
An approach to  the preparation  and  evaluation of preliminary  plans 
for a discrete manufacturing  enterprise i s  outlined. 

Some major  data processing problems  arise in this  type  of long-range 
planning.  Mathematical  techniques  applicable to the solution of these 
problems are discussed. 

Fabrication  and  assembly  operations 
Part I1 Long-range planning techniques 
by A. B. Calica 

The basic problem confronting the planner in a manufacturing 
enterprise is the circularity in planning. Production planning 
assumes knowledge of the  future  capacity of the  plant.  This capac- 
ity is partially dependent on the projected work load in the  plant. 
In  turn,  the  future work load depends on production plans. 

To be explored here is a method for escaping this  circularity; 
the method projects  future  plant  capacity with the aid of a  linear 
programming model that observes the technological precedences 
occurring in the projects to be scheduled. Once an initial resource 
projection is available, a variety of formal methods are used for 
the detailed scheduling of projects. The procedures employed for 
detailed scheduling are based on the initial projection of plant 
capacity.  This  initial  capacity is used as a restriction that is re- 
laxed  only when necessary for the  adjustment of due  dates of 
scheduled projects. Once a detailed schedule is obtained, it is 
possible to reallocate capacity so that  the present value of cash 
outflow for labor is minimized; labor requirements, material costs, 
and income  flows can be used to evaluate  a schedule. Decisions to 
adjust schedules can be conditioned by these data in one of the 
scheduling procedures to be discussed. 

This part of the paper proposes a model on which the scheduling 
function  can be  defined for a plant.  The model includes such 
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alties, and  the cost of materials.  With  the model, a  meaningful 
cost  evaluation  can  be  made of a given  schedule, and schedules 
can be compared and ranked. 

In  order to specify a model, the basic  objects  in the model must basic model 
be  defined. objects 

A resource, for the purposes of this model, includes  productive 
entities  such  as workers  by  skill class, machines, and tools. Because 
money does not receive the same logical treatment as the  other 
entities  listed, it is not included as a resource.  A plant, a physical 
and operational  section of an  industry, is subdivided  into more or 
less separated resource clusters called shops. At  any given  point in 
time,  a  shop consists of the cluster of physical resources and skilled 
laborers  assigned to  it.  Both  the  animate  and  inanimate  portions of 
a  shop, and  thus  the shop  capacity,  can  change as a function 
of time. 

An aggregate arc is a  cluster of activities  necessary to complete 
the fabrication or assembly of some definable subassembly or end 
item. It is  assumed that  an aggregate arc, once started,  can be 
completed  without the prior  completion of activities  outside the 
aggregate  arc. Associated with an  aggregate arc  are  two  quanti- 
tative measures called “length”  and “weight.” The length of an  arc 
is the  estimated  duration  in  shifts necessary for  arc completion on 
the basis of “normal”  shop  practice. The weight of an  arc consists 
of the number of resource hours,  including man  hours  by skill 
class, facility  hours,  and tool  hours, needed for  arc  activities. 
Weight  is a vector quantity  in which each  component  corresponds 
to a different resource unit. 

A project is a  directed,  connected, acyclic network composed of 
aggregate  arcs. Associated with  each  project is a set of aggregate 
arcs which cannot  have common elements  with any  other  such  set. 

Within  the framework of the model, it is possible to describe planning 
the functions  associated  with  planning.  Given  a collection of functions 
projects and  due  dates,  the objectives of the scheduling function  are 
(1) to produce  for  aggregate arcs a set of start  and finish dates  that 
do not  violate  the  capacity  restrictions of the shops  and (2) to 
determine,  with  the class of possible schedules, one  schedule that 
has reasonable economic characteristics  in  terms of cash flows into 
and  out of the enterprise.  Given  a set of projects  with  due-date 
commitments  and an incremental  project, a due  date  for  this 
project is determined  by the negotiation function which max- 
imizes the economic criteria.  Given an established  schedule and 
a set of economic inputs  that govern  labor  costs, an optimal 
allocation of labor is determined by the labor allocation function. 
Finally, the economic  analysis function  tabulates  and processes 
certain  identifiable  portions of the cash flows implied by  the 
schedule. For example, direct  labor  costs  and  material  purchases 
for  project use during the schedule period are discounted and 
computed. To find the enterprise’s  cash flow, these  costs,  together 





Table 2 General categories of output data 

Schedules Expected start  and finish dates for each aggregate  arc. 

