
The structure  and  use  of a n  interpretive  program  for  matrix  operations 
is  treated. 

The  discussion  emphasizes  the  nature of the  programming  language 
and the  method of storage allocation. The  system  provides  automatic 
storage allocation for external disk storage as well as for core memory. 

An interpretive program for matrix  arithmetic 
by F. H. Branin, Jr., L. V. Hall, J. Suez, 
R. M. Carlitz,  and T. C. Chen 

This paper describes an interpretive  system for matrix operations. 
Featuring  automatic  storage allocation for all matrices, the system 
provides virtually the same freedom for the coding of matrix opera- 
tions as that common in  arithmetic operations on individual num- 
bers. The allocation scheme, embracing disk storage as well as core 
memory, is applicable to a wide range of matrix problems and,  in 
principle, to a broad class of machine configurations. 

For the sake of illustration, the discussion treats  an experi- 
mental version, called MARI, which has been programmed for the 
IBM 7030. A combination of features  makes MARI easier to use and 
more economical of storage, we  believe, than previously-developed 
matrix interpreters.l-' 

The MARI program and  its associated language were developed 
along the following guide lines. 

The only details of storage assignment requiring the user's 
attention should be the designation of a single directory word 
for each named matrix and  the reservation of space for a 
matrix pool. 
Specification of operations should be as straightforward as in 
standard symbolic programming. 
Matrices of several different types  and of arbitrary dimensions 
should be allowed. To conserve memory, each type should 
have its own storage  format. 
Selection of subroutines to handle  operations on the various 
matrix  types should be completely automatic. 
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In  accordance with  these guide lines, the following main principal 
features were incorporated in MARI. The matrix  types  permitted features 
are: null, scalar, diagonal, symmetric, and  rectangular.  Each 
matrix is prefixed by two header words that specify its directory 
word address,  type, and numbers of rows and columns. 

The following matrix  operations are allowed: addition, sub- 
traction,  right-  and left-multiplication, transposition, inversion, 
solution of linear equations, eigenvalue/eigenvector computations 
for  symmetric matrices, and  input/output.  With few exceptions, 
these operations  are specified by single-address pseudo instructions 
that involve entire matrices as  the  unit of information. 

Dynamic memory allocation of all matrices, whether in core 
memory or on disk, is combined with indirect addressing of each 
matrix  by means of a  directory word. Thus, matrices can be 
indexed as if each were a single word in memory, since each matrix 
is fully symbolized by its individual directory word in all pseudo 
instructions. 

Pseudo instructions, as well as any interspersed machine 
instructions, are executed interpretively. 

Subroutines  are selected automatically to execute each opera- 
tion; where necessary, proper  account is taken of matrix  types, 
and checks are made for dimensional compatibility. 

Input/output facilities provide for entering matrices into  the 
system,  extracting  them for special processing, and printing  them. 

These features require a considerable amount of bookkeeping 
in allocating memory, in  interpreting each matrix operation, and, 
in selecting the  appropriate  subroutine  to  carry  out each matrix 
operation.  Even so, this work, occupying only a small percentage 
of the  total running time, is more than justified by the resulting 
convenience to  the user. 

Program (MCP)' and occupies about 3600 full words of core 
storage. (A key to  the symbols used occurs at  the end of the paper.) 
The rest of core storage is available for the programmer's work 
area (programs, data, etc.) and for a POOL, in which matrices are 
stored. Except for the area occupied by MCP, disk storage is avail- 
able for a POOL extension, called DPOOL, and for a special work- 
space needed during rearrangements of DPOOL. However, the 
user does not need detailed knowledge of POOL and DPOOL contents 
to  run his program correctly and,  in  a  majority of cases,  efficiently. 

Each  matrix is referred to indirectly  by means of its directory matrix 
word (DWD), which  is outside POOL and points to  the actual loca- addressing 
tion of the matrix  in POOL (or DPOOL). Each  matrix in POOL is 
prefixed by  two header words (HDI and H D ~ ) ,  the first of  which 
points back to DWD, whereas the second  gives the matrix type 
and dimensions. A special directory word,  called PSAC, is reserved 
for use as a pseudo accumulator which acts for matrix operations 
as the counterpart of an ordinary  accumulator. For smooth 
sequencing of MARI, a subsidiary accumulator ( A C ~ )  is provided. 

All matrix operations expressible in single-address format are 

MARI operates  under the control of the 7030 Master  Control control 
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Table 1 

Instruction 

LINK;B,MXOP 'SUBROUTINE LINKAGE 
MXL,A 'LOAD MATRIX  A 
MXR*,B 'RIGHT MULTIPLY BY MATRIX  B 
MXST,C 'STORE RESULT AS MATRIX C 
MXEND 

written symbolically as floating-point STRAP instructions  with the 
prefix MX. They  are assembled by  the 7030 STRAP-11 assembly 
program as binary  instructions belonging to  the  set of 16 unused 
(normally  invalid)  floating-point codes on  the IBM 7030. These 
special instructions  are  then executed  interpretively  under  control 
of the subroutine MXOP. 

For example, the  matrix  operation c = A*B would be coded 
example as shown in  Table 1. The interpreter,  which is within the sub- 

routine MXOP, retains  control  until MXEND is  encountered. The 
symbolic  addresses A, B, and c actually refer to  the directory 
words of the corresponding matrices.  During  execution, MXL,A 
simply  loads the DWD a t  A into PSAC. MXR*,B refers to  PSAC for 
t,he DVD of its implied operand,  and to  B for the DWD of its ad- 
dressed operand.  Space  in POOL is  automatically assigned for the 
result of this operation, and  the DWD of the resulting matrix  is 
placed in PSAC. Finally, MXST,C copies the DWD in PSAC into  the 
location c .  MXEND terminates the interpretive  mode of execution. 

Thus, MARI enables the user to  perform matrix  operations 
conveniently, treating each matrix  as a single word. 

