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This paper  describes a control  technique  for  regulating  the  waiting 
t imes of jobs in a discrete  manufacturing  process. 

1 The  technique  is  based o n  the  second  method of Lyapunov,   which  has 
~ been  extensively  used for deterministic  processes.  Two  illustrations of 
~ the  method  are  included. 
~ 

Experimental  evidence of the  egectiveness of the  technique is   indicated.  
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In  a  discrete  manufacturing process, it is important  to control the 
waiting  times of jobs  in the queues  associated  with the process. 
For example,  jobs arrive randomly a t  a machine  shop and  are 
processed in  turn,  the processing time also being a random  vari- 
able. If the average processing time  is  greater than  the average 
time between  arrivals, it is apparent  that a  queue will build up. 
Even if, on  the average,  jobs are processed faster than  they  arrive, 
the random  nature of the process may cause a  queue to form a t  
some time. The time  a  job  spends  waiting  in  the  queue, also a 
random  variable, causes difficulty in meeting  production schedules. 

The associated  control problem assumes  one of several forms, 
e.g., the  amount of overtime  on  a  particular  shift to be authorized 
on  the basis of the  number of jobs  waiting. 

This  paper applies the second method of Lyapunov,'  exten- second 
sively used in control problems associated with  deterministic method of 
processes, to discrete  manufacturing processes of the above type. Lyapunov 

Let V denote a function of a state variable describing the 
system, and V denote the derivative of V with  respect to time. 
The second method of Lyapunov  depends  upon the fact that (sub- 
ject  to modest  mathematical  requirements2  usually satisfied in 
practice), the system is stable if V = V = 0 for values of the 
control  variable corresponding to equilibrium, and V > 0 and 
V < 0 otherwise. A function V with the  latter  properties is called 
a Lyapunov  function.  Note that  the system, if not  at equilibrium, 



usually an  appropriate non-negative  function V is selected, and 
V is  kept  negative  through  control  action,  thus  obtaining a 
Lyapunov  function.  Control  action designed to minimize $' opti- 
mizes the  rate at which the system  approaches  equilibrium. 

It should be  noted  that  the  technique  is  applicable  to non- 
linear  control  problems,  since  linearity of the  system is not re- 
quired. 

To illustrate the control  technique proposed here,  suppose it is 
control desired to control  a  machining  operation so that  the waiting  time 
technique of a job  is Wd. Consider the  quantity  (W - W,)', the squared 

difference between the  actual  time a  job  waits, W, and  the desired 
waiting  time, W,. Since this  quantity  is a random  variable, a 
function V may be  defined as  the expected  value of (W - Fa)', 

v = E( (W - W J 2 ) ,  (1) 

which satisfies the non-negative  requirement of a Lyapunov func- 
t i ~ n . ~  With  this definition of V .  

Suppose a control  technique  is  desired that gives the  number 
of hours h of overtime to  be worked for a given  shift.  Calculating 
the value of V for each  value of h, that value of h is used that mini- 
mizes V .  I n  general, this  value of h depends  on  the  state of the 
process at  the  time  the decision is made. 

The  function V is non-negative and is zero if, and only if, 
W = W,. A technique which tends  to  make V as small as possible, 
in  one sense tends  to make  W  approach W,. The control  technique 
proposed  here  essentially  involves  manipulation of the process 
parameters so that V is always  decreasing at a maximum  rate. 
This  is accomplished by focusing attention  on V and,  through 
appropriate  control  action, minimizing V.  

I n  order to  obtain a suitable form of V,  first, a  more  convenient 
expression for V is found.  Suppose  the  control is to  be based upon 
some statistic n, as, for  example, the  number of objects  in  the 
system,  or the average  waiting  time of the  last five objects  to 
depart,  etc. It is assumed that  the conditional  expectation and 
conditional  variance of W ,  given n, denoted  respectively by 
E(Wln) and Var(Wln), are known. From  standard id en ti tie^,^ 
E( (W - Wd)') = Var (W) + (W, - E ( J v ) ) ~ ,  

Var (W) = E(Var (W I n) )  + Var (E(W I n) ) ,  

and 

I 
(W, - E(W) 1' = E( ( W d  - E(W I n) )", 

so that  Equation 1 may be rewritten  to  obtain 

V = E(Var (W I n ) )  + Var (E(W I n) )  + E( (W, - E(W I n))') . 
A suitable  form of V may now be  obtained  from the  latter ex- 
pression: 
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is easily found. If this p is  denoted  by p,, then 

I 3 .^ 

single  servers, 
constrained 
total  service 

Table 1 

Mm Pm 

(cal- (con- 
nt  culated) strained) 

0 0.150 0,160 
1 0.154 0.160 
2  0.187 0.187 
3 0.212 0.212 
4  0.232 0,232 
5 0.247 0.247 
6 0.261 0.261 
7  0.272 0.272 
8 0.282 0.282 
9  0.289 0,289 

10 0.297 0.297 
11 0.303 0.300 
12 0.309 0.300 

____ ""_ ____ 

56 

and for  these  values of p,, V is  always  negative. 
To illustrate  with  a  numerical example: Let W ,  = 20, X = 0.2, 

and p be  constrained to be within the  interval 0.16 to 0.30. Using 
Equation 3, a table is now constructed that gives pm for each  value 
of n,. If the calculated pm falls  outside the interval,  then  the closest 
value of p within the interval  is chosen and  Table 1 results. 

We now consider a second example comprised of three com- 
pletely  independent single-server queuing  systems  with the  total 
service supplied by  the  three servers  constrained to equal some 
constant, C. Poisson input  and exponential service is  assumed as  in 
the previous  example. The  notation Xi, p i ,  and ni is used to denote 
the  arrival  rate, service rate,  and  the  number of jobs in each of the 
three subsystems (i = 1, 2, 3). The condition of constrained total 
service is expressed by p1 + pz + p 3  = C. 

The technique  is now used to control the  total system, so that 
the waiting  time in each  individual  queue  is  made to approach 
some desired waiting  time. 

Define 

where W i  and Wid denote,  respectively, the  actual  and desired 
waiting  times. The following expression for $' is  derived from 
Equation 4 in  the same  manner  in which Equation 2 was  obtained 
from Equation 1. 

As in  the previous  example, the formulas for Poisson input  and 
exponential service are now introduced in  the  latter equation  for 
V .  In addition, the method of Lagrangian  multipliers is used, 
and  the  term 8(p1 + p z  + p 3  - C) is subtracted from V .  If the 
constraint p1 + p z  + p 3  = C is satisfied, this  term is zero. The 
Lagrangian  multiplier 6 is used to ensure that  the constraint  is 
satisfied in  the solution. The following equation  for  results: 

- a(P1 + Pz + p3 - C). 

Assuming that ni # 0, the values p i m  of p i  minimizing V are  found 
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