reasoning  holds  for the solution  criteria 
established  for the simultaneous  solution of dot products. 

Length  incrementation  in KAM simply  requires  a  change in 
the scalar  magnitude of a vector, the  unit  vector remaining 
unchanged.  However,  for  angular  input, the vector  changes 
orientation and  must  be re-established as a constant  vector  for 
the case  solution. A reference frame,  established  from the revolute 
and  adjacent  input link  for  each loop that requires angular  input, 
is  saved  in the plex. In  KAM, a  given loop can  have  either  angular 
input or linear input,  but  not  both. 

The control logic performs the looping functions of a FORTRAN 

“L>o” statement  and establishes  increments  for  subsequent use 
in solution and  output  functions of KAM. Data required for these 
purposes are stored  in  the plex. After a loop has been  selected 
for  solution by  the control logic, the solution string  found  by 
phase 1 is extracted  from the plex. 

Links and constraints  not classified as unknown by  the solution 
string  are  treated  as known  vectors and summed  into one constant 
vector as required. 

Once the required data have  been  established, a branch  is 
taken  to one of eight case solutions. If an error  occurs  in the case 
solution  indicating that  the mechanism  is going through an 
imaginary  range, an error message yields pertinent  data,  the 
input  variable is incremented, and calculations are resumed. 
This process continues until either  a  real  range is again  entered 
or the complete  range of the mechanism is satisfied. 

For case solutions  with  more than one  answer, a test is made 
on  each answer,  using the same  function that determined the 
solution mode a t  housekeeping  time. If the answer is inappropriate, 
then  the case-solution error  routine  is  executed. 

After the correct  answer is selected, the point data  in  the 
loop are  found  by  adding  each  vector,  in sequence, to a  given 
fixed or ground  point.  These new points become fixed points 
for  dependent loops or bodies subsequently  to  be solved. Some 
loops have  constraints that  are  not required  in  solving the loop, 
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but  are required  to fix bodies in space.  These  constraints, as well 
as  those bodies which have  three fixed points, were found  by phase 
one and  their solution  points  placed  in the plex. Phase  two solves 
them  at  this  time. 

1 After the body  solutions,  a test  determines  whether  all loops 
~ have been solved. If no, control passes back to  the block that ’ extracts  the solution string. If yes, an  output routine  is  entered. 

Subsequently, the control logic tests  whether  the  range is satisfied. 
If not, the linkage is solved for a new value of the  input  variable, 
and so on  until  the  range is satisfied. 

important knowledge about  the performance  characteristics of solution 
the linkage. They  may also  be  used in  computing  other element 
properties,  such as inertia and stress. The  mathematical  and 
programming  procedures needed to  obtain  these motions are 
discussed here. The  mathematical procedure,  again  based on 
Chace’s work,  permits  motion  analysis of all  linkages  within 
the scope of KAM. In  contrast  to  approximate solutions,  such as 
seen in “finite differencing” techniques, the  mathematical  methods 
to be discussed reduce the problem to a set of simultaneous  linear 
equations that give an  exact  solution at   any linkage  position. 
A  principle used throughout is that each  order of motion is 
dependent  only on motion  quantities  having  the  same or lower 
order of motion.  For example,  velocity  (first  order  motion)  is 
dependent  on  input velocity and  on position  (zeroth  order  motion). 

Two  fundamental conditions hold for the motion of a linkage. motion 
These,  a  linear  condition and  an  angular condition, are  written equations 
as two  vector  equations  for  each loop in  the mechanism. In  final 
form, the equations yield the same coefficient matrix for both 
velocity and acceleration,  although the  constant  vector differs 
for each. Thus  the coefficient matrix, once found,  can  be  used 
to  obtain  both  orders of motion. 

vectors  is zero for each loop in  the mechanism. For a summary equations 
of notation, see Table 7. The velocity  vector is the time-derivative 
of ri. Thus, 

V = Dr = (Dr)i + o X r 

The velocities and accelerations of linkage  elements  yield motion 

Represent  each  link by a  position  vector ri ; the  sum of such velocity 

r .  

