Certain sequencing and scheduling problems are formulated as
shortest-route problems and trealed in a uniform manner by dynamic
programmaing. Computational considerations are discussed.

The construction of discrete dynamic
programming algorithms

by M. Held and R. M. Karp

Many problems of systems engineering can be cast in the following
terms: a system may be in any of a finite number of states, and
there is a transition cost associated with taking the system from
one state to another; the problem is to find a sequence of transitions
that takes the system from a given initial state to a desired final
state at minimum total cost. In some disciplines, such as control
engineering, such formulations are well known; but the same view-
point, applied to problems of sequencing and scheduling, can be a
useful tool for the systems engineer. The purpose of this paper is to
present several such problems, describe their formulations from a
unified point of view, and tell how some of them were solved on a
computer. The examples considered are drawn from the area of
operations research, and include such well-known problems as the
traveling-salesman problem and the assembly-line balancing
problem.

The basic elements of such discrete “control”’ problems are
exhibited by the following shortest-route problem: given a set of
cities, with known distances between them, find the shortest path
between two given cities. The main theme of the second section is
that all of our examples can be reformulated as shortest-route
problems; moreover, the dynamic programming algorithm for
solving the shortest-route problem yields methods of solution for

IBM SYSTEMS JOURNAL * VOL. 4 * NO. 2 * 1965

the other examples. This unified viewpoint, once understood, may
enable the reader to formulate and solve other related problems
by dynamic programming.

In the third section, we summarize the techniques of pro-
gramming some of these dynamic programming methods for the
1BM 7094. Since the storage requirements of these programs grow
rapidly with problem size, the dynamic programming procedure
is not, by itself, adequate for large problems. However, optimum
or near-optimum solutions ecan be found by a successive approx-
imations technique employing dynamic programming at each
iteration. A brief description of this technique is also given in the
third section.

For certain problems of the type under consideration, alter-
native solution techniques exist. In the final section, we give
examples in which dynamie programming is less efficient than some
other approach; the reader, when confronted with his own appli-
cations, should keep these examples in mind.

Problem formulations and solutions

Suppose we are given n cities, numbered 1, 2, - -+ | n, and a set of
positive numbers (a,;), where a,; represents the cost of traveling
from city 7 to city 7. We do not require that a;; = a;; , and some of
the a,; may be infinite (if, for example, it is impossible to go from
7 to j without passing through some intermediate city). We shall
consider the problem of finding a least-cost route from city 1 to
city n. Such a route may be the direct one of cost a,, , or may pass
through some set of intermediate cities. Since the a,; are positive,

it follows that no least-cost route passes through any city more than
3

once. Solutions to this problem are given in the literature;' > we
reproduce here a dynamic programming solution given by Bellman.*

We assume that there is a route of finite cost (and hence a least-
cost route) from city 1 to any city j. Let C(j) denote the cost of a
shortest or least-cost route from city 1 to city j; then we assert that
the following system of equations holds:

c1)=20

C) = min (0@ + ol §=2,3 - ,n. ®
We argue as follows: any path from 1 to j passes through some city
7 just before reaching j (it is possible that ¢ = 1); thus this path
may be broken into two segments: a path from 1 to ¢ having a cost
of at least C(7), and a direct link from < to j having cost a,; . The
cost of such a route is at least C(¢) + a,; ; and therefore the cost of
any route from 1 to j is at least min,; [C(Z) + a.;]. On the other
hand, if C(2)+4-a;; is minimized at 7=1*, this lower bound is met by
the shortest route from 1 to ¢*, followed by a link from ¢* to j.

