The structure and use of an interpretive program for matrix operations
is treated.

The discussion emphasizes the nature of the programming language
and the method of storage allocation. The system provides aulomalic
storage allocation for external disk storage as well as for core memory.

An interpretive program for matrix arithmetic

by F. H. Branin, Jr., L. V. Hall, J. Suez,
R. M. Carlitz, and T. C. Chen

This paper describes an interpretive system for matrix operations.
Featuring automatic storage allocation for all matrices, the system
provides virtually the same freedom for the coding of matrix opera-
tions as that common in arithmetic operations on individual num-
bers. The allocation scheme, embracing disk storage as well as core
memory, is applicable to a wide range of matrix problems and, in
principle, to a broad class of machine configurations.

For the sake of illustration, the discussion treats an experi-
mental version, called MARI, which has been programmed for the
1BM 7030. A combination of features makes MARI easier to use and
more economical of storage, we believe, than previously-developed
matrix interpreters.’”®

The maRrI program and its associated language were developed
along the following guide lines.

e The only details of storage assignment requiring the user’s
attention should be the designation of a single directory word
for each named matrix and the reservation of space for a
matrix pool.

Specification of operations should be as straightforward as in
standard symbolic programming,

Matrices of several different types and of arbitrary dimensions
should be allowed. To conserve memory, each type should
have its own storage format.

Selection of subroutines to handle operations on the various
matrix types should be completely automatic.
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In accordance with these guide lines, the following main
features were incorporated in MaRrI1. The matrix types permitted
are: null, scalar, diagonal, symmetric, and rectangular. Each
matrix is prefixed by two header words that specify its directory
word address, type, and numbers of rows and columns.

The following matrix operations are allowed: addition, sub-
traction, right- and left-multiplication, transposition, inversion,
solution of linear equations, eigenvalue/eigenvector computations
for symmetric matrices, and input/output. With few exceptions,
these operations are specified by single-address pseudo instructions
that involve entire matrices as the unit of information.

Dynamic memory allocation of all matrices, whether in core
memory or on disk, is combined with indirect addressing of each
matrix by means of a directory word. Thus, matrices can be
indexed as if each were a single word in memory, since each matrix
is fully symbolized by its individual directory word in all pseudo
instructions. :

Pseudo instructions, as well as any interspersed machine
instructions, are executed interpretively.

Subroutines are selected automatically to execute each opera-
tion; where necessary, proper account is taken of matrix types,
and checks are made for dimensional compatibility.

Input/output facilities provide for entering matrices into the
system, extracting them for special processing, and printing them.

These features require a considerable amount of bookkeeping
in allocating memory, in interpreting each matrix operation, and,
in selecting the appropriate subroutine to carry out each matrix
operation. Even so, this work, oceupying only a small percentage
of the total running time, is more than justified by the resulting
convenience to the user.

MARI operates under the control of the 7030 Master Control
Program (Mcp)® and occupies about 3600 full words of core
storage. (A key to the symbols used oceurs at the end of the paper.)
The rest of core storage is available for the programmer’s work
area (programs, data, etc.) and for a Poow, in which matrices are
stored. Except for the area occupied by mcp, disk storage is avail-
able for a pooL extension, called ppooL, and for a special work-
space needed during rearrangements of proor. However, the
user does not need detailed knowledge of pooL and prooL contents
to run his program correctly and, in a majority of cases, efficiently.

Each matrix is referred to indirectly by means of its directory
word (pwb), which is outside rooL and points to the actual loca-
tion of the matrix in poor (or ppooL). KEach matrix in Poow is
prefixed by two header words (up1 and HD2), the first of which
points back to pwb, whereas the second gives the matrix type
and dimensions. A special directory word, called psac, is reserved
for use as a pseudo accumulator which acts for matrix operations
as the counterpart of an ordinary accumulator. For smooth
sequencing of MARI, a subsidiary accumulator (ac2) is provided.

All matrix operations expressible in single-address format are
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Table 1

Instruction Comment

LINK;B,MXOP 'SUBROUTINE LINKAGE

MXL,A 'LOAD MATRIX A

MXR*B 'RIGHT MULTIPLY BY MATRIX B
MXST,C 'STORE RESULT AS MATRIX C
MXEND

written symbolically as floating-point sTRAP instructions with the
prefix Mx. They are assembled by the 7030 sTrRAP-II assembly
program as binary instructions belonging to the set of 16 unused
(normally invalid) floating-point codes on the 1Bm 7030. These
special instructions are then executed interpretively under control
of the subroutine Mmxop.

For example, the matrix operation ¢ = A*B would be coded
as shown in Table 1. The interpreter, which is within the sub-
routine Mxop, retains control until MxEND is encountered. The
symbolic addresses A, B, and ¢ actually refer to the directory
words of the corresponding matrices. During execution, MXL,A
simply loads the pwp at A into Psac. MXR#*,B refers to rsac for
the pwp of its implied operand, and to B for the pwp of its ad-
dressed operand. Space in PooL is automatically assigned for the
result of this operation, and the pwp of the resulting matrix is
placed in psac. Finally, MXST,C copies the pwb in PsAc into the
location ¢. MXEND terminates the interpretive mode of execution.

Thus, MARI enables the user fo perform matrix operations
conveniently, treating each matrix as a single word.

Memory organization and matrix types

The core memory of the 7030 is divided into four main parts
when MARI is used:

e Programmer’s area (for programs, data, workspace, etc.).

¢ Matrix poor (administered by the memory allocation program
in MARI).

¢ MARI program and all its subroutines.

e MmcP (7030 master control program).

The disk storage is divided into three parts:

e DPOOL, an extension of the matrix roor.

e RESERYV, an area used as a workspace.

e McPp work area.