Memory organization and matrix  types 

The core memory of the 7030 is divided into four  main parts 
when MARI is used: 

Programmer's  area (for programs, data, workspace, etc.). 
Matrix POOL (administered by  the memory  allocation  program 

MARI program and all its  subroutines. 
MCP (7030 master  control  program). 

The disk  storage  is  divided  into  three  parts: 
DPOOL, an extension of the  matrix POOL. 

RESERV, an  area used as a workspace. 
MCP work area. 

The method of specifying the boundaries of POOL and DPOOL is 
described later. 

MARI handles six matrix  types: null, scalar,  diagonal,  symmetric, 
matrix types columnwise rectangular and romwise rectangular. The  type codes 

of these  matrices  can  be  represented  symbolically  by the STRAP 

code of Table 2. 

in MARI). 
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MARI limits  rectangular  matrices to columnwise representation Figure 1 Index  word  format 

in  the POOL. However, the user  can enter a columnwise as well 
as a rowwise matrix  from his data area  into  the POOL; in  either 
case, the  matrix is stored columnwise and assigned the  type 
code 10.0. The method  for  entering  matrices  into the POOL is 
described in more detail  later. 

V F  The value field is used to mod- 
ify  the address field  of inetrnn- 

tions  to produce an  effective ai 
Numbers are in  true  form &I 

Name Instruction Comment held is called the zndex / lag tnt 
CF The count f i  

~- . . 
for loop co 

NULL SYN,O. 0 'NULL  MATRIX 
SCAL SYN,l. 0 'SCALAR MATRIX 

preset to  some I 
(count and branch 
at  the  bottom  of th 
the  count  bv one. 

DIAG  SYN;2.0 ' DIAGONAL MATRIX only if  the" new 

SYM  SYN,5.0 'SYMMETRICAL  MATRIX 

ROW SYN,11 .0  'ROWWISE  MATRIX 

count  is nonzero. 
. "" 

Concurrent adjust-" nf 

field can  be  speclf 
becomes zero a retill occurs It 
for  by a CB'R (count, brancl 
refill) instruction. 
RF The refill field usually COnf ,9 inR 

COL SYN,10.0  'COLUMNWISE  MATRIX 

which is placed in  the register when 
the address of an index word 

refill is requested. 

Whenever  a matrix is entered  into  the POOL, its directory 
word (DWD) is stored at   the directory word address, DIVA, in 7030 
index word The  format of these  index  words is given 
in  Figure 1. For  matrices  in  the POOL, the index  flag (XF) is set 
to zero, and  the  format is as shown  in  Figure 2, where HDIA is 
the header word 1 address of the  matrix  in  the POOL, and SIZE 

is the number of words occupied by the matrix and  its two  header 
words. 

the 3-bit flag field in  octal  notation, the  format is as shown in 
Figure 3. Here HDlA is the  arc  address of HD1 on  the disk,  each H D l A  0 SIZE 0 

matrix  starting  at  the beginning of an arc. NEXT DWA is the DWA 

L of the next-listed matrix  on  the  disk; if this  matrix is the last- 
listed matrix on the  disk, NEXT DIVA is zero. 

The  two  header words  for  each matrix  have  the  format given 
in  Figure 4, where DWA is the directory word address, TYPE is 
the  matrix  type code, ROWS is the number of rows, and COLS is the 
number of columns. 

in HD1, bit 26 = 1 indicates that  this  matrix  must be  left  in core 
(i.e., cannot be  moved to  the disk)  since it is an operand or result I HDlA 1 4 1  SIZE [ "6,",' I 
in  the  matrix  operation  currently being executed.  Figure 5 depicts 
the memory layout for  several  matrices in  the POOL. 

Following H D ~ ,  the  matrix elements are  stored according to 
the conventions  presented in  Table 3. These  conventions are 
followed in  the  print  format for  each  matrix. 

The different matrix  types  are allowed in  order  to economize 
on storage  space and computation  time whenever permitted  by Figure 4 Header  word  formats 

the  structure of a  particular  matrix. The price  paid  for this HDIA 0 DIl 

feature is a  number of subroutines  for  handling the various cases 
that arise. However, the gain in  capacity and performance has HDPA TYPE 1'1 I 'OLS 1 

For  matrices on the disk, XF is set  to 1. Thus, representing Figure 2 Directory word  format 
for 'Ore 

The index flag, XF, is not used in  either  header  word;  but Figure 3 Directory word  format 
for disk 
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been found well worth the effort. Indeed, several more matrix 
types (such as tridiagonal, complex, and compound matrices) 
could easily be added  without  unduly increasing the number 
of subroutines. 

Figure 5 Matrix storage organization 

B HDlB  SIZE 

I Table 3 Matrix storage formats 

MATRIX C 

MATRIX A 

Type  Format 

NULL no data needed 
SCAL a single floating-point number 
DIAG diagonal  elements only, as floating-point numbers 

in successive storage  locations 
SYM diagonal and subdiagonal  elements  only, as 

floating-point numbers in successive storage 
locations  ordered columnwise 

cessive storage  locations  ordered columnwise 
COL all clernents as floating-point numbers in suc- 

I The MARI language  and its usage 
As mentioned, all single-address symbolic instructions for matrix 
operations carry  the prefix MX, and each instruction is converted 
by the STRAP-11 assembler into one of the 16 invalid floating-point 
machine codes. These codes, along with any legitimate machine 
codes that may be interspersed, are identified by the interpretive 
section of the subroutine MXOP. Bonn  fide STRAP instructions are 
executed by means of the EXTC instruction (execute indirect and 
count), whereas MX pseudo instructions are cxecuted by means 
of appropriate subroutines. 
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Table 4 Matrix pseudo instructions 

