
The structure and use of a n interpretive program for matrix operations
is treated.

The discussion emphasizes the nature of the programming language
and the method of storage allocation. The system provides automatic
storage allocation for external disk storage as well as for core memory.

An interpretive program for matrix arithmetic
by F. H. Branin, Jr., L. V. Hall, J. Suez,
R. M. Carlitz, and T. C. Chen

This paper describes an interpretive system for matrix operations.
Featuring automatic storage allocation for all matrices, the system
provides virtually the same freedom for the coding of matrix opera-
tions as that common in arithmetic operations on individual num-
bers. The allocation scheme, embracing disk storage as well as core
memory, is applicable to a wide range of matrix problems and, in
principle, to a broad class of machine configurations.

For the sake of illustration, the discussion treats an experi-
mental version, called MARI, which has been programmed for the
IBM 7030. A combination of features makes MARI easier to use and
more economical of storage, we believe, than previously-developed
matrix interpreters.l-'

The MARI program and its associated language were developed
along the following guide lines.

The only details of storage assignment requiring the user's
attention should be the designation of a single directory word
for each named matrix and the reservation of space for a
matrix pool.
Specification of operations should be as straightforward as in
standard symbolic programming.
Matrices of several different types and of arbitrary dimensions
should be allowed. To conserve memory, each type should
have its own storage format.
Selection of subroutines to handle operations on the various
matrix types should be completely automatic.

2 IBM SYSTEMS JOURNAL VOL. 4 NO. 1 - 1965

In accordance with these guide lines, the following main principal
features were incorporated in MARI. The matrix types permitted features
are: null, scalar, diagonal, symmetric, and rectangular. Each
matrix is prefixed by two header words that specify its directory
word address, type, and numbers of rows and columns.

The following matrix operations are allowed: addition, sub-
traction, right- and left-multiplication, transposition, inversion,
solution of linear equations, eigenvalue/eigenvector computations
for symmetric matrices, and input/output. With few exceptions,
these operations are specified by single-address pseudo instructions
that involve entire matrices as the unit of information.

Dynamic memory allocation of all matrices, whether in core
memory or on disk, is combined with indirect addressing of each
matrix by means of a directory word. Thus, matrices can be
indexed as if each were a single word in memory, since each matrix
is fully symbolized by its individual directory word in all pseudo
instructions.

Pseudo instructions, as well as any interspersed machine
instructions, are executed interpretively.

Subroutines are selected automatically to execute each opera-
tion; where necessary, proper account is taken of matrix types,
and checks are made for dimensional compatibility.

Input/output facilities provide for entering matrices into the
system, extracting them for special processing, and printing them.

These features require a considerable amount of bookkeeping
in allocating memory, in interpreting each matrix operation, and,
in selecting the appropriate subroutine to carry out each matrix
operation. Even so, this work, occupying only a small percentage
of the total running time, is more than justified by the resulting
convenience to the user.

Program (MCP)' and occupies about 3600 full words of core
storage. (A key to the symbols used occurs at the end of the paper.)
The rest of core storage is available for the programmer's work
area (programs, data, etc.) and for a POOL, in which matrices are
stored. Except for the area occupied by MCP, disk storage is avail-
able for a POOL extension, called DPOOL, and for a special work-
space needed during rearrangements of DPOOL. However, the
user does not need detailed knowledge of POOL and DPOOL contents
to run his program correctly and, in a majority of cases, efficiently.

Each matrix is referred to indirectly by means of its directory matrix
word (DWD), which is outside POOL and points to the actual loca- addressing
tion of the matrix in POOL (or DPOOL). Each matrix in POOL is
prefixed by two header words (HDI and H D ~) , the first of which
points back to DWD, whereas the second gives the matrix type
and dimensions. A special directory word, called PSAC, is reserved
for use as a pseudo accumulator which acts for matrix operations
as the counterpart of an ordinary accumulator. For smooth
sequencing of MARI, a subsidiary accumulator (A C ~) is provided.

All matrix operations expressible in single-address format are

MARI operates under the control of the 7030 Master Control control

AN INTERPRETIVE PROGRAM FOR MATRIX ARITHMETIC 3

Table 1

Instruction

LINK;B,MXOP 'SUBROUTINE LINKAGE
MXL,A 'LOAD MATRIX A
MXR*,B 'RIGHT MULTIPLY BY MATRIX B
MXST,C 'STORE RESULT AS MATRIX C
MXEND

written symbolically as floating-point STRAP instructions with the
prefix MX. They are assembled by the 7030 STRAP-11 assembly
program as binary instructions belonging to the set of 16 unused
(normally invalid) floating-point codes on the IBM 7030. These
special instructions are then executed interpretively under control
of the subroutine MXOP.

For example, the matrix operation c = A*B would be coded
example as shown in Table 1. The interpreter, which is within the sub-

routine MXOP, retains control until MXEND is encountered. The
symbolic addresses A, B, and c actually refer to the directory
words of the corresponding matrices. During execution, MXL,A
simply loads the DWD a t A into PSAC. MXR*,B refers to PSAC for
t,he DVD of its implied operand, and to B for the DWD of its ad-
dressed operand. Space in POOL is automatically assigned for the
result of this operation, and the DWD of the resulting matrix is
placed in PSAC. Finally, MXST,C copies the DWD in PSAC into the
location c . MXEND terminates the interpretive mode of execution.

