Procedures for program testing associated with implemeniation of
a large complex real-time system are discussed step by step.

The discussion includes iesting both in a simulated environment and
in real time.

Final testing and monitoring of system performance are also briefly
caonsidered.

Notes on testing real-time system programs

system
characteristics

by M. G. Ginzberg

Pending appearance in the literature of a systematic and complete
treatment, these notes are intended as a partial check-list for the
systems engineer installing a real-time system. Although based on
the implementation of an airline reservation system, the notes are
generally applicable to large systems of similar complexity.

Real-time program testing involves additional problems caused
by the time-dependent interaction of operational programs, control
program, complex hardware, and random input to the system.

Since errors are difficult to isolate and correct once such systems
are operational, adequate pre-installation testing is important.
The effort of developing testing routines is commensurate with that
required for the control program, and the volume of code in the
routines can be expected to exceed that of the control program.

The type of system under consideration is suggested by Figure
1 and is assumed to have the following general characteristics:

s A large number of terminal devices have immediate access
to the system, providing a high volume of random inputs.

& Most input messages require an immediate response to the
terminal device originating the message.
File records must be retrieved, updated, and in some cases
created, while a message is being processed. Record retrieval
generally requires a sequence of file events.
The message volume necessitates several simultaneous inputs
in core memory, each being processed in turn until further
processing must wait for completion of a file event.

IBM SYSTEMS JOURNAL + VOL. 4 * NO. 1 + 1965

Only the more frequently used subroutines can be contained
in core. Since many programs must be read from file on demand,
their size must conform to some fixed multiple of a file record.
Long programs must be segmented.

A program segment used to process a particular message that
contains an interruption for retrieval of a file record may be
used to process several other messages before continuing to
process the original message.

A message may be read into any one of a number of core
blocks (entry blocks), and similarly, a read-in program segment
may be exccuted in any one of a number of areas in core.

File protection must be provided so that only one message
at a time can update a particular record.

File maintenance programs must be designed to run in an
on-line computer, permitting continued use of the file records
for message processing while file updating is in progress.
Deferrable processes must be initiated automatically when the
system load permits. Other processes may require initiation
at specified times.

Figure 1 System configuration

—

DISK ORUM DRUM
CHANNEL CHANNEL CHANNEL

-

REAL TIME REAL TIME
CHANNEL CHANNEL

DUPLEX
CONSOLE

TELEPHONE
LINES

TERMINAL |
INTERCHNG |——— LINES TO TERMINALS

INTERCHNG

R RMINAL . [——"""" LINES TO TERMINALS

TESTING REAL-TIME SYSTEM PROGRAMS

These system characteristics, although not exhaustive, indicate
control the types of problems encountered and the complexity of system
program implementation. To maintain order in such a system, a control

program performs the following functions:

¢ Control of input and output with respect to the remote
terminal devices and the files
Allocation of working storage in core to messages in process
Maintenance of queues of work in process
Control of program branching and of program read-in
Dynamic control of file storage
Monitoring the communications network

A set of control program macro instructions form the interface
between the control program and the operational programs. The
control program macro instructions, augmented by a subset of
the regular op-code repertoire of the basic machine,' define the
system within which an operational program is coded. An opera-
tional program merely executes the appropriate control program
macro to retrieve or file a record, to obtain or release working
storage in core, to obtain or release space in files (creating a new
record or eliminating an existing one), to branch or return to
another operational program, to output a message to a terminal
device, to write a record on tape, or to terminate processing of
a given message.

Within the framework provided by the control program, most
operational programs can be written without considering them as
part of a multiprogrammed system. However, the major restric-
tion must be observed—program modification is not permitted
across points at which processing is interrupted pending comple-
tion of a record retrieval. It is important to note that the same
remarks are not applicable to file maintenance routines that run
in real time, nor to subroutines that provide interlocks between
file maintenance programs and programs that process normal
input messages.

Testing in a simulated environment

Since testing of operational programs may have to commence
prior to availability of all system hardware, of a working model of
the control program, or of both, an environment simulator program
18 required.