Instruction Function 

MXL,A 
MXLN,B 
MSLT,C 
MXLI,D 
MX+,E 

MXN+,G 
MXR*,H 
MXL*.I 

MX--,F 

load matrix A 
load negative of matrix B 
load transpose of matrix C 
load inverse of matrix D 
add matrix E 
subtract matrix F 
negate matrix in PSAC and  add matrix G 
right multiply by matrix H 
left multidv  bv matrix I 

MXST,K store matrix K 
MSREL,L release matrix L (from storage) 
MXEND end of matrix interpretation 

A list of the 13 implemented matrix pseudo instructions is pseudo 
given in  Table 4. Although not depicted, the addressed operands instructions 
in each case can be indexed, if desired, just  as in any legitimate 
floating-point instruction. Sign  modifiers, available on standard 
7030 floating-point instructions, are  not used in  matrix pseudo 
instructions. The operand addresses are  treated  by  the STRAP-11 

assembler as if they referred to normalized floating-point numbers. 
In writing a program of matrix operations, each matrix  may 

be regarded as a single entity that can be loaded into or stored 
from the pseudo accumulator, PSAC. All binary  operations expect 
to find the implied operand  in  this pseudo accumulator. But 
an intermediate result that is not stored from the pseudo accu- 
mulator is automatically destroyed by  any  subsequent  operation 

’ that places a new result  in the pseudo accumulator. Furthermore, 
storing the contents of the pseudo accumulator  into  a DWVD that 
already represents a  matrix  destroys that matrix. Thus  the 
resemblance to arithmetic  operations involving single numbers 
is complete. 

To  illustrate the use of the MARI language consider the problem illustrative I of solving the matrix  equation problem 

AX = B,  (1) 

where A is nonsingular and  the equation is partitioned  as follows: 

Let  us assume that  the dimensions of these submatrices  are 

P : 100 x 100 

Q : 100 X 150 

R : 150 X 150 



Y ,  As : 100 x 1 

2, T : 150 X 1 

and  that P, Q and R are of arbitrary  type,  with P nonsingular. 
We also  assume that  the matrices P,  Q, R, X, and T are  already 
in  the POOL, and  that a  full word is reserved a t  Y, z, PI, QTPI, and 
w for  directory  words of the final and  intermediate results. 

Expanding  Equation 2, we obtain 

P Y + Q Z = X  (3) 

and 

Q t Y  + RZ = T .  (4) 

The solutions to  these  equations  a,re: 

Y = P"(8 - QZ) (5) 
Figure 6 Solution of matrix 
equations by partitioning 

and 

MXLI,P 0" 4 0 Z = (R - Q'f"'&)"(T - &'P"S). (6) 
P P" 

An appropriate  program  for solving this problem is shown in 
MXLT,Q 0' Table 5. For the dimensions  cited, this sequence of operations, 

Q - 0 which is depicted  in  Figure 6, would cause the execution of well 
Q' 

over  ten million machine  instructions. The greatest  demand for 
MXR.,PI 0.g - 0 space  in the POOL occurs  during the execution of the instruction 

Q' P'P" 

I MXR',Q 0.g -r 0 Table 5 

Q'P"  Q'P"  Q Instruction Comment 

I Q'P"Q R 

MXN+,S -0 + 1 
QZ S S-QZ 

L1NK;B;MXOP 
MXL1,P 
MXST,PI 
MXLT,Q 
MXR*,PI 
MXST,QTPI 
MXR*,Q 
MXN +,R 

'BEGIN  INTERPRETIVE  MODE 
'LOAD INVERSE OF MATRIX P 
'STORE  RESULT IN PI 
'LOAD TRANSPOSE OF MATRIX Q 
'RIGHT  MULTIPLY BY PI 

'NEGATE PREVIOUS RESULT AND 
'ADD MATRIX R 

MXST,W 

MXL*,QTPI 
MX+,T 
MXL*I,W 

MXT,N,S 'LOAD NEGATIVE OF MATRIX S 
'LEFT  MULTIPLY BY QTPI 
'ADD  MATRIX T 
'LEFT  MULTIPLY BY INVERSE O F  

'STORE  RESULT AS MATRIX Z 
'RELEASE  MATRICES W AND 

'MATRIX W 

'QTPI  SINCE NO LONGER NEEDED 

MXST,Z 
MXREL,W 
MXREL,QTPI 
MXL*,Q 

MXL',PI 0 *I -C 0 MXN+,S 
P-' S-QZ Y MXL*,PI 

MXST,Y  'STORE  RESULT AS MATRIX Y 
MXEND  'END  INTERPRETIVE MODE 
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I MXN+,R. At most, 22,502  words are needed for each of the two 
operand matrices and  the result matrix, since each of these matrices 
has  the dimensions 150 x 150.  An additional 102 words are needed 
for a special matrix, called DSKLST, to be described later. Hence, 
the POOL must contain a t  least 67,608  words. 

The instructions MXL, MXLN, MXLT, MXLI, and MXREL 
specify unary  operations  and thus require only an addressed 
operand. All the other  instructions (except MXEND, which  uses 
no operands) require both an addressed operand and  an implied 
operand, the  latter being obtained from PSAC. The addressed and 

~ implied operands are  directory words, representing entire matrices. 
i The instruction MXL simply places a copy of the addressed 

directory word into PSAC, whereas MXST places a copy of PSAC 

into the addressed directory word. The instructions MXLN, MXLT, 
and MXLI, however, require that a new matrix be generated  in 
a region of core memory POOL other than  that occupied by the 
original matrix.  A  directory word for this new matrix is then 
placed in PsAc-and nowhere else unless and  until  an MXST 
instruction is executed. This process  also occurs whenever a new 
matrix is generated by executing instructions such as b f x f ,  
MXR*, etc.  Thus,  an  intermediate result (such as  the product 
Q'P" in  Equation 6) remains unnamed unless it is specifically 
assigned a name as  the result of an MXST instruction. 

