An expervmental system for the kinematic analysis of two- and three-
dimensional mechanical linkages is outlined.

The structure of the programmed system, the input language, and
the method of storage allocation are described.

The class of problems treated by the system 1is discussed in brief,
as are the basic veclor equations used in oblaining solutions for
posttion, velocity, acceleration, and force of linkage elements.

A computer-aided linkage analysis system

by F. Bitonti, D. W. Cooper, D. N. Frayne,
and H. H. Hansen

A significant portion of mechanical engineering effort is spent in
the kinematiec analysis of mechanisms such as gears, cams, and
linkages. Although linkages present a more complex problem of
analysis than most other basic mechanisms, they are widely
used because of their reliability, speed, and force-transmission
properties. Engineers continually seek improvements in existing
linkages and devise linkages for new mechanical systems. Linkage
analyses have traditionally been performed on the drafting board,
but this is difficult and time consuming, and complete analyses
are not feasible for the more involved linkage systems encountered
in practice.

This paper describes an experimental tool for the analysis
of proposed two- or three-dimensional linkages. Called xam
(Kinematic Analysis Method), the tool consists of a programmed
system for the 18mM 1620. Based on mathematical procedures due
to Chace,’ the system can provide position, motion, and force
analyses for a wide class of linkages. The user describes a proposed
linkage to xKAM in a language modeled after the apt language.’
This language functions solely as a means of describing the con-
nectivity of parts in a linkage; the action statements that request
calculations are specified by other means. From a linkage descrip-
tion in KAM language, the KaAM program uses a storage-allocation
technique described by Ross’ to form a tree-organized model
of the linkage within computer memory.

IBM SYSTEMS JOURNAL * VOL. 4 * NO. 3 - 1965

The data required by xam consist primarily of the coordinates
of points in the linkage at design position and the magnitudes
of input positions, motions, and forces. Position, motion, and
force results are displayed in standardized formats. To ealculate
special parameters of interest, or to exhibit the results in a special
way, the user can provide supplementary programs that further
process the normal output.

Class of KAM applications

In a linkage, the rigid members function together as an integrated
mechanism because member actions are limited by physical
interconnections. In a planar linkage, action is confined to two
dimensions; in a spatial linkage, action in three dimensions may
oceur.

For analytical purposes, a physical connection can be treated
as a vector constraint, and a fixed-length line between two con-
straints can be formulated as a vector link. A rigid member with
two constraints is normally treated as a link. A rigid member
with more than two constraints may be treated as a body in which
three selected points suffice to define a coordinate system. If
additional points on the member are of analytical concern, these
points of initerest can be related to the coordinate system of the
member body.

In the simplest case, a linkage can be treated as one vector
loop. In other cases, a useful analysis requires more than one loop.
Although a linkage must have at least one independent loop
that requires position data as an input, it may also have dependent
loops that are specified by way of incident loops.

Because it restricts the action of a pair of links, a constraint
in a linkage is also called & pair. The constraints considered in
KaM are of six kinds: revolute, prismatic, cylindrie, spherie,
planar, and universal. Each of these pairs requires one or more
independent variables to specify the relative position of two links
connected by the pair. These variables are the degrees of freedom
(d.f.) of the pair. The general nature of these pairs is shown
in Figure 1.

The Gruebler criterion* for a linkage is a function of the number
of links, number of pairs, and the d.f. of each pair. The criterion
equals zero for a locked linkage, one for a constrained linkage, and
two or more for an unconstrained linkage.

KAM is basically designed to treat constrained linkages of
three, four, or five links. This permits the analysis of a wide
variety of linkages of practical interest. Moreover, by means
of a few speecial rules, certain linkages with two degrees of freedom
can be reduced to the category of constrained linkages.

Although computers have previously been applied to linkage
analysis, the programs have used techniques of very limited
power, and have often limited their scope to position solutions.
Denavit and Hartenberg*:® have described a computer procedure
that yields a position, motion, and static force analysis of virtually

PROGRAM FOR LINKAGE ANALYSIS

Figure 1 Six constraints

REVOLUTE (i gz 9

CYLINDRIC

SPHERIC

PLANAR

UNIVERSAL @

any single-loop linkage from simple input parameters, but their
method depends upon iterative processing of a product of several
large matrices. By contrast, the method used in KAM gives closed-
form position solutions to eight categories of single-loop, two or
three-dimensional linkages. The solutions can also be used step-
by-step for position determination of multiloop linkages. Most
practical linkages fall into either one of the eight categories
or into a combination of them. The method reduces motion and
force analysis to the solution of simultaneous linear equations.

A useful classification of existing and potential areas for the
application of computers to mechanical design has been made
by Knappe,® who distinguishes between kinematic type synthesis,
kinematic size synthesis, kinematic analysis, component design,
methematical model generation, and dynamic analysis.

Very little exists in the way of defined logical or mathematical
approaches for treating type synthesis. Ordinarily, the major
engineering effort is in the redesign of existing mechanisms,
and a computer procedure for type synthesis would find limited
application—this is true, for example, in the automotive industry.
Recently, kinematic size synthesis has received considerable atten-
tion. For example, computer procedures have been developed
to select gear trains for a needed gear ratio,” and the synthesis
of cams seems to be adequately handled by polynomial methods.®
Linkages present the most formidable synthesis problem. For
linkages, Freudenstein and Sandor® have developed new synthesis
methods, and industry has made some use of these methods.
However, except for the simplest 4-bar planar mechanisms,
mathematical procedures for synthesis rely on linearization of
highly non-linear equations and subsequent use of iteration to
a solution. No one procedure as yet combines the desirable features
of broad application, simplicity of use, and high reliability.
Again, the need for size synthesis of linkages in industry is largely
restricted to those engineers responsible for original design effort.

A look at the packaging function of automotive engineering
demonstrates the value of xkam for geometric problems. Starting
with given specifications, such as wheelbase and maximum height
and length, and a selection of components such as engine, transmis-
sion, and suspensions, the packaging group must ‘“fit”” components
with a chassis and a body. Fitting is partly a routing and placement
problem and partly a kinematic analysis problem. Several of the
first components to be placed in the package design are linkages,
for example, the driveline, the steering, and the front and rear
suspensions. The space required for motion of these components
is one of the most difficult factors to deal with in the packaging
effort.