Thus, MARI enables the user to perform matrix operations
conveniently, treating each matrix as a single word.

Memory organization and matrix types

The core memory of the 7030 is divided into four main parts
when MARI is used:

Programmer's area (for programs, data, workspace, etc.).
Matrix POOL (administered by the memory allocation program

MARI program and all its subroutines.
MCP (7030 master control program).

The disk storage is divided into three parts:
DPOOL, an extension of the matrix POOL.

RESERV, an area used as a workspace.
MCP work area.

The method of specifying the boundaries of POOL and DPOOL is
described later.

MARI handles six matrix types: null, scalar, diagonal, symmetric,
matrix types columnwise rectangular and romwise rectangular. The type codes

of these matrices can be represented symbolically by the STRAP

code of Table 2.

in MARI).

4 BRANIN, HALL, SUEZ, CARLITZ, AND C H E N

MARI limits rectangular matrices to columnwise representation Figure 1 Index word format

in the POOL. However, the user can enter a columnwise as well
as a rowwise matrix from his data area into the POOL; in either
case, the matrix is stored columnwise and assigned the type
code 10.0. The method for entering matrices into the POOL is
described in more detail later.

V F The value field is used to mod-
ify the address field of inetrnn-

tions to produce an effective ai
Numbers are in true form &I

Name Instruction Comment held is called the zndex / lag tnt
CF The count f i

~- . .
for loop co

NULL SYN,O. 0 'NULL MATRIX
SCAL SYN,l. 0 'SCALAR MATRIX

preset to some I
(count and branch
at the bottom of th
the count bv one.

DIAG SYN;2.0 ' DIAGONAL MATRIX only if the" new

SYM SYN,5.0 'SYMMETRICAL MATRIX

ROW SYN,11 .0 'ROWWISE MATRIX

count is nonzero.
. ""

Concurrent adjust-" nf

field can be speclf
becomes zero a retill occurs It
for by a CB'R (count, brancl
refill) instruction.
RF The refill field usually COnf ,9 inR

COL SYN,10.0 'COLUMNWISE MATRIX

which is placed in the register when
the address of an index word

refill is requested.

Whenever a matrix is entered into the POOL, its directory
word (DWD) is stored at the directory word address, DIVA, in 7030
index word The format of these index words is given
in Figure 1. For matrices in the POOL, the index flag (XF) is set
to zero, and the format is as shown in Figure 2, where HDIA is
the header word 1 address of the matrix in the POOL, and SIZE

is the number of words occupied by the matrix and its two header
words.

the 3-bit flag field in octal notation, the format is as shown in
Figure 3. Here HDlA is the arc address of HD1 on the disk, each H D l A 0 SIZE 0

matrix starting at the beginning of an arc. NEXT DWA is the DWA

L of the next-listed matrix on the disk; if this matrix is the last-
listed matrix on the disk, NEXT DIVA is zero.

The two header words for each matrix have the format given
in Figure 4, where DWA is the directory word address, TYPE is
the matrix type code, ROWS is the number of rows, and COLS is the
number of columns.

in HD1, bit 26 = 1 indicates that this matrix must be left in core
(i.e., cannot be moved to the disk) since it is an operand or result I HDlA 1 4 1 SIZE ["6,",' I
in the matrix operation currently being executed. Figure 5 depicts
the memory layout for several matrices in the POOL.

Following H D ~ , the matrix elements are stored according to
the conventions presented in Table 3. These conventions are
followed in the print format for each matrix.

The different matrix types are allowed in order to economize
on storage space and computation time whenever permitted by Figure 4 Header word formats

the structure of a particular matrix. The price paid for this HDIA 0 DIl

feature is a number of subroutines for handling the various cases
that arise. However, the gain in capacity and performance has HDPA TYPE 1'1 I 'OLS 1

For matrices on the disk, XF is set to 1. Thus, representing Figure 2 Directory word format
for 'Ore

The index flag, XF, is not used in either header word; but Figure 3 Directory word format
for disk

AN INTERPRETIVE PROGRAM FOR MATRIX ARITHMETIC 5

been found well worth the effort. Indeed, several more matrix
types (such as tridiagonal, complex, and compound matrices)
could easily be added without unduly increasing the number
of subroutines.

Figure 5 Matrix storage organization

B HDlB SIZE

I Table 3 Matrix storage formats

MATRIX C

MATRIX A

Type Format

NULL no data needed
SCAL a single floating-point number
DIAG diagonal elements only, as floating-point numbers

in successive storage locations
SYM diagonal and subdiagonal elements only, as

floating-point numbers in successive storage
locations ordered columnwise

cessive storage locations ordered columnwise
COL all clernents as floating-point numbers in suc-

I The MARI language and its usage
As mentioned, all single-address symbolic instructions for matrix
operations carry the prefix MX, and each instruction is converted
by the STRAP-11 assembler into one of the 16 invalid floating-point
machine codes. These codes, along with any legitimate machine
codes that may be interspersed, are identified by the interpretive
section of the subroutine MXOP. Bonn fide STRAP instructions are
executed by means of the EXTC instruction (execute indirect and
count), whereas MX pseudo instructions are cxecuted by means
of appropriate subroutines.

