Significant improvements in the modeling capability and storage
Nexibility of the General Purpose Systems Simulator are described
in this paper.

Increased versatility and ease of use as well as new debugging aids
are also discussed.

The additions and changes to the simulator are illustrated by examples.

GPSS III — an expanded general purpose simulator
by H. Herscovitch and T. H. Schneider

GPSS
concepts

The General Purpose Systems Simulator is a broad-range general-
purpose tool for modeling and examining the behavior of systems
in management and engineering science areas. The latest version
of this program, apss 111, offers the simulation user several distinct
advantages.’

Several structural changes to the program, both internal and
external, significantly improve model running time and increase
core storage availability. The most significant of the external
changes is the elimination of delay-time and selection-factor
operations from all block types. Selection operations are performed
by a TRANSFER block; delay times are accounted for by an
ADVANCE block. In addition, new @pss 1 features expand
modeling capability, versatility, and ease of use. Some of the basic
GPss concepts are now reviewed, although familiarity with arss 11°
is assumed throughout the text.

The primary advantage of apss is its ease of application in
its field; no initial programming is required nor is computer
programming training or experience necessary. The program
features a simple flow chart language for describing the problem
or system to be simulated. When this description is transferred
to punched cards and presented as input to the computer, the
program automatically carries out a simulation of the system.

The elements of a system are logically represented by a set

IBM SYSTEMS JOURNAL * VOL. 4 * NO. 3 - 1965

of abstract elements called entities, and the logical rules governing
a system flow are reduced to a set of standard operations. The
entities are divided into four classes: dynamie, equipment,
statistical, and operational.

The dynamic entities are called transactions, and represent
units of traffic, such as requests arriving at central points, jobs
awaiting processing, etc. Transactions are created and destroyed as
required during the simulation run and can be thought of as
moving through the system, eausing certain actions to occur.
Associated with each transaction are a number of parameters
to which the user can assign certain values that describe charac-
teristics of the transaction. For a transaction representing a ship,
for example, a parameter may describe the amount of cargo to
be unloaded. This number could then be used in the simulator
logic to determine the time required for the unloading operation.

Entities of the second class represent elements of system
equipment, such as facilities, storages, and logic switches, that are
acted upon by transactions. A facility can handle only one trans-
action at a time and represents a potential blocking condition.
A storage can handle several transactions concurrently and can
be used to represent parallel processing entities, such as a parking
lot or a typing pool. A logic switch is a two-state indicator that
can be set by a transaction to modify the flow of other trans-
actions. For example, this switch could represent a traffic light
or the “next window’’ sign of a bank teller.

In order to measure system behavior, two types of statistical
entities are defined: queues and tables. Each queue maintains
a list of transactions delayed at one or more points in the system,
and keeps a record of the average number of transactions delayed
and the length of these delays. A table may be used to collect
statistical information as desired. These two entities provide a
major portion of gpss output.

The operational entities, called blocks, constitute the fourth
class. Like the blocks of a flow chart diagram, they provide the
logic of a system, instructing the transactions where to go and
what to do next. There are 36 specific block types in gpss 111 to
represent basic system actions. These blocks, in conjunction with
the other three classes of entities described above, constitute the
language of aPpss.

To provide input for the simulation, control and definition
cards are prepared from a flow chart of the system. These cards
constitute the model in apss language. Once the system model
is loaded, the apss program generates and moves transactions
from block to block according to timing information and logical
rules incorporated in the individual blocks. Each movement is
designated to occur at some particular point in time. The program
automatically maintains a record of these times (Future Events
chain), and executes the movements in their correet time sequence.
Where actions cannot be performed at the originally scheduled
time—for example, when a required facility is already in use—proc-

EXPANDED GENERAL PURPOSE SIMULATOR

175

extended
storage
flexibility

improved
modeling
capability

essing temporarily ceases for that transaction. The program
automatically maintains the status of the equipment causing the
delay, and activates the transaction again as soon as the condi-
tion changes.

