
Certain  sequencing  and  scheduling  problems  are  formulated  as 
shortest-route problems  and treated in a uniform  manner  by  dynamic 
programming.  Computational  considerations  are  discussed. 

I 

The construction of discrete  dynamic 
programming algorithms 

by M. Held and R. M. Karp 

Many problems of systems engineering can  be  cast  in the following 
terms:  a  system  may be in  any of a finite number of states,  and 
there is a transition cost  associated  with taking  the  system  from 
one state  to  another;  the problem is to find a  sequence of transitions 
that  takes  the  system  from a given  initial state  to a desired final 
state  at  minimum  total cost. I n  some disciplines, such as control 
engineering, such  formulations  are well known; but  the same view- 
point,  applied to problems of sequencing and scheduling,  can be a 
useful  tool  for the systems  engineer. The purpose of this  paper is to  
present  several  such  problems,  describe their  formulations  from a 
unified point of view, and tell how some of them were solved on a 
computer. The examples considered are  drawn  from  the  area of 
operations  research,  and  include  such well-known problems as  the 
traveling-salesman  problem and  the assembly-line  balancing 
problem. 

The basic elements of such  discrete  “control”  problems are 
exhibited by  the following shortest-route  problem:  given a set of 
cities,  with  known  distances  between them, find the shortest path 
between  two  given cities. The  main  theme of the second section  is 
that all of our  examples  can  be  reformulated as  shortest-route ‘ 
problems; moreover, the dynamic  programming  algorithm for 
solving the shortest-route  problem  yields  methods of solution  for 
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the  other examples. This unified viewpoint, once understood,  may 
enable the reader to formulate  and solve other  related problems 
by  dynamic programming. 

' In  the  third section, we summarize the techniques of pro- 
gramming  some of these  dynamic  programming  methods  for the 
IBM 7094. Since the storage  requirements of these  programs grow 
rapidly  with problem size, the dynamic  programming  procedure 
is not,  by itself, adequate  for large  problems.  However, optimum 
or near-optimum  solutions  can  be  found  by a successive approx- 
imations  technique  employing  dynamic  programming a t  each 
iteration. A brief description of this  technique is also  given in  the 
third section. 

For certain  problems of the  type  under consideration,  alter- 
native  solution  techniques exist. In  the final section, we give 
examples in which dynamic  programming is less efficient than some 
other  approach;  the reader, when confronted  with his own appli- 
cations,  should  keep  these  examples in mind. 

Problem  formulations and solutions 
Suppose we are given n cities,  numbered 1, 2, . . , n, and a set of a shortest-route 
positive  numbers (a,,), where a,, represents the cost of traveling problem 
from  city i to city j. We  do not require that aii = a,; , and some of 
the aii may be  infinite (if, for  example, it is impossible to  go from 
i to j without passing through some  intermediate  city).  We  shall 
consider the problem of finding a  least-cost route  from  city 1 to 
city n. Such  a route  may be the direct  one of cost a,, , or may pass 
through some set of intermediate  cities. Since the aii  are positive, 
it follows that no  least-cost route passes  through any city  more than 
once. Solutions to  this problem are given in  the 1iteratu1-e;"~ we 
reproduce  here  a  dynamic  programming  solution  given  by Bellman.' 

We assume that  there is a route of finite cost (and hence a least- 
cost  route)  from  city 1 to  any  city j. Let C( j )  denote the cost of a 
shortest or least-cost route  from  city 1 to city j ;  then we assert  that 
the following system of equations holds: 

C(1) = 0 

C( j )  = min [C(i) + ai i ] ;  j = 2, 3, , n. (1) 

We  argue as follows: any  path from 1 to j passes through some city 
i just before reaching j (it is possible that i = 1); thus  this  path 
may be broken  into  two segments:  a path from 1 to i having  a  cost 
of at least C(i ) ,  and a direct  link  from i to j having  cost aii . The 
cost of such a route  is a t  least C(i )  + aii ; and therefore the cost of 
any  route  from 1 to j is a t  least  mint+,. [C(i)  + ai i ] .  On the  other 
hand, if C(i )+ai i  is minimized a t  i=i*, this lower bound is met  by 
the  shortest  route  from 1 to i*, followed by a link  from i* to j. 