I 6 BRANIN, HALL, SUEZ, CARLITZ, AND CHEN

Table 4 Matrix pseudo instructions

Instruction Function

MXL,A
MXLN,B
MSLT,C
MXLI,D
MX+,E

MXN+,G
MXR*,H
MXL*.I

MX--,F

load matrix A
load negative of matrix B
load transpose of matrix C
load inverse of matrix D
add matrix E
subtract matrix F
negate matrix in PSAC and add matrix G
right multiply by matrix H
left multidv bv matrix I

MXST,K store matrix K
MSREL,L release matrix L (from storage)
MXEND end of matrix interpretation

A list of the 13 implemented matrix pseudo instructions is pseudo
given in Table 4. Although not depicted, the addressed operands instructions
in each case can be indexed, if desired, just as in any legitimate
floating-point instruction. Sign modifiers, available on standard
7030 floating-point instructions, are not used in matrix pseudo
instructions. The operand addresses are treated by the STRAP-11

assembler as if they referred to normalized floating-point numbers.
In writing a program of matrix operations, each matrix may

be regarded as a single entity that can be loaded into or stored
from the pseudo accumulator, PSAC. All binary operations expect
to find the implied operand in this pseudo accumulator. But
an intermediate result that is not stored from the pseudo accu-
mulator is automatically destroyed by any subsequent operation

’ that places a new result in the pseudo accumulator. Furthermore,
storing the contents of the pseudo accumulator into a DWVD that
already represents a matrix destroys that matrix. Thus the
resemblance to arithmetic operations involving single numbers
is complete.

To illustrate the use of the MARI language consider the problem illustrative I of solving the matrix equation problem

AX = B, (1)

where A is nonsingular and the equation is partitioned as follows:

Let us assume that the dimensions of these submatrices are

P : 100 x 100

Q : 100 X 150

R : 150 X 150

Y , As : 100 x 1

2, T : 150 X 1

and that P, Q and R are of arbitrary type, with P nonsingular.
We also assume that the matrices P, Q, R, X, and T are already
in the POOL, and that a full word is reserved a t Y, z, PI, QTPI, and
w for directory words of the final and intermediate results.

Expanding Equation 2, we obtain

P Y + Q Z = X (3)

and

Q t Y + RZ = T . (4)

The solutions to these equations a,re:

Y = P"(8 - QZ) (5)
Figure 6 Solution of matrix
equations by partitioning

and

MXLI,P 0" 4 0 Z = (R - Q'f"'&)"(T - &'P"S). (6)
P P"

An appropriate program for solving this problem is shown in
MXLT,Q 0' Table 5. For the dimensions cited, this sequence of operations,

Q - 0 which is depicted in Figure 6, would cause the execution of well
Q'

over ten million machine instructions. The greatest demand for
MXR.,PI 0.g - 0 space in the POOL occurs during the execution of the instruction

Q' P'P"

I MXR',Q 0.g -r 0 Table 5

Q'P" Q'P" Q Instruction Comment

I Q'P"Q R

MXN+,S -0 + 1
QZ S S-QZ

L1NK;B;MXOP
MXL1,P
MXST,PI
MXLT,Q
MXR*,PI
MXST,QTPI
MXR*,Q
MXN +,R

'BEGIN INTERPRETIVE MODE
'LOAD INVERSE OF MATRIX P
'STORE RESULT IN PI
'LOAD TRANSPOSE OF MATRIX Q
'RIGHT MULTIPLY BY PI

'NEGATE PREVIOUS RESULT AND
'ADD MATRIX R

MXST,W

MXL*,QTPI
MX+,T
MXL*I,W

MXT,N,S 'LOAD NEGATIVE OF MATRIX S
'LEFT MULTIPLY BY QTPI
'ADD MATRIX T
'LEFT MULTIPLY BY INVERSE O F

'STORE RESULT AS MATRIX Z
'RELEASE MATRICES W AND

'MATRIX W

'QTPI SINCE NO LONGER NEEDED

MXST,Z
MXREL,W
MXREL,QTPI
MXL*,Q

MXL',PI 0 *I -C 0 MXN+,S
P-' S-QZ Y MXL*,PI

MXST,Y 'STORE RESULT AS MATRIX Y
MXEND 'END INTERPRETIVE MODE

I 8 BRANIN, HALL, SUEZ, CARLITZ, AND CHEN

I MXN+,R. At most, 22,502 words are needed for each of the two
operand matrices and the result matrix, since each of these matrices
has the dimensions 150 x 150. An additional 102 words are needed
for a special matrix, called DSKLST, to be described later. Hence,
the POOL must contain a t least 67,608 words.

The instructions MXL, MXLN, MXLT, MXLI, and MXREL
specify unary operations and thus require only an addressed
operand. All the other instructions (except MXEND, which uses
no operands) require both an addressed operand and an implied
operand, the latter being obtained from PSAC. The addressed and

~ implied operands are directory words, representing entire matrices.
i The instruction MXL simply places a copy of the addressed

directory word into PSAC, whereas MXST places a copy of PSAC

into the addressed directory word. The instructions MXLN, MXLT,
and MXLI, however, require that a new matrix be generated in
a region of core memory POOL other than that occupied by the
original matrix. A directory word for this new matrix is then
placed in PsAc-and nowhere else unless and until an MXST
instruction is executed. This process also occurs whenever a new
matrix is generated by executing instructions such as b f x f ,
MXR*, etc. Thus, an intermediate result (such as the product
Q'P" in Equation 6) remains unnamed unless it is specifically
assigned a name as the result of an MXST instruction.