The method of specifying the boundaries of rooL and proor is
described later.

MARI handles six matrix types: null, scalar, diagonal, symmetric,
columnwise rectangular and rowwise rectangular. The type codes
of these matrices can be represented symbolically by the sTrap
code of Table 2.

BRANIN, HALL, SUEZ, CARLITZ, AND CHEN




MARTI limits rectangular matrices to columnwise representation
in the roor. However, the user can enter a columnwise as well
as a rowwise matrix from his data area into the poor; in either
case, the matrix is stored columnwise and assigned the type
code 10.0. The method for entering matrices into the pooL is
described in more detail later.

Instruction Comment

'NULL MATRIX

'SCALAR MATRIX
'"DIAGONAL MATRIX
'SYMMETRICAL MATRIX
'COLUMNWISE MATRIX
'"ROWWISE MATRIX

SYN,0.0
SYN,1.0
SYN,2.0
SYN,5.0
SYN,10.0
SYN,11.0

Whenever a matrix is entered into the poor, its directory
word (Dwp) is stored at the directory word address, pwA, in 7030
index word format.”®'* The format of these index words is given
in Tigure 1. For matrices in the Poor, the index flag (x¥) is set
to zero, and the format is as shown in Figure 2, where HD1a is
the header word 1 address of the matrix in the poor, and sizE
is the number of words occupied by the matrix and its two header
words.

For matrices on the disk, xF is set to 1. Thus, representing
the 3-bit flag field in octal notation, the format is as shown in
Figure 3. Here uD1A is the arc address of ap1 on the disk, each
matrix starting at the beginning of an arec. NEXT pwa is the pwa
of the next-listed matrix on the disk; if this matrix is the last-
listed matrix on the disk, NEXT DWA is zero.

The two header words for each matrix have the format given
in Figure 4, where pwa is the directory word address, TYPE is
the matrix type code, Rows is the number of rows, and cows is the
number of columuns.

The index flag, xF, is not used in either header word; but
in D1, bit 26 = 1 indicates that this matrix must be left in core
(i.e., cannot be moved to the disk) since it is an operand or result
in the matrix operation currently being executed. Figure 5 depicts
the memory layout for several matrices in the pooL.

Following mp2, the matrix elements are stored according to
the conventions presented in Table 3. These conventions are
followed in the print format for each matrix.

The different matrix types are allowed in order to economize
on storage space and computation time whenever permitted by
the structure of a particular matrix. The price paid for this
feature is & number of subroutines for handling the various cases
that arise. However, the gain in capacity and performance hag
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Figure 1 Index word format
VF F RF

1 T 1

25 8 18

VF  The value field is used to mod-
ify the address field of instruc-
tions to produce an effective address.
Numbers are in true form and the
twenty-fifth bit is a sign bit. In
addressing, the first 18 bits apply to
a word address and the remaining
6 bits to a bit address.
FF  The flag field can indicate pro-
grammer-defined properties of
the index word. The first bit in the
field is called the index flag bit.
CF The count field, used primarily
for loop control, is typically
preset to some number, n. A CB
(count and branch) instruction placed
at the bottom of the loop will decrease
the count by one, and branch if and
only if the new count is nonzero.
Concurrent adjustment of the value
field can be specified. When a count
becomes zero, a refill occurs if called
for by a CBR (count, branch, and
refill) instruction.
RF  The refill field usually contains
the address of an index word
which is placed in the register when
refill is requested.

Figure 2 Directory word format
for core storage

[ HDIA IOI SIZE l ] I

Figure 3 Directory word format
for disk storage

I HD1A |4| SIZE I NExT

Figure 4 Header word formats

| DwA

HDIA [ |0|

HD2A ! TYPE IOI ROWS I COoLS ]




been found well worth the effort. Indeed, several more matrix
types (such as tridiagonal, complex, and compound matrices)
could easily be added without unduly increasing the number
of subroutines.

Figure 5 Matrix storage organization
DIRECTORY_WORDS
AL HD1A || SIZE |

HD1B l| SIZE I

|
|
woie || see ||
|

HD1D [l SIZE [
MATRIX B

MATRIX D

MATRIX C

MATRIX A

Toable 3 Matrix storage formats

Type Format

NULL no data needed

SCAL a single floating-point number

DIAG diagonal elements only, as floating-point numbers
in successive storage locations

SYM diagonal and subdiagonal elements only, as
floating-point numbers in successive storage
locations ordered columnwise
all clements as floating-point numbers in suc-
cessive storage locations ordered columnwise

The MARI language and its usage

As mentioned, all single-address symbolic instruections for matrix
operations carry the prefix Mx, and each instruction is converted
by the sTRAP-II assembler into one of the 16 invalid floating-point
machine codes. These codes, along with any legitimate machine
codes that may be interspersed, are identified by the interpretive
section of the subroutine Mxor. Bona fide STRAP instructions are
executed by means of the ExTc instruction (execute indirect and
count), whereas Mx pseudo instructions are executed by means
of appropriate subroutines.
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Table 4 Matrix pseudo instructions

Instruction Function

MXL,A load matrix A

MXLN,B load negative of matrix B
MXLT,C load transpose of matrix C
MXLI,D load inverse of matrix D

MX+,E add matrix E

MX-,F subtract matrix F

MXN+,G negate matrix in PSAC and add matrix G
MXR*H right multiply by matrix H
MXL*1I left multiply by matrix I

MXL*,J left multiply by inverse of matrix J
MXST,K store matrix K

MXREL,L release matrix L (from storage)
MXEND end of matrix interpretation

A list of the 13 implemented matrix pseudo instructions is
given in Table 4. Although not depicted, the addressed operands
in each case can be indexed, if desired, just as in any legitimate
floating-point instruction. Sign modifiers, available on standard
7030 floating-point instructions, are not used in matrix pseudo
instructions. The operand addresses are treated by the sTrAP-11
assembler as if they referred to normalized floating-point numbers.