The environment simulator program is written to permit
environment testing of operational programs on a standard data processing
simulator machine. The operational programs run under simulated conditions

as if they were operating within the real-time control program of
a machine to which all of the devices constituting the ultimate
system are attached. The simulator program contains expansions
of all control program macros that modify the entry block and
other working storage in the same manner as the macros in the
actual control program.

60 M. G. GINZBERG

Design of the environment simulator is dictated not only by
the hardware and control program simulated, but by the com-
puters available for pre-installation testing as well as by the
computer at the ultimate installation. For example, if core memory
is large but tapes and files are limited, it may be advantageous
to simulate tapes and files in core.

The simulator should be coded for a maximal amount of de-
bugging capability. First and foremost, it must be possible to
obtain a snapshot or a panel dump at any point desired in an
operational program. Dumps of the entry block, working storage
chained to the entry block, or any records retrieved by the opera-
tional program should be readily available at any step.

The environment simulator should enforce restrictions implied
by the control program. Improper use of control program macros
should be prevented. The contents of any registers that would
not be preserved in real time across a particular macro should be
destroyed. It is highly desirable that the simulator detect illegal
attempts at program modification, i.e., across interruptions in
processing pending record retricval, or across the boundaries of
program segments. Violation of segment length restrictions should
be detected but not prohibited; the programmer should not have
to continually resegment his code in the course of debugging.

Finally, the means should be provided to run in one pass a
series of cases through the program or programs being tested. In
other words, a test deck should contain the programs to be tested
plus one or more sets of imput. Generally the input for one case
consists of an entry block containing the input information ex-
pected by the first subroutine in the group being tested, plus any
records that have supposedly been retrieved prior to entering the
programs being tested or that are supposed to be retrieved in the
course of the test run. Index registers, accumulators, and other
registers must be preset for all cases, except when the first sub-
routine entered is the one that first receives the input message
from the control program.

An environment simulator program is a valuable test tool
not only during pre-installation testing, but even after the real-
time hardware and programs are available. If properly con-
structed, the program provides much more debugging flexibility
than during testing in real time.

Construction of test data, which can be exceedingly time
consuming, is greatly facilitated by a fairly simple record gener-
ator program. Essentially, the program contains a library of data
formats, including the location, size, character (alpha or numeric),
and normal contents of each field of each record type from which
it generates records required for testing. To obtain a record, a set
of cards is prepared that contains the record type identification,
the name and contents of all fields for which an input is manda-
tory (or for which the user wishes other than the normal contents),
and the file address of the real or simulated record. The record
generator should also be able to generate entry blocks containing

TESTING REAL-TIME SYSTEM PROGRAMS

record
generator

package
test

either unprocessed or partially processed inputs. As an added
refinement, the record generator might be programmed to com-
pute the contents of certain tally fields in a record by referring to
specified contents of other tally fields.

The program should be coded to facilitate use with the environ-
ment simulator and with the file loader discussed later in this
paper. When testing with the environment simulator, it would be
highly desirable that record generation and testing take place
in a single pass.

The environment simulator and the record generator should
be ready for use when operational program coding commences.
As an alternative, special test drivers must be written and records
constructed manually for programs that are coded before the
test tools are available. This procedure is time consuming and
less reliable than testing with the environment simulator. In
general, a more automated test environment reduces the pos-
sibility of “validating” individual programmers’ misconceptions (of
record formats, for example) by tests.

The unit test of individual subroutines is the first step in de-
bugging a system of operational programs. In this respect, a
real-time system does not differ from any other program system;
coding and debugging should proceed from the simple to the com-
plex. The innermost subroutines should be coded and debugged
first, testing them with all possible valid inputs and with a suf-
ficiently large sampling of erroneous inputs to check all of the error
branches. This process eliminates the need for dummying internal
subroutines, a procedure which can only serve as a possible source
of errors that have to be eliminated when the actual subroutine
replaces the dummy.

A Library tape should be maintained of all debugged programs.
Provision should be made in the environment simulator for calling
programs from the library tape. This provision reduces the size
of the test decks and ensures that all programs using a particular
subroutine actually use the same version. When planning the
structure of the library tape, possible use of the tape for generating
a real-time system tape should be considered.