Resource  requirements Average requirements over each time period listed by 
shop. 

Labor  allocation Optimal staffing policy and premium labor allocation 
to satisfy resource requirements  listed by  time period. 

Purchasing 
requirements Input information  for  purchasing  function. 

Economic  data Expected  present  value of the schedule, discounted 
cash flow out  (broken down as desired), and dis- 
counted cash flow in (broken down as desired). 

Since an aggregate arc  has dimensions related to  duration  and arc  loading 
resource hours, it is possible to demonstrate  the  loading of a single 
aggregate arc  onto  its  shop  during a  certain  time  interval so that 
the average per-period capacity of the shop is not exceeded. The 
formal  procedure  for accomplishing this loading  is now illustrated. 

An aggregate arc A of length t* is to be scheduled between 
time t ,  and  time t ,  +t*. Let T denote the  time period index (I,.  . . , T ) ,  
and rl the  total  man periods of resource #1 required for A. For 
simplicity, we suppose that A requires only one type of resource. 
Rl , , R ,  represent the  currently allocated  quantities of 
resource #1 in periods 1, + . . , T .  Similarly, RT , * , R$ give 
the  total capacity of the shop in time periods 1 , . , T. The 
length of a single period is denoted  by t .  Note  that  by hypothesis, 
r,/t* 5 R$ for all i sufficiently large. Period T begins a t  (~-l)t, 
and ends at rt. 

If denotes the resource requirements  during period after 
the loading of arc A,  RYw can  be  determined by  the following 
formulas: 

= R,, 
provided that t ,  2 ~t or tl + t* 5 (r - 1)t; 

R:ew = R, + $ {min [rt ,  t, + t*]  - max [(T - l ) t ,  t J ) ,  

provided that RY" 5 R*, for  all T. 
If > R*, for any 7, then A cannot be loaded contiguously in 

the  interval t ,  to t, + t*. In  this case, R:ew = R, for  all r, and A must 
be loaded into  another  time  interval. 

This procedure is reversible in  the sense that one can remove a 
previously loaded arc. Moreover, the extension of this procedure to 
the case of a single arc  with more than one resource merely requires 
separate arc loading  for each resource, and  testing  for feasibility 
of all resources with  respect to  the  arc loading. 

The  initial  capacity projection is an assignment of future initial 
capacity to each  shop in  the  plant  during  the period of interest. capacity 
This projection is arrived at by solving the linear  programming projection 

r 
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model defined below. If this model has no solution, it is an indica- 
tion  that  there is an incompatibility  between the desired  project 
due  dates  and  the capacities of the shop.  However, a solution 
of the model does not necessarily guarantee that  there exists  a 
schedule of the arcs that realizes this  solution. Nevertheless, the 
optimal  solution of the model represents  a good guess with  regard 
to  future work-force requirements and provides a lower bound 
for the cost of labor  required to  complete the projects specified. 

The variables of Table 3 and  the equations below are necessary 
to completely specify a  linear  programming  formulation for the 

Table 3 Definition of variables 

Skill-class index. 

Time-period index (1, . . . , T). 

Shop index. 

Shift  code; 
1-first shift  straight  time 
2-first shift overtime 
3-second shift straight  time 
&second shift overtime. 

Number of man periods of skill class i needed in  shop j during period T. 

Number of man periods of skill class i in  shop j that  must be expended 
by period T to meet the  due  dates of all  projects. Rii, is  computed 
under  the assumption that each  aggregate arc is started at  the  latest 
time consistent  with the desired completion date of the project. 