The program output provides information on:

The amount of transaction traffic flowing through the complete
system and/or any of its parts

The average time required for transactions to pass through
the complete system or between selected points, and the
probability distribution of this passage time

The degree to which each item of equipment in the system
is loaded, together with the distribution of storage occupancy
The maximum and average queue lengths occurring at various
points, as well as the distribution of queue lengths

For purposes of description, the salient features of Gpss III
have been divided into several categories, the first of which
pertains to the storage flexibility and is now discussed. In ¢pss 111,
core storage restrictions have been largely alleviated by automatic
reallocation of core storage and by the ability to choose the
number of parameters for each transaction. These two features
allow easy handling of very large models, or of models that require
the use of a relatively large number of a particular entity.

Automatic reallocation of core storage gives the user the
ability to reapportion core storage without going through a
reassembly process and the clerical chores associated with re-
assembly. The analyst specifies the exact number of blocks,
facilities, storages, queues, logic switches, tables, functions, vari-
ables, savexes (savevalues), transactions, and common storage
he desires. The reallocation is done by word modification and is
extremely fast in comparison to reassembly. Specification is
simple, and it is not necessary to specify values for those entities
whose quantity is to remain normal.

The ability to specify the number of parameters for each
transaction saves core under certain conditions. This specification
is done directly at the GENERATE and SPLIT blocks, not from a
master control card. A system can therefore have transactions
with different numbers of parameters. The analyst may specify
that transactions be given from 0 to 100 parameters; without
specification, 12 parameters per transaction are automatically
assigned. This feature saves core when less than 12 parameters
are needed for a particular transaction. Techniques that associate
other entities (such as savexes) with the transactions are eliminated
when more than the normal number of parameters are required.

The modeling capability of gpss has been improved by the
addition of user chains and Attribute Valued functions. Both
of these improvements are now discussed in detail.

In epss, a transaction at any particular time is a member
of the Current Events, Future Events, or Interrupt chains.
These chains, which are strings of transactions, behave in a

H. HERSCOVITCH AND T. H. SCHNEIDER

predetermined way that is not directly under the user’s control.
apss 111 allows the user to bypass this standard operation and
to construct his own string of transactions, called user chains.
These user chains make it possible for the analyst to create and
manipulate his own chains of transactions independent of the
Gpss chains. Also, to reduce computer running time, transactions
known to be inactive can be removed to a user chain, thus reducing
the number of transactions to be scanned on the internal Current
Events chain. Since the user has complete control over these
chains, it is also possible to represent may different queuing
diseiplines.

Two new block types, LINK and UNLINK, enable the analyst
to remove transactions from the Current Events chain, place
them on a user chain in any manner desired, remove them later
in any order, and place them back on the Current Events chain.
Since the analyst can completely control the operation of his
own chains and bypass the predetermined operation of the
Current Events chain, this new feature significantly extends the
applicability of the simulator.

The LINK block makes it possible to place a transaction at
the beginning or end of a specified user chain, or to merge the
transaction onto the chain according to specific parameter values.
The UNLINK block allows removal of one or more transactions
from the beginning or end of the chain. This block also allows
specific transactions, based upon parameter content, to be removed
from any point on the chain. Thus, any queuing discipline may
be accounted for.

For example, the block LINK 5,LIFO removes the current trans-
action from the Current Events chain and places it at the beginning
of user chain 5. Removing transactions from this chain in the
normal manner (i.e., from the beginning) results in a LIFO (last in,
first out) discipline. As another example, UNLINK 3,AAAALL
removes ALL transactions from user chain 3 and places them
on the Current Events chain, with their next block specified as
AAA. The transaction that entered the UNLINK block proceeds
to the next sequential block.

Figure 1 illustrates how LINK/UNLINK can be used to sort
transactions according to a specific queuing scheme. Transactions
are sorted in accordance with parameter 6, but the transactions
within each class are grouped on a LIFO basis. In other words,
if there are eight transactions with parameter 6 equal to 1, they
are filed in the reverse order from their arrival order.