The package test is the final stage of testing in the simulated
environment. A package is a logical, functional subdivision of
the operational program system, consisting of the complete process-
ing of a particular input message or of a related group of inputs. A
long and involved normal path for processing a particular type
of message should constitute a basic package. The exception
paths, which generally add programs to those of the basic package,
should be set up as additional packages. On the other hand, a
group of messages whose processing is fairly simple and that uses
a substantial amount of shared code may constitute a single
package.

Specifications for these tests are best prepared by persons
familiar with both the programming and the over-all functions
of the system; the most likely candidates for this task are those

M. G. GINZBERG

who prepared the program specifications. All possible variations
in the inputs and in the conditions encountered in processing
them should be specified. The more complete these specifications
are, the less debugging is necessary during field tests and dual
operation.

Testing in real time

As soon as the first package has been completely tested in the
environment simulator and a working model of the control pro-
gram is available, testing should commence in real time. These
test runs cannot be run on a standard installation, but require
the real-time hardware to be ultimately installed in the system’s
data processing center. This phase of debugging should be sched-
uled to start while the hardware is still in the test cell. The early
start 1s of particular importance to the prototype system in a
machine line.

Testing of the first package in real time provides the first
meeting of the control program and the real-time test tools with
actual operational programs. Prior to this test, sections of the
control program have been debugged by the use of specially
written driver programs, and the assembled model of the control
program has been tested by the use of pseudo-operational programs
that function as ‘“macro exercisers.” The real-time test programs
have been similarly tested. No matter how elegant testing of the
control program has been and regardless of how adequately
operational program packages have been checked out in the
environment simulator, program interaction in real time is the
critical test. For the first time, actual system hardware and pro-
grams process actual inputs and retrieve, create, and update
actual file records. In debugging the control program, no test
tool is quite as rigorous astheactual systemof operational programs.

It is obvious, then, that the real-time testing of the first
operational program package serves to determine any modifica-
tions that may be required in either control program or the
real-time test tools. Once the latter are operating properly, the
orderly testing of other real-time packages can proceed. The
functions of the test tools are more readily comprehended if
the nature of real-time testing of the operational programs is
examined first.

Single-thread testing is the first step in real-time debugging.
In this phase of testing, a series of terminal device inputs is
processed in serial order, hence the designation ‘‘single-thread.”
The specifications for these tests have already been prepared
for the package tests described in the previous section.

A test run generally starts with set-up messages to create
and/or modify records needed for the test run. The main part
of the run consists of a series of inputs as specified in the test
specification. Whenever an input causes the updating of a record,
this record should be displayed before and after the message
causing the updating. Similarly, when the response to a message de-

TESTING REAL-TIME SYSTEM PROGRAMS

single-thread
testing

multi-thread
testing

terminal
simulator

64

pends on the status of a record or some of its fields, the record
should be displayed prior to input of the test message. The docu-
mentation of a test run should include all inputs and their associ-
ated responses, as well as the record displays just mentioned.

The package tests with the environment simulator should
probably use individual records, or small groups of records,
generated as required for the specific packages. For real-time
testing, a system of records is needed that is independent of
the programmer running the tests.

A test record system, consisting of a complete and mutually
consistent miniature of the ultimate record system, should be
extensive enough to cover all variations in record length, chaining,
ete. Representations of all records that would be present in an
initialized system are required. Those records for a test run that
are normally created in real time as part of the processing of an
input message should be created in that manner by set-up mes-
sages. These records should not be part of the test system except
where prevented by the order in which programs are checked out.

Multi-thread testing is needed to eliminate multiprogramming
errors that have escaped detection during the single-thread runs.
During this phase, it should be determined, for example, that the
programs being tested indeed process different inputs simultan-
ously and that file protection is functioning properly (i.e., several
“simultaneous” inputs, all of which update a particular record,
have the correct cumulative effect on the record). One of the more
complex situations to be tested involves the simultaneous input to
the system of several messages all of which would, if input alone,
cause the creation of a particular file record which should only be
created once. File maintenance programs that run in real time
should be tested while a typical transaction mix is being processed.