Unnamed intermediate results are automatically destroyed
either after they have been used as the implied operand of any
instruction other than MXST, or after they have been "over-
written" by a load-type instruction. The POOL area occupied by
such a matrix is released, i.e., made available for reassignment
by the memory allocation program, MAP. Explicit release of a
matrix may be called for by the MXREL instruction, as illustrated
in the previous example.

To show how matrices can be indexed and how STRAP instruc-
tions can be interspersed with MX pseudo instructions, let us
consider the problem of solving, say, 100 different sets of matrix
equations of the form

A,X, = B,; i = 1 , 2, . ' * 100. (7)

We will assume that 100 successive directory words, starting a t
location A, refer to 100 different square matrices of arbitrary
type and dimensions in the POOL and, similarly, tha,t 100 directory
words at B refer to corresponding I3 matrices (or vectors). Space
for 100 dircctory words a t x is reserved for results.

Rather than inverting the matrices, the contrived pseudo
instruction MXL*I (left multiply by the inverse) is used to calI
the subroutine for solving the matrix equations in the code shown
in Table 6. Note that the interspersion of standard 7030 instructions
creates no particular difficulties. Except for the COUNT ANI)
BRANCH instruction (CB+), these instructions are executed under
the EXIC instruction. All branch instructions require special
handling as described later.

A N INTERPRETIVE PROGRAM FOR MATRIX ARITHMETIC

intermediate
operand
addressing

operand
release

indexing
example

9

Table 6

Instruction Comment

LINK;B,MXOP 'CALL MXOP
LVI,$5,0.0 'INITIALIZE INDEX REGISTER 5
LCI,t5,100

JOE MXL,B($B) 'LOAD MATRIX B(1)

MXL*I,A($5) 'LEFT MULTIPLY BY INVERSE OF

MXST,X($5) 'STORE RESULT AS MATRIX X(1)
CB+,$5,JOE 'REPEAT 100 TIMES
MXEND

'MATRIX A(1)

In all these computations, the type and dimensions of each
result result matrix are implied by the types and dimensions of the
dimensionality operand matrices. The programmer need not be concerned with

result dimensionality; this question is handled automatically by
the MARI program.

Three special subroutines are used for entering matrices into
or retrieving them from the POOL, for printing matrices, and for
finding eigenvalues and eigenvectors. These subroutines can be
called either independently of the MXOP subroutine or from
within MXOP.

To enter a matrix into the POOL, the subroutine MXIO is used.
input This subroutine assumes that the matrix elements are stored in

the appropriate sequence in some area, called DATA, outside the
POOL. Using the matrix name, type, and dimensions as specified
in the calling sequence, MXIO requests space in the POOL from
the memory allocation program, which creates the directory word
and first header word. Then, MXIO transmits to the POOL all the
matrix elements from DATA and, as H D ~ , the last full word in the
calling sequence.

The calling sequence for MXIO is given in Table 7. If the
matrix type has not yet been defined in the MARI program, if the
dimensions are incorrectly specified, or if the matrix to be entered
is too large for the POOL, an error message is printed and the
program stops.

MXIO is also used to retrieve a matrix from the POOL and
output then place its elements in an external DATA area. In this operation,

however, the matrix dimensions are omitted from the calling
sequence, and the size of the DATA area is given as shown in
Table 8.

Since the actual size and dimensions of the matrix may not
be known explicitly, the size of the DATA area may be insufficient.
In such a case, an error message is given, and the programmer
can find the actual size of the matrix from its directory word.
If the size of the DATA area is sufficient, the matrix elements are
transmitted from the POOL to DATA without the header words,
and a copy of H D ~ is placed in the index word (xw) of the calling
sequence.

10 BRANIN, HALL, SUEZ, CAFZLITZ, AND CHEN

Matrices may be printed, along with an identifying heading,
by calling the subroutine MXPRNT as shown in Table 9. The print
format employs a heading of identifying information, followed
by the type, number of rows, and number of columns. The matrix
elements are printed as 14-digit normalized floating-point numbers.
Each page can have up to 50 rows and four columns, with the
current row and column number appearing in the appropriate
positions. The print format for each matrix type is designed to
simulate its storage format in the POOL.

For finding eigenvalues and eigenvectors of a symmetric
matrix, a calling sequence corresponding to the matrix equation
A X = XA is used, as shown in Table 10.

Table 7

Instruction Comment

CNOP
LINK;B,MXIO 'CALL MXIO
,DATA 'AREA CONTAINING MATRIX ELEMENTS
,NAME 'MATRIX NAME (ADDRESS OF DWD)
XW,TYPE,ROW,COL 'MATRIX TYPE CODE AND DIMENSIONS

Table 8

Instruction Comment

CNOP
LINK;B,MXIO 'CALL MXIO
,DATA 'ADDRESS OF AREA RESERVED

,NAME 'MATRIX NAME
XW,SIZE 'SIZE OF DATA AREA

'FOR MATRIX ELEMENTS

Table 9

Instruction Comment

LINK;B,MXPRNT 'CALL MXPRNT
,NAME 'MATRIX NAME
,IDENT 'ADDRESS OF IDENTIFYING INFOR-

'MATION (ALPHANUMERIC)