In writing a program of matrix operations, each matrix may
be regarded as a single entity that can be loaded into or stored
from the pseudo accumulator, psac. All binary operations expect
to find the implied operand in this pseudo accumulator. But
an intermediate result that is not stored from the pseudo accu-
mulator is automatically destroyed by any subsequent operation
that places a new result in the pseudo accumulator. Furthermore,
storing the contents of the pseudo accumulator into a pwp that
already represents a matrix destroys that matrix. Thus the
resemblance to arithmetic operations involving single numbers
is complete.

To illustrate the use of the marI language consider the problem
of solving the matrix equation

AX =B, M

where A is nonsingular and the equation is partitioned as follows:

P Q _ s].
[Q’ R][ ] = [T @
Let us assume that the dimensions of these submatrices are
P : 100 X 100

Q : 100 X 150
R : 150 X 150
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Y,S:100 X 1
Z,T :150 X 1

and that P, @ and R are of arbitrary type, with P nonsingular.
We also assume that the matrices P, @, R, S, and T are already
in the poor, and that a full word is reserved at v, z, p1, @rrI, and
w for directory words of the final and intermediate results.

Expanding Equation 2, we obtain
PY 4 QZ =8 3)
and
Q'Y +RZ=T. 4)
The solutions to these equations are:
Y =P (S — Q%) (5)
Figure 6 Solution of matrix and
equations by partitioning
Z=(R-QPQ7(T — QPS). 6)

MXL1,P D‘l —_—
j An appropriate program for solving this problem is shown in
Table 5. For the dimensions cited, this sequence of operations,

t

q which is depicted in Figure 6, would cause the execution of well
over ten million machine instructions. The greatest demand for
space in the pooL occurs during the execution of the instruction

Table 5

Instruction

Commenti

LINK;B;MXOP
MXLLP
MXST,PI
MXLT,Q
MXR*PI
MXST,QTPI
MXR*Q

MXN +,R

MXST,W
MXLN,S
MXL*QTPI
MX+,T
MXL*I,W

MXST,Z
MXREL,W
MXREL,QTPI
MXL*Q

MXN +,8
MXL*PI
MXST,Y
MXEND

'BEGIN INTERPRETIVE MODE
'LOAD INVERSE OF MATRIX P
'STORE RESULT IN PI

'"LOAD TRANSPOSE OF MATRIX Q
'RIGHT MULTIPLY BY PI

'NEGATE PREVIOUS RESULT AND
'ADD MATRIX R

'"LOAD NEGATIVE OF MATRIX S

'LEFT MULTIPLY BY QTPI

'ADD MATRIX T

'"LEFT MULTIPLY BY INVERSE OF
'MATRIX W

'STORE RESULT AS MATRIX Z

'"RELEASE MATRICES W AND
'QTPI SINCE NO LONGER NEEDED

'STORE RESULT AS MATRIX Y
'END INTERPRETIVE MODE
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MXN--,R. At most, 22,502 words are needed for each of the two
operand matrices and the result matrix, since each of these matrices
has the dimensions 150 X 150. An additional 102 words are needed
for a special matrix, called psrLsT, to be described later. Hence,
the PoolL must contain at least 67,608 words.

The instructions MXL, MXLN, MXLT, MXLI, and MXREL
specify unary operations and thus require only an addressed
operand. All the other instructions (except MXEND, which uses
no operands) require both an addressed operand and an implied
operand, the latter being obtained from psac. The addressed and
implied operands are directory words, representing entire matrices.

The instruction MXL simply places a copy of the addressed
directory word into psac, whereas MXST places a copy of Psac
into the addressed directory word. The instructions MXLN, MXLT,
and MXLI, however, require that a new matrix be generated in
a region of core memory pooL other than that occupied by the
original matrix. A directory word for this new matrix is then
placed in psac—and nowhere else unless and until an MXST
instruction is executed. This process also occurs whenever a new
matrix is generated by executing instructions such as MX-,
MXR#*, ete. Thus, an intermediate result (such as the product
Q'P! in Equation 6) remains unnamed unless it is specifically
assigned a name as the result of an MXST instruction.

Unnamed intermediate results are automatically destroyed
either after they have been used as the implied operand of any
instruction other than MXST, or after they have been “over-
written” by a load-type instruction. The pooL area occupied by
such a matrix is released, i.e., made available for reassignment
by the memory allocation program, mar. Explicit release of a

matrix may be called for by the MXREL instruction, as illustrated
in the previous example.

To show how matrices can be indexed and how sTraP instruc-
tions can be interspersed with mMx pseudo instructions, let us
consider the problem of solving, say, 100 different sets of matrix
equations of the form

AX: =B, i=12 - 100. @)

We will assume that 100 successive directory words, starting at
location A, refer to 100 different square matrices of arbitrary
type and dimensions in the poor and, similarly, that 100 directory
words at B refer to corresponding B matrices (or vectors). Space
for 100 dircctory words at x is reserved for results.