The first phase of an algorithm for finding a least-cost route from
1 to n, and its associated cost C'(n), is to solve (1) for all the
quantities C(5); the solution, which may be shown to be unique,

DISCRETE DYNAMIC PROGRAMMING ALGORITHMS

a shortest-route
problem

the traveling-
salesman problem

may be obtained iteratively in the following way: set C°(§) = ai; ,
and compute the quantities
') =0; k=12 ---
C'(j) = min [C*7'() +a); §=2,8,-,n; k=12,
1#]

By induction on k, C*(j) can be shown to represent the minimum
cost achievable by any route from 1 to j passing through at most
L intermediate cities; thus C(j) = C"2(j). Once the quantities
C(j) have been computed, the second phase of the algorithm deter-
mines a least-cost route from 1 to n in the following manner: since
C(n) = min,;.,[C(Z) + a.,], there is a value of ¢ different from =,
say ¢*, such that C(n) = C(#*) 4+ .+, . Then 7* is the stop just
before n in a least-cost route from 1 to n. Similarly, if ¢* = 1,
then since C(¢*) = min,...[C({) + a;;.], there is a value of 7
different from ¢*, say ¢**, such that C(¢*) = C(@**) 4+ a@;us:e ; also,
since C(n) > C(*) > C(7**), ¢** is not n, and we may take ** as
the stop just before ¢*. Continuing in this fashion, an entire least-
cost route is generated in reverse order of actual travel.

In cases where there is no path from any city back to itself
(except along links of infinite cost), the cities may be renumbered
so that a,; is infinite if § < 7, so that (1) becomes

c1) =0
C(H) = min [CG) + a.].

i<y

1)

The solution of (1’) can be obtained without iteration simply by
computing, in order, C(2), C(3), --- , C(n). This calculation is
analogous to a well-known calculation associated with perT
networks.*

Although it is convenient to state the shortest-route problem
in terms of routes between cities, the problem may be given a
broader interpretation as follows: given any system, or process,
which can exist in n distinet states, such that the cost of executing
a transition from state ¢ to state j is a,; , find a sequence of transi-
tions taking the system from state 1 to state n at least total cost.
This problem is the same as the shortest-route problem as orig-
nally stated, except that we speak of states rather than cities. By
putting the problem in this more general context, we shall find it
easier to interpret a variety of sequencing problems as shortest-
route problems.

Suppose we are given a set of n cities, and ann X n matrix (a,,),
where a;; represents the cost of traveling form city 7 to city j. The
traveling-salesman problem is that of finding a shortest route or
tour for a salesman who must start at city 1 (his home base), visit
each of the remaining cities exactly once, and then return to city 1.
A closely related variant of this problem is the “open-loop”
traveling-salesman problem in which the salesman is not required
to return to city 1 at the end of his tour.

Various types of problems may be formulated as traveling-

M. HELD AND R. M. KARP

salesman problems. For example, consider the problem of sched-
uling the printing of several editions of a publication. If a;; is taken
to be the length of time the presses must be down if edition j is
printed immediately after edition ¢, the problem of sequencing the
editions so as to minimize total down time is equivalent to an
open-loop traveling-salesman problem.

Let us reformulate the traveling-salesman problem as a shortest-
route problem of the kind previously considered. In order to do so
we must have a means of describing the state of a partially com-
pleted tour at any point. This description of state must satisfy the
criterion that it be possible to determine the pairs of states between
which transitions are directly possible, and to determine the cost
of each such direct transition. Let us attempt to describe the state
of a partially completed tour by specifying S, the set of cities that
have been visited (excluding city 1), and f the city visited last,
where f is an element of S. A state, then, will be denoted by the
ordered pair (S, f); in addition, let A denote the initial state of
being at city 1 before the tour begins, and let @ denote the state
reached at the end of the tour, when city 1 is revisited. If S
consists of the single element f, then (S, f) is accessible from
the state A at cost a,, and is not accessible from any other state.
Otherwise the states from which (S, f) is accessible by a direct
transition (corresponding to a journey to city f from some other
city in S) are those of the form (S — f, m), where S — { is the set
obtained by deleting element f from S, and m is any element of
S — {; the cost of such a transition is a,,, . For example, the possible
transitions into the state ({3, 4, 6, 7}, 6) are shown schematically
as follows:

({37 4, 7}: 3) Q36
({3; 4, 7}; 4)—0/46_— ({3) 4, 6, 7}7 6)
({3: 4,7},7) Q76
Finally, Q is accessible from any state of the form ({2, 3, - - -, n},),
with an associated cost a;, . Thus our definition of state meets the
requirements, and solving the traveling-salesman problem is equiv-
alent to finding a shortest route from A to Q.