Unnamed intermediate results are automatically destroyed 
either  after  they  have been used as  the implied operand of any 
instruction  other than MXST, or after  they  have been  "over- 
written"  by  a  load-type  instruction. The POOL area occupied by 
such a  matrix is released, i.e., made available for reassignment 
by the memory allocation program, MAP. Explicit release of a 
matrix  may be  called for by the MXREL instruction, as illustrated 
in the previous example. 

To show how matrices can be  indexed and how STRAP instruc- 
tions can be interspersed with MX pseudo instructions,  let us 
consider the problem of solving, say, 100 different sets of matrix 
equations of the form 

A,X,  = B,; i = 1 ,  2, . ' *  100. (7) 

We  will assume that 100  successive directory words, starting a t  
location A, refer to 100 different square matrices of arbitrary 
type  and dimensions in the POOL and, similarly, tha,t 100 directory 
words at B refer to corresponding I3 matrices (or vectors). Space 
for 100 dircctory words a t  x is reserved for results. 

Rather  than inverting the matrices, the contrived pseudo 
instruction MXL*I (left  multiply  by the inverse) is used to calI 
the subroutine for solving the matrix  equations  in the code shown 
in Table 6. Note  that  the interspersion of standard 7030 instructions 
creates no particular difficulties. Except for the COUNT ANI) 
BRANCH instruction (CB+), these  instructions are executed under 
the EXIC instruction. All branch  instructions require special 
handling as described later. 

A N  INTERPRETIVE PROGRAM FOR MATRIX ARITHMETIC 
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Table 6 

Instruction Comment 

LINK;B,MXOP 'CALL MXOP 
LVI,$5,0.0 'INITIALIZE INDEX REGISTER 5 
LCI,t5,100 

JOE MXL,B($B) 'LOAD MATRIX B(1) 

MXL*I,A($5)  'LEFT MULTIPLY BY INVERSE OF 

MXST,X($5) 'STORE RESULT AS MATRIX X(1) 
CB+,$5,JOE 'REPEAT 100 TIMES 
MXEND 

'MATRIX  A(1) 

In  all  these  computations, the  type  and dimensions of each 
result result matrix are implied by the  types  and dimensions of the 
dimensionality operand matrices. The programmer need not be concerned with 

result dimensionality; this question is handled automatically by 
the MARI program. 

Three special subroutines are used for entering  matrices into 
or retrieving them from the POOL, for printing matrices, and for 
finding eigenvalues and eigenvectors. These subroutines  can be 
called either  independently of the MXOP subroutine or from 
within MXOP. 

To  enter a matrix  into the POOL, the subroutine MXIO is used. 
input This  subroutine assumes that  the matrix elements are stored  in 

the  appropriate sequence in some area, called DATA, outside the 
POOL. Using the matrix name, type,  and dimensions as specified 
in the calling sequence, MXIO requests space in the POOL from 
the memory allocation program, which creates the directory word 
and first header word. Then, MXIO transmits to  the POOL all the 
matrix elements from DATA and, as H D ~ ,  the last full word in the 
calling sequence. 

The calling sequence for MXIO is given in  Table 7. If the 
matrix  type  has  not  yet been  defined in the MARI program, if the 
dimensions are incorrectly specified, or if the matrix to be entered 
is too large for the POOL, an error message is printed and  the 
program stops. 

MXIO is also used to retrieve a matrix from the POOL and 
output then place its elements in an external DATA area. In this operation, 

however, the matrix dimensions are omitted from the calling 
sequence, and  the size of the DATA area is given as shown in 
Table 8. 

Since the  actual size and dimensions of the matrix  may  not 
be known explicitly, the size of the DATA area may be insufficient. 
In such a case, an error message is given, and  the programmer 
can find the  actual size of the matrix from its directory word. 
If the size of the DATA area is sufficient, the matrix elements are 
transmitted from the POOL to DATA without the header words, 
and a copy of H D ~  is  placed in the index word (xw) of the calling 
sequence. 
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Matrices  may be printed, along with an identifying heading, 
by calling the subroutine MXPRNT as shown in  Table 9. The  print 
format employs a heading of identifying information, followed 
by the type,  number of rows, and number of columns. The matrix 
elements are printed as 14-digit normalized floating-point numbers. 
Each page can have up to 50 rows and four columns, with the 
current row and column number  appearing  in the  appropriate 
positions. The  print format for each matrix type is  designed to 
simulate its storage  format  in the POOL. 

For finding eigenvalues and eigenvectors of a symmetric 
matrix, a calling sequence corresponding to  the matrix  equation 
A X  = XA is used, as shown in Table 10. 

Table 7 

Instruction  Comment 

CNOP 
LINK;B,MXIO 'CALL MXIO 
,DATA 'AREA CONTAINING MATRIX  ELEMENTS 
,NAME  'MATRIX NAME (ADDRESS OF  DWD) 
XW,TYPE,ROW,COL 'MATRIX  TYPE CODE AND DIMENSIONS 

Table 8 

Instruction  Comment 

CNOP 
LINK;B,MXIO 'CALL MXIO 
,DATA 'ADDRESS OF AREA RESERVED 

,NAME 'MATRIX NAME 
XW,SIZE 'SIZE OF DATA  AREA 

'FOR  MATRIX ELEMENTS 

Table 9 

Instruction  Comment 

LINK;B,MXPRNT 'CALL MXPRNT 
,NAME 'MATRIX NAME 
,IDENT 'ADDRESS OF  IDENTIFYING INFOR- 

'MATION  (ALPHANUMERIC) 

Table 10 

Instruction  Comment 

LINK;B,MXEIG 'CALL MXEIG 

,LAMBDA 'DIAGONAL MATRIX OF EIGENVALUES 
4 'NAME OF MATRIX 

,X 'COLUMNAR MATRIX OF EIGENVECTORS 

AN INTERPRETIVE PROGRAM  FOR MATRIX ARITHMETIC 
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Table 1 1  