Rather than inverting the matrices, the contrived pseudo
instruction MXL*I (left multiply by the inverse) is used to call
the subroutine for solving the matrix equations in the code shown
in Table 6. Note that the interspersion of standard 7030 instructions
creates no particular difficulties. Except for the COUNT AND
BRANCH instruction (CB+), these instructions are executed under
the EXIC instruction. All branch instructions require special
handling as described later.
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Instruction Comment

LINK;B,MXOP 'CALL MXOP
LVL,$5,0.0 'INITIALIZE INDEX REGISTER 5
LCI,$5,100

JOE MXL,B($5) 'LOAD MATRIX B(I)

MXL*,A($5) 'LEFT MULTIPLY BY INVERSE OF
"MATRIX A(I)

MXST,X($5) 'STORE RESULT AS MATRIX X(I)

CB+,$5,J0E '"REPEAT 100 TIMES

MXEND

In all these computations, the type and dimensions of each
result matrix are implied by the types and dimensions of the
operand matrices. The programmer need not be concerned with
result dimensionality; this question is handled automatically by
the MART program.

Three special subroutines are used for entering matrices into
or retrieving them from the poor, for printing matrices, and for
finding eigenvalues and eigenvectors. These subroutines can be
called either independently of the mxop subroutine or from
within MxoP.

To enter a matrix into the poor, the subroutine Mxro is used.
This subroutine assumes that the matrix elements are stored in
the appropriate sequence in some area, called pATA, outside the
pooL. Using the matrix name, type, and dimensions as specified
in the calling sequence, MX10 requests space in the roor from
the memory allocation program, which creates the directory word
and first header word. Then, MX10 transmits to the pooL all the
matrix elements from pata and, as up2, the last full word in the
calling sequence.

The calling sequence for mx10 is given in Table 7. If the
matrix type has not yet been defined in the maRI program, if the
dimensions are incorrectly specified, or if the matrix to be entered
is too large for the roor, an error message is printed and the
program stops.

MX10 is also used to retrieve a matrix from the poon and
then place its elements in an external pATa area. In this operation,
however, the matrix dimensions are omitted from the calling
sequence, and the size of the pDATA area is given as shown in
Table 8.

Since the actual size and dimensions of the matrix may not
be known explicitly, the size of the pATA area may be insufficient.
In such a case, an error message is given, and the programmer
can find the actual size of the matrix from its directory word.
If the size of the paTa area is sufficient, the matrix elements are
transmitted from the poor to paTa without the header words,
and a copy of HD2 is placed in the index word (xw) of the calling
sequence.

BRANIN, HALL, SUEZ, CARLITZ, AND CHEN




Matrices may be printed, along with an identifying heading,
by calling the subroutine MmxPRNT as shown in Table 9. The print
format employs a heading of identifying information, followed
by the type, number of rows, and number of columns. The matrix
elements are printed as 14-digit normalized floating-point numbers.
Each page can have up to 50 rows and four columns, with the
current row and column number appearing in the appropriate
positions. The print format for each matrix type is designed to
simulate its storage format in the rooL.

For finding eigenvalues and eigenvectors of a symmetric
matrix, a calling sequence corresponding to the matrix equation
AX = XA is used, as shown in Table 10.

Table 7

Instruction Comment

CNOP

LINK;B,MXIO 'CALL MXIO

,DATA 'AREA CONTAINING MATRIX ELEMENTS
,NAME 'MATRIX NAME (ADDRESS OF DWD)
XW,TYPE,ROW,COL 'MATRIX TYPE CODE AND DIMENSIONS

Table 8

Instruction Comment

CNOP

LINK;BMXIO 'CALL MXIO

,DATA 'ADDRESS OF AREA RESERVED
'FOR MATRIX ELEMENTS

,NAME 'MATRIX NAME

XW,SIZE 'SIZE OF DATA AREA

Instruction Comment

LINK;B,MXPRNT 'CALL MXPRNT

,NAME 'MATRIX NAME

JDENT 'ADDRESS OF IDENTIFYING INFOR-
'MATION (ALPHANUMERIC)

Table 10

Instruction Comment

LINK;BMXEIG 'CALL MXEIG

A 'NAME OF MATRIX

,LAMBDA 'DIAGONAL MATRIX OF EIGENVALUES

X 'COLUMNAR MATRIX OF EIGENVECTORS
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Table 11

Instruction

CNOP
LINK;B,MXIO
,DATA1

A

XW,SYM, 10,10
LINK;B,MXIO
,DATA2

B

XW,COL,4,10
LINK;B,MXOP
MXLIA
MXR*B
MXST, X
LINK;BE,MXPRNT
X

,IDX

MXL*A
MX—,B

MXEND

Figure 7 Possible subroutine calls

At present, MxEi¢ does not handle the eigenproblem for
asymmetric matrices since these matrices may have complex
eigenvalues and eigenvectors. The algorithm used for symmetric
matrices is based on Jacobi plane rotations. Extra working space,
amounting to N + (N/2)(N - 1) full words, is used by mxEIiG
and automatically released when the subroutine is finished.

Whenever these three subroutines are called from within the
MxOoP subroutine, the BE (branch enabled) instruction is used to
indicate that the subroutines are to be executed directly instead
of in the interpretive mode. This direct mode of execution is
allowed because these subroutines return to a special location
within MxoP, permitting resumption of the interpretive mode
of operation. Thus, it is possible to write the code of Table 11
for printing an intermediate result without interrupting the
interpretive mode of execution between the call for mxop and
the execution of MXEND.

Figure 7 shows the hierarchy of subroutines that implement
the MaR1 program. The user’s program may call directly any one
of the five subroutines MX0P, MXPRNT, MXEIG, MXIO, O MXSET.
When mxop has been called and still has control, the last four
can also be called indirectly through mxop.

Six subroutines are included in mxoP, namely, the interpreter,
load, load negative, matrix release, MxEND, and store subroutines.
The interpreter acts as the main control center of the MARI
program. It updates the mARrI instruction counter, selects and

USER’S
PROGRAM

—

EIGENVALUE
EIGENVECTOR

L

INTERPRETER
|
i

—

TRANSPOSE MULTIPLY SOLVER

EQUATION

T

MEMORY ALLOCATION
PROGRAM

12
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calls the appropriate subroutines, and updates the pseudo accu-
mulators, psac and Ac2.