Adapting the system of equations (1) to the present situation,
we obtain:
C4)=0
C({f})f) = Oy for f= 2,8, ,n
C(S, /) = min [C(S — f, m) + a./],

meS—1
for S {f}, SC{2,3,---,n} and f£ S
C(@) = min [C({2,3, - ,n},]) + anl.

fe(2,3,+++,n}

These recurrence relations (which are also given in Reference 5)
may perhaps be clarified by noting that C(S, f) represents the

DISCRETE DYNAMIC PROGRAMMING ALGORITHMS

an assembly-line
balancing problem

minimum cost of starting at city 1 and visiting all cities in the
subset S, terminating at city f, where f is an element of S. By
visiting city m just before f, a total cost of C(S — f, m) + a., can
be achieved. The recurrence relation expresses the fact that the
best possible result is achieved by minimizing over all choices of m.
It is easily seen that there is no path from any state back to it-
self, so that (2) can be solved without any iteration.

Two types of errors are possible in defining the states of a
process. The first type of error yields a definition that is insufficient;
for example, specifying the state of a partially completed tour by
giving only f, the last city visited, is unacceptable because we do not
know whether state m, for example, is accessible from j without
knowing whether city m was previously visited in the partial tour
leading to f. If the state associated with a partial tour is given
simply by S, the set of cities visited, we know that S is directly
accessible from every state of the form S — f, but we cannot
determine the cost of this transition. The second type of error
consists of giving superfluous information. Suppose the state
associated with a partial tour is specified as the ordered set of
cities visited during the partial tour. This specification certainly
permits the transitions and their costs to be determined, but fails
to combine into single states certain sets of partial tours that could
be so combined. For example, the partial tours specified by the
ordered sets (1, 2, 3, 4), (1, 3, 2, 4) both correspond to the pair (S, f)
where S = {2, 3,4} and f = 4, and, therefore, our original definition
subsumes them under a single state. If we fail to make full use of
such equivalences, the number of states will become unnecessarily
large, and the computation, unnecessarily cumbersome. It is
possible to give a fully rigorous exposition of the coneept of “state’’
for discrete decision processes, but we shall not do so here.’

The recurrence relations (2) may be used to solve traveling-
salesman problems by first tabulating the quantities C(S, f), and
then constructing an optimum tour in a manner analogous to the
second phase of the shortest-route algorithm.

An assembly line is required to produce a unit of product every
T units of time (7' is called the cycle time of the line). For each unit
produced, a set of elementary jobs J, , J,, --- , J, must be per-
formed. A given job J, may be executed in i, units of time, and
may be assigned to any of the work stations placed serially (and
numbered 1, 2, 3, - - -) along the assembly line. This assighment is
to be made so that:

e each job must be assigned to exactly one work station;

e the sum of the execution times of the jobs assigned to any given
work station does not exceed the cycle time 7';
if there is a technological requirement that J; must precede J;
(denoted J; < J;), then J, is assigned to the same work station
as J; , or to an earlier one;
the number of work stations is minimized.

Let us view the process of assigning jobs to work stations as a

. HELD AND R. M. KARP

Figure 1 Geometric interpretation of a feasible assignment
1 2 3 4
—
Jlo

IDIEDEE EDNEN - ENNEN DD IR

T " T P T o) T >

7 —}

(N=DT + 7 = 3T + (4 + 1,

dynamic one, in which one job is assigned at a time. The state of a

partially completed assignment can be described by giving the set

S of jobs that have been assigned. Not every set S may represent,

a valid state, however; for example, if J, < J, , then any set S

containing J, , but not J, , corresponds to an invalid state. In

general, S is said to be a feastble set if, whenever it contains a job

J , it also contains all the jobs required to precede J; . Thus valid

states correspond to feasible sets.