The first  phase of an algorithm  for finding a least-cost route  from 
1 to n, and its associated  cost C(n), is to solve (1) for  all the 

i quantities C(j); the solution, which may be  shown to be  unique, 



may be  obtained  iteratively  in the following way: set Co(j) = a, , 
and  compute  the  quantities 

C"1) = 0; lc = 1, 2, * * 

P ( j )  = min [C""(i) + a i i ] ;  j = 2, 3, .. . , n; k = 1, 2, . . 

By induction  on IC, C'(j) can be shown to represent the minimum 
cost achievable  by any  route  from 1 to j passing through a t  most 
/c intermediate cities; thus C(j) = C"- ' ( j ) .  Once the  quantities 
C(j) have been computed, the second phase of the algorithm  deter- 
mines  a  least-cost route  from 1 to n in  the following manner: since 
C(n) = mini+,[C(i) + a,J ,  there  is a value of i different  from n, 
say i*, such that C(n) = C(i*) + a,,, . Then i* is the  stop  just 
before n in a least-cost route  from 1 to n. Similarly, if i* # 1, 
then since C(i*) = min,+,,[C(i) + a,,,], there is a value of i 
different from i*, say i**, such that C(i*) = C(i**) + ai.,,. ; also, 
since C(n)  > C(i*) > C(i**), i** is not n, and we may  take i** as 
the  stop  just before i*. Continuing  in  this fashion, an entire  least- 
cost route is generated in reverse  order of actual  travel. 

I n  cases where there is no path from any  city  back  to itself 
(except along  links of infinite  cost), the cities may be  renumbered 
so that aii is infinite if j < i, so that (1) becomes 

C(1) = 0 

C(j) = min [C(i) + aii]. 

The solution of (1') can  be  obtained  without  iteration simply by 
computing, in order, C(2), C(3) ,  a .  , C(n). This calculation is 
analogous to a well-known calculation  associated with PERT 

n e t w o r k ~ . ~  
Although it is convenient to  state  the shortest-route  problem 

in  terms of routes  between  cities, the problem may  be given a 
broader  interpretation  as follows: given any system,  or process, 
which can  exist in n distinct  states,  such  that  the cost of executing 
a transition  from  state i to  state j is aii , find a sequence of transi- 
tions  taking  the  system  from  state 1 to  state n a t  least  total  cost. 
This problem is the same as the shortest-route  problem as orig- 
inally  stated, except that we speak of states  rather  than cities. By 
putting  the problem in  this more  general  context, we shall find it 
easier to  interpret a variety of sequencing  problems as shortest- 
route problems. 

Suppose we are given  a set of n cities, and  an n X n matrix (at i ) ,  
the  traveling where aii represents the cost of traveling  form  city i to  city j .  The 
salesman problem traveling-salesman  problem  is that of finding  a shortest  route or 

tour for  a  salesman who must  start  at  city 1 (his  home  base),  visit 
each of the remaining  cities  exactly once, and  then  return  to  city 1. 
A closely related  variant of this problem is the "open-loop" 
traveling-salesman  problem in which the salesman  is not required 
to  return  to  city 1 at   the end of his tour. 

Various types of problems may  be  formulated  as traveling- 

i (1 '1 
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salesman  problems. For example, consider the problem of sched- 
uling the printing of several  editions of a publication. If aii is taken 
to be the  length of time  the presses must be down if edition j is 

. printed  immediately after edition i, the problem of sequencing the 
editions so as  to minimize total down  time is equivalent to  an 
open-loop traveling-salesman  problem. 