Dynamic memory allocation

The memory allocation program, map, administers Poor and
DPOOL, keeping a list of all holes (available blocks of storage)
in both poorL and proor. All unavailable blocks, except the one
reserved for a disk list (pskLst) explained below, are occupied
by matrices. Under the control of MaP, any matrix in PooL may
be moved to make room for a new matrix. Although most of
the matrices in Poor can also be moved to Droor, a specified
few (usually the operands in the operation being performed) must
remain in core. Thus, MAP can be called upon to perform five
different functions:

o Set the boundaries of PooL and, initially, set up proor. (This
is the problem program’s only possible direct request of mar.)
Provide a block of specified size to accommodate a matrix.
Change an unavailable block into an available block when a
matrix is released.

Alter the availability of a matrix for storage on disk.
Move a matrix from core to disk or vice versa.

Before any matrix operation can be executed, the PooL must
be specified. The PooL area must provide both for the matrices
to be handled and for 102 words for the pskLsT described below.
The size of poow is specified by the calling sequence of Table 12,
where LrIM is the address of the first word of Poor. (lowest memory
address), and vLM is the address of the last word of PooL. pIsKMIN
is the minimum matrix size that may be transferred to proor
if more room is needed in the pooL. If DISKMIN is zero, MAP assumes
a value of 257 words, so that only those matrices larger than
half an arc may be sent to prPoOL.

If the boundaries of an existing PooL are moved by a subsequent
call of MxsET, some matrices may have to be sent to prooL to
fit the old pooL into the new pooL area. If the old poor, and new
pooL do not overlap, the contents of the region between them may
be destroyed.

During the first execution of mxseT, the space on disk not
preempted by mcp is divided into two regions: the proor and
the RESERV area. RESERV is used as work space to store the pooL
during a disk squeeze, freeing core memory for use in rearranging
matrices in DPOOL. RESERV occupies, at most, half of the available
disk space, up to a maximum of 64 arcs.

A request for space in the poow is made to MaP in the following
way: the value field of index register 14 specifies the pwa of the
matrix that is to oceupy the requested space; the count field
specifies the size of the matrix.

Whenever a request for memory is made, space is assigned
by maP within the smallest adequate hole and at that end of the
hole which is nearest urLiM. The holes are chained together, both
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double-threaded
hole lists

Figure 8 Formats for first two
words of each hole

PRIOR l
WD1A WEXT WDIAI4{ SIZE I WDiA

PRIOR
WD2A I NEXT WD2AIO| SIZE I WDZA—I

disk hole
list

Figure 9 Formats of chain-termi-
nating words

HOLL1 IT.LIM WD1A |4| o] I 0 ]

ULIM
HOLLOC | 0 |4\ 0 WDI1A

HOLSIZ FIRST WD2A l0| 0 | [} I

HOLS1 | o Iol 0 LAST

WD2A

Figure 11 Formats for header
words of disk hole list

HD1A r IZI
HD2A rl0.0 IOl 100 I 1 J

14

| DSKLSTJ

forward and backward, according to both location in the rooL
and hole size. Since the first two words in each hole are used for
this purpose, a hole of a single word is not permitted. The format
of these two words is given in Figure 8.

In wp1, xr = 1 signifies that this is the first word of a hole
(and not up1 of a matrix); the field NEXT WD14 is the next word 1
address in order of increasing memory location. PRIOR WDIA is
the address of wp1 of the preceding hole in memory. s1zE specifies
the number of words in the hole—including both wp1 and wp2.

In wpe, the field NExXT WD2A signifies the next word 2 address
in order of increasing size, and PRIOR WD2A the address of wp2
of the next smaller hole.

The termini of these two chains are at fixed locations outside
the poor, having the format of Figure 9. Here, LLtM w14 is the
wp1 address nearest LLIM, and ULIM WD14 is that nearest to vLIM.
FIRST WD24 is the wp2 address of the smallest hole, and LAsT WD24
is that of the largest.

Obviously, the refill field at LLIM WD1A must point to HoLLI,
whereas the value field at uvLiM Wp1A must point to HoLLOC in
order to complete the forward and backward chains. Similarly,
at FIRST wp2a, the refill field must point to HowLsiz, whereas at
LAST WD24, the value field must point to HoLS1. A diagram depict-
ing several holes and their linkages is shown in Figure 10.

Since holes also appear between occupied areas on the disk,
a list of disk holes is maintained in a special reserved area of PooL
adjacent to urim. This list is set up as if it were a matrix with
its two header words as shown in Figure 11, i.e., as a columnwise
matrix of 100 rows and 1 column, with pskLsT as its directory
word. This matrix is made ineligible for transmittal to the disk
by setting bit 26 to 1 in HbD1.

Figure 10 Holes and their linkages
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Although more details of the disk-hole list are given later,
it should be noted here that on the very first execution of MxSET,
when the poor is initially established, MaP is requested to assign
102 words to pskLsT. By making this request first, the allocation
of pskLsT to the area just adjacent to vLIiM is assured.

A word outside the poor, called HTOTAL, specifies the cumula-
tive total of space in all the holes in the PoorL. When a request
is made to maP for space in the pooL, the size of this request is
first compared against HTOoTAL and then against the size of the
largest hole, pointed to by morsi. Thus, three situations can
arise. First, if HTOTAL is not large enough to accommodate the
request, a disk operation must be initiated to make space in the
pooL. Second, if HTOTAL is adequate, but the largest hole is not,
a ‘“‘squeeze’”’ operation within the poor is initiated. Third, if the
largest hole is adequate, a search is made for the smallest adequate
hole by following the wp2-chain forward from moLsiz. These
three situations are discussed in reverse order.