At other stages in the packaging effort, and also in design
of the individual components, the position, motion, and forces
of a host of other linkages must be determined. Throttle and
brake linkages, door and hood hinges, window lifts, windshield
wipers, and even the human body as a linkage have all been

BITONTI, COOPER, FRAYNE AND HANSEN

the plex

Table 2 KAM program for FRBAR example

REMARK/FRBAR BENT LINK

DIMENSION/PT (8)

BASE/PT (2), PT (3) PT(1)
REMARK/BODIES

BODY1 = BODY/PT (5), PT (4), PT (6)

DRIVE = BODY/PT (3), PT (2), PT (4)

OUTL = BODY/PT (7), PT (6), PT (8)
REMARK/CONSTRAINTS

REV1 = REVLUT/PT (3), PT (2)

CYL1 = CYLNDR/PT (5), PT (4)

CYL2 = CYLNDR/PT (7), PT (6)

CYL3 = CYLNDR/PT (1), PT (8)
REMARK/FORCES AND TORQUES

T21 = TORQUE/DRIVE (PT (3)), PT (2), PT (3)

F14 = FLOAD/OUTL (PT (1)), PT (8), PT (1)

T14 = TLOAD/OUTL (PT (1)), PT (8), PT (1), F14
REMARK/MOTION INPUT

W21 = MOTION/REV1, PT (2), PT (3)
REMARK/MOTION OUTPUT STATEMENTS FOR FRBAR

PS5INR2 = MOTOUT/BODYL, PT (5)

P7INC2 = MOTOUT/OUTL, PT (7)

P1INC3 = MOTOUT/OUTL, PT (8)
REMARK/LOOPS

LOOP1 = LOOP/REV1, DRIVE, CYL1, BODY1, CYL2, OUTL,CYL3
REMARK/POSITION INPUT

THETA = INANG/LOOP1 (REV1)

FRBAR = SYSTEM/LOOP1

END

Although the rules for using this language will not be detailed

here, the use of many of the terms can be seen from an example.
The linkage description of Table 2 suffices to describe a single-
loop, bent-link mechanism consisting of one revolute and three
cylindric constraints; the structure of such a mechanism is sug-
gested by Figure 2. A detailed analysis of this particular mechanism
can be found in Reference 10.

The xaM program organizes statements descriptive of the
linkage into the “plex” form for physical models, as suggested
by Ross.” The plex in kaM consists of a collection of FORTRAN
arrays. The columns of the arrays are referred to as beads or
lists. Connectivity is achieved by means of pointers contained
in topology beads. Metric data beads are necessary for the storage
of dimensional data, and have direct correspondence with the
topology beads. Topology beads are required for the loops,
constraints, links, and bodies; essentially, they provide an un-
scaled representation of the linkage. This facilitates checking
the linkage against kinematic rules, selecting mathematical pro-
cedures and accessing data related to any portion of the linkage.
Because the topology and metric data are separated, many varia-
tions in dimensions and linkage inputs can be analyzed without
changes in linkage description.

BITONTI, COOPER, FRAYNE AND HANSEN

Figure 2 Three-dimensional four-bar linkage with turn slide pairs
cyLl

The kam system allows up to five kinematic loops in a linkage
description. A LOOP statement defines, not the topology of the
several loops in the system, but the topology of one loop only.
This is desirable for xam because position solution is closely tied
to individual loops. A tree-organized plex is useful here in that
it enables connectivity to flow between constraints and links
within a loop, as well as from the constraints and links to related
point data. This organization is shown schematically in Figure 3
for a single loop. On the other hand, the force and motion solutions
are system oriented rather than loop oriented. If several loops

are named, the list of constraint and link pointers created for
each loop is sufficient to represent individual loop topology but
not to capture overall linkage topology. To overcome this limita-
tion, the tree organization was generalized by means of “back
pointers.”

Figure 3 Tree-structured loop

LOOP1
CONSTR1
LINK1
CONSTR2

CONSTR1
PT1
P72
PT3

PROGRAM FOR LINKAGE ANALYSIS 205

canonical
forms

table of
algorithms

KAM processing

Each of the six allowable xaM constraints can be defined
as a combination of the two elemental geometric conditions, viz.,
fixed length, and fixed angle. These two conditions could have
been used instead of the six pair types. But the six constraints
are justified in that they are commonly used and understood
by engineers, and permit greater conciseness in constraint defini-
tion as well. However, the engineer’s xam deseription of pairs
must be reduced by processing combinations of the two basic
conditions. Because knowledge of the pair types, their connectivity,
and the static position of pair axes in a loop is sufficient for
mathematical representation of a loop, the reduction is accom-
plished in kam with the aid of six “‘canonical forms.” The canonical
forms define the simplest set of input data for each pair type
and provide an unambiguous procedure for reduction of pair
data to the two basic geometric conditions. As provided, the
canonical forms also eliminate the need for consideration of
certain details of the physiecal arrangement. Specifically, bends
and twists in the links can be neglected, and attention need
not be given to which of two adjacent links is rigidly attached
to a connecting pair. An illustration of canonical form data is
found in Reference 10.

Since xam employs the several mathematical procedures of
Chace' for position solution, one of the functions of the system
must be that of solution procedure selection. Unlike the force
and motion phases, in which the solution procedure consists
of the reduction of linear equations, position solution may be
one of eight non-linear procedures depending upon the order
and type of constraints in the kinematic loop. One approach to
this problem is to logically determine, by programming, the
resultant unknowns for any configuration and to make a selection
of solution procedure. Considering the six constraints and a
maximum of five links in a loop, the possible linkages are in the
hundreds. Practical considerations, based on degrees of freedom,
reduce this number greatly. Further investigation led to the
conclusion that an enumeration of the linkages and their associated
canonical form data and veetor unknowns was feasible. This
table of xam algorithms lists all of the constraint configurations
(linkages) that can be solved by Chace’s position solution pro-
cedures.

