

of abstract elements called entities, and the logical rules governing
a system flow are reduced to a set of standard operations. The
entities are divided into four classes: dynamic, equipment,
statistical, and operational.

The dynamic entities are called transactions, and represent
units of traffic, such as requests arriving at central points, jobs
awaiting processing, etc. Transactions are created and destroyed as
required during the simulation run and can be thought of as
moving through the system, causing certain actions to occur.
Associated with each transaction are a number of parameters
to which the user can assign certain values that describe charac-
teristics of the transaction. For a transaction representing a ship,
for example, a parameter may describe the amount of cargo to
be unloaded. This number could then be used in the simulator
logic to determine the time required for the unloading operation.

Entities of the second class represent elements of system
equipment, such as facilities, storages, and logic switches, that are
acted upon by transactions. A facility can handIe only one trans-
action a t a time and represents a potential blocking condition.
A storage can handle several transactions concurrently and can
be used to represent parallel processing entities, such as a parking
lot or a typing pool. A logic switch is a two-state indicator that
can be set by a transaction to modify the flow of other trans-
actions. For example, this switch could represent a traffic light
or the “next window” sign of a bank teller.

In order to measure system behavior, two types of statistical
entities are defined: queues and tables. Each queue maintains
a list of transactions delayed at one or more points in the system,
and keeps a record of the average number of transactions delayed
and the length of these delays. A table may be used to collect
statistical information as desired. These two entities provide a
major portion of GPSS output.

The operational entities, called blocks, constitute the fourth
class. Like the blocks of a flow chart diagram, they provide the
logic of a system, instructing the transactions where to go and
what to do next. There are 36 specific block types in GPSS 111 to
represent basic system actions. These blocks, in conjunction with
the other three classes of entities described above, constitute the
language of GPSS.

To provide input for the simulation, control and definition
cards are prepared from a flow chart of the system. These cards
constitute the model in GPSS language. Once the system model
is loaded, the GPSS program generates and moves transactions
from block to block according to timing information and logical
rules incorporated in the individual blocks. Each movement is
designated to occur a t some particular point in time. The program
automatically maintains a record of these times (Future Events
chain), and executes the movements in their correct time sequence.
Where actions cannot be performed a t the originally scheduled
time-for example, when a required facility is already in use-proc-

EXPANDED GENERAL PURPOSE SIR.lI,-LATO!t 175

predetermined way that is not dircctly under the user’s control.
GPSS 111 allows the user to bypass this standard operation and
to construct his own string of transactions, called user chains.
These user chains make it possible for the analyst to create and
manipulate his own chains of transactions independent of the
GPSS chains. Also, to reduce computer running time, transactions
known to be inactive can be removed to a user chain, thus reducing
the number of transactions to be scanned on the internal Current
Events chain. Since the user has complete control over these
chains, it is also possible to represent may different queuing
disciplines.

Two new block types, LINK and UNLINK, enable the analyst
to remove transactions from the Current Events chain, place
them on a user chain in any manner desired, remove them later
in any order, and place them back on the Current Events chain.
Since the analyst can completely control the operation of his
own chains and bypass the predetermined operation of the
Current Events chain, this new feature significantly extends the
applicability of the simulator.

The LINK block makes it possible to place a transaction at
the beginning or end of a specified user chain, or to merge the
transaction onto the chain according to specific parameter values.
The UNLINK block allows removal of one or more transactions
from the beginning or end of the chain. This block also allows
specific transactions, based upon parameter content, to be removed
from any point on the chain. Thus, any queuing discipline may
be accounted for.

For example, the block LINK 5,LIFO removes the current trans-
action from the Current Events chain and places it at the beginning
of user chain 5. Removing transactions from this chain in the
normal manner (Le., from the beginning) results in a LIFO (last in,
first out) discipIine. As another example, UNLINK 3,AAA,ALL
removes ALL transactions from user chain 3 and places them
on the Current Events chain, with their next block specified as
AAA. The transaction that entered the UNLINK block proceeds
to the next sequential block.