Number of man periods of skill class i that  must  be expended in 
period T or  later  to satisfy start  date requirements. RIi, is  computed 
under  the assumption that each activity is started at the earliest time 
consistent with  the project’s precedence relations. 

Single shift capacity for skill class i, shop j, and period T, expressed 
in  number of men. 

Cost  per man period of skill class i in shift T,  discounted with respect 
to period 7 .  

Conversion of factors with  the dimension “man-periodslman.” 

Final desired minimum number of men of skill class i for period T. 

Final desired maximum number of men of skill class i for period 2‘. 

Present number of men in  skill class i. 

Cost of laying off one worker in  skill class i, discounted with respect 
to period T. 

Cost of hiring one worker in skill class i, discounted with respect 
to period T. 

Number of men assigned to shop j ,  in skill class i, during period T ,  

on  shift r.  

Number of men hired in skill class i during period T .  

Number of men layed off in skill class i during period 7. 
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most economical allocation of labor  to each shop. It should be noted 
that  this model has similarities to  the economic-lot-size-model 
treatment developed by Dzielinski, Baker, and Manne.‘ 

The variables Ri j ,  and R:i, are used within two types of 
restraints: 

wherei = 1, ,n, and j = 1, , m, and7  = 1, . . .  , T.  
The additional  constraints necessary to specify the resource 

allocation model can be  expressed in terms of the defined var- 
iables and constants. The four subscripts of W, some of which 
may be  specified by a decimal digit, always refer to  the indices i, 
j ,  T, and r: 

x i i v  = K i r W i i T v  
I 

Shop capacity: 

Final conditions: 

where 

and 

A schedule is called aggregate feasible if, as a result of loading labor 
the schedule arcs, the resources required in the period of interest allocation 
do not exceed the per-period average capacities for these resources. 

Given an aggregate feasible schedule, it becomes  possible to 
assign manpower in such a way as  to minimize the amount of money 
expended on a “present value” basis to meet the requirements for 
manpower generated in the schedule. This allocation model is 
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similar to  the initial  capacity  allocation model. In  this case, 
however, the x i i T  have  been  determined and  are  therefore  treated 
as constants. Using the same  symbology as  the preceding model, 
a linear  programming  formulation of the labor  allocation  problem 
can  be  easily specified: 

Shop  capacity: 

Initial conditions: 

where 

and 

A  basis is now presented  for  assigning  a  numerical  value as  the 
economic “figure of merit” of a  schedule. This  is  done  in  such a way that  the 
analysis figure of merit reflects preference between  schedules in economic 

terms. It would be better if the difference in  the figures of merit 
for  two  schedules would represent the present  value of the dollar 
difference between  two alternate courses of action. It will become 
evident that  it is possible to define a figure of merit that signals a 
preferred  schedule as well as the  actual difference in value. 

An  approach to  this problem of economic measurement  is 
based  on  basic definitions. Suppose that money earns  interest a t  a 
rate of h per annum, compounded continuously. The  rate h is some 
preset  parameter  based  on  either the marginal  return for  capital 
invested, on  the  interest charged  for commercial loans,  or  on  some 
other reasonable  element of cost.  A payment of p dollars, t years 
hence, has  a  present  value of pe-”.  In  general, if payments, viewed 
as a function of time,  can be assigned the Stieltjes  notation d F ( t ) ,  
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the  total  amount of money received between tl and t2 is 

11;' dF(t11. 

Stieltjes  integration, implied here, allows us  to handle discon- 
tinuities  in F( t ) .  

Presuming that money  is  discounted at  the  rate X, the present 
value of a stream of payments dF( t )  can now be defined as P, where 

It is  interesting to observe that P is  just  the familiar  Laplace- 
Stieltjes  transform of F ( t )  evaluated at X. 