It should not be expected that many errors are uncovered in
multi-thread testing. However, errors detected are of a particu-
larly complex nature; hence they are exceedingly difficult to
find if they are not forced to occur in a systematic manner.
Even though this is accomplished, involved errors will still be
detected later during volume testing.

All of the real-time testing discussed above could be accom-
plished simply by message input from terminal devices. However,
this is both excessively time consuming and error prone.

A remote terminal simulator program is an effective tool for
expediting real-time testing. The simulator’s function is to present
input messages to the control program so as to appear to have been
input from an actual terminal device. If the system contains dif-
ferent types of terminal deviees, it should be possible to simulate
the input from any and all of them.

The remote-terminal simulator, reading a series of messages
from tape, should be capable of simulating the existence of a
reasonable number of terminals. For purposes of multi-thread
testing, the simulator should be able to present to the system
several input messages simultaneously; for more realistic and

M. G. GINZBERG

more efficient testing, it should also be possible to deliver messages
in an asynchronous manner. When running in the former mode,
the simulator gives the system one message from each of the
terminal devices being simulated and then waits for a response to
each of these inputs before entering any additional messages; in
the latter mode, the response to each individual message triggers
the input of the next message from the same simulated input
device.

The input to the simulator should consist of a series of mes-
sages identified as to the simulated originating terminal. It is
desirable to be able to split one run into several phases so that,
whether running synchronously or asynchronously, all messages
in one phase are completely processed before the program proceeds
to input messages of a subsequent phase. This permits separating
the set-up messages from the actual test as well as from any other
desirable divisions of the test run.

The simulator output should be a listing of the input messages
and the responses to them, grouped by simulated input device.

It should be fairly obvious that the terminal device simulator
just described permits remote testing in real time for both single-
thread and multi-thread testing—the former being merely a
special case of the latter. The simulator also greatly expedites
retesting and volume testing, which are discussed later.

A simulator input pre-processor program, used to prepare
the simulator input tape, should edit the input messages for
correct format, missing characters, ete. If this is done on peripheral
equipment (e.g., a 1401), much valuable system time can be saved.

A real-time systems tape is needed to load the operational and
control programs. The function of this self-loading tape should
be to write the file program segments (the bulk of the operational
programs and the low-usage portion of the control program)
to files, and to set up the core load (the major portion of the control
program, certain high-usage operational subroutines, system
control cells, and constant pool). The operational program portions
of this tape should be generated from the library tape previously
mentioned. Tight control should be exercised to keep both of
these tapes consistent.

A number of utility programs facilitate real-time testing.
Those described below do not necessarily constitute a complete
list. The utility programs should be initiated by a terminal set
message. Most of these programs will be needed in the course of
simulator test runs during which simulated terminal set initiation
can proceed without operator intervention. In general, it is
highly desirable to have operator communication with the system
via & terminal device message rather than by console manipula-
tion. This arrangement permits programmed editing of the
operators’ actions and greatly reduces the system’s vulnerability
to operator error.

The macro trace program is the prime real-time debugging
tool. The necessity for such a routine arises from the difficulty

TESTING REAL-TIME SYSTEM PROGRAMS

utility
programs

66

in using the usual varieties of snapshot and trace routines in
real time. For example, use of the type of debugging macros
available in 709/90 sos can easily cause a lengthy program seg-
ment to overflow. It is difficult to see how the instruction substi-
tution type of snapshot routine could be implemented for
operational programs that may be executed in any one of ten
or twenty different core areas.

The closest analogy to a macro trace program is a branch
trace. The macro trace, however, can be designed to yield much
more information. This trace program is intimately associated
with the control program whose macros are actually traced.
Various options should be provided. For a simple flow trace,
for example, the program should trace all entries to, and returns
from, program segments, giving at each of these points the macro
traced, the program segment in which it was executed, its relative
location in the program segment, and a panel dump. Additional
options should be provided to trace larger subsets of control
program macros, up to and including a trace of all macros, in
order to make available more detailed flow traces. It should also
be possible to obtain a dump of the entry block and all associated
working storage at each program entry and exit. Other options
would allow a trace of all 1/0 events, complete with a dump of
the record being retrieved or filed.