Table 10

Instruction Comment

LINK;B,MXEIG 'CALL MXEIG

,LAMBDA 'DIAGONAL MATRIX OF EIGENVALUES
4 'NAME OF MATRIX

,X 'COLUMNAR MATRIX OF EIGENVECTORS

AN INTERPRETIVE PROGRAM FOR MATRIX ARITHMETIC

printing

eigenproblern

Table 1 1

Instruction

CNOP
LINK;B,MXIO
,DATA1
,A
XW,SYM,10,10
LINK;B,MXIO
,DATA2
,B
XW,COL,4,10
LINK;B,MXOP
MXL1,A
MXR*,B
MXST,X
LINK;BE,MXPRNT
,x
,IDX
MXL*, A
MX-,B

MXEND

Figure 7 Possible subroutine calls

r
L

At present, MXEIG does not handle the eigenproblem for
asymmetric matrices since these matrices may have complex
eigenvalues and eigenvectors. The algorithm used for symmetric
matrices is based on Jacobi plane rotations. Extra working space,
amounting to N + (N / 2) (N + 1) full words, is used by MXEIG

and automatically released when the subroutine is finished.
Whenever these three subroutines are called from within the

MXOP subroutine, the BE (branch enabled) instruction is used to
indicate that the subroutines arc to be executed directly instead
of in the interpretive mode. This direct mode of execution is
allowed because these subroutines return t o a special location
within MXOP, permitting resumption of the interpretive mode
of operation. Thus, it is possible to write the code of Table 11
for printing an intermediate result without interrupting the
interpretive mode of execution between the call for MXOP and
the execution of MXEND.

Figure 7 shows the hierarchy of subroutines that implement
the MARI program. The user's program may call directly any one
of the five subroutines MXOP, MXPRNT, MXEIG, MXIO, or MXSET.

When MXOP has been called and still has control, the last four
can also be called indirectly through MXOP.

Six subroutines are included in MXOP, namely, the interpreter,
load, load negative, matrix release, MXEND, and store subroutines.
The interpreter acts as the main control center of the MARI

program. It updates the MARI instruction counter, selects and

MXOP
I

PROGRAM
USER'S r------l r------1

/ LOAD I I 4 RELEASE

I I
I I I I I L

1 I I
I10 TRANSPOSE ADD EQUATION

SOLVER

1
I 1 C -------, MEMORY ALLOCATION

PROGRAM . MXSET 1

1

12 BRANIN, HALL, SUEZ, CARLITZ, A N D C H E N

calls the appropriate subroutines, and updates the pseudo accu-
mulators, PSAC and A C ~ .

Dynamic memory allocation

The memory allocation program, MAP, administers POOL and
DPOOL, keeping a list of all holes (available blocks of storage)
in both POOL and DPOOL. All unavailable blocks, except the one
reserved for a disk list (DSKLST) explained below, are occupied
by matrices. Under the control of MAP, any matrix in POOL may
be moved to make room for a new matrix. Although most of
the matrices in POOL can also be moved to DPOOL, a specified
few (usually the operands in the operation being performed) must
remain in core. Thus, MAP can be called upon to perform five
different functions :

Set the boundaries of POOL and, initially, set up DPOOL. (This
is the problem program’s only possible direct request of MAP.)
Provide a block of specified size to accommodate a matrix.
Change an unavailable block into an available block when a

Alter the availability of a matrix for storage on disk.
Move a matrix from core to disk or vice versa.

matrix is released.

Before any matrix operation can be executed, the POOL must
be specified. The POOL area must provide both for the matrices
to be handled and for 102 words for the DSKLST described below.
The size of POOL is specified by the calling sequence of Table 12,
where LLIM is the address of the first word of POOL (lowest memory
address), and ULIM is the address of the last word of POOL. DISKMIN

is the minimum matrix size that may be transferred to DPOOL

if more room is needed in the POOL. If DISKMIN is zero, MAP assumes
a value of 257 words, so that only those matrices larger than
half an arc may be sent to DPOOL.

If the boundaries of an existing POOL are moved by a subsequent
call of MXSET, some matrices may have to be sent to DPOOL to
fit the old POOL into the new POOL area. If the old POOL and new
POOL do not overlap, the contents of the region between them may
be destroyed.

During the first execution of MXSET, the space on disk not
preempted by MCP is divided into two regions: the DPOOL and
the RESERV area. RESERV is used as work space to store the POOL

during a disk squeeze, freeing core memory for use in rearranging
matrices in DPOOL. RESERV occupies, a t most, half of the available
disk space, up to a maximum of 64 arcs.

A request for space in the POOL is made to MAP in the following
way: the value field of index register 14 specifies the DWA of the
matrix that is to occupy the requested space; the count field
specifies the size of the matrix.

Whenever a request for memory is made, space is assigned
by MAP within the smallest adequate hole and at that end of the
hole which is nearest ULIM. The holes are chained together, both

A N INTERPRETIVE PROGRAM FOR MATRIX ARITHMETIC

double-threaded
hole lists

Figure 8 Formats for first two
words of each hole

WDIA NEXT WDIA 141 SIZE LRd?2

disk hole
I ist

Figure 9 Formats of chain-termi-
noting words

HOLLI LLlM WDlA 4 0 0

HOLLOC 0 4
0 I $:

HOLSIZ IF lRST WD2A 101 0 I 0 I

Figure 11 Formats for header
words of disk hole list

HDlA 2 DSKLST

HDPA 10.0 0 100 1

forward and backward, according to both location in the POOL

and hole size. Since the first two words in each hole are used for
this purpose, a hole of a single word is not permitted. The format
of these two words is given in Figure 8.