The basic strategy is this: if dF,  represents  a  stream of pay- 
ments induced  by a schedule, and if dF,  represents the costs 
associated  with the schedule, the present  value (or figure of merit) 
of the schedule X, which we call M(X), is expressed by the formula: 

I If i t  is desirable to have  two  discount  rates  for  money, Xi, and 
X,,, , depending  on  whether the money is incoming or outgoing, the 
formula  for M ( S )  becomes: 

The problem now consists of breaking up  and identifying the 
components of d F l ( t )  and dF,(t) in such a way that a meaningful, 
readily  obtainable  evaluation of M ( S )  is produced. It is assumed 
that all items  in  inventory  during  the period of interest  can be 
evaluated  in  money. 

The  payment  picture  is  fairly simple to describe. Of interest  is 
only that portion of income attributable  to work  completed  within 
the period. Detail  parts  are assumed to have an  assigned price 
during the period of interest  and preceding  periods. It must also 
be  assumed that  the price of materials  and  labor is known  for 
succeeding periods of interest.  The income from  a  portion of a 
project  completed  during  a period of interest  has assigned to  it a 
definite  proportion of the present  value of the income from the 
whole project.  This  proportion is given  by the  ratio of the present 
value of the work and  materials expended  during the current period 
of interest,  divided  by the present  value of the work and materials 
expended on  the  entire  project. Applying this reasoning to each 
project  or  portion of a  project  completed  in the period of interest, 
the present  value of the work completed  or  partially  completed 
during the period of interest  can  be  accumulated. 

It is worth observing that present  value of income from  a pro- 
ject is also computable  when the income data for the projects  are 
subject to  uncertainty  in time, if this  uncertainty is representable 
by  a  probability  function. In  this case, the present  value of income 
is  replaced by  the expected  present  value of income. 
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The present value of the cost of production is broken down into 
components generated by  labor  and those generated by material. 
The present cost of labor appears  in the solution of the labor allo- 
cation model previously described. 

Scheduling of the aggregate arcs induces a schedule for the 
consumption of raw materials. This consumption produces a  pur- 
chase schedule for the raw materials from vendors, which, in  turn, 
originates a schedule of payments to vendors, actually  a flow  of 
money out of the enterprise. This flow of money, restricted to  the 
period of interest,  has a present value, which can be  used as a 
statistic from which the present value of materials consumed can 
be estimated. 

The above method of computing material costs does not in- 
clude the cost of running the enterprise.  These  facts should be 
borne in mind when using this scheme for computing M ( S ) ,  since 
the exclusion of fixed costs means that M ( S )  cannot be interpreted 
as profit. M ( S )  is clearly a  function of profit and discriminates for a 
fairly narrow range of operating levels between schedules in the 
sense that M(S,)  - M(S,) is the difference in profit between two 
schedules SI and X, . The factor missing is, of course, the fixed 
costs induced by the respective schedules. 

A collection of formal methods exists for generating aggregate 
feasible schedules in a constructive  manner. Although there is a t  
present no practical method for producing a schedule S that max- 
imizes the figure of merit M ( S ) ,  it is felt that one of the formal 
methods can be  used for the construction of a reasonable sched- 
ule.  Following is a rough description of a programmable logic 
for producing an aggregate feasible loading of the  plant. It is 
assumed that  the initial  capacity projection has  already been 
accomplished. 

Forward loading 

1. Pick an unloaded arc which has no unloaded predecessors from 
the highest priority  project network. Load this  arc  into  the 
earliest time  interval so that (a) the resultant loading does not 
exceed the initial  capacity projection for its shop in any period, 
( b )  the current earliest start  date of the  arc is not violated, and 
(c) the  current dominating raw material  availability schedule 
is consistent with the loading. 

2 .  Recompute the earliest start  dates for arcs  in  this  project.  Save 
the previous earliest-start  dates. 

3. Update  the dominating raw materials schedule. 
4. Repeat the first three  steps  until the project is loaded. 

Adjust  early  project 

This is a technique for removing an early project and reloading it 
with the earliest effective date adjusted toward the  future.  This 
step is repeated  until the project is loaded within the initial  shop 
capacity  in such a way that it is moved  closer to  its due date with- 
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out being late.  Details for economically accomplishing this  step 
are  straightforward  but involved and hence omitted here. 