Terminal set inputs should be used to start the trace, specifying
the desired trace options, and to stop the process. At first, it
may be adequate to initiate a trace of the processing of all mes-
sages received from the terminal device that is entering the start
trace message, since usually only one message is traced. Later,
it becomes desirable to add the ability to limit tracing. Limited
tracing reduces the amount of trace output when testing the
routines that do appreciable looping (such as file maintenance).
Once operational, the system is useful in tracking down obscure
errors that may obtain a trace of a specified program segment, or
segments, each time the program is initiated, regardless of the
source of the message that caused entry of the segment.

Trace output and remote terminal simulator output should
be written on the same tape. This arrangement is more useful,
since the trace can immediately follow the message being traced.
Also, the likelihood of operator error (failure to mount a trace
tape when needed) is reduced.

A post-processor program should be provided to format and
edit the output of the remote set simulator and the macro trace.
Like the input pre-processor, this function should be assigned to
peripheral equipment if possible.

A file loader program is needed to load the test record system.
It is exceedingly important that this program be initiated by a
terminal set message, since most test runs are preferably started
with a reload of files to ensure a clean record system, rather than
taking a chance on the condition in which the files were left by
the preceding test run.

M. G. GINZBERG

A record dump program is required for the record displays
mentioned earlier in the discussion of single-thread testing. The
ability to address records indirectly must be provided to permit
the display of records created in real time and assigned a random
file address by the control program. The number of levels of
indirect addressing required depends on the system file organiza-
tion. The record dump program should also be able to display
core words.

A record change program is needed for those tests in which
it is impossible or inconvenient to use normal terminal device
messages to set up the record condition required. The same
level of indirect addressing should be provided as in the record
dump routine. The ability to alter core words should be included.

A programmed delay routine may be needed. ¥or example,
consider the case of a test that is run to check out, by a normal
terminal set entry, the retrieval of certain records set up, filed,
and indexed in real time. The program that sets up these records
checks the input message for correctness and sends a response
to the input device before proceeding with editing, filing, and
indexing the record. To ensure that all of this relatively time-
consuming processing is completed before the simulator initiates
the record retrieval message, a delay device is needed. This
delay can be in the form of a message that receives no response
until all other operational program activity in the system has
ceased.

Retesting eliminates the introduction of errors in already
checked-out packages while correcting errors in newly tested
packages. As the single-thread testing of each package is completed,
the test deck should be added to a master simulator deck. This
deck must be rerun periodically, and the results of each run should
be compared with previous runs.

Retesting can be expedited by a simulator output tape compare
program. This routine compares the output tapes of two simulator
runs expected to be identical and lists any discrepancies discovered.
To simplify inspection of this listing, the simulator post-processor
should number the lines of its output listing sequentially; then the
listing can be reduced to lines that differ from the original. In test
cases that display records, some words (e.g., those containing
chain addresses) may vary from run to run. For this reason, it is
preferable that only the line containing the discrepancy be dis-
played, rather than the entire message.

The above utility routines are basic. Other utility routines
required vary from system to system. Some functions to be
considered are the communication between a remote terminal
and the personnel at the data processing center, and the insertion
of comments in simulator runs to ease interpretation of the output.

Scheduling and quality control

A realistic, detailed schedule and an adequate scheme for assuring

TESTING REAL-TIME SYSTEM PROGRAMS

retesting

68

the quality of the programs produced must be instituted when
programming begins.

An over-all schedule, as suggested by Figure 2, must be aug-
mented by detailed scheduling down to the level of the smallest sub-
routine. Intermediate targets must be established, the dates of pro-
gram arrival at each of these steps must be forecast, and respon-
sibility for attainment of these goals established. A suitable set of
intermediate steps in unit testing may be: program coded, test data
complete, first test case run successfully, all test cases done.
A similar breakdown should be used for scheduling package
test and single-thread real-time test. If adequately detailed
schedules are prepared and continuously re-examined, delays
can be detected early enough to add personnel and take other
corrective measures (or in the worst case, to adopt a more realistic
schedule) before a major difficulty arises.

