This paper describes a control technique for regulating the waiting
times of jobs in a discrete manufacturing process.

The technique 1s based on the second method of Lyapunov, which has
been extensively used for deterministic processes. Two tllustrations of
the method are included.

Experimental evidence of the effectiveness of the technique s indicaled.

A technique to control waiting time in a queue
by S. Shapiro

In a discrete manufacturing process, it is important to control the
waiting times of jobs in the queues associated with the process.
For example, jobs arrive randomly at a machine shop and are
processed in turn, the processing time also being a random vari-
able. If the average processing time is greater than the average
time between arrivals, it is apparent that a queue will build up.
Even if, on the average, jobs are processed faster than they arrive,
the random nature of the process may cause a queue to form at
some time. The time a job spends waiting in the queue, also a
random variable, causes difficulty in meeting production schedules.

The associated control problem assumes one of several forms,
e.g., the amount of overtime on a particular shift to be authorized
on the basis of the number of jobs waiting.

This paper applies the second method of Lyapunov,' exten- second
sively used in control problems associated with deterministic method of
processes, to discrete manufacturing processes of the above type. Lyapunov

Let V denote a function of a state variable describing the
system, and V denote the derivative of V with respect to time.

The second method of Lyapunov depends upon the fact that (sub-
ject to modest mathematical requirements® usually satisfied in
practice), the system is stable if V = V = 0 for values of the
control variable corresponding to equilibrium, and ¥V > 0 and
V < 0 otherwise. A function V with the latter properties is called
a Lyapunov function. Note that the system, if not at equilibrium,
approaches equilibrium at a rate proportional to |V|. In essence,
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usually an appropriate non-negative function V is selected, and
V is kept negative through control action, thus obtaining a
Lyapunov function. Control action designed to minimize V opti-
mizes the rate at which the system approaches equilibrium.

It should be noted that the technique is applicable to non-
linear control problems, since linearity of the system is not re-
quired.

To illustrate the control technique proposed here, suppose it is
desired to control a machining operation so that the waiting time
of a job is W,. Consider the quantity (W — W,)?, the squared
difference between the actual time a job waits, W, and the desired
waiting time, W,. Since this quantity is a random variable, a
function V may be defined as the expected value of (W — W,)?,

V= EB(W — W), (1)

which satisfies the non-negative requirement of a Lyapunov func-
tion.” With this definition of V,

d 2
= 5 B(W — W.)).

Suppose a control technique is desired that gives the number
of hours % of overtime to be worked for a given shift. Calculating
the value of V for each value of h, that value of A is used that mini-
mizes V. In general, this value of 4 depends on the state of the
process at the time the decision is made.

The function V is non-negative and is zero if, and only if,
W = W,. A technique which tends to make V as small as possible,
in one sense tends to make W approach W,. The control technique
proposed here essentially involves manipulation of the process
parameters so that V is always decreasing at a maximum rate.
This is accomplished by focusing attention on V and, through
appropriate control action, minimizing V.

In order to obtain a suitable form of V, first, a more convenient
expression for V is found. Suppose the control is to be based upon
some statistic n, as, for example, the number of objects in the
system, or the average waiting time of the last five objects to
depart, ete. It is assumed that the conditional expectation and
conditional variance of W, given n, denoted respectively by
E(W|n) and Var(W|n), are known. From standard identities,*

E(W — W,)*) = Var (W) + (W, —~ EW)Y’,

Var (W) = E(Var (W | n)) + Var (E(W | n)),

and

We — EW))* = E(W. — EW [n))),

so that Equation 1 may be rewritten to obtain

V = E(Var (W | n)) + Var (EOW | n)) + E(Ws — EGW | n))).
A suitable form of V may now be obtained from the latter ex-

pression:
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V= aE( )(E(Var (W [n)) + Var (BE(W |n))

+ B, — BOV |m))) ). @

Implied in this derivation of V is the existence of all expectations
taken and their derivatives.

Now, we find the value of the control variable u that mini-
mizes V. For each value of the observed statistic n there is a
value of p that minimizes V (assuming that V is always negative).

This control technique is completely general—no assumptions
have been made as to the nature of the arrival or service distribu-
tions. The technique could be extended for the case of a multi-
server system with several control variables.

An application of the technique to a single-server system with
Poisson input and exponential service is now described. Let the
observed statistic » in a single-server queuing system be the num-
ber of objects in the system, and let the control variable u be the
mean service rate. It also is assumed that the control action is
continuous, i.e., the number of objects is continuously observed,
and the service rate is varied according to the method previously
outlined.