Let  us  reformulate the traveling-salesman  problem as a  shortest- 
route problem of the kind  previously considered. In  order to do so 
we must  have a means of describing the  state of a partially com- 
pleted tour at  any  point.  This description of state  must  satisfy  the 
criterion that it be possible to determine the pairs of states between 
which transitions are directly possible, and  to determine the cost 
of each such  direct  transition.  Let  us  attempt  to describe the  state 
of a  partially  completed  tour  by specifying X, the  set of cities that 
have  been  visited (excluding city l), and f the city  visited last, 
where f is an element of X. A state,  then, will be  denoted  by the 
ordered pair (X, f);  in addition,  let A denote the initial state of 
being a t  city 1 before the  tour begins, and  let fi denote the  state 
reached at the end of the  tour, when city 1 is revisited. If X 
consists of the single element f ,  then (X, f )  is accessible from 
the  state A at cost a,, and is not accessible from any  other  state. 
Otherwise the  states  from which (X, f )  is accessible by a direct 
transition  (corresponding to  a  journey to city f from some other 
city  in X) are those of the form (X - f ,  m),  where X - f is the  set 
obtained  by  deleting  element f from X, and m is any element of 
X - f ;  the cost of such  a  transition  is a,, . For example, the possible 
transitions  into  the  state ((3,  4, 6, 71, 6) are shown  schematically 
as follows: 

Finally, fi is accessible from  any  state of the form ( {  2,  3, . . . , n )  , f ) ,  
with an  associated  cost a,, . Thus  our definition of state meets the 
requirements, and solving the traveling-salesman  problem  is  equiv- 
alent  to finding a shortest  route from A to  3. 

Adapting the system of equations (1) to  the present  situation, 
we obtain: 

C(A)  = 0 

C((f ] ,  f )  = a,, for f = 2, 3, , n 1 /n\ 

I. for X # ( f ) ,  S G ( 2 ,  3, . . .  , n ]  and f e  X 

C(fi) = min [C({2, 3, , n ] ,  f )  + u,J. 

I These  recurrence  relations (which are also given  in Reference 5) 
may  perhaps be clarified by  noting  that C(X, f )  represents the 



minimum cost of starting a t  city 1 and visiting all cities in the 
subset X, terminating a t  city f, where f is an element of S. By 
visiting city m just before f ,  a total cost of C(X - f, m) + a,/ can 
be achieved. The recurrence relation expresses the  fact that  the 
best possible result is achieved by minimizing over all choices of m. 
It is easily seen that there is no path from any  state back to it- 
self, so that (2) can be solved without any iteration. 

Two types of errors are possible in defining the  states of a 
process. The first type of error yields a definition that is insufficient; 
for example, specifying the  state of a partially completed tour  by 
giving only f, the  last city visited, is unacceptable because we do not 
know whether state m, for example, is accessible from f without 
knowing whether city m was previously visited in the  partial  tour 
leading to f .  If the  state associated with  a  partial  tour is given 
simply by X, the  set of cities visited, we know that X is directly 
accessible from every state of the form X - f ,  but we cannot 
determine the cost of this transition. The second type of error 
consists of giving superfluous information. Suppose the  state 
associated with  a  partial  tour is specified as the ordered set of 
cities visited during the  partial  tour.  This specification certainly 
permits the transitions and their costs to be determined, but fails 
to combine into single states certain  sets of partial  tours that could 
be so combined. For example, the  partial  tours specified by the 

where X = { 2 ,3 ,4}  and f = 4, and, therefore, our original definition 
subsumes them under a single state. If we fail to make full use of 
such equivalences, the number of states will  become unnecessarily 
large, and  the computation, unnecessarily cumbersome. It is 
possible to give a fully rigorous exposition of the concept of “state” 
for discrete decision  processes, but we shall  not do so here.6 

The recurrence relations (2) may be  used to solve traveling- 
salesman problems by first tabulating  the  quantities C(S, f) ,  and 
then  constructing an optimum tour in a manner analogous to  the 
second phase of the shortest-route algorithm. 