Irollowing the generation of a plex, the KAM processing phases
consist of position, force, and motion calculations. The latter two,
being dependent upon position data, are optional and are per-
formed only if requested by the user. The overall operation
of xawm is indicated in Figure 4.

In addition to the linkage description, xam input includes
(1) coordinates of each linkage point at design position, (2)
magnitudes of incremental changes to be made in angles or posi-
tions, (3) applicable ranges for angles or distances, and (4) mag-
nitudes of the externally applied forces and moments.

xaM output consists principally of numerical data for position,

BITONTI, COOPER, FRAYNE AND HANSEN

Figure 4 Overall KAM logic

KAM TRANSLATION
AND POSITION SOLUTION

LINKAGE
DESCRIPTION

STATIC
POSITION
DATA

KAM
LANGUAGE
DECK

PLEX
GENERATOR MODEL PLEX MODEL PLEX

KAM L_/\
POSITION

POSITION POSITION

7

SOLUTION

OPTIONAL ROUTINES
POSITION
DATA
MODEL PLEX

POSITION
SOLUTION SOLUTION
FORCE ouTPLT OUTPUT

MOTION

force, torque, velocity, and acceleration. All output is in standard
format to facilitate further processing if desired. Normally, the
results of an engineering analysis are most useful in graphic form.
Typical needs of a linkage designer might be a plot of input angles
or lengths versus positions of some key point, or a plot of input
angles versus the projected angles of a link. Such graphs are not
provided by xam, but can easily be drawn from the Kam output.
However, xam can provide a line gketch of the entire system,
as well as perspective views of such a sketch.

The set of seven programs mentioned in Table 3 are included
in kAM to facilitate the programming of FORTRAN output programs.
Two of these programs assist in the display of results on the
1627 Plotter. The other five calculate geometric parameters based
on the coordinates of points in the linkage system.

KAM is an open-ended system, as illustrated by the ability
to integrate FORTRAN output programs. The system design
recognizes that the kam language is purely deseriptive, and that
the linkage descriptions, and the position, motion, and force
analyses, are subject to complete standardization. The lower half
of Figure 4 illustrates the optional calculations which the user
can request for the particular design to be evaluated. Because
this flexibility is most needed in the area of output, once Kam
has calculated positions, motions, and forces for the described
linkage, the display of results is left to programs provided by

PROGRAM FOR LINKAGE ANALYSIS

system
adaptation

Figure 5 Typical vector repre-
sentation of simple 4-bar mecha-
nism

[4
77T ITTTT 777,
r—s4t4C=0

position
solution

Table 3 Output subroutines

SKETCH Draws point and line sketch of either of the three plan
views of the linkage.

PERVEW Draws a true perspective point and line sketch of the
linkage.

LOCUS Calculates the three coordinates of points on a locus of
revolution.

ANGLE Calculates the angle between two lines, or a line and a
reference axis.

XLGTH Calculates the length of a line from a point to a plane, or
the length of a line in space.

PANGLE Calculates the angle between a line and one of the re-
ference planes.

DIRECN Calculates the polar and azimuthal angles of a vector.

the user. The user’s output program may make full use of the
algorithmic capabilities of the FORTRAN system, as well as those
of the special kam subroutines. Programs that perform additional
calculations on the results of the standard position, motion, and
force solutions can be included.

The xam system was written in FORTRAN in order to keep
the system as machine independent as possible. Moreover, the
use of FORTRAN ensured a system that could be modified and
expanded with ease. Each major function of the system is written
as a self-contained program. kam could be readily adapted to
any disk system, assuming that a disk-oriented FORTRAN processor
were available. Conversion to a combination disk/tape system
would undoubtedly require procedural changes for the input and
output of numeric data, whereas conversion to a solely tape-
oriented system would require a more extensive system redesign
to facilitate program segmenting and data handling.

KAM was written for the rBm 1620, with the aid of the FORTRAN
-p system. The use of an on-line 1311 Disk File enables the
KAM program to be segmented into a series of main subprograms,
all of which are stored in the disk file. Some of the needed sub-
routines are stored in core memory at all times; others are loaded
from the disk only on call. Sketching is accomplished with the
1BM 1627 Plotter.

Analytical foundations

The previously cited work by Chace forms a mathematical
nucleus for position solution in xam. Each link is treated as a
vector, with the ground being a link that closes the loop as shown
in Figure 5. This is represented by the three-dimensional vector
equation,

r+s+t4 C=0, 1))

where r, s, and t are potentially unknown and C is the sum of
all known vectors. Chace derived a set of nine closed-form solutions
(Tetrahedron Solutions) to this Tetrahedron Equation. These

BITONTI, COOPER, FRAYNE AND HANSEN

Table 4 Potentially unknown vector components

Vector r

Polar Angle &r
Azimuthal Angle o,
Length r

solutions represent all possible combinations of unknown spher-
ical coordinates among the vectors. Table 4 summarizes the
spherical coordinates, any three of which may be unknown.
Table 5 summarizes the nine solutions (called cases) and the
known and unknown quantities. To illustrate, in Case 3, two
vectors are dependent upon unknown coordinates; the length
and azimuthal angle of the vector r and the azimuthal angle
of the vector s are unknowns. To solve the case for these unknowns,
required quantities are the sum of all known vectors in the loop;
the polar unit vectors about which r and s rotate; the polar
angles between &, and r and between &, and s; and the length
of s.

xaM is designed to accept problems which require Cases 1
through 8. Because an application of Case 9 is not readily found
in industry, it was omitted from xam.

Just as loop solution types are classified, so are problem types.
They are

I Single loop,
a) Simple 4-bar loop
b) Bent-link loop
II Multiloop series,

a) Single input
b) Two or more inputs

IIT Multiloop parallel
a) Single system of parallel loops
b) Other combinations of above

The simple 4-bar loop of Figure 6 is a typical example that can
be solved quite readily by graphic or geometric means. If the
two revolutes are parallel, the mechanism is planar, i.e., two-
dimensional in action. The solutions for planar linkages are
special cases of the spatial (three-dimensional) cases of Table 5
and can be treated without enlarging the number of case solutions.