Instruction 

CNOP 
LINK;B,MXIO 
,DATA1 
,A 
XW,SYM,10,10 
LINK;B,MXIO 
,DATA2 
,B 
XW,COL,4,10 
LINK;B,MXOP 
MXL1,A 
MXR*,B 
MXST,X 
LINK;BE,MXPRNT 
,x 
,IDX 
MXL*, A 
MX-,B 

MXEND 

Figure 7 Possible subroutine calls 

r 
L 

At present, MXEIG does not  handle  the eigenproblem for 
asymmetric  matrices  since  these  matrices  may  have complex 
eigenvalues and eigenvectors. The algorithm used for  symmetric 
matrices is based on  Jacobi  plane  rotations.  Extra working  space, 
amounting  to N + ( N / 2 ) ( N  + 1) full words, is used by MXEIG 

and automatically released when the subroutine is finished. 
Whenever  these three  subroutines  are called from  within the 

MXOP subroutine, the BE (branch  enabled)  instruction is used to 
indicate that  the subroutines  arc  to be  executed  directly  instead 
of in  the  interpretive mode. This  direct mode of execution is 
allowed because  these  subroutines return t o  a  special  location 
within MXOP, permitting  resumption of the interpretive  mode 
of operation.  Thus,  it is possible to write the code of Table 11 
for printing  an  intermediate  result  without  interrupting  the 
interpretive  mode of execution  between the call for MXOP and 
the execution of MXEND. 

Figure 7 shows the hierarchy of subroutines that implement 
the MARI program.  The user's  program  may call directly any one 
of the five subroutines MXOP, MXPRNT, MXEIG, MXIO, or MXSET. 

When MXOP has been called and still  has control, the  last  four 
can  also  be called indirectly through MXOP. 

Six subroutines  are included in MXOP, namely, the interpreter, 
load,  load  negative, matrix release, MXEND, and  store  subroutines. 
The  interpreter  acts  as  the  main  control  center of the MARI 

program. It updates  the MARI instruction  counter,  selects and 

MXOP 
I 

PROGRAM 
USER'S r------l r------1 

/ LOAD I I 4 RELEASE 

I I 
I I I I I L  

1 I I 
I10 TRANSPOSE ADD EQUATION 

SOLVER 

1 
I 1 C -------, MEMORY  ALLOCATION 

PROGRAM . MXSET 1 

1 
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calls the  appropriate  subroutines,  and  updates  the pseudo  accu- 
mulators, PSAC and A C ~ .  

Dynamic  memory  allocation 

The memory  allocation  program, MAP, administers POOL and 
DPOOL, keeping  a  list of all holes (available blocks of storage) 
in  both POOL and DPOOL. All unavailable blocks, except the one 
reserved  for  a  disk  list (DSKLST) explained below, are occupied 
by  matrices.  Under the control of MAP, any  matrix  in POOL may 
be moved to make room for  a new matrix.  Although  most of 
the matrices  in POOL can  also  be  moved to DPOOL, a specified 
few (usually the operands  in the operation  being  performed)  must 
remain in core. Thus, MAP can  be called upon to perform five 
different  functions : 

Set  the boundaries of POOL and, initially, set  up  DPOOL.  (This 
is the problem  program’s  only possible direct  request of MAP.) 
Provide a block of specified size to accommodate  a  matrix. 
Change an unavailable block into  an available block when a 

Alter the availability of a matrix for  storage  on  disk. 
Move a matrix  from core to disk or vice versa. 

matrix is released. 

Before any  matrix  operation  can be executed, the POOL must 
be specified. The POOL area  must provide both  for  the  matrices 
to be handled  and  for 102 words for the DSKLST described below. 
The size of POOL is specified by the calling sequence of Table 12, 
where LLIM is the address of the first word of POOL (lowest memory 
address), and ULIM is the address of the last  word of POOL. DISKMIN 

is the minimum  matrix size that  may be transferred to DPOOL 

if more  room is needed in the  POOL. If DISKMIN is zero, MAP assumes 
a value of 257 words, so that only  those  matrices  larger than 
half an  arc  may be sent  to  DPOOL. 

If the boundaries of an existing POOL are moved  by  a  subsequent 
call of MXSET, some matrices  may  have  to be sent  to DPOOL to 
fit the old POOL into  the new POOL area. If the old POOL and new 
POOL do  not overlap, the  contents of the region between them  may 
be  destroyed. 

During  the first  execution of MXSET, the space on disk not 
preempted  by MCP is divided into  two regions: the DPOOL and 
the RESERV area. RESERV is used as work  space to  store  the POOL 

during  a  disk squeeze, freeing  core  memory  for use in  rearranging 
matrices  in  DPOOL. RESERV occupies, a t  most, half of the available 
disk  space, up  to a  maximum of 64 arcs. 

A request  for  space  in the POOL is made to MAP in the following 
way: the value field of index  register 14 specifies the DWA of the 
matrix  that is to occupy the requested  space; the count field 
specifies the size of the matrix. 

Whenever  a  request for memory is made,  space is assigned 
by MAP within the smallest adequate hole and  at   that  end of the 
hole which is nearest ULIM. The holes are chained  together,  both 
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double-threaded 
hole lists 

Figure 8 Formats for first two 
words of each hole 

WDIA NEXT WDIA 141 SIZE LRd?2 

disk hole 
I ist 

Figure 9 Formats of chain-termi- 
noting words 

HOLLI  LLlM  WDlA 4 0 0 

HOLLOC 0 4 
0 I $: 

HOLSIZ IF lRST WD2A 101 0 I 0 I 

Figure 11 Formats for header 
words of disk hole list 

HDlA 2 DSKLST 

HDPA 10.0 0 100 1 

forward and backward,  according to  both location in  the POOL 

and hole size. Since the first  two  words in  each hole are used for 
this purpose,  a  hole of a single word is not  permitted.  The  format 
of these  two  words is given  in  Figure 8. 