I n wD1, XF = 1 signifies that this is the first word of a hole
(and not HD1 of a matrix) ; the field NEXT WDlA is the next word 1
address in order of increasing memory location. PRIOR w D l A is
the address of WD1 of the preceding hole in memory. SIZE specifies
the number of words in the hole-including both wD1 and W D ~ .

I n W D ~ , the field NEXT WDBA signifies the next word 2 address
in order of increasing size, and PRIOR W D ~ A the address of WDZ

of the next smaller hole.
The termini of these two chains are at fixed locations outside

the POOL, having the format of Figure 9. Here, LLIM w D i A is the
WD1 address nearest LLIM, and ULIM WDlA is that nearest to ULIM.

FIRST W D ~ A is the W D ~ address of the smallest hole, and LAST W D ~ A

is that of the largest.
Obviously, the refill field a t LLIM W D l A must point to HOLLI,

whereas the value field at ULIM WDlA must point to HOLLOC in
order to complete the forward and backward chains. Similarly,
at FIRST WDBA, the refill field must point to HOLSIZ, whereas a t
LAST WDBA, the value field must point to HOLSl. A diagram depict-
ing several holes and their linkages is shown in Figure 10.

Since holes also appear between occupied areas on the disk,
a list of disk holes is maintained in a special reserved area of POOL

adjacent to ULIM. This list is set up as if it were a matrix with
its two header words as shown in Figure 11, i.e., as a columnwise
matrix of 100 rows and 1 column, with DSKLST as its directory
word. This matrix is made ineligible for transmittal to the disk
by setting bit 26 to 1 in HDi.

Figure 10 Holes and their linkages
""

THE POOL

H O L L I W D l A 4 0 0
WDlA W D l B 141 SIZE I H O L L l
WDZA HOLSl 101 SIZE I WD2C

HOLLOC 0 4 0 WOlC

HOLSIZ WDZB 0 0 0

HOLSl 0 0 0 WD2A

" +d

ADDRESS
N ixr

ADDRESS
LAST

HOLE A

MATRICES

HOLE B

MATRICES

HOLE C

MATRICES

DSKLST

14 BRANIN, HALL, SUEZ, CARLITZ, AND CHEN

Although more details of the disk-hole list are given later,
it should be noted here that on the very first execution of MXSET,

when the POOL is initially established, MAP is requested to assign
102 words to DSKLST. By making this request first, the allocation
of DSKLST to the area just adjacent to ULIM is assured.

A word outside the POOL, called HTOTAL, specifies the cumula-
tive total of space in all the holes in the POOL. When a request
is made to MAP for space in the POOL, the size of this request is
first compared against HTOTAL and then against the size of the
largest hole, pointed to by HoLs1. Thus, three situations can
arise. First, if HTOTAL is not large enough to accommodate the
request, a disk operation must be initiated to make space in the
POOL. Second, if HTOTAL is adequate, but the largest hole is not,
a “squeeze” operation within the POOL is initiated. Third, if the
largest hole is adequate, a search is made for the smallest adequate
hole by following the w~2-chain forward from HOLSIZ. These
three situations are discussed in reverse order.

Since holes of just one word cannot be allowed, the term hole
%mallest adequate hole” means any hole whose size exactly equals search
or exceeds by two or more words the size of the requested space.
When the smallest adequate hole has been identified, MAP assigns
space at the uLIM-end of this hole. Before returning the results
of this assignment to the requesting subroutine, however, MAP

updates wD1 and W D ~ of this hole to account for its reduced size.
If the hole size becomes zero as the result of an exact fit, the
wD1 and WDS chains of the remaining holes are linked around
the obliterated hole by updating the words at NEXT wDu, PRIOR

WDlA, NEXT WDSA, and PRIOR WDSA. In addition, MAP updates
the DWD of the matrix, for which space has been requested, by
setting its value field equal to the HD1 address and its count field
equal to the SIZE of this matrix. Finally, the m i is stored with
its refill field pointing to the DWD and with bit 26 = 1 to indicate
that this matrix must not be sent to DPOOL.

When HTOTAL is adequate to accommodate a storage request, POOL

but the largest hole is too small, a POOL squeeze is required. squeeze
During this squeeze, the appropriate matrices are moved towards
LLIM to enlarge the hole nearest ULIM until this hole exactly
satisfies the request. A squeeze is effected in three steps.

First, the wD1 chain of holes is followed backward from HOLLOC

until the cumulative sum of hole sizes equals, or exceeds by two
or more words, the requested space. If equality is obtained, the
wm address of the hole nearest LLIM becomes the relocation
address, RELOC. Otherwise, RELOC is set equal to this wD1 address
plus the number of excess words. All matrices between RELOC

and TvDl of the hole nearest ULIM must then be squeezed into a
contiguous block, starting a t RELOC.

Second, using the information in wD1 of the hole containing
RELOC (or of the preceding hole, if RELOC = WDIA), HD1 of the
adjacent matrix is picked up. The size of this matrix is determined
from the corresponding DWD. The matrix is then transmitted

AN INTERPRETIVE PROGRAM FOR MATRIX ARITHMETIC 15

so on, until HTOTAL is large enough for a hole search or POOL

squeeze. The disk operation and pool squeeze are shown in
Figure 13.

To provide information for a squeeze of DPOOL, the matrices
in DPOOL are chained together by the refill field of cach DWD.