Since all  unit vectors, 6i,i-, ,  are known  from the posit,ion solution, 
all absolute  rotational velocity  vectors, a,1 are expressed as a 
sum of relative  rotational velocit,ies, o ; , ~ - ~ .  Thus for example, 
aal = wZ1 + os*. The fundamental  linear  condition for velocity, 
for  a  vector loop of n links,  can be written 

i = l  

This  equat,ion  contains t,ern~s of translational  velocity  due to 
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Table 7 Summary of notation 

U 

U 

U 

a .  b 

rn and rr 

Magnitude: a scalar, non-directional quantity 
Unit vector: a vector of unit magnitude 
Product of a magnitude 11. and a unit vector fi. Thus u = uii 
Dot  product of a and b. If p is the smaller angle between the 
two  vectors, a b = ab (cos p )  
Postion  vectors  relative to  the  nth reference frame 
Ground reference frame:  three  mutually perpendicular unit 
vectors that obey the right-hand rule and have  a fixed orienta- 
tion relative to ground 
Angles specifying the direction of a unit  vector with respect 
to a  ground reference frame 
Dummy variable  vectors 
A reference _frame having instantaneous position defined rela- 
tive  to i, 3, k 
Shorthand for the  derivative d/dt  
Unit vector of rotation of link i with respect to link i - 1 
Absolute  angular  velocity of link i with respect to ground 
An input velocity, also written 021 
An input scalar, also written Dr2 
Angular acceleration; subscripts as for w; for spatial motion 
this a represents  only partial angular acceleration' 
Force  exerted on body or link i by body or link j with com- 
ponenk Si, ,., j f  , <, j t ,  ,., j":, ,., f:, ,., f:, in  the direction  indicated 
by superscripts 
Torque exerted  on  body or link i by  body or link j with 
components 7: ,{, T : ,  <, T : ,  ,., T : ,  i, T : ,  i, T : ,  in  the direction  in- 
dicated by superscripts 
Force output 
Force input 
Torque  output 
Torque  input 
Vector from center point of constraint i to center point of 
constraint j 
Vector from  center point, of constraint i to orltput and  input 
fnrc-rs 

rotation (a x r) as well as  terms of pure  translational velocity 
( (Dr) i ) .  Many of the  terms  may be either zero or  known inputs; 
the existence of terms is dependent on constraint  types  in  the 
linkage and  on  the  location of fixed links in  the loop. 

A second condition expresses the  fundamental  angular condi- 
tion for motion. 

Equation 3 states  that  the  sum of thc relative  angular velocities 
of a linkage  loop is zero. 

For solution  purposes, (2) and (3) are rewritten as Equations 4 
and l i :  

2 7 = a  ( D Y J ~ ~  + 2 1 = 3  [ ~ ~ , , - ~ ~ i , j - 1  x 2 %=I  r.1 



In  (4), Dr, or w~~ represent possible scalar inputs;  in  any in- 
dependent loop, one of these will be zero because the linkage 
has  only  a single freedom. In a dependent  loop, Dr, and wZ1 
may be unknowns and would appear  on the left side of the  equation. 

(5) 

Again, wZ1 represents the scalar input  and would be  zero for  pure 
translational  input. 

of ( 2 )  and ( 3 ) .  For each link vector rj,  the acceleration is written: equations 
The acceleration  equations are  obtained  by  taking derivatives acceleration 

+ C ( w , - l . l  X w , , - ~ )  X r, , =:+ 

and 

C a i . z - l  X rl = wjl X r, .  

Thus,  for a vector loop of n links: 

i 

t = a  

Note  the sinlilarity in ( 2 )  and (6). The first and second terms 
of (6) express the normal and  tangential accelerations, respectively. 
All Ti, Dr,, and oil are known from the position and  velocity 
solutions. 

The differentiation of (3) establishes  a second equation for 
acceleration. 

where 

and 

2i.i-l = G t , i - l ;  ai.i-1 = D o i * ; - l .  

Again, note  the  similarity between (7) and  the  angular velocity 
equation (X). 

The  number of scalar  equations for acceleration is identical 
to  the  number of scalar  equations for velocity. Since the coeffi- 
cients of the vclocity and acceleration  equations are identical, 



The equations discussed above are used to  obtain  the  relative 
motion of an motions of link i with  respect to  link i-1 for  all  links in  the 
arbitrary  point mechanism. To  obtain  the  absolute motion of link i with  respect 

to ground, the relative  motions  are  summed. Once these are 
established, the motion of points of interest  can be  computed 
by  summing  all motions  from  ground to  the  point. 