Since holes of just one word cannot be allowed, the term
“smallest adequate hole” means any hole whose size exactly equals
or exceeds by two or more words the size of the requested space.
When the smallest adequate hole has been identified, MmaP assigns
space at the vrLmm-end of this hole. Before returning the results
of this assignment to the requesting subroutine, however, Map
updates wp1 and wp2 of this hole to account for its reduced size.
If the hole size becomes zero as the result of an exact fit, the
wp1 and wp2 chains of the remaining holes are linked around
the obliterated hole by updating the words at NeXT WD14, PRIOR
WD1A, NEXT WD2A, and PRIOR wp2A. In addition, MaP updates
the pwp of the matrix, for which space has been requested, by
setting its value field equal to the D1 address and its count field
equal to the size of this matrix. Finally, the HD1 is stored with
its refill field pointing to the pwp and with bit 26 = 1 to indicate
that this matrix must not be sent to nrooL.

When aTOoTAL is adequate to accommodate a storage request,
but the largest hole is too small, a pPooL squeeze is required.
During this squeeze, the appropriate matrices are moved towards
LM to enlarge the hole nearest uvrim until this hole exactly
satisfies the request. A squeeze is effected in three steps.

First, the wp1 chain of holes is followed backward from HoLLOC
until the cumulative sum of hole sizes equals, or exceeds by two
or more words, the requested space. If equality is obtained, the
wp1 address of the hole nearest LLIM becomes the relocation
address, rELoc. Otherwise, RELOC is set equal to this wp1 address
plus the number of excess words. All matrices between RELOC
and wpi1 of the hole nearest uLiM must then be squeezed into a
contiguous block, starting at rRELOC.

Second, using the information in wp1 of the hole containing
RELOC (or of the preceding hole, if RELoc = Wwp1a), HD1 of the
adjacent matrix is picked up. The size of this matrix is determined
from the corresponding pwp. The matrix is then transmitted
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so on, until HTOTAL is large enough for a hole search or roor
squeeze. The disk operation and pool squeeze are shown in
Figure 13.

To provide information for a squeeze of ppooL, the matrices  prootL
in prooL are chained together by the refill field of each pwo. squeeze
The first link on this chain is the word pwpLNk whose refill
field is the pwa of one of the matrices in prooLr. (The refill field
is set equal to zero if prooL is empty.) The refill field of the pwp
of this matrix then points to the pwp of the ‘“next” matrix in
prpooL—and so on, the last pwp having a zero refill field. The
order of matrices in this chain is inconsequential, being determined
by the order in which they are put into proor, rearranged, etc.

As described above, pskrLsT is the pwp of a special matrix
at the vLiM end of PooL containing a list of disk holes. The asso-
ciated word rsTHO has its value field pointing to the first such
disk-hole word, and its count field equal to the number of disk holes.
The elements of this disk-hole matrix are in index word format,
with the value field containing the arc address and the count field
containing the number of arcs of the hole in question. These
disk-hole words are ordered according to increasing arc addresses.

A squeeze of DPOOL is initiated by MaP whenever an adequate
disk hole cannot be found, but pskTot indicates that a combination
of disk holes will satisfy the request for space in prooL. If pskTOT
is too small to accommodate a given matrix in pPooL, the next
available matrix in pooL is tried. If none can be found, the program
stops after printing an error message. The DPooOL squeeze is
effected by placing all or part of the pPoorn onto the RESERV
area of the disk and then using the vacated region of pooL as a
temporary workspace.

If the size of RESERV is smaller than that of poor, only part
of the poou is sent out to REsgrv. The list of disk holes is then
transmitted to the vacated area of poorn. The remaining part

Figure 13 Disk operation and pool squeeze
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of this area—which must be large enough to accept at least one
full arc from the disk—is used in squeezing the proor. All the
matrices in DPooL are then moved to a contiguous block, starting
at the lowest available are address. The list of disk holes and the
chain of matrices in brooL are searched and updated appropriately
during this squeeze operation. Since the number of disk holes
can conceivably exceed 100, additional increments of 50 words
at a time are automatically made for the disklist matrix, always
leaving this matrix at the vrLim end of the roor.

It should be noted that whenever a matrix in prooL is fetched
into pPoor to participate in an operation, this matrix is auto-
matically released from ppoor and all essential bookkeeping fields
are updated.

The interpreter

The subroutine Mxop contains the interpreter as well as the code
for executing the matrix instructions MXIL, MXLN, MXREL,
MXST, and MXEND. All instructions included between the code
LINK;B,MXOP and MXEND are within the domain of mMmxopr and
can be considered as part of the calling sequence to Mmxor, with
MXEND as terminus.

The instructions within the domain of MxopP are examined,
interpreted, and executed sequentially under full control of the
interpreter. Each such instruction is tested for the bit patterns
that correspond to the 16 invalid floating-point codes reserved
for Mx instructions.

Ordinarily, bona fide machine instructions, after being identified
as such, are executed indirectly by means of the 7030 instruction
EXIC. This process enables the interpreter to keep its place.
However, a test is first made for the sequence LINK;BE,---,
since this code is used to signal the direct rather than interpretive
execution of the subroutines MXsET, MXI0, MXPRNT, and MXEIG.
These subroutines are peculiar in that they return to the fixed-
location ExIT inside Mxop. In this way, the interpreter is enabled
to relinquish its control to any of these special subroutines within
the domain of MxoP and then to regain control smoothly at Exrr
without losing its place.