A more complex 4-bar linkage has bent links, as shown in
Figure 2. As an example of a typical loop solution, this linkage
will be examined in more detail. With the input of 8, at the
revolute constraint, all unit vectors can be caleulated. This
procedure is outlined in Table 6. Also, since the link lengths
remain unchanged, the link vectors r;, p,, ps;, and p; are completely
known. The only remaining unknowns are the lengths of the
constraint vectors q., qs, and q,. From Table 5, Case 6 is known
to apply, and the solution can be completed easily.

PROGRAM FOR LINKAGE ANALYSIS

linkage
types

Figure 6 Simple 4-bar loop

—

Type II problems consist of a connected series of Type I
problems. The single-input Type II category is exemplified by
throttle linkages, clutch linkages, and the like. For multiple
inputs, a typical example is the front suspension of an automobile,
for which two independent suspension and steering loops must
be solved prior to a dependent tie-rod loop. Following this, other
data can be found, e.g., stecr effect, camber, caster, jounce and

Table 5 Categorization of solutions to Equation 1

Known Degree of
Case Unknown Polynomial
Number| Vectors | Unit Veclors Scalars Solution

7‘) 07‘: d’r
T, 0r; 8
7y Or; 05
0y $r; 8
Or, ¢r; 05
r;s;t
r; 8; 0
7; 0s; 04
0. 05 0,

1 (trivial)
@

Dr; Sy Ps
r

758, s

3
>
3 IR

P

wn> n»

t!]
S, QS*; ty (bt
7y ¢‘r; 3, d’s;
t: P

[523

O 00N G W =
[cNoNoNoNeNoNoNeoNe!
PN S N T)

S DD S S

Notes

Equation 1 is commutative (the solution for unknown r; 8; 8, is the same as
for unknown s; 8,; 9,, ete.)

If a single vector depends upon a known azimuthal angle and an unknown
polar angle, it can be restated as dependent upon an unknown azimuthal
angle and a known polar angle.

Table 6 Typical solution

KNOWN:

base constraint unit vector (revolute)
base constraint unit vector (eylindric)
dot products of ¢; and ¢

P2
P2 other dot products
s
Ps
. &
P2y D3y, Py 11 length of all links
INPUT:

6 angular input to base constraint (revolute §:)

IMMEDIATELY FIND:

with simultaneous solution of (p» « §:) and (§:
with simultaneous solution of (§: * §s) and (§»
with simultaneous solution of (B3 « &;) and (Ps
with simultaneous solution of (P, « §3) and (Ps

frs ~

T O O

BITONTI, COOPER, FRAYNE AND HANSEN

rebound envelope. Loops are solved one at a time; independent
loops are solved first and followed by the solution of dependent
loops.

More complicated than Types I and IT are the mechanisms
of Type III. Type II1Ib was considered but not included in the
design of xam. A typical example of Type IIla, the automotive
rear suspension, has five vector loops that must be solved simulta-
neously. It is intcresting to note that xkam can perform a force
analysis of such a mechanism, provided that position data is
available. Reference 10 further illustrates Type 11 and Type III
mechanisms,

The first phase of position solution sclects the method and
determines the sequence of mathematical solution. To accomplish
this, the program draws upon the fundamental systems concepts,
namely, the plex organization of topology and the table of Kam
algorithms. The system topology is examined loop by loop for a
match with an entry in the table of xam algorithms. I'ollowing
a mateh, the Tetrahedron Solution required for position solution
is extracted from the table and placed in the loop bead of the plex.
Additional data, such as the required simultancous dot products
and vector unknowns, are extracted from the table and placed in
the plex. All bodies named in the program are examined and
appropriate data are entered in the plex; one by one, each body
becomes fixed in space as the result of solving one or more loops.
In addition to the originally given topology, the plex at this
point contains data that indicate a solution method and scquence
for the second phase of the position solution.

Figure 7 shows a general outline of the second phase of position
solution. The first steps in the housekeeping function are to read
the plex, and then the data, into memory. The point data that
are read into the position solution section of KAM may constitute
any set of points in the range of the given mechanism. However,
the xAM system treats this set as the design or static condition
of the mechanism, and then, by scanning the linkage data, relates
all parameters and variables describing the mechanism to the set.
In housekeeping, each loop is seanned in sequence of solution
and all vectors for links and constraints are computed. After
these veetors are found and stored in the metric arrays of the plex,
a second scan is undertaken and angular data pertinent to the
description of loops are computed from the results of the first pass
and the connectivity indicated by the plex. In a third scan, points
of interest on defined bodies are assigned polar coordinates
relative to a reference frame defined by the three points that
fix the body in space.

One housekeeping scan finds universal joints in the mechanism.
These constraints must be treated by a simultaneous solution
of two dot products, and each solution has two answers. Therefore,
a solution mode based on static position is established for later
use in selecting correct answers as the mechanism is moved
through its range.

PROGRAM FOR LINKAGE ANALYSIS

Figure 7 General flow chart for
position solution, phase 2

HOUSEKEERPING

CONTROL tOGIC
IS MECHANISM
COMPLETELY SOLVED?
NO
EXTRACT
SOLUTION STRING
ESTABLISH
CONSTANT VECTOR
CASE SOLUTION
SELECT CORRECT ANSWER
ESTABLISH PQOINTS
COMPUTE EXTRANEOUS
CONSTRAINTS
SOLVE BODIES
ARE ALL LOOPS OF
THE SYSTEM SOLVED?
YES

212

Some links may be bent, in which case a simultaneous solution
of dot products establishes the axes as constant vectors. By the
same operation, the axes of certain constraints can be found and
treated either as constant vectors or as known unit vectors of
slide-type constraints. Since two answers are possible for each
operation, the solution mode is established from static data, as
for the universal constraint.