Since n is exactly known at any instant of time, E(W | n) is
some function of » which is also exactly known, and consequently
Var(E(W | n)) = 0.

The well-known formulas for a single queue with Poisson input
and exponential service,”®

BV m) =", Vargr o "2 S s un),

where p denotes the mean service rate, A the mean arrival rate
and P,(¢) the probability of an empty system at time ¢, are used
with Equation 2 to obtain

e it () 4 5{(r - i

3 2w 2F
= (—5 - =+ (n)>(>\ — 1+ wPo(D).
" B

But 7 is known at any instant of time and is equal to, say, n..
Thus,
Em) = E(n,) = n,
and
Pyl = {1 it n, =0

0 if n,#0
so that

2W,

—*->(>\ — u— wPo(®).
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Table 1

single servers,

constrained

total service

N

Mm
(cal-
culated)

Mm
(con-

strained)

O NSOt WY —O

150
154
187
212
232
.247
.261
272
.282
.289
.297
303
.309

oo oococooo0OoooC

.160
.160
187
212
.232
.247
.261
272
.282
.289
.297
.300
0.300
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Since W,, A, and n, are known, the value of x that minimizes V
is easily found. If this u is denoted by u.., then
2(3 + 2n,)\
3 4+ 2n, + 2\NW,

3
W,

if n, #0

if n, =0,

and for these values of u,, Vis always negative.

To illustrate with a numerical example: Let W, = 20, A = 0.2,
and p be constrained to be within the interval 0.16 to 0.30. Using
Equation 3, a table is now constructed that gives u,, for each value
of n,. If the calculated u,, falls outside the interval, then the closest
value of x4 within the interval is chosen and Table 1 results.

We now consider a second example comprised of three com-
pletely independent single-server queuing systems with the total
service supplied by the three servers constrained to equal some
constant, C. Poisson input and exponential service is assumed as in
the previous example. The notation A;, u;, and n, is used to denote
the arrival rate, service rate, and the number of jobs in each of the
three subsystems (z = 1, 2, 3). The condition of constrained total
service is expressed by u, + u, + uz = C.

The technique is now used to control the total system, so that
the waiting time in each individual queue is made to approach
some desired waiting time.

Define

V = ;E( (Wi - Wid)z)y (4)

where W, and W ., denote, respectively, the actual and desired
waiting times. The following expression for V is derived from
Equation 4 in the same manner in which Equation 2 was obtained
from Equation 1.

3

V= ZaE( 5 (E(Var (W | 7)) + Var (B, [ n)

i=1

+ BV — BV, [n)))) o,

As in the previous example, the formulas for Poisson input and
exponential service are now introduced in the latter equation for
V. In addition, the method of Lagrangian multipliers is used,
and the term 8(u; + uo + ws — C) is subtracted from V. If the
constraint u, -+ u» 4+ ps = C is satisfied, this term is zero. The

Lagrangian multiplier & is used to ensure that the constraint is
satisfied in the solution. The following equation for V results:

7= (3 -2 20, 4 wbi)

i=1 Mg Hi
- 5(#1 + M2 + M3 — C)

Assuming that n; # 0, the values u;,, of u; minimizing V are found
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to be

_ 23 + 2n)\,
Bim = N W + 0+ 5@ + 2n,)

and § is chosen so that

Bim & Hom T+ Ham = C.

If some of the n,’s are equal to zero, a solution is obtained in a
similar manner.

The technique outlined gives a solution to the problem of
optimizing the service rate(s) in a queuing system according to the
given criteria. It should be noted that this solution is suboptimal
in several respects. Whereas the stated objective of the procedure
istomake W — W, the procedureactually makes £ (W — W,)*) —0.
The minimization of E((W — W,)*) tends to weight deviations
on either side of W, equally, which implies that the cost of an
item finishing ahead of schedule is the same as the cost of an item
late by an equal time. toe it

In the examples, the optimal service rate is based on the system
state. If this state changes before all the items in the queue are in
service (which is almost certain to happen), the effect on the opti-
mal strategy previously determined is not clear. Also, since it is
usually impossible to continuously vary the service rate, the
performance of the system is reduced.

Even though there are these difficulties, experience with the
technique suggests that it will yield a workable solution where other
procedures are unavailable. In an experiment simulating a con-
trol system incorporating the technique, the mean square devia-
tions of the actual waiting times W from the desired waiting times

W, were markedly reduced. The variance of W was reduced in
some cases by a factor greater than 2. This suggests that the
technique may effectively be employed to increase the reliability
of processing jobs in a manufacturing facility within the desired
time. It is conjectured that additional work on reducing the effect
of some of the aforementioned limitations might further refine the
technique.
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