This paper describes the structure of a family of computers known as
SYSTEM /360. Design considerations relating to implementation, per-
formance, and programming are discussed.

An overview of the system is given in Part I, which outlines the
logical structure and formats of the system.

Implementation of the system to obtain program-compatible models,
operating at various levels of performance, is explained in Part 11.

In Part I11, the functional characteristics of the system are discussed
with respect to the central processing unit. Addressing, sequencing,
monator control, and data manipulation are viewed in terms of the
design criteria.

The input/output section and the control of the input/outpul opera-
tions are described in Part IV. The design concepts leading to the
particular choice of logical and physical organization are given.

Part V examines the general nature of multisystem operation and
describes the relevant provisions tn SYSTEM/360.

The structure of SYSTEM/360*

Part I — Outline of the logical structure
by G. A. Blaauw, F. P. Brooks, Jr.

Part II — System implementations
by W. Y. Stevens

Part III — Processing unit design considerations
by G. M. Amdahl

Part IV — Channel design considerations
by A. Padegs

Part V — Multisystem organization
by G. A. Blaguw

* The work reported was accomplished in laboratories located in Endicott
and Poughkeepsie, New York, and Hursley, England. The authors were
among the participants.

IBM SYSTEMS JOURNAL * VOL. 3 * NO. 2 * 1964

A general introductory description of the logical structure of sys-
TEM /360 18 given in preparation for the more detailed analyses occur-
ring in the other parts of the paper.

The functional units, the principal registers and formats, and the
basic addressing and sequencing principles of the system are indicated.

The structure of SYSTEM/360

Part I—-Outline of the logical structure
by G. A. Blaauw and F. P. Brooks, Jr.

sYSTEM/360 is distinguished by a design orientation toward very
large memories and a hierarchy of memory speeds, a broad spec-
trum of manipulative functions, and a uniform treatment of
input/output functions that facilitates communication with a
diversity of input/output devices. The overall structure lends
itself to program-compatible embodiments over a wide range of
performance levels.

The system, designed for operation with a supervisory pro-
gram, has comprehensive facilities for storage protection, pro-
gram relocation, nonstop operation, and program interruption.
Privileged instructions associated with a supervisory operating
state are included. The supervisory program schedules and governs
the execution of multiple programs, handles exceptional condi-
tions, and coordinates and issues input/output (1/0) instructions.
Reliability is heightened by supplementing solid-state compo-
nents with built-in checking and diagnostic aids. Interconnection
facilities permit a wide variety of possibilities for multisystem
operation.

The purpose of this discussion is to introduce the funectional
units of the system, as well as formats, codes, and conventions
essential to characterization of the system.

IBM SYSTEMS JOURNAL * VOL. 3 * NO. 2 * 1964

input/output

120

Functional structure

The sysTEM/360 structure schematically outlined in Figure 1 has
seven announced embodiments. Six of these, namely, MoDELS 30,
40, 50, 60, 62, and 70, will be treated here.' Where requisite 1/0
devices, optional features, and storage capacity are present, these
six models are logically identical for valid programs that contain
explicit time dependencies only. Hence, even though the allowable
channels or storage capacity may vary from model to model (as
discussed in Part IT), the logical structure can be discussed with-
out reference to specific models.

Direct communication with a large number of low-speed termi-
nals and other 1/0 devices is provided through a special multi-
plezor channel unit. Communication with high-speed 1/0 devices
is accommodated by the selector channel units. Conceptually, the
input/output system acts as a set of subchannels that operate
concurrently with one another and the processing unit. Each sub-
channel, instructed by its own control-word sequence, can govern
a data transfer operation between storage and a selected 1/0 de-
vice. A multiplexor channel can function either as one or as many
subchannels; a selector channel always functions as a single sub-
channel. The control unit of each 1/0 device attaches to the chan-
nels via a standard mechanical-electrical-programming inierface.

Figure 1 Functional schematic of System/360

STORAGE ARITHMETIC AND LOGIC

PROCESSING UNIT

INPUT/OUTPUT

CHANNELS CONTROL UNITS DEVICES

MULTIPLEXOR H E:I

|
(MULTIPLE |
LOW-SPEED ____:'__ﬂ----.?
SUBCHANNELS)

5

MAIN
STORAGE
AND
LARGE

CAPACITY
STORAGE V————:]__—?_?_ _(?
SELECTOR !

(SINGLE
U ﬁ___-j
SUBCHANNEL) j)

f

SELECTOR

(SINGLE
HIGH-SPEED
SUBCHANNEL)

G. A. BLAAUW AND F. P. BROOKS, JR.

Figure 2 Schematic of basic registers and data paths

STORAGE ADDRESS MAIN STORAGE

INSTRUCTIONS

COMPUTER INDEXED FIXED-POINT FeIABLE FLOATING-POINT

c%ﬂs& ADDRESS OPERATIONS OPERATIONS OPERATIONS

16
GENERAL
REGISTERS

4 FLOATING-POINT REGISTERS

The processing unit has sixteen general purpose 32-bit registers
used for addressing, indexing, and accumulating. Four 64-bit
floating-point accumulators are optionally available. The inclu-
sion of multiple registers permits effective use to be made of
small high-speed memories. Four distinct types of processing are
provided: logical manipulation of individual bits, character strings
and fixed words; decimal arithmetic on digit strings; fixed-point
binary arithmetic; and floating-point arithmetic. The processing
unit, together with the central control function, will be referred
to as the central processing unit (cpu). The basic registers and
data paths of the cpU are shown in Figure 2.