Since these subroutines can also be called from outside the
domain of mMxoP, a test is made at ExiT to determine whether
mxor was in control before the call was made. Control is then
either relinquished or retained, as the case requires.

No other subroutines within the domain of mxop may be
called with LINK;BE, - - -, since MxoP would be forced to relinquish
control. Any subroutine, except MXSET, MXI0, MXPRNT, OI MXEIG,
may be called from within the domain of Mmxor by the sequence
LINK;B,---, but this subroutine will then be executed inter-
pretively. Since this mode of execution is very inefficient, any
long string of machine code should be executed outside the domain
of mxor.
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Whenever an attempt is made to execute a successful branch
instruction (such as B, BB, BIND, or CB)by means of EXIC,
an EXE interrupt occurs, because the location counter has been
altered out of sequence. MxoP negotiates with Mcp to take this
interrupt and handle it as follows: the subject branch instruction
is copied from its original location to a place inside Mmxor, where
its address is replaced by a fixed address in mxor. This branch
instruction is then executed. At the fixed address to which it
branches, a transfer to its original effective address is made under
control of Mxop.

In this way, the interpreter can maintain control and follow
the proper sequence of instructions within its domain. However,
a branch to mMcr cannot be handled properly by mMxop, since the
instruction B,$MCP would be removed from its context before
being executed; this vitiates the calling sequence for mcp.

When an Mx instruction has been identified by mxop, the
effective address of the pwp of its addressed operand (if any) is
computed. (Indexing of MX operands is freely permitted, using
index registers 1 through 13.) This pwp is then examined to see
if the subject matrix is already in pooL. If not, it is automatically
fetched from proor. If the matrix does not exist, an error message
is printed.

HD1 of the matrix is then flagged (bit 26 = 1) to indicate that
this matrix is essential to the operation about to be executed
and, therefore, not available for transmittal to ppooL.

MxoP then relinquishes control to the appropriate arithmetic
subroutine, passing along to it the pwa, sizg, and Hp2 of the
implied operand (if any) and of the addressed operand.

After the arithmetic subroutine has done its task, it branches
to a fixed location in mxopr (called RETURN), leaving the pwp
of the result matrix in the fixed location Ac2, also inside mMxop.
Ac2 acts as a temporary second accumulator.

At RETURN, a decision is made whether or not to release
the matrix whose pwp appears in psac. If this matrix is an un-
named intermediate result (i.e., has no pwp other than psac),
it is released; otherwise, it is not released. The operands of the
MX instruction just executed are then unflagged by setting bit 26
to 0 in mp1. Next, the pwp in ac2 is copied into psac, and the
corresponding mp1 is updated to point to psac if and only if
it had been pointing to acz. (In the case of an MxXL instruction,
a copy of the pwp is put into ace, but Hp1 still points to the
original pwa. At RETURN, Ac2 is copied into psac, but HD1 is
left pointing to pwa.) It should be noted that, in this case, HD1
will have already been flagged as a consequence of a request
to Map for assignment of space to ac2. Finally, the pseudo in-
struction counter within mxop is updated, and the next instruction
is decoded.

Figure 14 illustrates the status of the poor, ace, and psac just
prior to the transfer of ac2 to psac, following execution of the
instructions given in Table 13.
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MXL,A
MX+,B
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Figure 14 Accumulator usage and storage allocation
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Arithmetic subroutines

As previously mentioned, the subroutines Mx1L, MXLN, MXREL,
mxsT, and MXEND are contained within mxop. These operations,
which are simple and require no selection mechanism, are de-
seribed first.

MXL loads Ac2 with a copy of the pwp of its addressed operand ;
unary it then goes to rRETURN, which leaves the correct pwp in Ppsac,
operations and HD1 pointing to the original pwa.

MXLN requests MAP to assign space in PooL to Ac2 for a copy
of the addressed matrix; transmits up2 unchanged to the new
location followed by all the matrix elements with changed sign;
and goes to RETURN, which leaves the correct pwp in psac, and
HDI pointing to psac.

MXREL zeros out pwbp and releases the matrix area in pooL or
pPoOL. In pooL, either HD1 and HD2 are replaced by wp1 and wp2
of a hole, or the released area is merged with adjacent hole(s).
In proor, the hole is added to the disk-hole list (in pskLsT)
or merged with adjacent hole(s) therein. Instead of going to
RETURN, MXREL updates the MXop instruction counter.

MxsT effects the release of the matrix (if any) pointed to by
the addressed pwp. If Psac refers to a named matrix (i.e., HDI
does not point back to Psac), MAP is requested to assign a new
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space for a duplicate of this matrix, which is then moved to the
new space. Otherwise, psac is duplicated in the pwp, and up1 is
set to point back to this pwp. Finally, the mxsT updates the
MXOP instruction counter.

MXEND terminates the interpretive regime and branches to
the next instruction.

The selection mechanism for the unary operations mxvur and
MXLI is simply a branch vector to which an indexed branch is
taken. The index value, equal to the TYPE code in HD2, selects
the appropriate branch instruction in the branch vector, and
this instruction branches directly to the desired subroutine. The
functions of mxrr and MxLI are as follows:

MXLT requests MAP to assign space in POOL to Ac2 for a copy
of the addressed matrix. If TyPE # cor, Hp2 and all matrix
elements are transmitted to the new location; if TyrE = cor,
rows and columns are interchanged during transmission; and if
TYPE = NULL Or COL, the row and column numbers in #HD2 are
interchanged. Finally, MXLT goes to RETURN, which leaves the
correct DWD in PsAc, and HD1 pointing to pPsac.