Now, to show that our definition of state is satisfactory, we
must define the allowable transitions between states, and their
costs. The state S is accessible from the states S — f, where f is an
element of S, and the set S — {, obtained by deleting f from S, is
feasible. The definition of transition costs is somewhat more com-
plicated in this case than it was previously. There are usually many
ways in which a state S can be reached, corresponding to the
possible ways of assigning the jobs in the set S without violating
precedence restrictions; any such assignment will be called feasible.
The ““cost”’ of a feasible assignment is defined to be (N — 1)T + =,
where N is the highest numbered work station to which jobs are
assigned, and 7 is the sum of the execution times of the jobs assigned
to the Nth station. Figure 1 gives a geometric interpretation of a
feasible assignment and its cost.

The minimum cost, C(S), of reaching state S is defined as the
cost of the “‘cheapest’” feasible assignment of the jobs in S. The
cost, A(S — f, 8), of a transition from state S — f to state S is then
the incremental cost of adjoining job J, to the best feasible
assignment for S—f. If C(S—f) is (N—1)T+7, where 0 < 7 < 7,
then A(S — f, S) is defined as follows:

Case (a): if T — r > t,, so that J, can be assigned to work station
N, then A(8 — f, 8) = &, ;

Case (b): if T — 7 < t,, so that J, must be assigned to work
station N 4 1, with the *‘idle time’” at station N wasted,
then A(S — 1, 8) =T — 7+ i, .

These cases are illustrated in Figure 2.

Thus we have the curious situation that A(S — f, S) cannot be
determined until C(8 — §) is known. Nevertheless, the problem
may be viewed as a shortest-route problem in which it is required to
go, via feasible sets, from the empty set ® to the set {1,2, - -+, n}.
From(1) we obtain the following recurrence equations (which are
also given in Reference 7):

C® =0
C8 = min [C(S — 4+ A(S — f, S)], for S feasible[(3)

€
8—f feasible

DISCRETE DYNAMIC PROGRAMMING ALGORITHMS

a scheduling

problem

142

Figure 2 Two illustrative cases

C(S—1f)

As in the previous examples, a two-phase calculation is used: first
C(S) is tabulated, and then an optimal assignment is obtained by
backtracking through the tabulated values.

As another example, we consider the problem of scheduling a set
of jobs J,, Js, - -+, J, which are to be executed successively on a
single facility. Any given job .J, is assumed to require the services
of the facility for 7, units of time. For example, the facility might
be a digital computer, and each job J, a program with estimated
running time 7, . With J, Is also associated a function ¢,(t), giving
the cost associated with completing J; at time ¢{. We assume that
the facility is to be constantly in use, and that no job is to be inter-
rupted before completion. There is no advantage in violating these
assumptions when the functions ¢,(f) are monotone nondecreasing,
representing penalties incurred for deferring the completion of the
jobs. With these assumptions, any given sequence of execution of
the jobs (a schedule) may be represented by an ordering
(4, , %, -+, 1,) of the integers from 1 through =, indicating that
the jobs are to be executed in the order J,, , J,;,, ---, J., . Given
such a schedule, the termination time ¢, of J,, is D_%_, 7;, , and
the total cost associated with the schedule is Y 7, ¢, (t:.). We
seek an ordering for which this total cost assumes its minimum
value.

Let us view the process of executing jobs as a dynamie one.
The state of a partially completed schedule is deseribed by giving
the set S of jobs that have been executed, and any state S is
accessible from all states of the form 8 — f. The cost of a transition
from state S — f to state S is then the incremental cost incurred by
executing job J last within the set S, and is given by ¢,(ts), where
s = 2 ;s 71 . Thus the problem may be viewed as a shortest-route
problem in which it is required to go from the state ® to the state
{1,2, ..., n}. Using (1) we obtain the recurrence relations (which
are also given in Reference 5):

C@) =0
c(S) = I}llsn [C(S — 1) + cits)].