Equations 2 and 3 are  written for  each loop in  the mechanism. 
For an  n-loop spatial  linkage, 6n  scalar  equations  are  obtained 
by  taking scalar  products of the original 2n vector  equations  and 
the i, 3, k unit vectors. Thus,  6n  unknown motions  can  be com- 
puted for spatial linkages. For  planar linkages, a computed 
auxiliary reference frame (a, @, O )  allows the plane of action 
to be  oriented  arbitrarily  in space, and  the 2n  vector  equations 
give 3n scalar  equations.  Scalar  products  between (2) and 5. 
and Q yield 3n equations, while the scalar product of (3) and 
O yields  n  equations. 

Unknown  motions  can  be classified into  two categories. 

scalar Unknown  translational  motions: Dri for  velocity and D2ri 
unknowns for  acceleration, (i = 2,  . . . n). 

Unknown  relative  angular  motions: w i , i - l  for  velocity and 
Dwi ,i"l for  acceleration, (i = 2,  - n). 

For a single independent  spatial loop, any conlbination of the 
scalars D"ri (for n z  = 1, 2 )  and D " w ~ , ~ - ,  (for m = 0, l), up  to 
a  maximum of six, may be unknowns. However, a  maximum 
of three D"ri and six D"w; ,  scalars can  be present in  this case. 

A spatial loop with  more than six unknowns  can  be solved 
using additional "constraints" on  the loop. In  a  multiloop  system, 
the  added  constraints  on a  given loop take  the  form of another 
loop that shares  a  portion of the given  loop. The  number of equa- 
tions,  hence the number of unknowns,  is  limited by  the  total 
number of loops. Thus, linkages comprised of a series of loops 
can  have  more  than one degree of freedom and more  unknowns. 
Again, if its motion is determinate, a single loop linkage  can have 
only one degree of freedom.  Spin degrees of freedom,  created when 
two  ball  joints  connect a link,  create  extraneous degrees of freedom 
that are eliminated  in KAM by replacing  one of the ball  joints 
by a  universal  joint. 

For  both  planar  and  spatial mechanisms, the number of 
equations  for  linear and  angular conditions  is  shown in  Table 8. 
Also illustrating the general matrix form, the  matrix is divided 
into  two sections, the  top being used for the linear  conditions 
and  the  bottom  for  the  angular conditions. 

Each  constraint  in a  vector loop describing  a  linkage  introduces 
one,  two, or  three unknowns, as shown in  Table 9. The directions 
of the  unit  vectors associated with  these  unknown  magnitudes 
are known  from the position  solution. I n  conjunction  with the 
link  vectors, the components of the  unit  vectors  representing 
direction become equation coefficients. For example, a  revolute 
constraint  introduces  one  unknown  and  this  unknown  may  appear 
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in six equations.  Thus,  a  revolute  constraint for one spatial loop 
introduces six  coefficients into  the  matrix. 

applied at the same  constraint. In  addition,  the  input  constraint program 
for  motion must be a  ground  constraint  with one degree of freedom, 
i.e., a  revolute or a  prismatic.  The linear  motion of points of 
interest is represented by a  vector to  the point  from the ground. 
All other  outputs represent the relative  and  absolute motions of 
link i with  link i - 1 and link i with  respect to ground,  respectively. 

The KAM motion processor executes the  mathematical com- 
putations outlined  above, solves the resulting set of linear  equa- 
tions, and  outputs  the velocities and accelerations of the linkage 
elements.  This processor consists of the phases for input  and 
initialization, for a scan,  for  a  determination of velocities, and 
for a determination of unknown  accelerations. 

For KAM, the  input for both  position and motion must be the motion 

Table 8 The general  form  of  the coefficients matrix 
NUMBER OF 
SCALAR EQUATIONS 

SPATIAL PLANAR 

I I 
3n 

i i  
I I L L  



The  input  and initialization  phase  reads the model plex. 
The number of input motions is determined  from the model, 
and a corresponding number of velocity and acceleration  mag- 
nitudes  are  read.  The direction of motion  is  established, by  the 
right-hand  rule,  from  points in  the plex. Point  coordinates  for 
the particular  linkage  position being analyzed are  read  as needed. 