All but two of Chace’s Tetrahedron Solutions have more than
one answer: two have four, one has eight, and the rest have
two answers. However, the actual static position of a mechanism
is mathematically unique, and defines criteria from which the
single correct answer can be selected for subsequent positions
of the mechanism. These criteria are determined and stored in
the plex. Because the solution criteria may change for different
sets of point data, they must be calculated for each set of input
point data. The same reasoning holds for the solution eriteria
established for the simultaneous solution of dot products.

Length incrementation in kam simply requires a change in
the scalar magnitude of a vector, the unit vector remaining
unchanged. However, for angular input, the vector changes
orientation and must be re-established as a constant vector for
the case solution. A reference frame, established from the revolute
and adjacent input link for each loop that requires angular input,
is saved in the plex. In kAM, a given loop can have either angular
input or linear input, but not both.

The control logic performs the looping functions of a FORTRAN
“DO” statement and establishes increments for subsequent use
in solution and output functions of kam. Data required for these
purposes are stored in the plex. After a loop has been selected
for solution by the control logie, the solution string found by
phase 1 is extracted from the plex.

Links and constraints not classified as unknown by the solution
string are treated as known vectors and summed into one constant
vector as required.

Once the required data have been established, a branch is
taken to one of eight case solutions. If an error occurs in the case
solution indicating that the mechanism is going through an
imaginary range, an error message yields pertinent data, the
input variable is incremented, and calculations are resumed.
This process continues until either a real range is again entered
or the complete range of the mechanism is satisfied.

For ecase solutions with more than one answer, a test is made
on each answer, using the same function that determined the
solution mode at housekeeping time. If the answer is inappropriate,
then the case-solution error routine is executed.

After the correct answer is selected, the point data in the
loop are found by adding each vector, in sequence, to a given
fixed or ground point. These new points become fixed points
for dependent loops or bodies subsequently to be solved. Some
loops have constraints that are not required in solving the loop,

BITONTI, COOPER, FRAYNE AND HANSEN

but are required to fix bodies in space. These constraints, as well
as those bodies which have three fixed points, were found by phase
one and their solution points placed in the plex. Phase two solves
them at this time.

After the body solutions, a test determines whether all loops
have been solved. If no, control passes back to the block that
extracts the solution string. If yes, an output routine is entered.
Subsequently, the control logic tests whether the range is satisfied.
If not, the linkage is solved for a new value of the input variable,
and so on until the range is satisfied.

The velocities and accelerations of linkage elements yield
important knowledge about the performance characteristics of
the linkage. They may also be used in computing other element
properties, such as inertia and stress. The mathematical and
programming procedures needed to obtain these motions are
discussed here. The mathematical procedure, again based on
Chace’s work, permits motion analysis of all linkages within
the seope of Kam. In contrast to approximate solutions, such as
seen in “finite differencing’’ techniques, the mathematical methods
to be discussed reduce the problem to a set of simultaneous linear
equations that give an exact solution at any linkage position.
A principle used throughout is that each order of motion is
dependent only on motion quantities having the same or lower
order of motion. For example, velocity (first order motion) is
dependent on input velocity and on position (zeroth order motion).

Two fundamental conditions hold for the motion of a linkage.
These, a linear condition and an angular condition, are written
as two vector equations for each loop in the mechanism. In final
form, the equations yield the same coefficient matrix for both
velocity and acceleration, although the constant vector differs
for each. Thus the coefficient matrix, once found, can be used
to obtain both orders of motion.

Represent each link by a position vector r;; the sum of such
vectors is zero for each loop in the mechanism. For a summary
of notation, see Table 7. The velocity vector is the time-derivative
of .. Thus,

V=>Dr= Dt +eXr

Vi = (Drt, + [Zm] X1,

Sinee all unit veetors, &, ;_;, are known from the position solution,
all absolute rotational velocity vectors, ©,; are expressed as a
sum of relative rotational velocities, ®; ;. Thus for example,
@3 = @1 + 3. The fundamental linear condition for velocity,
for a vector loop of n links, can be written

Z (Dri)f:‘ + Z (Zmi.i—l> Xr; =0. (2)
i=1 1=2 Ni=2
This equation contains terms of translational velocity due to

PROGRAM FOR LINKAGE ANALYSIS

motion
solution

motion
equations

velocity
equations

213

Table 7 Summary of notation

Magnitude: a scalar, non-directional quantity

Unit vector: a vector of unit magnitude

Product of a magnitude « and a unit-vector 4. Thus u = ui
Dot product of a and b. If 8 is the smaller angle between the
two vectors, a * b = ab (cos 8)

Postion vectors relative to the nth reference frame

Ground reference frame: three mutually perpendicular unit
vectors that obey the right-hand rule and have a fixed orienta-
tion relative to ground

Angles specifying the direction of a unit vector with respect
to a ground reference frame

Dummy variable vectors

A reference frame having instantaneous position defined rela-
tive to i, i, k

Shorthand for the derivative d/dt

Unit vector of rotation of link ¢ with respect to link 7 — 1
Absolute angular velocity of link 7 with respect to ground

An input velocity, also written wx

An input secalar, also written Dr;

Angular acceleration; subseripts as for »; for spatial motion
this « represents only partial angular acceleration!

Force exerted on body or link ¢ by body or link 7 with com-
ponents f1 . f1 . f% % % ., f2 ; in the direction indieated
by superscripts

Torque exerted on body or link ¢ by body or link j with
components 7 ;, 71 . 7% 7%, 7%, 7%, in the direction in-
dicated by superscripts

Force output

Foree input

Torque output

Torque input

Vector from center point of constraint ¢ to center point of
constraint j

Vector from center point of constraint ¢ to output and input
forces

rotation (o X r) as well as terms of pure translational velocity
((Dr)t). Many of the terms may be either zero or known inputs;
the existence of terms is dependent on constraint types in the
linkage and on the location of fixed links in the loop.

A second condition expresses the fundamental angular condi-
tion for motion.

; (wivi—l>€)i.i—l ~+ (‘«01,7;)(?)1," = 0. (3)

Equation 3 states that the sum of the relative angular velocities
of a linkage loop is zero.