An assembly line is required to produce a  unit of product every 
an  assemblyline T units of time (7’ is called the cycle time of the line). For each unit 
balancing problem produced, a  set of elementary jobs J ,  , J ,  , - - , J ,  must be per- 

formed. A given job J ,  may be executed in tl units of time, and 
may be assigned to  any of the work stations placed serially (and 
numbered 1, 2, 3, . . ) along the assembly line. This assignment is 
to be made so that: 

each job  must be assigned to exactly one work station; 
the sum of the execution times of the jobs assigned to  any given 
work station does not exceed the cycle time T ;  
if there is a technological requirement that Ji must precede Ji 
(denoted Ji -< Ji), then Ji is assigned to  the same work station 
as J i  , or to  an earlier one; 
the number of work stations is minimized. 

Let us view the process of assigning jobs to work stations as a 
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Figure 1 Geometric inferpretation of a feasible assignment 
1 2 3 4 

dynamic  one,  in which one job is assigned a t  a  time.  The  state of a 
partially completed  assignment  can  be described by giving the  set 
S of jobs that have been assigned. Not  every  set X may  represent 
a valid  state, however;  for  example, if J ,  4 J ,  , then  any  set S 
containing J, , but  not J ,  , corresponds to  an invalid state.  In 
general, S is said to be  a feasible set if, whenever it contains  a  job 
J, , it also  contains  all the jobs  required to precede J, . Thus valid 
states correspond to feasible  sets. 

Now, to  show that our  definition of state is satisfactory, we 
must define the allowable transitions  between  states,  and  their 
costs. The  state X is accessible from the  states S - f, where f is an 
element of X, and  the  set S - f ,  obtained  by  deleting f from X, is 
feasible. The definition of transition costs is somewhat  more com- 
plicated in  this case than  it was  previously. There  are usually many 

, ways in which a state X can  be reached,  corresponding to  the 
possible ways of assigning the jobs  in the  set X without  violating 
precedence restrictions; any such  assignment will be called feasible. 
The “cost” of a feasible assignment is defined to be ( N  - l ) T  + 7, 

where N is the highest  numbered work station  to which jobs  are 
assigned, and r is the  sum of the execution  times of the jobs assigned 
to  the  Nth  station. Figure 1 gives a geometric interpretation of a 
feasible  assignment and  its cost. 

The minimum  cost, C(S),  of reaching state S is defined as  the 
cost of the “cheapest” feasible assignment of the  jobs  in X. The 
cost, A(X - f ,  X), of a transition  from  state X - f to  state X is  then 
the incremental  cost of adjoining  job J, to  the best  feasible 
assignment for X-f. If C(X-f) is (N-l)T+r,  where 0 < r 5 T ,  
then A(X - f ,  X) is defined as follows: 
Case  (a): if T - T 2 t,  , so that J ,  can  be assigned to  work station 

N ,  then A(X - f ,  X) = t, ; 
Case (b): if T - r < t, , so that J, must be assigned to  work 

station N + 1, with  the “idle time” a t  station N wasted, 
then A(# - f ,  X) = T - r + t, . 

These cases are  illustrated  in  Figure 2. 
Thus we have the curious situation  that A(S - f ,  X) cannot  be 

determined  until C(X - f )  is known.  Nevertheless, the problem 
may be viewed as a  shortest-route  problem  in  which it is required to 
go, via feasible sets,  from the  empty  set CP to  the  set (1, 2 ,  , n } .  
From(1) we obtain  the following recurrence  equations (which are 
also  given in Reference 7): 
C(@) = 0 

C(X) = min [C(S - f )  + A(X - f ,  X)], for X 
f*S  

S-f feasible 
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Figure 2 Two illustrative cases 

J, 

I I 
F T - - ” -  L t ‘ “  j 
I ~ A - J I  1 
k C(S-1) W ” T - T +  

Case a: T - T A t,: A = t, 

1 2 3 4 
A A “ / \ /  \ /  \ /  

I 4 J, 

C a s e b  T - T <  t l : A = T - T + t ,  

As in  the previous examples, a two-phase  calculation  is  used:  first 
C(S) is tabulated,  and  then  an  optimal assignment is obtained  by 
backtracking  through the  tabulated values. 