Figure 1 illustrates how LINK/UNLINK can be used to sort
transactions according to a specific queuing scheme. Transactions
are sorted in accordance with parameter 6, but the transactions
within each class are grouped on a LIFO basis. In other words,
if there are eight transactions with parameter 6 equal to 1, they
are filed in the reverse order from their arrival order.

The example in Figure 2 represents a rental agency with three
types of vehicles available: cars, pickup trucks, and closed trucks.
A customer entering the agency describes the year and type of
vehicle he wishes to rent. The rental agent then determines whether
the described vehicle is available. The problem can be readily
solved by setting up a user chain for each vehicle class. Figure 2
illustrates the construction of user chains to bypass the prede-
termined operation of the Current Events chain. This relatively

EXPANDED GENERAL PURPOSE SIMULATOR 177

loo+, 1 Savex 100 by 1
Increment

Unlinked tranractlon

Continue

RemoveALLtransactlons
oncham50whorevalue

tothecurrentvalueof
of parameter 6 is equal

tranractlonsaccordlngto
XIOO. Thlr removes

theirP6value.Ifamatchlng
condmor)(P6 = X 1 0 0) isnot
found. thecontrol trans.
actlonIssenttotheTEST

actions have been
blockto5eeIfalltrans-

removedfram chain 50

TERMINATE (3
Agent

I
I

Customer tellsagent

deslres

(-) yeardeslred Customertells agent

Vehiciersunllnked
from chaln thevehicle hewantsir

Agenttellscustomerthat

not wallable

Agent rents
vehicle

Place message length in

lndlrect referencing

'PEA TYPEB TYPFC TYPED

FN4

FN1 FNZ rN3 "-
1 I
3 9 12

I * P4

180

Another interesting use of the Attribute Valued function is
two-dimensional addressing for arrays of savexes. Often, one
wishes to associate several attributes with each of several entities,
such as facilities. For instance, if facilities 15, 16, 17, and 18
represent machines in a machine shop, it may be convenient
to have three attributes associated with each machine, rep-
resenting, say, the type of job currently on the machine, the time
that the current job started, and the number of jobs completed
to date. These attributes can be arranged in a tabular array,
and assigned savex locations, as shown in Table 3. This array
can then be implemented, as shown in Figure 4, by three Attribute
Valued functions, one for each attribute, using the facility number
in PI as the argument in each case. Thus, to determine whether
machine No. 17 has conlpleted ten jobs, the number 17 is placed
in PI, and function 29 (representing the third attribute) is tested,
as shown in Figure 5 . Note that no auxiliary ASSIGN blocks and
Variable statements are required to compute the addresses in
the savex array. Also, it is not necessary to maintain contiguous
savex locations, because there are no address computations.

Table 3 Savex array

Machines
F15 F16 F17 F18

First attribute X31 X34 X37 X73
Second attribute X32 X35 X38 X74
Third attribute X33 X36 X39 X75

Figure 4 Attribute Valued functions for two-dimensional addressing

i FN27
First
attrlbute
for machlnes

X31 x34 x37

15.18

x73

I I I

15
t P l

16 17 18

t FN28

Second
attrlbute
for machines

X32 x35

15- 18

X38 x74

I I I I c P I
18 15 16 17

iFNZ9
Thlrd
attrlbute x33
for machines
15.18

X36 x39 x75

I I I I c P1
15 16 17 18

H. HERSCOVITCH A N D T. H. SCHNEIDER

I
I

Frequently, the most crucial effort in large-scale simulation
is the debugging of the model and verifying that the model
actually represents the system. Three debugging aids added to
GPSS 111 help to alleviate this problem: (1) transaction chains
may be printed out at any point in time, thus giving an output
that previously was only obtainable by forcing an error, (2) com-
plete system snapshots (i.e., all standard output and, if desired,
chain printout) can be obtained a t specified intervals during the
run to study intermediate results, and (3) the PRINT block can
now print any Standard Numerical Attribute, not just savexes.
The snapshot feature is specified in the START card. For example,
the card START 1000,,200,1 tells GPSS 111 to run until 1000 trans-
actions have been terminated, and to print complete statistics
on the state of the system after every 200 terminations. The 1
specifies that each time statistics are obtained, all transaction
chains should be printed. The block PRINT 1,3,CHA causes a
printout of the contents of user chains 1, 2, and 3 whenever a
transaction enters this PRINT block. In all error printouts, the
current, state of the logic switches as well as standard statistical
information is given.