Control over the quality of the code produced and of the
adequacy of testing should be established early. The code should
be spot-checked by experienced personnel to detect loose code,
poor programming practices, and deviation from program specifica-
tions. Prompt correctional action benefits the individual coder
as well as the system. Unit test documentation should be thor-
oughly reviewed for adequacy. The package test specifications
and the output of the remote-terminal simulator fulfilling these
specifications must be audited with extreme care. It would be
well to consider separating the control responsibility from that
of producing and testing code.

It cannot be overemphasized that the amount of difficulty
encountered at each step varies inversely with the thoroughness
of the preceding phases of testing. For this reason, tight control

Figure 2 Testing schedule

sy

7
Wy

. qe

Vi

e _CUTOVER

M. G. GINZBERG

over the quality of coding and debugging pays dividends in
terms of the total effort to install the system.

Final testing

The operational program system should be in a reasonably healthy
state by the time the single- and multi-thread real-time tests
are completed. However, some program errors that evaded even
the most conscientious detection efforts remain at this point.
These errors include exception cases not anticipated, unexpected
interaction of simultaneous entries, as well as the results of plain
oversights in previous debugging.

Experience indicates that the most serious errors remaining
in operational and control programs are associated with file record
utilization. Two types of error predominate: (1) returning the
address of a no longer needed record to the control program more
than once, and (2) failure to return such records. The control
program can be designed to render the former type of error com-
pletely harmless and to minimize the difficulty in recovering rec-
ords lost due to the latter. Nonetheless, a major effort should be
made to eliminate errors of this nature during the previously
discussed phases of testing, as well as during the final testing.

Volume testing involves the simulated operation of the entire
system. The record system, either in total or a fairly large and re-
presentative subset, is initialized as though the system were about
to become operational. A large sample of the normal transaction
mix, gathered from actual transactions in the non-mechanized
(or partially mechanized) environment that the real-time system is
to replace, is input via the remote terminal simulator. As the
transactions are input, the system clock and system calendar are
advanced on an accelerated basis. The test should span a sufficient
Iength of simulated time to include all periodic file maintenance
runs that are part of the operational program system.

While conducting volume testing, the simulator should be run
in the asynchronous mode, so that the runs simulate the real
system as closely as possible. Transactions that would have oc-
curred simultaneously with the file maintenance runs should be
run in that manner. Frequent checkpoints should be taken and
the system records audited to ensure that the cumulative effect of
the transactions on the contents of the various records is correct.
These record audits may be simplified by some simple off-line
programs that process the terminal simulator input to compute
its effect on the record system.

It may be deduced from the above discussion that a very
tight audit should be made of file record usage during the course
of volume testing. The number of records obtained from and
returned to the control program between each pair of checkpoints
should be predetermined and then verified during the actual
test runs. Off-line programs, similar to those suggested above
to determine record contents, should be used to ascertain the

TESTING REAL-TIME SYSTEM PROGRAMS

volume
testing

parallel
operation

correct record usage. Provision should be made in the control
program to maintain a count of the number of file records available
at any time. This count is needed not only for the test runs
presently being discussed, but also to monitor performance of
the system when operational.

A record usage trace proves valuable when the record usage
audits show that losses are occurring. This trace actually consists
of several programs. A special real-time trace will record on tape
every file address removed from, and every address restored to,
the pool of available records. The special trace also records the
program segment that requested or returned the record. The
tape is processed off-line, pairing file storage requests with sub-
sequent releases, to maintain a cumulative tape of those records
that are in use. The tape shows the date when each record was
obtained from the record pool and by what program segment.
Further processing of this tape can develop statistics by program
segment and age of records in use. These statistics should pinpoint
any programs that do not return obsolete records to the record
pool. The tape should also be able to determine multiple returns
of the same record address.