The example in Figure 2 represents a rental agency with three
types of vehicles available: cars, pickup trucks, and closed trucks.
A customer entering the agency describes the year and type of
vehicle he wishes to rent. The rental agent then determines whether
the desecribed vehicle is available. The problem can be readily
solved by setting up a user chain for each vehicle class. Figure 2
illustrates the construction of user chains to bypass the prede-
termined operation of the Current Events chain. This relatively

EXPANDED GENERAL PURPOSE SIMULATOR

simple example could be expanded to a complex inventory problem
where, in each type of chain, the choice of a transaction is based
on many criteria. The difficulties encountered in attempting to
represent such problems by standard chain operation would be
extensive or even insurmountable.

Further modeling capability is provided in epss 11 by the
new Attribute Valued function. This function allows the use of
any Standard Numerical Attribute in the specification of a function
point where previously only constants could appear. Thus, fune-

Figure 1 User chain transaction sorting

GENERATE GENERATE crate 1)
reate 1 ti
Generate 60 0)_100.1 |afterothershave

transactions been placed on chain 50

. SAVEX Increment
b
Sepdem o Sher 0w

Place transaction 50 Remove ALL transactions
on chain 50 ALL UNLINK on chain 50 whose value
in reverse order XTSO of parameter 6 is equal

tothe current value of
X100. This removes
transactions according to
their P6 value. If a matching
Unlinked transaction condition (P6 = X100) is not
| found, the control trans-
action is sent to the TEST
block to see if all trans-
No | actions have been
Continue removed from chain 50
Yes
TERMINATE ‘.

Figure 2 User chain rental example

Vehicles Being Returned Agent

!
|
¢
Customer telis agent
Link on ASSIGN type of vehicle he
appropriate desires

chain

y
P1: type of vehicle (car, pickup Customer tells agent
truck. or closed truck) SAVEX year desired
10. Year
P2: year of vehicle

v Agent goes to proper
chain (*6) and tries to
get one of the vehicles
whose year (P2)
matches customer’s
desire (X10}

UNLINK

Vehicle is unlinked Agent tells customer that
from chain the vehicle he wants is
not available

Agent rents
vehicle

H. HERSCOVITCH AND T. H. SCHNEIDER

tions may now vary dynamically with the system; they also
provide a means for indirectly referencing Standard Numerical
Attributes.

As an example of the many possible uses of Attribute Valued
functions, we use a system with message types and lengths as
listed in Table 1. The messages are serviced by the routines of
Table 2. Processing is accomplished by a different series of blocks
for different message types. The symbolic name of the first block
of each string serves as the identifying characteristic. Assuming
that the message type is given in parameter 4, the block sequence
of Figure 3 assigns the message length and directs the message
to its service routine. Note that FN4 provides multilevel indirect
referencing, because functions 1, 2, and 3 can, in turn, refer to
other Standard Numerical Attributes. In FN5, the function points
are specified as symbolic block addresses. The assembly program
converts these symbolic addresses to actual numerical values
before control is transferred to apss 111

Table 1 Message lengths Table 2 Message routines

Message Number of characters Message Symbolic address
type in message type of first block

1-3 80-126 as given by FN1 TYPEA
4-9 97-320 as given by FN2 TYPEB
10-12 50-150 as given by FN3 TYPEC

TYPED

Figure 3 Use of Attribute Valued function

5, FN4
Place message length in
ASSIGN parameter 5 by double-level
indirect referencing