Some of the numerous new features that have added ver-
satility and ease of use to GPSS are now described briefly.

Coding in GPSS 111 is facilitated by the provision of a free-field
format. The most commonly used fields in each block are specified
first, with fields separated by commas. For example, a GENERATE
block with a mean of 250, modified by FUNCTION 1, with an
offset time of 100, a count of 1000, and priority level of 5 is coded
as GENERATE 250,FN1,100,1000,5.

Specification of Standard Numerical Attributes in any block
field is now allowed. For example, an analyst wishing to seize
the facility whose number is given by the value of savex 10,
previously used two blocks. Now the same operations can be
performed with a single block as shown in Figure 6.

Queuing statistics are often desired on blocking conditions
that cannot be represented by a single block, such as the con-
dition of a group of logic switches. The QUEUE block of GPSS 11

cannot efficiently supply such statistics. To overcome this prob-
lem, the functions of the QUEUE block in GPSS 111 have been
divided into two new blocks, the QUEUE block and the DEPART
block. The new QUEUE block is similar in operation to the ENTER
block associated with storages, and the new DEPART block is
similar to the LEAVE block associated with storages. A transaction
may leave a QUEUE block, but is considered a statistical member
of the particular queue until it reaches the DEPART block. Figure 7
gives an example of the new blocks in use.

The SPLIT block has two new features in GPSS III. Specification
of the number of transactions to be split is now allowed, eliminating
the need for strings of SPLIT blocks. Also, serial numbering of
copy transactions in a specified parameter can be automatically
provided if desired. An example is shown in Figure 8.

EXPANDED GENERAL PURPOSE SIMULATOR

new
debugging
aids

Figure 5 Test of third machine
attribute

Machinenurnberfn P1

increased
versatility

Figure 6 Specification of Stand-
ard Numerical Attribute

P ~ ~ Y I O U S notation

ASSIGN

f3.l SEIZE

GPSS 111 notation

r"ll SEIZE

181

transaction from its normal sequential flow.
The CHANGE block allows the analyst to modify the model

during the course of a simulation by changing any one block
to a duplicate of any other block.

ments of GPSS 111 in comparison to the preceding General Purpose
Systems Simulators can be summarized as follows:

The significant new capabilities and performance improve- summary

Increased speed
Variable number of paralneters
Space reallocation
User chains
Attribute Valued functions
START card and PRINT block
Assembly program
Standard Numerical Attributes in any field
QUEUE and DEPART blocks
SPLIT and GATHER blocks
HELP block
List function
Subroutine mode of the TRANSFER block
EXECUTE and CHANGE blocks

ACKNOWLEDGMENT

The authors wish to acknowledge the efforts of H. C. Ball,
J. I?. Bult, R. L. Gould, and E. C. Olsen who devcloped and
implemented GPSS III.

CITED REFERENCE AND FOOTNOTE

1. Coverage has been extended from the IBM 7090 and 7094 computer systems
to the IBM 7040 and 7044; the applicable GPSS I11 programs (No. 7090-CS-15X
and ~ O ~ O - C S - I ~ X , respectively) can be ordered through IBM branch offices.
Plans for extending GPSS 111 to SYSTEM/360 have been announced. Pub-
lished by the IBM Data Processing Division, White Plains, New York,
are three manuals on GPSS 111: Application Description (H20-0144), Intro-
duction (B20-0001), and User’s Manual (~20-0163) . An Application Descrip-
tion for the SYSTEM/36O version is forthcoming.

2. R. Efron and G. Gordon, “A general purpose digital simulator and examples
of its application, Part I, description of the simulator,” IBM Systems
Journal 3, No. 1, 22-34 (1964).

EXPANDED GENElL4L PURPOSE SIMULATOR 183