MXLI requests MAP to assign space in PooL to Ac2 for the
inverse matrix; requests space for 2N (N + 1) words of work-
space if TYPE = sYM or coL; checks uHp2 for TYyPE # NULL and
ROW = coL; inverts scaL and praG matrices by reciprocation;
converts SYM matrix to cor, and then inverts by Gaussian elimina-
tion; releases workspace if used; and goes to RETURN, which
leaves the correct pwp in Psac, and HD1 pointing to psac.

The selection mechanism for the binary operations MX-,
MX—, MXN+, MXR#*, MXL*, and MXL#*I requires a branch table,
since two TYPE codes are involved. This table consists of several
columns, each of which is a branch vector headed by an indexed
branch instruction. Using the smaller of the two operand TyrE
codes, an indexed branch is executed to the head of the appropriate
column in the branch table. The indexed branch instruction found
there uses the TYpE code of the other operand to select the proper
row in that column. In this location, a direct branch to the desired
subroutine is executed.

In all six of these matrix instructions, a check of the dimensions
of the two operands is made before executing the instruction;
if the dimensions are not compatible, an error message is printed
and the program stops.

The three instructions MX+, MX~—, and MXN+ are handled
by the same subroutine after the selection mechanism for addition
has been used. This is accomplished as follows: after the TYPE
code, s1zE, and dimensions of the result matrix have been com-
puted, and a memory assignment has been obtained from map,
the operand matrix having the higher TYPE code is moved into
the new area, with or without a change of sign, as required by
the operation. The other operand matrix is then processed by
using add-to-memory (M) or subtract-from-memory (M—) in-
structions. up2 of the result, which corresponds to that of the
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operand of higher TYPE code, is automatically set up just after
the memory allocation has been made.

The instructions MXR* and MXL* are also handled by the
same subroutine after the selection mechanism for multiply has
been used. Again, the TYpE code, sizr, and dimensions of the
result matrix are automatically computed, and HD2 is properly
set up by the chosen subroutine.

As previously mentioned, MXL*I is a contrived mnemonic
code that permits use of a single address instruction to call a
subroutine for solution of equations rather than for matrix inver-
sion. Actually, the same subroutine is used for both MXL*I and
MXLI, but in different ways. When MXIL*I calls the subroutine,
the number of columns M in the implied operand is used in
requesting a temporary workspace of (M + N) (N + 1) full
words. This workspace is released after the computation has been
completed.

In both MXL*I and MXLI, a singular matrix causes the printing
of an error message, and then stops the program.

Remarks

The mMarI program could be implemented without unusual difficulty
on other computers that have sufficient random-access disk
storage or bulk core memory. However, as is usual in system
experiments, the special characteristics of the vehicle computer
were exploited. Thus, several features of the 7030 are used to
advantage by the program. For example, the multi-field structure
of the 7030 index word permits the use of a single word (the diree-
tory word) to represent each matrix. This allows conventional
indexing of matrices. Moreover, the 7030 machine instructions for
refilling the index registers prove useful in double-threading the
hole lists. Finally, the 16 unused floating-point operation codes
provide a convenient vehicle for the various matrix pseudo
operations.

The 7030 Execute Indirect and Count (EXIC) instruction
offers an additional advantage. The MaR1 interpreter must not
relinquish control within its domain, even in the case of inter-
spersed machine instructions (i.e., non-matrix instructions). These
instructions are handled under the aegis of the EXIC instruction,
which lends control to the object instruction, and updates a
pseudo instruction counter in the process. A successful branch
instruction behaves like an escape attempt; such an attempt is
defeated by a compulsory 7030 interrupt (‘“‘execute-exception”)
that restores control to the interpreter.

Summary

The experimental matrix computation program described in this
paper embodies dynamic memory allocation of all matrices, and
enables the user to specify most matrix operations by using
single-address pseudo instructions. Several different matrix types
are allowed, and the most common matrix operations (addition,
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subtraction, right- and left-hand multiplication, transposition,
inversion, solution of linear equations and eigenvalue/eigenvector
computations) have been implemented. If desired, additional
matrix types and/or matrix operations may be incorporated.

A matrix computation language, similar in structure to the
7030 symbolic language, has been developed. Matrix pseudo in-
structions can be interspersed with machine instructions; under
control of the interpreter, both types of instructions are executed
interpretively.

The memory allocation solution applies to disk as well as
core memory. The algorithm used for memory allocation is not
claimed to be optimal; as is well known, the efficiency of any such
algorithm is highly problem dependent. However, the algorithm
chosen is a reasonable approach to a variety of representative
problems.
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Symbol key

AC2 auxiliary pseudo accumulator

CF count field

COLS number of columns of matrix

DATA data area outside the pool

DISKMIN minimum size of matrix to be transmitted to proor
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Symbo! key (Cont'd.)

DPOOL extension of pooLr in disk memory

psrToT  total space available in pPooOL

DWA directory word address

DWD directory word

DWDLNK contains address of first listed matrix in prooL

FF flag field

HD header word

HOLLI LLIM terminus of hole location chain

HOLLOC ULIM terminus of hole location chain

HOLS1 largest hole terminus of hole size chain

aoLsiz  smallest hole terminus of hole size chain

HTOTAL total space available in ool

LLIM lower memory address of PooL

LSTHO contains (1) address of first entry in disk list and (2)
number of disk holes

MAP memory allocation program

MART name of the matrix arithmetic interpreter described

MCP 1BM 7030 master control program

MXOP subroutine for matrix operations

POOL a region of core memory for matrix storage

PSAC a DWD used as a pseudo accumulator

RESERV  disk storage area used as workspace

RF refill field

ROWS number of rows of matrix

SIZE size of matrix or hole

TYPE matrix type code

ULIM upper memory address of PoOL

VF value field

WD word

XF index flag

XW index word
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