@)

M. HELD AND R. M. KARP

As before, a two-phase calculation is employed to compute an
optimum schedule.

Computational considerations and successive
approximations

There are basic similarities among the implementations on a digital
computer of the traveling-salesman, assembly-line balancing, and
scheduling algorithms developed above. In each of these cases, all
or part of the state description specifies a subset of a finite set of
objects. A computer representation of such a subset can be obtained
by setting up a correspondence between the elements of the set of
objects and the bits of a field in a computer word. If an element is
present in a subset, a 1 occupies the corresponding bit position;
otherwise a 0 occupies that position. Thus the subsets are repre-
sented by integers in the binary representation.

The tabulation of the cost functions C(8S) in equations (3) and
(4) and C(S, f) in equations (2) must be ordered so that the
evaluation of the left-hand side of the recurrence equations (which
requires the previous evaluation of the quantities on the right-hand
side) is possible. A simple procedure is to consider the subsets in
the natural order of their binary integer representations, and
compute the associated cost functions in this same order,

Finally, in each case, for the purpose of storage allocation, it is
necessary to establish a simple correspondence between the
quantities being tabulated and consecutive memory locations
within the computer. In the case of the scheduling problem, this
correspondence may be obtained by simply using the binary integer
representation for a subset as the relative address of the cost
function associated with it. For the traveling-salesman problem,
C(8, f) is assigned a location obtained by adding a base address
associated with f to a relative address derived from the binary
integer representation for S by ‘‘squeezing’”’ out the 1 in bit
position f and moving all bits to the left of it one position to
the right.

The storage allocation problem for the line balancing algorithm
is complicated by the fact that only the feasible subsets are
considered. In the 7094 program, the problem is solved by storing
a list of the feasible sets S in the natural order of their binary
representations. The quantities C(8) are stored in a second list,
with S and C(S) occupying the same positions relative to the
initial addresses of the two lists. The location of C(S) in the second
list is determined by performing a binary search to locate S in
the first list. The nature of the dynamic programming algorithm
permits the caleulation to be arranged so that sharp initial bounds
are set on the range of each binary search performed. Although
this simple approach is wasteful of storage, it yields an efficient
program in terms of operating speed. It is possible to develop an
alternative method which does not require the storage of two
lists.” This procedure was not used in the 7094 program, however,
because of its complex list processing structure.

DISCRETE DYNAMIC PROGRAMMING ALGORITHMS

computational
considerations

successive
approximations

144

The dynamic programming algorithms presented in the previous
section are a vast improvement over complete enumeration, and
permit the convenient solution of problems of moderate size.
However, the complexity of these algorithms, as measured by
numbers of arithmetic operations and storage requirements, grows
quite rapidly. In the case of the traveling-salesman problem, for
example, the number of storage locations required to tabulate the
quantities C(S, f) is

n-1
> k(n ; 1) = (n — 1)27°.
k=1

Thus, the memory capacity of a computer with 32K words of core
storage (such as the 7094), is sufficient to permit the solution of
traveling-salesman problems involving up to thirteen -cities.
Although it is possible to solve larger problems using auxiliary
storage such as tapes or discs, only slight gains can be realized
without introducing undue complexity into the program. In addi-
tion, the number of evaluations of C(8 — f, m) + a.., in equations
(2) is

kz_j k(k — 1)(" ; 1) = — Dn — 2)2"2,

and, for large problems, the magnitude of this number of operations
becomes quite considerable; for example, if » = 20, we have
19 - 18 - 2'" = 44, 826, 624. Because of these considerations, the
solution of large problems requires that the dynamic programming
algorithms be supplemented by some other procedure. One such
procedure is a method of successive approximations. This technique
yields successively improved solutions; each solution is obtained
from its predecessor by the solution of a derived subproblem of
moderate size having the same structure as the given problem. The
associated costs form a monotone nonincreasing sequence, and,
although there is no guarantee that an optimum solution will
eventually be reached, the method has been quite successful in
practice.