For solution purposes, (2) and (3) are rewritten as IKquations 4
and 5:

E (Dryt; + Z |:w1',j~1(;)i,i—1 X Z ri:l
i=3 i=3 =7

= —(Dr)fs — 0n X Zr,v.
i=2

BITONTI, COOPER, FRAYNE AND HANSEN

In (4), Dr, or ws; represent possible scalar inputs; in any in-
dependent loop, one of these will be zero because the linkage
has only a single freedom. In a dependent loop, Dr, and ws,
may be unknowns and would appear on the left side of the equation.

n
Zwi,i-l(;)i,i—l + wl,n(:)l.n = Ty (5)
i=3

Again, w,; represents the scalar input and would be zero for pure
translational input.

The acceleration equations are obtained by taking derivatives
of (2) and (3). For each link vector r;, the acceleration is written:

a; = <D21'j)f‘7' + <Z a;, ;4 X r,-> -+ C,»,

where

C, = 2Drj(w;, X) + 0; X (w; Xr)
+ 2 (@ic11 X i4) X1,

and

;ai,i_l Xr, = wa; Xrj.

Thus, for a vector loop of n links:

Z; (DQ?;»)fj + ; <Zz (Yi,i——]) Xr, = — ; C,. (6)

Note the similarity in (2) and (6). The first and second terms
of (6) express the normal and tangential accelerations, respectively.
All r;, Dr;, and w;; are known from the position and velocity
solutions.

The differentiation of (3) establishes a second cquation for
acceleration.

;ai,i—l + o, = —C, (7)

where
C = Z (“)i X(‘)J'H.i)

and

ry

A . J—
O; i-1 = Oy, 5-1, o i1 = Doy ;.

Again, note the similarity between (7) and the angular velocity
equation (3).

The number of scalar equations for acceleration is identical
to the number of scalar equations for velocity. Since the coeffi-
cients of the velocity and acceleration equations are identical,
only the vector C need be found to obtain the linear equations
that define the aceelerations.

PROGRAM FOR LINKAGE ANALYSIS

acceleration
equations

motion of an
arbitrary point

scalar
unknowns

The equations discussed above are used to obtain the relative
motions of link 7 with respect to link 7—1 for all links in the
mechanism. To obtain the absolute motion of link ¢ with respect
to ground, the relative motions are summed. Once these are
established, the motion of points of interest can be computed
by summing all motions from ground to the point.

Equations 2 and 3 are written for each loop in the mechanism.
For an n-loop spatial linkage, 6n scalar equations are obtained
by taking scalar products of the original 2n vector equations and
the i, j, k unit vectors. Thus, 6n unknown motions can be com-
puted for spatial linkages. For planar linkages, a computed
auxiliary reference frame (A, @, %) allows the plane of action
to be oriented arbitrarily in space, and the 2n vector equations
give 3n scalar equations. Scalar products between (2) and 2
and @ yield 3n equations, while the scalar product of (3) and
¥ yields » equations.

Unknown motions can be classified into two categories.

Unknown translational motions: Dr; for velocity and D’r;
for acceleration, (= 2, --- n).

Unknown relative angular motions: w; ,_, for velocity and
Duw; ;_, for acceleration, (¢ = 2, --- n).

For a single independent spatial loop, any combination of the
scalars D"r; (for m = 1, 2) and D™w, ._, (for m = 0, 1), up to
a maximum of six, may be unknowns. However, a maximum
of three D™r; and six D™w, ;_, scalars can be present in this case.

A spatial loop with more than six unknowns can be solved
using additional “constraints” on the loop. In a multiloop system,
the added constraints on a given loop take the form of another
loop that shares a portion of the given loop. The number of equa-
tions, hence the number of unknowns, is limited by the total
number of loops. Thus, linkages comprised of a series of loops
can have more than one degree of freedom and more unknowns.
Again, if its motion is determinate, a single loop linkage can have
only one degree of freedom. Spin degrees of freedom, created when
two ball joints connect a link, create extraneous degrees of freedom
that are eliminated in xam by replacing one of the ball joints
by a universal joint.

For both planar and spatial mechanisms, the number of
equations for linear and angular conditions is shown in Table 8.
Also illustrating the general matrix form, the matrix is divided
into two sections, the top being used for the linear conditions
and the bottom for the angular conditions.

Each constraint in a vector loop describing a linkage introduces
one, two, or three unknowns, as shown in Table 9. The directions
of the unit vectors associated with these unknown magnitudes
are known from the position solution. In conjunction with the
link vectors, the components of the unit vectors representing
direction become equation coefficients. For example, a revolute
constraint introduces one unknown and this unknown may appear

BITONTI, COOPER, FRAYNE AND HANSEN

in six equations. Thus, a revolute constraint for one spatial loop
introduces six coefficients into the matrix.

For kamMm, the input for both position and motion must be the motion
applied at the same constraint. In addition, the input constraint program
for motion must be a ground constraint with one degree of freedom,

i.e.,, a revolute or a prismatic. The linear motion of points of
interest is represented by a vector to the point from the ground.
All other outputs represent the relative and absolute motions of
link ¢ with link ¢ — 1 and link ¢ with respect to ground, respectively.

The KAM motion processor executes the mathematical com-
putations outlined above, solves the resulting set of linear equa-
tions, and outputs the velocities and accelerations of the linkage
elements. This processor consists of the phases for input and
initialization, for a scan, for a determination of velocities, and
for a determination of unknown accelerations.