A motion topology table,  a  shorthand plex particularly  suited 
to motion  analysis, is constructed  during a scan of the plex. 
The scan  phase also tests various  characteristics of the linkage 
to govern the  content of the motion  table. Entries  are  made 
in  the motion  table for each degree of freedom of each  constraint 
of each loop. 

The velocity  phase of the motion processor builds the motion 
velocity Coefficient matrix  and computes the velocity  constant  vector; 
phase entries  are  made for degree of freedom within  constraint  within 

loop. When an input  constraint is found,  the  entire vector is 
computed.  Depending  on the  type of freedom indicated in  the 
motion table, coefficient entries  can be of three  types.  These  are 
pure  rotational velocity, pure  translational  velocity,  or  transla- 
tional velocit,y due to  rotation. Finally, the set of linear  equations 
is solved for scalar  unknowns, and velocity  vectors are  then 
formed with  the  aid of unit vectors  obtained  from  the  data 
portion of the plex. 

The motion processor enters  its acceleration  phase  with  all 
acceleration positions and velocities computed and available. The acceleration 
phase phase uses the coefficient matrix  (actually  stored  in its inverse 

form) given by the velocity phase. The acceleration phase uses 
the motion table for control of the calculations, as does the 
velocity phase. However, to  obtain  the acceleration  constant 
vector,  individual  constraint  routines are used because of the 
great  number  and  variety of terms  to  be  computed, These con- 
straint routines are based on  the  entries in  a special table.  The 
program proceeds from  constraint to constraint  in  the motion 
table  and  then  repeats  the process for  all loops. 

A  matrix  multiplication  is performed to  obtain  the desired 
solution vector;  the  relative acceleration  vectors are computed, 
stored, and  then summed to  obtain  the  absolute accelerations 
of each  link. 

In  addition  to  the motion of all links, the program  can  calculate 
the motion of up  to  three “points of interest,”  such as points 
on a coupler. One subprogram serves to compute both  the velocity 
and acceleration of these  points, the logic being shared by unique 
arithmetic  operations for each type of motion. The program is 
executed immediately after  the velocity  phase, as well as following 
the acceleration  phase. The  output of this phase consists of the 
motion  vector  drawn  from the first  constraint  in the loop to 
the point  and represents the absolute  linear  motion of the point. 
The  magnitude of this vector is also output. 

force Applied to a linkage, the two well-known conditions for  static 
solution equilibrium of each  body or link are  that, (1) the sum of the 







Table 10 Matrix  for force unknowns in spatial linkage 

Force 
Location 

Unknowns 

At i 

A t i + l  

Body Constraints 

A t i  + 1 

Body Constraints 

3 

f" f i  fk 

1 0 0  
0 1 0  
0 0 1  

-1 0 0 
0 -1 0 
0 0 -1 

-1 0 0 
0 -1 0 
0 0 -1 

0 T k  "Ti 

-r, 0 ri 
r i  --Ti 0 
0 r,  -ri 

rj --Ti 0 
-rk 0 T i  

Force Dimensions 

n 1 

f fo (output) 

Summary 
A technique  for  analyzing two- and three-dimensional linkages 
by solving vector  equations for position, motion, and force was 
programmed for  a  digital  computer. A model plex that  treats 
a  linkage as one or more vector loops is generated. The program 
selects the applicable  equations for position solution. Algorithms 
are simplified by  storing linkage information  in the form of a 
tree-organized plex. 

The vector  equations employed in finding the velocities and 
accelerations are  not obtained  through differentiation of the 
position solution  equations, but consist of vector  relationships 
expressing fundamental linear and  angular conditions. Motion 
can be calculated for each consecutive position computation, 
given an  input motion. Because the problem of finding velocity 
and acceleration for linkage elements reduces to one of solving 
a set of simultaneous  linear  equations, the solutions are exact 
and  iteration is not  required. 

Vector algebra is also used to  obtain linear  equations that 
define forces and torques. The coefficients for the linear  equations 
are generated  by an algorithm that scans the linkage plex and 
related  tables. As in  the case of motion, analysis reduces to  the 
problem of solving a set of simultaneous linear equations. 
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