We shall use the traveling-salesman problem to illustrate this
method of successive approximations. Any given traveling-
salesman tour may be represented by a cyclic permutation
P = (11,15 -+ 1., 1,) indicating that the salesman starts at city 1,
proceeds to city z, , then to city 45, - -- , then to city Z,-; , then
to city <, , finally returning to city 1 from city ¢, . Suppose we
decompose this tour in the following manner:

P = (1ijdy -+ 1,_11,)
= (1 0)Gusg ~ Gn) v (vg * o Bn) = 0103 -+ Cu.

We may now define a u-city traveling-salesman problem in which
each ¢, is treated as a city, and the cost of going from the “city”’
(T Tmsr =+ - %) to the “city” (¢, Gps1 *+ - %) 1S @44, . If w is not too
large, this derived problem may be solved by the dynamic pro-

M. HELD AND R. M. KARP

gramming algorithm given above for the traveling-salesman
problem. The solution implies a reordering P’ of P, with traveling-
salesman tour represented by P’ having cost less than or equal to
that represented by P. An example of a decomposition and possible
reordering is shown in Figure 3.

Figure 3 An example of decomposition and possible reordering

oy a2 o3 o o5
P = [13] [579] [11 13 15 2) [4] [6 8 10 12 14 16]

LN

P = [13] (4 5791 [681012 14 16] [1113152]

The method of successive approximations proceeds by solving
a sequence of derived problems, each of which is of the type just
introduced. In order to completely specify the procedure, it is
necessary to determine which derived problems are to be solved
and when to stop the computation. A systematic strategy, which
was suggested by computational experience, has been worked out.
The details are given in References 5 and 9.

The authors have developed similar successive approximation
methods for the scheduling and assembly-line balancing problems;
these are discussed in References 7, 8, and 10. In all cases, the
procedures have led to highly satisfactory results; traveling-
salesman problems with up to 50 cities and assembly-line balancing
problems with up to 612 jobs have been successfully treated.
Summaries of the computational results obtained may be found
in References 5, 7, 8, 9, and 10.

Other approaches

As we have seen, dynamic programming is a powerful tool for the
solution of sequencing and scheduling problems arising in opera-
tions research. However, in many cases, alternative, and perhaps
more effective, solution techniques exist. For example, in the case
of the single-facility scheduling problem, if each cost function c,(t)
is linear, i.e., c.(t) = a,t for some @, > 0, then as McNaughton™
has shown, the jobs should be ordered according to the ratios a, /7 ,
with the job having the highest ratio being performed first. This
simple decision rule is obviously more appropriate than dynamic
programming for this special case. As another example, the problem
of cutting specified lengths ¢, , ¢, , - - - , t, of stock from a minimum
number of standard reels of length 7' has exactly the same math-
ematical structure as the assembly-line balancing problem without
precedent restrictions. Thus this cutting-stock problem may be
treated by the recurrence relations (3), with all sets S taken as
feasible. In this case, the dynamic programming approach is
probably useful for small problems; for the large problems which
usually occur in practice, the column-generating technique of
Gilmore and Gomory'*'** makes linear programming a more
efficient means of solution.