TRANSFER

Transfer ta service routine

vl v

TYPEA TYPEB TYPEC TYPED

1 FN4

TYPEA TYPEB TYPEC TYPED

BEXPANDED GENERAL PURPOSE SIMULATOR 179

180

Another interesting use of the Attribute Valued function is
two-dimensional addressing for arrays of savexes. Often, one
wishes to associate several attributes with each of several entities,
such as facilities. For instance, if facilities 15, 16, 17, and 18
represent machines in a machine shop, it may be convenient
to have three attributes associated with each machine, rep-
resenting, say, the type of job currently on the machine, the time
that the current job started, and the number of jobs completed
to date. These attributes can be arranged in a tabular array,
and assigned savex locations, as shown in Table 3. This array
can then be implemented, as shown in Figure 4, by three Attribute
Valued functions, one for each attribute, using the facility number
in P1 as the argument in each case. Thus, to determine whether
machine No. 17 has completed ten jobs, the number 17 is placed
in P1, and function 29 (representing the third attribute) is tested,
as shown in Figure 5. Note that no auxiliary ASSIGN blocks and
Variable statements are required to compute the addresses in
the savex array. Also, it is not necessary to maintain contiguous
savex locations, because there are no address computations.

Table 3 Savex array

Machines
F16 F17

First attribute X34 X37
Second attribute X35 X338
Third attribute X36 X39

Figure 4 Attribute Valued functions for two-dimensional addressing
FN27

First
attribute

tor machines
15-18

Second
attribute

for machines
15-18

Third
attribute

for machines
15-18

H. HERSCOVITCH AND T. H. SCHNEIDER

Frequently, the most crucial effort in large-scale simulation
is the debugging of the model and verifying that the model
actually represents the system. Three debugging aids added to
6pss 111 help to alleviate this problem: (1) transaction chains
may be printed out at any point in time, thus giving an output
that previously was only obtainable by forcing an error, (2) com-
plete system snapshots (i.e., all standard output and, if desired,
chain printout) can be obtained at specified intervals during the
run to study intermediate results, and (3) the PRINT block can
now print any Standard Numerical Attribute, not just savexes.
The snapshot feature is specified in the START card. For example,
the card START 1000,,200,1 tells gpss 11 to run until 1000 trans-
actions have been terminated, and to print complete statistics
on the state of the system after every 200 terminations. The 1
specifies that each time statistics are obtained, all transaction
chains should be printed. The block PRINT 1,3,CHA causes a
printout of the contents of user chains 1, 2, and 3 whenever a
transaction enters this PRINT block. In all error printouts, the
current, state of the logic switches as well as standard statistical
information is given.

Some of the numerous new features that have added ver-
satility and ease of use to ¢pss are now described briefly.

Coding in Gpss 111 is facilitated by the provision of a free-field
format. The most commonly used fields in each block are specified
first, with fields separated by commas. For example, a GENERATE
block with a mean of 250, modified by FUNCTION 1, with an
offset time of 100, a count of 1000, and priority level of 5 is coded
as GENERATE 250,FN1,100,1000,5.

Specification of Standard Numerical Attributes in any block
field is now allowed. For example, an analyst wishing to seize
the facility whose number is given by the value of savex 10,
previously used two blocks. Now the same operations can be
performed with a single block as shown in Figure 6.

Queuing statistics are often desired on blocking conditions
that cannot be represented by a single block, such as the con-
dition of a group of logic switches. The QUEUE block of arss 11
cannot efficiently supply such statistics. To overcome this prob-
lem, the functions of the QUEUE block in epss mr have been
divided into two new blocks, the QUEUE block and the DEPART
block. The new QUEUE block is similar in operation to the ENTER
block associated with storages, and the new DEPART block is
similar to the LEAVE block associated with storages. A transaction
may leave a QUEUE block, but is considered a statistical member
of the particular queue until it reaches the DEPART block. Figure 7
gives an example of the new blocks in use.

The SPLIT block has two new features in gpss 111. Specification
of the number of transactions to be split is now allowed, eliminating
the need for strings of SPLIT blocks. Also, serial numbering of
copy transactions in a specified parameter can be automatically
provided if desired. An example is shown in Figure 8.