As another example, we consider the problem of scheduling a set 
a scheduling of jobs J ,  , J ,  , . , J ,  which are  to be  executed successively on a 
problem single facility.  Any given job J ,  is  assumed to require the services 

of the facility  for rk units of time.  For example, the facility  might 
be a digital  computer,  and each job J ,  a  program  with  estimated 
running  time r, . With J ,  is also associated  a  function ck(t) ,  giving 
the cost  associated  with  completing J ,  a t  time t .  We assume that 
the facility is to be  constantly  in use, and  that no job  is  to be  inter- 
rupted before completion. There is no advantage  in violating  these 
assumptions when the functions ck( t )  are monotone  nondecreasing, 
representing  penalties  incurred  for  deferring the completion of the 
jobs. With  these  assumptions, any given  sequence of execution of 
the jobs (a schedule) may be  represented by  an ordering 

the jobs  are  to be  executed in  the  order Ji, , J ; ,  , . . . , Ji, . Given 
such  a  schedule, the  termination  time t i ,  of J i ,  is x;=, r i i  , and 
the  total cost  associated with  the schedule is x;=, cib(tik).  We 
seek an ordering  for which this  total cost  assumes its minimum 
value. 

Let  us view the process of executing  jobs as a dynamic  one. 
The  state of a partially  completed  schedule  is described by giving 
the  set X of jobs that  have been  executed, and  any  state X is 
accessible from  all  states of the form X - f .  The cost of a transition 
from state X - f to  state X is  then  the incremental cost incurred  by 
executing job J I  last  within  the  set X, and is  given  by cr(ts) ,  where 
t s  = ciDs ri . Thus  the problem may be viewed as a  shortest-route 
problem in which it is required to go from the  state Qi to  the  state 
{ 1, 2 ,  , n ) .  Using (1) we obtain  the recurrence  relations (which 
are also given in Reference 5 ) :  

(il , i, , * . f , in) of the integers  from 1 through n, indicating that 
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As  before, a two-phase calculation is  employed to compute an 
optimum schedule. 

’. Computational  considerations and successive 
approximations 
There are basic similarities among the implementations on a  digital computational 
computer of the traveling-salesman, assembly-line balancing, and considerations 
scheduling algorithms developed above. In each of these cases, all 
or  part of the  state description specifies a  subset of a finite set of 
objects. A computer representation of such a  subset can be obtained 
by  setting  up a correspondence between the elements of the set of 
objects  and the  bits of a field in  a computer word. If an element is 
present in a subset, a 1 occupies the corresponding bit position; 
otherwise a 0 occupies that position. Thus  the subsets  are repre- 
sented by integers in  the binary  representation. 

The tabulation of the cost functions C(X) in  equations (3) and 
(4) and C(X, I) in  equations (2) must be ordered so that  the 
evaluation of the left-hand side of the recurrence equations (which 
requires the previous evaluation of the  quantities on the right-hand 

4 side) is possible. A simple procedure is to consider the subsets  in 
the  natural order of their  binary integer representations, and 
compute the associated cost functions  in  this  same order, 

Finally, in each case, for the purpose of storage allocation, it is 
necessary to establish a simple correspondence between the 
quantities being tabulated  and consecutive memory locations 
within the computer. In  the case of the scheduling problem, this 
correspondence may be obtained  by simply using the binary integer 
representation for a  subset as  the relative address of the cost 
function associated with it. For the traveling-salesman problem, 
C(S, f )  is assigned a location obtained  by adding a base address 
associated with f to a relative  address derived from the binary 
integer representation for S by ‘‘squeezing” out  the 1 in  bit 
position f and moving all  bits  to  the left of it one position to 
the right. 