Table 8 The general form of the coeflicients matrix

NUMBER OF
SCALAR EQUATIONS

SPATIAL PLANAR

LINEAR TRANSLATIONAL VELOCITY TRANSLATIONAL VELOCITY
CONDIgéON DUE TO ROTATION DUE TO RELATIVE TRANSLATION
ENTRI; ~

~
@i Xv [

ANGULAR ENTRIES FOR SUM OF RELATIVE
CONDITION | ANGULAR VELOCITIES EQUALS ZERO
ENTRIES a\,

i i-1

Table 9 Reference data for the constraint types

Type Degrees of Velocity component Acceleration component Form of force
Freedom of motion of motion torque expressions

Fi+py+ ik
T"i.-i-‘r“@
PrA+fre
=fit+fij+rk

a

revolute 1 W5, i1 Dw; i
prismatic Dr; D?r;

cylindric Wi, i—1y Dh’ Dw,-,i_l, D21‘,'

Fitfii+rk
=0
=f"%
=T)‘5»+T“@
fi+ri+rk

T 9

spheric Wi, indy Widl,sy Wigs,itl Dw;, i1, Daviy,iy Dwiye,inn
planar wi i1, Driy, Drig Dw; i, DPriy Doy

A

universal Wi, i—1y Wi4l,q Dw;,i_l, Dwi+1,,~

A = a ™Mma = d d rd =

PROGRAM FOR LINKAGE ANALYSIS 217

velocity
phase

acceleration
phase

force
solution

218

The input and initialization phase reads the model plex.
The number of input motions is determined from the model,
and a corresponding number of velocity and acceleration mag-
nitudes are read. The direction of motion is established, by the
right-hand rule, from points in the plex. Point coordinates for
the particular linkage position being analyzed are read as needed.

A motion topology table, a shorthand plex particularly suited
to motion analysis, is constructed during a scan of the plex.
The scan phase also tests various characteristics of the linkage
to govern the content of the motion table. Kntries are made
in the motion table for each degree of freedom of each constraint
of each loop.

The velocity phase of the motion processor builds the motion
coefficient matrix and computes the velocity constant vector;
entries are made for degree of freedom within constraint within
loop. When an input constraint is found, the entire vector is
computed. Depending on the type of freedom indicated in the
motion table, coefficient entries can be of three types. These are
pure rotational velocity, pure translational velocity, or transla-
tional velocity due to rotation. Finally, the set of linear equations
i solved for scalar unknowns, and velocity vectors are then
formed with the aid of unit vectors obtained from the data
portion of the plex.

The motion processor enters its acceleration phase with all
positions and velocities computed and available. The acceleration
phase uses the coefficient matrix (actually stored in its inverse
form) given by the velocity phase. The acceleration phase uses
the motion table for control of the calculations, as does the
velocity phase. However, to obtain the acceleration constant
vector, individual constraint routines are used because of the
great number and varicty of terms to be computed. These con-
straint routines are based on the entries in a special table. The
program proceeds from constraint to constraint in the motion
table and then repeats the process for all loops.

A matrix multiplication is performed to obtain the desired
solution vector; the relative acceleration veetors are computed,
stored, and then summed to obtain the absolute accelerations
of each link.

In addition to the motion of all links, the program can calculate
the motion of up to three ‘“points of interest,” such as points
on a coupler. One subprogram serves to compute both the velocity
and acceleration of these points, the logic being shared by unique
arithmetic operations for each type of motion. The program is
executed immediately after the velocity phase, as well as following
the acceleration phase. The output of this phase consists of the
motion vector drawn from the first constraint in the loop to
the point and represents the absolute linear motion of the point.
The magnitude of this vector is also output.

Applied to a linkage, the two well-known conditions for static
equilibrium of each body or link are that, (1) the sum of the

BITONTI, COOPER, FRAYNE AND HANSEN

Planar mechanisms are statically indeterminant for forces
perpendicular to the plane of motion, and therefore for moments
in the plane of motion. From each force vector equation, two
scalar equations are obtained by taking respective dot products
with the two unit reference vectors that lie in the plane. From
each moment vector equation, one scalar equation is obtained
by taking a dot produet with the reference vector that is perpen-
dicular to the plane.

Because Equations 8 and 9 are vector equations, they do not
yield linear equations in the unknowns as a mere consequence
of dot products. However, if each unknown vector is expanded
into 1, 2, or 3 components along appropriately chosen directions
before the dot product is taken, linear equations can be assured.
Having known directions, the output forces and torques become
one-dimensional vectors with unknown magnitudes. The other
forces and torques, because they act as pairs of known type,
can be characterized by the type. Pairs are listed in Table 9
along with the expressions for the resulting 0, 1, 2, or 3 dimen-
sional vectors that may be used to represent forces and torques
for each pair type.

If force and torque are to be determined, extraneous degrees
of freedom, such as the spin freedom in a link between two ball
joints, must be removed—either by making one of the ball joints
a universal joint or by defining an output torque with direction
parallel to the axis of spin (such a torque will always be zero
in value). Thus, a single-loop linkage can have only one output
quantity. Multiloop linkages may have more than one degree
of freedom, and therefore more than one resisting force and torque.
In either case, the linkage may have more degrees of restraint
than degrees of freedom. This can be allowed for if relationships
exist between the resisting forces and torques. Further, if these
relationships are linear, they can be added to the set of linear
equations defining force analysis without affecting the general
procedure. Non-linear relationships between resisting forces and
torques, like non-linear friction forces, cannot be handled by the
general procedure.

The xkaM method will allow one linear relationship between
resisting elements in the form « = €8 + C, where o denotes
any output force or torque, 8 denotes any output force or torque
other than «, and C,, C, are constants that define the linear
relationships between « and 8.

The xam force and torque processor requires, as input data,
the coordinates for position points and the magnitudes of the
input forces and torques. It calculates the entries to a matrix,
solves the linear equations specified in the matrix, builds up the
solution vectors (unknowns of the scalar equations are components
of these vectors), and outputs the solution vectors.

Programming techniques were developed to simplify the force
and torque processor. Determining the exact form of the equations
for any particular link or body are a large number of conditions

BITONTI, COOPER, FRAYNE AND HANSEN

that govern equation form. Some of the conditions are:

planar or spatial loop
link or body
6 possible constraint types at constraint ¢
6 possible constraint types at constraint ¢ 4 1
4 possible input conditions (no input, force input, torque input
or both)
4 possible output conditions (no output, force output, torque
output or both)
+ link position in loops (first, floating, or last)
+ constraint does or does not join other loops

These conditions alone give rise to 13,824 different forms for
the equations.