The cpu’s of the various models yield a substantial range in
performance. Relative to the smallest model (MoDEL 30), the in-
ternal performance of the largest (MODEL 70) is approximately
50 : 1 for scientific computation and 15 : 1 for commercial data
processing.

Because of the extensive instruction set, sysTEM/360 control is
more elaborate than in conventional computers. Control func-
tions include internal sequencing of each operation; sequencing
from instruction to instruction (with branching and interruption);
governing of many 1/o transfers; and the monitoring, signaling,
timing, and storage protection essential to total system operation.
The control equipment is combined with a programmed super-
visor, which coordinates and issues all 1/0 instructions, handles
exceptional conditions, loads and relocates programs and data,
manages storage, and supervises scheduling and execution of
multiple programs. To a problem programmer, the supervisory
program and the control equipment are indistinguishable.

The functional structure of sysTEM/360, like that of most com-
puters, is most concisely described by considering the data for-
mats, the types of manipulations performed on them, and the
instruction formats by which these manipulations are specified.

OUTLINE OF THE LOGICAL STRUCTURE

processing

control

The several sysTeEM/360 data formats are shown in Figure 3.
information An 8-bit unit of information is fundamental to most of the for-
formats mats. A consecutive group of n such units constitutes a field of

length n. Fixed-length fields of length one, two, four, and eight
are termed bytes, halfwords, words, and double words, respectively.
In many instructions, the operation code implies one of these
four fields as the length of the operands. On the other hand, the
length is explicit in an instruction that refers to operands of vari-
able length.

The location of a stored field is specified by the address of the
leftmost byte of the field. Variable-length fields may start on
any byte location, but a fixed-length field of two, four, or eight
bytes must have an address that is a multiple of 2, 4, or 8, re-
spectively. Some of the various alignment possibilities are ap-
parent from Figure 3.

Storage addresses are represented by binary integers in the
system. Storage capacities are always expressed as numbers of
bytes.

Figure 3 The data formats

DOUBLE WORD~

+ — WORD

: HALFWORD HALFWORD ——————»{e«c———————— HALFWORD ——————»l«——————— HALFWORD

‘(- Byrg/—>r— —— BYTE~—>t«——— BYTE~ —)1(—— BYTE ———»j—— BYTE —»r— BYTE

) HALFWORD FIXED-POINT NUMBER 1
]
0

15
INTEGER

FULLWORD FIXED-POINT NUMBER
)

31
INTEGER

' ‘

SHORT FLOATING-POINT NUMBER

s 7 24
CHARACTERISTIC FRACTION
0 7

LONG FLOATING-POINT NUMBER

s 7 56
CHARACTERISTIC FRACTION
0 7

PACKED DECIMAL NUMBER

4 4 4
DIGIT DIGIT | DIGIT

ZONED DECIMAL NUMBER

4 4 4 4
ZONE piGT | zoNe | oiGm

| FIXED-LENGTH LOGICAL INFORMATION
l LOGICAL DATA

o

VARIABLE-LENGTH LOGICAL INFORMATION

8 8 8
CHARACTER CHARACTER CHARACTER

122 G. A. BLAAUW AND F. P. BROOKS, JR.

Processing operations

The sYsTEM/360 operations fall into four classes: fixed-point arith-
metice, floating-point arithmetic, logical operations, and decimal
arithmetic. These classes differ in the data formats used, the regis-
ters involved, the operations provided, and the way the field length
is stated.

The basic arithmetic operand is the 32-bit fixed-point binary
word. Halfword operands may be specified in most operations for
the sake of improved speed or storage utilization. Some products
and all dividends are 64 bits long, using an even-odd register pair.

Because the 32-bit words accommodate the 24-bit address,
the entire fixed-point instruction set, including multiplication,
division, shifting, and several logical operations, can be used in
address computation. A two’s complement notation is used for
fixed-point, operands.

Additions, subtractions, multiplications, divisions, and com-
parisons take one operand from a register and another from either
a register or storage. Multiple-precision arithmetic is made con-
venient by the two’s complement notation and by recognition
of the carry from one word to another. A pair of conversion in-
structions, CONVERT TO BINARY and CONVERT TO DECIMAL,
provide transition between decimal and binary radices without
the use of tables. Multiple-register loading and storing instructions
facilitate subroutine switching.

Floating-point numbers may occur in either of two fixed-
length formats—short or long. These formats differ only in the
length of the fractions, as indicated in Figure 3. The fraction of
a floating-point number is expressed in 4-bit hexadecimal (base 16)
digits. In the short format, the fraction has six hexadecimal digits;
in the long format, the fraction has 14 hexadecimal digits. The
short length is equivalent to seven decimal places of precision.
The long length gives up to 17 decimal places of precision, thus
eliminating most requirements for double-precision arithmetic.