I n  wD1, XF = 1 signifies that  this is the first word of a hole 
(and  not HD1 of a matrix) ; the field NEXT WDlA is the next word 1 
address in  order of increasing  memory  location. PRIOR w D l A  is 
the address of WD1 of the preceding  hole in  memory. SIZE specifies 
the  number of words in  the hole-including both wD1 and W D ~ .  

I n  W D ~ ,  the field NEXT WDBA signifies the next word 2 address 
in  order of increasing size, and PRIOR W D ~ A  the address of WDZ 

of the next  smaller hole. 
The termini of these  two chains are  at  fixed locations  outside 

the POOL, having the  format of Figure 9. Here, LLIM w D i A  is the 
WD1 address  nearest LLIM, and ULIM WDlA is that nearest to ULIM. 

FIRST W D ~ A  is the W D ~  address of the smallest hole, and LAST W D ~ A  

is that of the largest. 
Obviously, the refill field a t  LLIM W D l A  must  point  to HOLLI, 

whereas the value field at ULIM WDlA must  point  to HOLLOC in 
order to  complete the forward and backward  chains.  Similarly, 
at FIRST WDBA, the refill  field must  point  to HOLSIZ, whereas a t  
LAST WDBA, the value field must  point to  HOLSl.  A diagram  depict- 
ing  several holes and  their linkages is shown in Figure 10. 

Since holes also appear between occupied areas  on  the disk, 
a list of disk holes is maintained  in a special  reserved area of POOL 

adjacent  to ULIM. This  list is set  up  as if it were a matrix  with 
its two  header words as shown in  Figure 11, i.e., as a columnwise 
matrix of 100 rows and 1 column, with DSKLST as its directory 
word. This  matrix is made ineligible for  transmittal  to  the  disk 
by  setting  bit 26 to 1 in HDi.  

Figure 10 Holes and their linkages 
"" 

THE POOL 

H O L L I   W D l A  4 0 0 
WDlA W D l B  141 SIZE I H O L L l  
WDZA HOLSl  101 SIZE I WD2C 

HOLLOC 0 4 0 WOlC 

HOLSIZ  WDZB 0 0 0 

HOLSl  0 0 0 WD2A 
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Although more details of the disk-hole list are given later, 
it should be noted here that on the very first execution of MXSET, 

when the POOL is initially established, MAP is requested to assign 
102 words to DSKLST. By making this request first, the allocation 
of DSKLST to  the area just  adjacent  to ULIM is assured. 

A word outside the POOL, called HTOTAL, specifies the cumula- 
tive total of space in  all  the holes in the POOL. When a request 
is made to MAP for space in the POOL, the size of this request is 
first compared against HTOTAL and  then  against  the size of the 
largest hole, pointed to by HoLs1. Thus,  three  situations  can 
arise. First, if HTOTAL is not large enough to accommodate the 
request, a disk operation must be initiated to make space in the 
POOL. Second, if HTOTAL is adequate, but  the largest hole is not, 
a “squeeze” operation within the POOL is initiated.  Third, if the 
largest hole is adequate, a search is made for the smallest adequate 
hole by following the  w~2-chain forward from HOLSIZ. These 
three  situations  are discussed in reverse order. 

Since  holes of just one word cannot be allowed, the  term hole 
%mallest adequate hole” means any hole  whose  size exactly equals search 
or exceeds by two or more words the size of the requested space. 
When the smallest adequate hole has been identified, MAP assigns 
space at the uLIM-end  of this hole. Before returning the results 
of this assignment to  the requesting subroutine, however, MAP 

updates wD1 and W D ~  of this hole to account for its reduced size. 
If the hole  size  becomes  zero as  the result of an exact fit, the 
wD1 and WDS chains of the remaining holes are linked around 
the obliterated hole by  updating  the words at NEXT wDu, PRIOR 

WDlA, NEXT WDSA, and PRIOR WDSA. In  addition, MAP updates 
the DWD of the matrix, for which space has been requested, by 
setting its value field equal to  the HD1 address and  its count field 
equal to  the SIZE of this  matrix.  Finally, the m i  is stored with 
its refill  field pointing to  the DWD and with bit 26 = 1 to indicate 
that  this matrix  must  not be sent to DPOOL. 

When HTOTAL is adequate  to accommodate a  storage request, POOL 

but  the largest hole is too small, a POOL squeeze is required. squeeze 
During  this squeeze, the  appropriate matrices are moved towards 
LLIM to enlarge the hole nearest ULIM until  this hole exactly 
satisfies the request. A squeeze is effected in  three  steps. 

First, the wD1 chain of holes is followed backward from HOLLOC 

until  the cumulative  sum of hole  sizes equals, or exceeds by two 
or more words, the requested space. If equality is obtained, the 
wm address of the hole nearest LLIM becomes the relocation 
address, RELOC. Otherwise, RELOC is set equal to this wD1 address 
plus the number of excess  words. All matrices between RELOC 

and TvDl  of the hole nearest ULIM must  then be squeezed into  a 
contiguous block, starting a t  RELOC. 

Second, using the information in wD1 of the hole containing 
RELOC (or of the preceding hole, if RELOC = WDIA), HD1 of the 
adjacent  matrix is picked up. The size of this  matrix is determined 
from the corresponding DWD. The matrix is then  transmitted 
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so on, until HTOTAL is large enough  for  a hole search or POOL 

squeeze. The disk  operation  and pool squeeze are shown  in 
Figure 13. 

To provide  information  for a squeeze of DPOOL, the matrices 
in DPOOL are chained  together  by the refill  field of cach DWD. 