A preliminary scan of the plex is made, loop by loop, to
determine the number, say n, of unique links or bodies. Any link
or body may appear in more than one loop; further, more than
one link can appear in a body (the term ‘“‘unique” excludes both
multiple counting and the counting of links within bodies). This
first scan sets the number of equations at 6n for spatial mechanisms
and 3n for planar mechanisms.

In the next scan, all matrix coefficients for forces acting on
each unique link or body are established in the following order:

¢ input and output forces

e the force acting at the ¢ constraint in the loop
o forces acting at all body constraints

e the force acting at the ¢ 4 1 constraint

In each case, the coefficients in the force equations are established
first; then, the coefficients due to the forece moments are established
in the torque equations.

The final scan for coefficient entries for torques is made in
a similar order, but with the significant difference that no entries
are made in the force equations, only to the moment equations.

The matrix entries made during each scan are suggested, for
the forces in a spatial linkage, by Table 10. Such a table is designed
to reflect each of the conditions listed above. Some symmetry
in the conditions is already considered in the table. IFor example,
the table contains entries for unknown vectors of three dimensions,
rather than entries for six different constraints. Other symmetries
in the tables are exploited to simplify programming. For example,
only one procedure for entering the array

1 00
010
0 01

was actually programmed, although this matrix and its negative
are required under several different combinations of conditions.

PROGRAM FOR LINKAGE ANALYSIS

Table 10 Matrix for force unknowns in spatial linkage

Force
Location

w

Force Dimensions

2

Unknowns

2
=

E

fo (output)

Atd

At7 41

Body Constraints

Ats 41

Body Constraints

COROOHOOM
|
CHOoOOR OO RO

e F

|
3
-

> e v-lto B
.
|

PR M Iyl e uiytu
. « s e
Fh> Hh =hy =h3 h> b Hhd =h) Hhy

|

|
|

—k
To Torque Equations

EX3 -1-@EX8)
(FX3) -] EX®
EXX -k-EXd
S (@EXY) -~ @ X
@xX3% -] @EXxX®
EX4% -k-@EXfn)

_OoOOFROOHOO
|

By e By s iy e
|

B 2 iyt e

222

Summary

A technique for analyzing two- and three-dimensional linkages
by solving vector equations for position, motion, and force was
programmed for a digital computer. A model plex that treats
a linkage as one or more vector loops is generated. The program
selects the applicable equations for position solution. Algorithms

are simplified by storing linkage information in the form of a
tree-organized plex.

The vector equations employed in finding the velocities and
accelerations are not obtained through differentiation of the
position solution equations, but consist of vector relationships
expressing fundamental linear and angular conditions. Motion
can be calculated for each consecutive position computation,
given an input motion. Because the problem of finding velocity
and acceleration for linkage elements reduces to one of solving
a set of simultaneous linear equations, the solutions are exact
and iteration is not required.

Vector algebra is also used to obtain linear equations that
define forces and torques. The coeflicients for the linear equations
are generated by an algorithm that scans the linkage plex and
related tables. As in the case of motion, analysis reduces to the
problem of solving a set of simultaneous linear equations.

CITED REFERENCES AND FOOTNOTE

1. M. A. Chace, Development and Application of Vector Mathematics for
Kinematic Analysis of Three Dimensional Mechanisms, Doctor’s Disserta-
tion, University of Michigan (1964).

BITONTI, COOPER, FRAYNE AND HANSEN

. 8. A. Brown, C. E. Drayton, and B. Mittman, “A description of the APT
language,” Communications of the ACM 6, No. 11 (November 1963).

. D. T. Ross and J. E. Rodriguez, “Theoretical foundations for the com-
puter-aided design system,” AFIPS Conference Proceedings 23, Spring
Joint Computer Conference (1963).

. For a description of the criterion, see R. S. Hartenberg and J. Denavit,
“Analysis of spatial linkages by matrix methods,” The Technological
Institute, Northwestern University (September 1963).

. J. Denavit and R. S. Hartenberg, “A kinematic notation for lower pair
mechanisms based on matrices,” Journal of Applied Mechanics, ASME
Transactions (1955).

. L. F. Knappe, “A computer oriented mechanical design system,” ASME
Paper 64-MECH-30 (1964). :

. H. G. ApSimon, “Algorithm for a gear-train problem,” IBM Systems
Journal 3, No. 1, 95-103 (1964).

. D. A. Stoddart, “Polydyne cam design,” Machine Design (January 1953).

. F. Freudenstein and G. N. Sandor, “Synthesis of path generating mech-
anisms by means of a programmed digital computer,” ASME Trans-
actions, Journal of Engineering for Industry (May 1956).

. Kinematic Analysis Method, SP-272, Society of Automotive Engineers
(May 1965). This bulletin contains six related but separate papers pre-
sented at the SAE Mid-Year Meeting by F. Bitonti, D. W. Cooper, D. N.
Frayne, and H. Hansen.

PROGRAM FOR LINKAGE ANALYSIS 223

This paper describes a production conirol system for fabrication
and assembly processes. Major functions of the system, from long-
range planning to delailed produciion scheduling and monitoring,
are discussed tn several parts. Techniques of mathemalical statistics
are applied to the calculation of parameter values in sequencing
decisions. The first four parts of the paper appeared in Volume 4,
No. 2, of the IBM Systems Journal.

Part V develops detailed sequences for individual work activities,
considering not only deliwery and resource constrainits, but also the
requirements for work already in progress. Part VI defines a formal
statistical analysis of the process data and a logical decision rule
that automatically resolves conflicts among the various production
service factlities. A procedure for adjusting the resource allocations
by comparing planned expenses with actual costs is discussed in
Part VII.

Fabrication and assembly operations

Part V Production order sequencing
by A. B. Calica

Part VI Parameter values for sequencing control
by S. Gorenstein

Part VII Adaptive control in production planning
by S. Shapiro

Although the parts published in this issue are largely self-contained,
each subject belongs within the frame of the production control
system described in Part 1.

IBM SYSTEMS JOURNAL * VOL. 4 * NO. 3 - 1965