The first link on this chain is the word DWDLNK whose refill
field is the DWA of one of the matrices in DPOOL. (The refill field
is set equal to zero if DPOOL is empty.) The refill field of the DWD

of this matrix then points to the DWD of the “next” matrix in
DPooL-and so on, the last DWD having a zero refill field. The
order of matrices in this chain is inconsequential, being determined
by the order in which they are put into DPOOL, rearranged, etc.

As described above, DSKLST is the DWD of a special matrix
at the ULIM end of POOL containing a list of disk holes. The asso-
ciated word LSTHO has its value field pointing to the first such
disk-hole word, and its count field equal to the number of disk holes.
The elements of this disk-hole matrix are in index word format,
with the value field containing the arc address and the count field
containing the number of arcs of the hole in question. These
disk-hole words are ordered according to increasing arc addresses.

A squeeze of DPOOL is initiated by MAP whenever an adequate
disk hole cannot be found, but DSKTOT indicates that a combination
of disk holes will satisfy the request for space in DPOOL. If DSKTOT

is too small to accommodate a given matrix in DPOOL, the next
available matrix in POOL is tried. If none can be found, the program
stops after printing an error message. The DPOOL squeeze is
effected by placing all or part of the POOL onto the RESERV

area of the disk and then using the vacated region of POOL as a
temporary workspace.

If the size of RESERV is smaller than that of POOL, only part
of the POOL is sent out to RESERV. The list of disk holes is then
transmitted to the vacatcd area of POOL. The remaining part

Figure 13 Disk operation and pool squeeze

LLIM , (TO DPOOL) , , (TO DPOOL)

REQUIRED
BLOCK

AN INTERPRETIVE PROGRAM FOR MATRIX ARITHMETIC

Whenever an attempt is made to execute a successful branch
instruction (such as B, BB, BIND, or CB) by means of EXIC,
an EXE interrupt occurs, because the location counter has been
altered out of sequence. MXOP negotiates with MCP to take this
interrupt and handle it as follows: the subject branch instruction
is copied from its original location to a place inside MXOP, where
its address is replaced by a fixed address in MXOP. This branch
instruction is then executcd. At the fixed address to which it
branches, a transfer to its original effective address is made under
control of MXOP.

I n this way, the interpreter can maintain control and follow
the proper sequence of instructions within its domain. However,
a branch to MCP cannot be handled properly by MXOP, since the
instruction B,$MCP would be removed from its context before
being executed; this vitiates the calling sequence for MCP.

Whenan MX instruction has been identified by MXOP, the
effective address of the DWD of its addressed operand (if any) is
computed. (Indexing of MX operands is freely permitted, using
index registers 1 through 13.) This DWD is then examined to see
if the subject matrix is already in POOL. If not, it is automatically
fetched from DPOOL. If the matrix does not exist, an error message
is printed.

HD1 of the matrix is then flagged (bit 26 = 1) to indicate that
this matrix is essential to the operation about to be executed
and, therefore, not available for transmittal to DPOOL.

MXOP then relinquishes control to the appropriate arithmetic
subroutine, passing along to it the DWA, SIZE, and H D ~ of the
implied operand (if any) and of the addressed operand.

After the arithmetic subroutine has done its task, it branches
to a fixed location in MXOP (called RETURN), leaving the DWD

of the result matrix in the fixed location ACZ, also inside MXOP.
AC2 acts as a temporary second accumulator.

At RETURN, a decision is made whether or not to release
the matrix whose DWD appears in PSAC. If this matrix is an un-
named intermediate result (Le., has no DWD other than PSAC),
it is released; otherwise, it is not released. The operands of the
MX instruction just executed are then unflagged by setting bit 26
to 0 in HDI. Next, the DWD in A C ~ is copied into PSAC, and the
corresponding HD1 is updated to point to PSAC if and only if
it had been pointing to AC2. (In the case of an MXL instruction,
a copy of the DWD is put into A C ~ , but HD1 still points to the
original DWA. At RETURN, ACZ is copied into PSAC, but HD1 is
left pointing to DWA.) It should be noted that, in this case, HD1

will have already been flagged as a consequence of a request
to MAP for assignment of space to A C ~ . Finally, the pseudo in-
struction counter within MXOP is updated, and the next instruction
is decoded.

Figure 14 illustrates the status of the POOL, A C ~ , and PSAC just
prior to the transfer of A C ~ to PSAC, following execution of the
instructions given in Table 13.

A N INTERPRETIVE PROGRAM FOR MATRIX ARITHMETIC

PROBLEM: X = (A + B)C

AC2 HDlA SIZE J

unary
operations

20

space for a duplicate of this matrix, which is then moved to the
new space. Otherwise, PSAC is duplicated in the DWD, and m i is
set to point back to this DWD. Finally, the MXST updates the
MXOP instruction counter.

MXEND terminates the interpretive regime and branches to
the next instruction.

The selection mechanism for the unary operations MXLT and
MXLI is simply a branch vector to which an indexed branch is
taken. The index value, equal to the TYPE code in H D ~ , selects
the appropriate branch instruction in the branch vector, and
this instruction branches directly to the desired subroutine. The
functions of MXLT and MXLI are as follows:

MXLT requests MAP to assign space in POOL to A C ~ for a copy
of the addressed matrix. If TYPE # COL, H D ~ and all matrix
elements are transmitted to the new location; if TYPE = COL,

rows and columns are interchanged during transmission; and if
TYPE = NULL or COL, the row and column numbers in H D ~ are
interchanged. Finally, MXLT goes to RETURN, which leaves the
correct DWD in PSAC, and HD1 pointing to PSAC.