EXPANDED GENERAL PURPOSE SIMULATOR

new
debugging
aids

Figure 5 Test of third machine
attribute

Machine number in P1

¥
e FN29 L 10>—C

ha

increased
versatility

Figure 6 Specification of Stand-
ard Numerical Attribute

Previous notation

ASSIGN

GPSS Iil notation

Figure 7 Use of QUEUE/DEPART A new block, the GATHER block, ig similar to the ASSEMBLE
block, except that no transactions are removed from the system.
The block simply removes transactions from the Current Events
chain until the count specified is reached. All delayed transactions
are finally placed back on the Current Events chain in the same
order in which they were removed and are then allowed to continue.
The HELP block has been extended to allow symbolic ad-
dressing in HELP routines. This feature greatly facilitates coding
and permits use of the same coding for all machines and under
any version of the operating system. Table 4 shows a HELP
routine to print a specific line of output. OTITL and OUT are
GPss 111 routines and are used to set up and print out a line of
output.

A new function type, the List function, requires that the
RANSFER independent argument values of the function be sequential
integers, beginning with 1. In this mode, the program makes
direct use of the value of the independent variable to obtain
the corresponding function point. For example, if the value of
the independent variable is 5, the fifth function point is im-
Statsticaly leave mediately obtained. For functions that have both many points and
Dgic switches § and sequentially numbered independent arguments, the List function
should certainly be used. This function is evaluated more quickly
than a comparable discrete function and saves core, since argument

values are not stored.

An additional selection mode has been added to the TRANSFER
block. This mode (subroutine) saves the current block number
in a specified parameter and then transfers to a named subroutine.
Thus, easy return to the main line flow is made possible after
execution of the subroutine.

Statistically enter
EUE 1

DEPART

Table 4 HELP routine

HELP SXA ALPHA, 4 SAVE RETURN ADDRESS
TSX OTITL, 4 PRINT OUT LINE
PZE A, 10 OF OUTPUT FROM
TSX ouT, 4 LOCATION A
ALPHA AXT ** 4
TRA 1,4 TRANSFER BACK
A BCI , 1THIS I8 AN EXAMPLE OF OUTPUT EDITING USING GPSS Il - - — -

Figure 8 Use of SPLIT block

SPLIT Split 5 transactions
and serially number
5 7 parameter 7

TRANSFER

Route to various
< FNS service routines

vy oy v

AAA BBB ccc DbDD EEE

182 H. HERSCOVITCH AND T. H. SCHNEIDER

The EXECUTE block lets the entering transaction perform
the operation of any other specified block without diverting the
transaction from its normal sequential flow.

The CHANGE block allows the analyst to modify the model
during the course of a simulation by changing any one block
to a duplicate of any other block.

The significant new capabilities and performance improve-
ments of ¢Pss 11 in comparison to the preceding General Purpose
Systems Simulators can be summarized as follows:

Increased speed

Variable number of parameters

Space reallocation

User chains

Attribute Valued functions

START card and PRINT block

Assembly program

Standard Numerical Attributes in any field
QUEUE and DEPART blocks

SPLIT and GATHER blocks

HELP block

List function

Subroutine mode of the TRANSFER block
EXECUTE and CHANGE blocks

ACKNOWLEDGMENT
The authors wish to acknowledge the efforts of II. C. Ball,

J. F. Bult, R. L. Gould, and E. C. Olsen who developed and
implemented apss 111.

CITED REFERENCE AND FOOTNOTE

1. Coverage has been extended from the IBM 7090 and 7094 computer systems
to the IBM 7040 and 7044; the applicable GPss 111 programs (No. 7090-C8-15X
and 7040-C8-14X, respectively) can be ordered through IBM branch offices.
Plans for extending GPSS III to SYSTEM/360 have been announced. Pub-
lished by the IBM Data Processing Division, White Plains, New York,
are three manuals on GPSS 1II: Application Description (H20-0144), Intro-
duction (B20-0001), and User's Manual (H20-0163). An Application Descrip-
tion for the SYSTEM/360 version is forthcoming.

. R. Efron and G. Gordon, ““A general purpose digital simulator and examples
of its application, Part I, description of the simulator,” IBM Systems
Journal 3, No. 1, 22-34 (1964).

EXPANDED GENERAL PURPOSE SIMULATOR

summary