DISCRETE DYNAMIC PROGRAMMING ALGORITHMS

146

As another example, consider a simple scheduling problem in
which n jobs J, , J», -+, J, are to be processed on two machines
A and B. Any given job J, is assumed to require the services of
machine A for a, units of time and of machine B for b, units of
time. It is also assumed that each job must first be processed by
machine 4 and then by machine B. It is required to find a sequence
of processing the jobs which will minimize the total time, T, needed
for completion of all jobs on both machines. It can be shown that
to obtain an optimal sequence it is sufficient to consider that the
jobs are processed in the same order through both machines, and
consequently it is relatively simple to give a dynamic programming
algorithm for the solution of this problem. Viewing the processing
of jobs as a dynamic one, the state of a partially completed
sequence is described by giving the set S of jobs that have been
processed; a state S is accessible from all states of the form S — f.
To obtain the transition costs in this case, we first define I(8) as
the total ““idle” time on machine B after processing the jobs in S,
and note that

T = Iy, Ty -+ 5 T + 30 b33

it follows that we may take the idle time on machine B as our
meagure of the efficieney of a sequence of jobs, and that it is this
quantity that we wish to minimize. The cost A(S — f, S), of a
transition from state S — { to state S may then be taken as the
incremental idle time incurred by adjoining job J, to the best
ordering for S — {. This incremental idle time is given by
max [0, D ;o5 @ — O ies—s b; — I(S —f)]. Thus the problem may be
viewed as a shortest-route problem in which it is required to go
from the state corresponding to the empty set ® to the state
{1, 2, ---, n}. Using (1), we obtain the recurrence relations

(@) = 0

I(9) = min [1(S = f) + &(3 — £,) ®
and, as in the previous examples, a two-phase calculation may be
employed to compute an optimum sequence.

While the dynamic programming solution to the two-machine
problem is eorrect in principle, it is much more efficient to solve the
problem by applying a simple decision rule due to S. Johnson'
which states that an optimal ordering is determined as follows:
J. precedes J, if min [a, , b,] < min [a, , b,].

Summary

Thus, while dynamic programming, particularly when combined
with the method of successive approximations, is a powerful and
flexible weapon for attacking operations research type problems
and belongs in the arsenal of every systems engineer, the other
available techniques of linear programming, simulation, and simple
decision rules, should be considered in each case.

M. HELD AND R. M. KARP

CITED REFERENCES AND FOOTNOTE

. R. Bellman, ““On a routing problem,” Quart. Appl. Math. 16, 87-90 (1958).

. G. B. Dantzig, “On the shortest route through a network,” Management
Science 6, 187-190 (1960).

. M. Pollack and W. Wiebenson, “Solutions of the shortest route problem—
a review,” Operations Research 8, 224-230 (1960).

. J. E. Kelley, Jr., “Critical-path planning and scheduling: mathematical
basis,” Operations Research 9, 296-320 (1961).

. M. Held and R. M. Karp, “A dynamic programming approach to sequenc-
ing problems,” J. Soc. Indust. Appl. Math. 10, 196-210 (1962).

. In a fortheoming paper, the authors will discuss this problem.

. M. Held, R. M. Karp, and R. Shareshian, “Assembly-line balancing—dy-
namic programming with precedence constraints,” Operations Research 11,
442-459 (1963).

. IBM 7090/7094 Assembly-Line Balancing Program, Reference Manual
(7090-MF-02X), International Business Machines Corporation.

. The Traveling Salesman Problem: An Application of Dynamic Program-
ming, Reference Manual (7090-CO-05X) (1963), International Business
Machines Corporation.

. M. Held, R. M. Karp, and R. Shareshian, “Scheduling with arbitrary
profit functions,” SHARE Distribution SD3223-IBAPF, Program In-
formation Department, International Business Machines Corporation.

. R. McNaughton, “Scheduling with deadline and loss functions,” Man-
agement Science 6, 1-12 (1959).

. P. C. Gilmore, and R. E. Gomory, ““A linear programming approach to the
cutting stock problem,” Operations Research 9, 849-859 (1961).

, “A linear programming approach to the cutting stock problem—
Part 11, Operations Research 11, 863-888 (1963).

. S. M. Johnson, ‘“Optimal two-and-three stage production schedules with

setup times included,” Nav. Res. Log. Quart. 1, 61-68 (1954).

DISCRETE DYNAMIC PROGRAMMING ALGORITHMS 147