The first  link on  this chain  is the word DWDLNK whose refill 
field is the DWA of one of the matrices  in DPOOL. (The refill  field 
is set  equal  to zero if DPOOL is empty.)  The refill  field of the DWD 

of this  matrix  then  points  to  the DWD of the “next”  matrix  in 
DPooL-and so on, the  last DWD having a zero refill field. The 
order of matrices  in  this chain is inconsequential, being determined 
by the order  in which they  are  put  into DPOOL, rearranged,  etc. 

As described  above, DSKLST is the DWD of a special matrix 
at   the ULIM end of POOL containing  a  list of disk holes. The asso- 
ciated word LSTHO has its value field pointing to  the first  such 
disk-hole word, and  its  count field equal  to  the  number of disk holes. 
The elements of this disk-hole matrix  are  in index word format, 
with the value field containing the  arc  address  and  the  count field 
containing the number of arcs of the hole in question.  These 
disk-hole words are  ordered  according to increasing arc addresses. 

A squeeze of DPOOL is initiated  by MAP whenever an  adequate 
disk hole cannot be found,  but DSKTOT indicates that a  combination 
of disk holes will satisfy the request  for  space  in DPOOL. If DSKTOT 

is too  small to accommodate  a  given  matrix  in DPOOL, the next 
available  matrix  in POOL is tried. If none  can  be  found, the program 
stops  after  printing an error message. The DPOOL squeeze  is 
effected by placing all or part of the POOL onto  the RESERV 

area of the disk and  then using the vacated region of POOL as a 
temporary workspace. 

If the size of RESERV is smaller than  that of POOL, only part 
of the POOL is sent  out  to  RESERV.  The list of disk holes is then 
transmitted  to  the  vacatcd  area of POOL. The remaining part 

Figure 13 Disk operation and pool squeeze 

LLIM , (TO DPOOL) , , (TO DPOOL) 

REQUIRED 
BLOCK 
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Whenever an  attempt is made to execute a successful branch 
instruction (such as B, BB, BIND, or CB) by  means of EXIC, 
an  EXE interrupt occurs, because the location  counter has been 
altered out of sequence. MXOP negotiates with MCP to  take  this 
interrupt  and  handle it as follows: the subject  branch  instruction 
is copied from  its original  location to  a  place  inside MXOP, where 
its address is replaced by a fixed address  in MXOP. This  branch 
instruction is then executcd. At  the fixed address to which it 
branches, a transfer to  its original effective address is made  under 
control of MXOP. 

I n  this way, the  interpreter  can  maintain control and follow 
the proper sequence of instructions  within its domain.  However, 
a branch to MCP cannot  be  handled properly by MXOP, since the 
instruction B,$MCP would be removed  from its context  before 
being executed;  this  vitiates  the calling sequence  for MCP. 

Whenan MX instruction  has been identified by MXOP, the 
effective address of the DWD of its addressed  operand (if any) is 
computed.  (Indexing of MX operands is freely  permitted,  using 
index  registers 1 through  13.)  This DWD is  then examined to  see 
if the  subject  matrix is already  in POOL. If not, it is automatically 
fetched  from  DPOOL. If the  matrix does not exist, an error message 
is  printed. 

HD1 of the  matrix is then flagged (bit 26 = 1) to  indicate  that 
this  matrix is essential to  the operation  about  to  be executed 
and, therefore, not  available for transmittal  to DPOOL. 

MXOP then relinquishes  control to  the  appropriate  arithmetic 
subroutine,  passing  along to  it  the DWA, SIZE, and H D ~  of the 
implied operand (if any)  and of the addressed  operand. 

After the  arithmetic  subroutine  has  done  its  task,  it  branches 
to  a fixed location in MXOP (called RETURN),  leaving the DWD 

of the result  matrix  in  the fixed location ACZ, also inside MXOP. 
AC2 acts as a temporary second accumulator. 

At RETURN, a decision is made  whether or not  to release 
the  matrix whose DWD appears  in PSAC. If this  matrix is an un- 
named  intermediate  result (Le., has no DWD other  than PSAC), 
it is  released;  otherwise, it is not released. The operands of the 
MX instruction  just executed are  then unflagged by  setting  bit 26 
to  0 in HDI. Next,  the DWD in A C ~  is copied into PSAC, and  the 
corresponding HD1 is updated  to point to  PSAC if and only if 
it had been pointing to AC2. (In  the case of an  MXL instruction, 
a copy of the DWD is put  into A C ~ ,  but HD1 still  points to  the 
original  DWA. At RETURN, ACZ is copied into PSAC, but HD1 is 
left  pointing to  DWA.) It should  be  noted that,  in  this case, HD1 

will have  already been flagged as a consequence of a request 
to  MAP for  assignment of space to A C ~ .  Finally, the pseudo in- 
struction  counter  within MXOP is updated,  and  the  next  instruction 
is decoded. 

Figure 14 illustrates the  status of the POOL, A C ~ ,  and PSAC just 
prior to  the transfer of A C ~  to  PSAC, following execution of the 
instructions  given  in  Table 13. 
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space for a  duplicate of this  matrix, which is then moved to  the 
new space. Otherwise, PSAC is duplicated in the DWD, and m i  is 
set  to point back to this DWD. Finally, the MXST updates  the 
MXOP instruction  counter. 

MXEND terminates the interpretive regime and branches to 
the next  instruction. 

The selection mechanism for the unary  operations MXLT and 
MXLI is simply a branch vector to which an indexed branch is 
taken. The index value, equal to  the TYPE code in H D ~ ,  selects 
the  appropriate branch  instruction  in the branch vector, and 
this  instruction branches directly to  the desired subroutine. The 
functions of MXLT and MXLI are  as follows: 

MXLT requests MAP to assign space in POOL to A C ~  for a copy 
of the addressed matrix. If TYPE # COL, H D ~  and  all  matrix 
elements are  transmitted  to  the new location; if TYPE = COL, 

rows and columns are interchanged during transmission; and if 
TYPE = NULL or COL, the row and column numbers in H D ~  are 
interchanged. Finally, MXLT goes to RETURN, which leaves the 
correct DWD in PSAC, and HD1 pointing to PSAC. 