Force loading 

1. Remove late projects. 
2 .  Reload  projects  backwards  from  due  date,  using the shop ca- 

3. If feasibility is violated,  unload, add one period to  the  due  date, 
pacity  instead of the initial desired capacity. 

and  return  to  the first step. 

In  terms of these  three  steps  and  the  labor allocation  function, 
a  loading logic may be  similar to  the one diagrammed in  Figure 1. 

The example  illustrated  in  Figure 1 is  only  a single element of a 
class of possible logics. Another  variant,  illustrated  in  Figure 2,  
utilizes the  strategy of removing late  projects one a t  a  time.  After 
the  late  project is removed, it is force loaded and  the figure of 
merit of the resulting  schedule is compared to  the figure of merit of 
the preceding schedule. On the basis of this comparison,  either the 
preceding schedule is restored or the new schedule is adopted.  The 
flow chart of Figure 2 illustrates  this procedure. The flow chart con- 
tains some additional blocks whose functions  are self-explanatory. 
For negotiating  a due  date,  it is feasible to use any method that 
results  in a figure of merit of the schedule. This  negotiation  for a 
single project is accomplished by  loading the project  with different 
due  dates. It is  important  to  note  that  the scheduled finish date 
for  a  project  is  not necessarily the same  or  earlier than its due  date. 

It has been demonstrated that  there is a class of methods  for 
providing  reasonable schedules, and  that these  schedules  can  be 
compared in a  meaningful  way. The problem of finding a  minimum 
cost schedule has  yet  to be  solved. The problem of determining a 
schedule with  an optimal figure of merit lies, perhaps,  in the direc- 
tion of linear  programming or, with  additional  restrictions,  integer 
programming. 

The problem of determining the  arc  length is conditioned  by 
the characteristics of the  resultant schedule and is,  therefore, 
partially  dependent on  the solution to  the problem.  Under  some 
circumstances, however, a  preliminary  estimate of the  arc  length 
can be made,  for  example, when the effective work force is stable 
and  little  interaction exists  between  arcs. It has been  assumed 
explicitly that  the  arc length is invariant  under changes in effec- 
tive size of the work force and  under changes in  the composition 
of the load on  the  plant.  This assumption  is  reasonable if arc 
lengths  are conservatively  estimated or  the work force and  plant 
load  are  stable. If the work force or plant load  fluctuates, it would 
be  desirable to make use of the  fact  in scheduling 

A less ambitious  tack  to  take  might be to extend the initial 
labor  allocation  procedure. The capacity would then be  increased 
parametrically,  always  along the  path of least  cost,  within con- 
straints  on  the location of the capacity  in  time. It is presently not 
clear how precisely to  formulate  this problem. The general  idea, 
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however,  would  be to have  a succession of labor levels, each level 
fitting the requirements  better,  and each level being set  in an 
optimal fashion. 

A schedule feasible in aggregate is not necessarily feasible in 
detail.  This means that scheduled start  and finish dates for aggre- 
gate  arcs  may  not be met in the  plant. However, the extent to which 
the schedule is met is indicated in the next iteration of the schedul- 
ing progress. This paper does not consider the relevant  statistical 
data which might be  collected and used to condition the  inputs for 
the succeeding scheduling cycles. It has been tacitly assumed that 
the purchasing schedule is available to, but  not produced by, the 
system. It might be profitable to include purchasing as a  system 
function. This can be done a t  the hazard of making a class of as- 
sumptions  about  this purchasing function. However, the assump- 
tions would further limit the class of industries to which the model 
is applicable. In view of the wide  difference in purchasing pro- 
cedure from industry  to  industry or even within a single enterprise, 
the production of a schedule for purchasing has been  excluded as a 
system  function a t  this  time. 

The creation and implementation of a planning model depends 
upon the practicability of providing inputs  into  the  system.  The 
required definitions for aggregate arcs, shops, and resources may be 
difficult to provide in some application environments. 
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