The storage allocation problem for the line balancing algorithm 
is complicated by the  fact  that only the feasible subsets are 
considered. In  the 7094 program, the problem is solved by  storing 
a  list of the feasible sets S in the  natural order of their  binary 
representations. The  quantities C(S) are  stored  in  a second list, 
with S and C(X) occupying the same positions relative to  the 
initial addresses of the two  lists. The location of C(X) in the second 
list is determined by performing a  binary search to locate S in 
the first list. The  nature of the dynamic programming algorithm 
permits the calculation to be arranged so that sharp  initial bounds 
are  set on the range of each binary search performed. Although 
this simple approach is wasteful of storage, it yields an efficient 
program in  terms of operating speed. It is  possible to develop an 
alternative method which does not require the storage of two 
lists.’ This procedure was not used in  the 7094 program, however, 
because of its complex list processing structure. 
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The  dynamic programming  algorithms  presented in  the previous 
successive section are a vast improvement  over  complete  enumeration, and 
approximations permit the convenient  solution of problems of moderate size. 

However, the complexity of these  algorithms, as measured by 
numbers of arithmetic  operations and  storage requirements, grows 
quite  rapidly. In  the case of the traveling-salesman problem, for 
example, the number of storage  locations  required to  tabulate  the 
quantities C(X, f )  is 

Thus,  the memory  capacity of a  computer  with 32K words of core 
storage (such as  the 7094), is sufficient to permit the solution of 
traveling-salesman problems involving up  to  thirteen cities. 
Although it is possible to solve larger  problems using auxiliary 
storage  such as  tapes or discs, only slight  gains  can be realized 
without  introducing  undue complexity into  the program. In  addi- 
tion, the number of evaluations of C(S - f ,  m) + a,, in  equations 
( 2 )  is I 
and, for  large problems, the magnitude of this  number of operations 
becomes quite considerable; for example, if n = 20, we have 
19 18 . 217 = 44,  826,  624. Because of these considerations, the 
solution of large  problems  requires that  the dynamic  programming 
algorithms be supplemented  by some other procedure. One such 
procedure is a  method of successive approximations. This technique 
yields successively improved  solutions;  each  solution is obtained 
from its predecessor by  the solution of a derived  subproblem of 
moderate size having the same structure  as  the given problem. The 
associated  costs  form a monotone nonincreasing sequence, and, 
although  there is no guarantee that  an optimum  solution will 
eventually be reached, the method  has been quite successful in 
practice. 

We shall use the traveling-salesman problem to illustrate  this 
method of successive approximations.  Any given traveling- 
salesman tour  may be represented by a cyclic permutation 
P = (1 i, i, . . i,b-l in) indicating that  the salesman starts  at city 1, 
proceeds to city i, , then  to  city i, , . . , then  to  city in-1 , then 
to city in , finally returning to city 1 from  city in . Suppose we 
decompose this  tour  in  the following manner: 

P = (li2i3 * in-lin) 

We may now define a  u-city  traveling-salesman  problem in which 
each uh is treated  as a  city,  and  the cost of going from the “city” 
(im i,+, . . i,) to  the “city” (i,  i,) is ai,cn . If u is not  too 
large, this derived  problem may be solved by  the  dynamic pro- 
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salesman tour represented by P’ having cost  less than or equal to 
that represented by P. An example of a decomposition and possible 
reordering is shown in Figure 3. 

Figure 3 An example of decomposition and possible reordering 

Ul U2 U* 0. a5 

P = [l 31 [5 7 91 [I1 13  15 21 [4] [6 8 10  12  14  161 

P = [l 31  [4] [5 7 91 [6 8 10  12  14  161 [11 13  15  21 

The  method of successive approximations proceeds by solving 
a sequence of derived problems, each of which is of the  type  just 
introduced. In  order to completely specify the procedure, it is 
necessary to determine which derived problems are  to be  solved 
and when to  stop  the computation. A systematic  strategy, which 
was suggested by  computational experience, has been  worked out. 
The details are given in References 5 and 9. 

The  authors  have developed similar successive approximation 
methods for the scheduling and assembly-line balancing problems; 
these are discussed in References 7, 8, and 10. In  all cases, the 
procedures have led to highly satisfactory  results; traveling- 
salesman problems with  up to 50 cities and assembly-line balancing 
problems with  up to 612 jobs have been successfully treated. 
Summaries of the computational  results obtained may be found 
in References 5, 7, 8, 9, and 10. 