MXLI requests MAP to assign space in POOL to AC2 for the
inverse matrix; requests space for 2N (N + 1) words of work-
space if TYPE = SYM or COL; checks HDZ for TYPE # NULL and
ROW = COL; inverts SCAL and DIAG matrices by reciprocation;
converts SYM matrix to COL, and then inverts by Gaussian elimina-
tion; releases workspace if used; and goes to RETURN, which
leaves the correct DWD in PSAC, and HD1 pointing to PSAC.

The selection mechanism for the binary operations MX+,
MX-, MXN+, MXR*, MXL*, and MXL*I requiresa branch table,
since two TYPE codes are involved. This table consists of several
columns, each of which is a branch vector headed by an indexed
branch instruction. Using the slnaller of the two operand TYPE

codes, an indexed branch is executed to the head of the appropriate
column in the branch table. The indexed branch instruction found
there uses the TYPE code of the other operand to select the proper
row in that column. In this location, a direct branch to the desired
subroutine is executed.

In all six of these matrix instructions, a check of the dimensions
of the two operands is made before executing the instruction;
if the dimensions are not compatible, an error message is printed
and the program stops.

The three instructions MX+, MX-, and MXN+ are handled
by the same subroutine after the selection mechanism for addition
has been used. This is accomplished as follows: after the TYPE

code, SIZE, and dimensions of the result matrix have been com-
puted, and a memory assignment has been obtained from MAP,

the operand matrix having the higher TYPE code is moved into
the new area, with or without a change of sign, as required by
the operation. The other operand matrix is then processed by
using add-to-memory (M+) or subtract-from-memory (M-) in-
structions. H D ~ of the result, which corresponds to that of the

A N INTERPRETIVE PROGRAM FOR MATRIX ARITHMETIC

binary
operations

21

the memory allocation has been made.
The instructions MXR* and MXL* are also handled by the

same subroutine after the selection mechanism for multiply has
been used. Again, the TYPE code, SIZE, and dimensions of the
result matrix are automatically computed, and H D ~ is properly
set up by the chosen subroutine.

As previously mentioned, MXL*I is a contrived mnemonic
code that permits use of a single address instruction to call a
subroutine for solution of equations rather than for matrix inver-
sion. Actually, the same subroutine is used for both MXL*I and
MXLI, but in different ways. When MXL*I calls the subroutine,
the number of columns A I in the implied operand is used in
requesting a temporary workspace of (M + N) (N + 1) full
words. This workspace is released after the computation has been
completed.

In both MXL*I and MXLI, a singular matrix causes the printing
of an error message, and then stops the program.

Remarks
The MARI program could be implemented without unusual difficulty
on other computers that have sufficient random-access disk
storage or bulk core memory. However, as is usual in system
experiments, the special characteristics of the vehicle computer
were exploited. Thus, several features of the 7030 are used to
advantage by the program. For example, the multi-field structure
of the 7030 index word permits the use of a single word (the direc-
tory word) to represent each matrix. This allows conventional
indexing of matrices. Moreover, the 7030 machine instructions for
refilling the index registers prove useful in double-threading the
hole lists. Finally, the 16 unused floating-point operation codes
provide a convenient vehicle for the various matrix pseudo
operations.

The 7030 Execute Indirect and Count (EXIC) instruction
offers an additional advantage. The MARI interpreter must not
relinquish control within its domain, even in the case of inter-
spersed machine instructions (i.e., non-matrix instructions). These
instructions are handled under the aegis of the EXIC instruction,
which lends control to the object instruction, and updates a
pseudo instruction counter in the process. A successful branch
instruction behaves like an escape attempt; such an attempt is
defeated by a compulsory 7030 interrupt (“execute-exception”)
that restores control to the interpreter.

Summary
The experimental matrix computation program described in this
paper embodies dynamic memory allocation of all matrices, and
enables the user to specify most matrix operations by using
single-address pseudo instructions. Several different matrix types
are allowed, and the most common matrix operations (addition,

22 BRANIN, HALL, SUEZ, CARLITZ, AND C H E N

Symbol key (Cont'd.)

DPOOL

DSKTOT

DWA

DWD

DWDLNK

FF

HD

HOLLl

HOLLOC

HOLSl

HOLSIZ

HTOTAL

LLIM

LSTHO

MAP

MAR1

MCP

MXOP

POOL

PSAC

RESERV

RF

ROWS

SIZE

TYPE

ULIM

VF

WD

XF

X W

extension of POOL in disk memory
total space available in DPOOL

directory word address
directory word
contains address of first listed matrix in DPOOL

flag field
header word
LLIM terminus of hole location chain
ULIM terminus of hole location chain
largest hole terminus of hole size chain
smallest hole terminus of hole size chain
total space available in POOL

lower memory address of POOL

contains (1) address of first entry in disk list and (2)
number of disk holes
memory allocation program
name of the matrix arithmetic interpreter described
IBM 7030 master control program
subroutine for matrix operations
a region of core memory for matrix storage
a DWD used as a pseudo accumulator
disk storage area used as workspace
refill field
number of rows of matrix
size of matrix or hole
matrix type code
upper memory address of POOL

value field
word
index flag
index word

24 BIIAX'IN, H A L L , S U E Z , C A R L I T Z , A N D C H E N