MXLI requests MAP to assign space in POOL to AC2 for the 
inverse matrix; requests space for 2N ( N  + 1) words of work- 
space if TYPE = SYM or COL; checks HDZ for TYPE # NULL and 
ROW = COL; inverts SCAL and DIAG matrices by reciprocation; 
converts SYM matrix to COL, and  then  inverts  by Gaussian elimina- 
tion; releases workspace if used; and goes to RETURN, which 
leaves the correct DWD in PSAC, and HD1 pointing to PSAC. 

The selection mechanism for the binary  operations MX+, 
MX-, MXN+, MXR*, MXL*, and MXL*I requiresa branch table, 
since two TYPE codes are involved. This  table consists of several 
columns, each of which is a branch vector headed by an indexed 
branch instruction. Using the slnaller of the two operand TYPE 

codes, an indexed branch is executed to  the head of the appropriate 
column in the branch table. The indexed branch instruction found 
there uses the TYPE code of the  other operand to select the proper 
row in that column. In this location, a direct branch to  the desired 
subroutine is executed. 

In all six of these matrix instructions, a check of the dimensions 
of the two operands is made before executing the  instruction; 
if the dimensions are  not compatible, an error message  is printed 
and  the program stops. 

The  three  instructions MX+,  MX-, and MXN+ are handled 
by the same subroutine  after the selection mechanism for addition 
has been used. This is accomplished as follows: after  the TYPE 

code, SIZE, and dimensions of the result matrix  have been  com- 
puted, and a memory assignment has been obtained from MAP, 

the operand  matrix having the higher TYPE code  is  moved into 
the new area, with or without  a change of sign, as required by 
the operation. The other operand matrix is then processed by 
using add-to-memory (M+) or subtract-from-memory (M-) in- 
structions. H D ~  of the result, which corresponds to  that of the 
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the memory allocation has been made. 
The instructions MXR* and MXL* are also handled by the 

same subroutine  after the selection mechanism for multiply  has 
been used. Again, the TYPE code, SIZE, and dimensions of the 
result matrix are automatically computed, and H D ~  is properly 
set  up  by  the chosen subroutine. 

As previously mentioned, MXL*I is a contrived mnemonic 
code that permits use of a single address instruction to call a 
subroutine for solution of equations  rather than for matrix inver- 
sion. Actually, the same subroutine is  used for both MXL*I and 
MXLI, but in different ways. When MXL*I calls the subroutine, 
the number of columns A I  in the implied operand is used in 
requesting a temporary workspace of (M + N )   ( N  + 1) full 
words. This workspace is released after  the computation  has been 
completed. 

In both MXL*I and MXLI, a singular matrix causes the printing 
of an error message, and  then  stops  the program. 

Remarks 
The MARI program could  be implemented without unusual difficulty 
on other computers that have sufficient random-access disk 
storage or bulk core memory. However, as is usual  in  system 
experiments, the special characteristics of the vehicle computer 
were exploited. Thus, several features of the 7030 are used to 
advantage  by  the program. For example, the multi-field structure 
of the 7030 index word permits the use of a single word (the direc- 
tory word) to represent each matrix.  This allows conventional 
indexing of matrices. Moreover, the 7030 machine instructions for 
refilling the index registers prove useful in double-threading the 
hole lists. Finally, the 16 unused floating-point operation codes 
provide a convenient vehicle for the various matrix pseudo 
operations. 

The 7030 Execute Indirect  and  Count (EXIC) instruction 
offers an additional  advantage. The MARI interpreter  must  not 
relinquish control within its domain, even in the case of inter- 
spersed machine instructions (i.e., non-matrix instructions). These 
instructions  are handled under the aegis of the EXIC instruction, 
which lends control to  the object instruction, and updates  a 
pseudo instruction counter in the process. A successful branch 
instruction behaves like an escape attempt; such an  attempt is 
defeated by a compulsory 7030 interrupt (“execute-exception”) 
that restores control to  the interpreter. 

Summary 
The experimental matrix  computation program described in this 
paper embodies dynamic memory allocation of all matrices, and 
enables the user to specify most matrix  operations  by using 
single-address pseudo instructions. Several different matrix  types 
are allowed, and  the most common matrix  operations (addition, 
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Symbol  key (Cont'd.) 

DPOOL 

DSKTOT 

DWA 

DWD 

DWDLNK 

FF 

HD 

HOLLl 

HOLLOC 

HOLSl 

HOLSIZ 

HTOTAL 

LLIM 

LSTHO 

MAP 

MAR1 

MCP 

MXOP 

POOL 

PSAC 

RESERV 

RF 

ROWS 

SIZE 

TYPE 

ULIM 

VF 

WD 

XF 

X W  

extension of POOL in disk  memory 
total space  available  in DPOOL 

directory word address 
directory word 
contains  address of first listed  matrix in DPOOL 

flag field 
header word 
LLIM terminus of hole location  chain 
ULIM terminus of hole location  chain 
largest hole terminus of hole size chain 
smallest hole terminus of hole size chain 
total space  available  in POOL 

lower memory  address of POOL 

contains (1) address of first entry  in disk  list and (2) 
number of disk holes 
memory  allocation  program 
name of the matrix  arithmetic  interpreter described 
IBM 7030 master  control  program 
subroutine  for  matrix  operations 
a region of core memory  for matrix  storage 
a DWD used as a pseudo  accumulator 
disk  storage  area used as workspace 
refill  field 
number of rows of matrix 
size of matrix or hole 
matrix  type code 
upper  memory  address of POOL 

value field 
word 
index flag 
index word 
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