Other  approaches 

As we have seen, dynamic programming is a powerful tool for the 
solution of sequencing and scheduling problems arising in opera- 
tions research. However, in  many cases, alternative,  and  perhaps 
more effective, solution techniques exist. For example, in the case 
of the single-facility scheduling problem, if each cost function ck( t )  
is linear, i.e., ck( t )  = a,t for some a, 2 0, then  as McNaughton“ 
has shown, the jobs should be ordered according to  the ratios a,/rk , 
with the job having the highest ratio being performed first. This 
simple decision rule is obviously more appropriate  than  dynamic 
programming for this special case. As another example, the problem 
of cutting specified lengths t, , t, , . , t, of stock from a minimum 
number of standard reels of length T has exactly the same math- 
ematical structure as the assembly-line balancing problem without 
precedent restrictions. Thus  this cutting-stock problem may be 
treated  by  the recurrence relations (3), with  all  sets X taken  as 
feasible. In this case, the dynamic programming approach is 
probably useful for small problems; for the large problems which 
usually occur in practice, the column-generating technique of 
Gilmore and Gom01-y~”~~ makes  linear programming a more 
efficient means of solution. 
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As another example, consider a  simple  scheduling  problem  in 
which n jobs J ,  , J ,  , . . , J ,  are to be processed on  two machines 
A and B.  Any  given  job J ,  is assumed to  require the services of 
machine A for ak units of time  and of machine B for 6,  units of 
time. It is also  assumed that each  job  must first  be processed by 
machine A and  then  by machine B. It is  required to find a sequence 
of processing the jobs which will minimize the  total  time, T ,  needed 
for  completion of all  jobs  on  both machines. It can  be  shown that 
to  obtain  an optimal  sequence it is sufficient to consider that  the 
jobs are processed in  the same  order  through  both  machines,  and 
consequently it is relatively  simple to give  a  dynamic  programming 
algorithm  for the solution of this problem. Viewing the processing 
of jobs as a dynamic one, the  state of a partially completed 
sequence is described by giving the  set X of jobs that  have been 
processed; a state S is accessible from  all  states of the form X - f .  
To obtain  the  transition costs in  this case, we first define I ( S )  as 
the  total “idle”  time  on  machine B after processing the jobs in X, 
and  note  that 

T = I ( { J I ,  J,, * * - , Jn)) + bi; 

it follows that we may  take  the idle time  on  machine B as our 
measure of the efficiency of a sequence of jobs, and  that it is  this 
quantity  that we wish to  minimize. The cost A ( S  - f ,  X), of a 
transition  from  state X - f to  state S may  then  be  taken  as  the 
incremental idle time  incurred  by  adjoining  job J ,  to  the best 
ordering  for X - f .  This  incremental idle time is given by 
max [0, xirS ai - b, - I(X - f)]. Thus  the problem may be 
viewed as a shortest-route  problem  in which it is  required to go 
from the  state corresponding to  the  empty  set @ to  the  state 
{ 1, 2, . 1 . , n } .  Using (I), we obtain  the recurrence  relations 

” 

j=1 

I (@) = 0 

I (#)  = min [I(X - f )  + N S  - f ,  f)] 

and,  as  in  the previous  examples, a two-phase  calculation may be 
employed to compute an  optimum sequence. 

While the dynamic  programming  solution to  the two-machine 
problem is correct in principle, it is much  more efficient to solve the 
problem  by  applying a simple decision rule due  to S. Johnson14 
which states  that  an optimal  ordering is determined as  follows: 
J ,  precedes J ,  if min [a, , b,] < min [a, , b,]. 

Summary 

Thus, while dynamic  programming,  particularly  when combined 
with the method of successive approximations,  is a powerful and 
flexible weapon  for attacking  operations research type problems 
and belongs in the arsenal of every  systems engineer, the  other 
available  techniques of linear  programming,  simulation, and simple 
decision rules, should  be considered in  each case. 

i (5)  
I P S  
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