A file dump program is necessary to capture the record system
at checkpoints. When errors are discovered, this process permits
starting from the last good checkpoint, rather than returning
to the beginning. With a suitably designed control program,
only the records actually in use have to be dumped. The dump
should obviously be in the form of a self-loading tape.

Field tests should be scheduled concurrently with volume
testing. The volume test input provides a suitable set of data
for use during field test. The primary purpose of the field tests
is to check out the communications network. Since data are
entered by individuals, the tests also provide a check on the
ability of the system to cope with variations and errors in input
format introduced by human operators.

Parallel operation is the final step prior to system cutover.
Depending on the number of terminals and stations involved,
all or part of the system is placed in operation. To avoid system
interruptions, records are maintained external to the system
for backup. The external records may be provided by the real-
time system itself. The parallel operation continues until system
performance attains such a level that this precaution against
system failure is no longer needed.

The necessity of testing new and modified programs continues
when the system becomes fully operational. Some obscure program
errors may be discovered even after many months of operation.
Throughout the life of the system, functions are added to improve
those already programmed. For testing such programs without
disturbing the operating system, the test record system must be
maintained. An area in the files should be reserved for these
records, and it should be possible to access these records, rather
than the normal record system, during debugging runs. Means

M. G. GINZBERG

should be provided for easy alteration of existing routines, and
for substitution or addition of new routines, for test purposes only.
The programs needed to accomplish these functions vary with
system design and mode of operation (simplex or duplex sys-
tem, operated continuously or on specified shifts only). In the
area of post-installation testing, therefore, this paper can only
indicate the need for test tools, rather than describe them with a
significant amount of detail.

Studying and monitoring system performance

The topics of studying and monitoring system performance
are generally outside the scope of this paper. However, in view
of their importance, and since they must be simultaneous with
other efforts deseribed in this paper, some brief comments are
included.

System simulation provides the prime tool for studying system
performance. Simulation studies are run during the pre-proposal
stage to verify the ability of various proposed systems to handle
the anticipated load. Data regarding input volume, transaction
mix, and peak load should be as reliable as possible. On the other
hand, the model of the system itself, particularly of the program
components, may be quite vague at this stage. At best, a fairly
good guess is available as to the number of retrievals and filings
of records involved in each of the various transactions. The esti-
mate of file events due to program read-in and of execute time
in the control and operational programs may be extremely sketchy.

As the system programs evolve, more and more detailed
information can be incorporated into the simulation. When
complete, the operational program and data format specifications
should be used as input to the simulator. At this point, the control
program should be well enough defined to provide the execution
time of all of its macros. The actual execution time in each of the
operational programs and the number of segments in any program
can only be estimated. When these items become known during
the coding of portions of the operational program system, the true
values should replace the earlier estimates.

In addition to a model of the system hardware and programs,
the input to the simulator consists of the transaction mix and
the input message rate. The output consists of the following items
which are functions of the input rate:

e Core utilization—for entry blocks, working storage, and
program segments
cpU utilization
Length of file and 1/0 queues
Response time

The purpose of simulation studies that are run during the
implementation phase is (1) to verify that the proposed system
indeed suffices to handle the anticipated load, and (2) to determine

TESTING REAL-TIME SYSTEM PROGRAMS

the optimum allocation of core between control program, per-
manent core operational subroutines, constant pool, working
storage, and read-in program segments. The simulation runs
can also be used to ascertain which operational program sub-
routines should be kept in core.

Once the system is actually in operation, it provides the best
possible source of data regarding its load and performance. An
analysis of the input can be made to obtain the actual transaction
mix. An ability should be provided to gather system performance
data dynamically, specifically the items mentioned earlier as
output of the simulator.

A continuing, coordinated effort in system simulation and
data collection helps to ensure an optimum system organization
and provides sufficient lead time for system modification neces-
sitated by load growth.

ACKNOWLEDGMENT

This paper is based on the efforts and analyses of many individuals
associated with the airline reservation system referred to in the
text.

FOOTNOTE

1. Operational programs do not use any 1/0 instructions, halts, or certain
other instructions that are reserved for the use of the control program.

M. G. GINZBERG