The radix point of the fraction is assumed to be immediately
to the left of the high-order fraction digit. To provide the proper
magnitude for the floating-point number, the fraction is con-
sidered to be multiplied by a power of 16. The characteristic
portion, bits 1 through 7 of both formats, is used to indicate this
power. The characteristic is treated as an excess 64 number with
a range from —64 through 463, and permits representation of
decimal numbers with magnitudes in the range of 1077 to 107.

Bit position 0 in either format is the fraction sign, S. The
fraction of negative numbers is carried in true form.

Floating-point operations are performed with one operand from
a register and another from either a register or storage. The
result, placed in a register, is generally of the same length as
the operands.

Operations for comparison, translation, editing, bit testing,
and bit setting are provided for processing logical fields of fixed
and variable lengths. Fixed-length logical operands, which con-

OUTLINE OF THE LOGICAL STRUCTURE

fixed-point
arithmetic

floating-point
arithmetic

logical
operations

character
codes

decimal
arithmetic

sist of one, four, or eight bytes, are processed from the general
registers. Logical operations can also be performed on fields of
up to 256 bytes, in which case the fields are processed from left
to right, one byte at a time. Moreover, two powerful scanning
instructions permit byte-by-byte translation and testing via
tables. An important special case of variable-length logical oper-
ations is the one-byte field, whose individual bits can be tested,
set, reset, and inverted as specified by an 8-bit mask in the in-
struction.

Any 8-bit character set can be processed, although certain re-
strictions are assumed in the decimal arithmetic and editing oper-
ations. However, all character-set-sensitive 1/0 equipment assumes
either the Extended Binary-Coded-Decimal Interchange Code
(eBcpIC) Of Figure 4 or the code of Figure 5, which is an eight-bit
extension of a seven-bit code proposed by the International
Standards Organization.

Decimal arithmetic can improve performance for processes
requiring few computational steps per datum between the source
input and the output. In these cases, where radix conversion from
decimal to binary and back to decimal is not justified, the use of
registers for intermediate results usually yields no advantage over
storage-to-storage processing. Hence, decimal arithmetic is pro-
vided in sysTEM/360 with operands as well as results located in
storage, as in the 1BM 1400 series. Decimal arithmetic includes

Figure 4 Extended Binary-Coded-Decimal Interchange Code

BIT POSITIONS ~~————> 01

00
23

00 01

NULL

+

|

PE Punch off BS Backspace
HT Horizontal tab 1L Idle

LC Lowercase BYP Bypass
DEL Delete LF _ Line feed
RES Restore EOB End of block
NL New line PRE Prefix

124

SM Set mode

PN Punchon

RS Reader stop

UC_ Upper case

ECT End of transmission
8P Space

G. A. BLAAUW AND F. P. BROOKS, JR.

Figure 5 Eight-bit representation for proposed international code*

BIT POSITIONS ——— > 76

00
X5

4321 00 01

0000 NULL DLE

0001 SOH

0010 STX

0011 ETX

BS

HT EM

LF $s

\u ESC

FF FS

CR GS

so RS

Si us /

*Third ISO draft proposal for & and 7 bit coded character sets for i ing i , International O
NULL Null /idle Horizontal tabulation Device control Escape

June 1964.

Start of heading Line feed Device contral File separator
f text

Start of

Vertical tabulation DC: Device control (stop)} Group separator

End of text Form feed Negative acknowledge Record separator
End of transmission Carriage return Synchronous idie Unit separator
Shift out

Enquiry
Acknowledge

End of transmission block Space. normally non-printing
Cancel Currency symbol
X

St Shiftin
Audible or attention signal Data link escape End of medium Grave accent

Backspace Device control Start of special sequence Delete

addition, subtraction, multiplication, division, and comparison.

The decimal digits 0 through 9 are represented in the 4-bit
binary-coded-decimal form by 0000 through 1001, respectively.
The patterns 1010 through 1111 are not valid as digits and are
interpreted as sign codes: 1011 and 1101 represent a minus, the
other four a plus. The sign patterns generated in decimal arith-
metic depend upon the character set preferred. For EBcDIC, the
patterns are 1100 and 1101; for the code of Figure 5, they are 1010
and 1011. The choice between the two codes is determined by a
mode bit.

Decimal digits, packed two to a byte, appear in fields of vari-
able length (from 1 to 16 bytes) and are accompanied by a sign
in the rightmost four bits of the low-order byte. Operand fields
can be located on any byte boundary, and can have lengths up to
31 digits and sign. Operands participating in an operation have
independent lengths. Negative numbers are carried in true form.
Instructions are provided for packing and unpacking decimal
numbers. Packing of digits leads to efficient use of storage, in-
creased arithmetic performance, and improved rates of data trans-
mission. For purely decimal fields, for example, a 90,000-byte/sec-
ond tape drive reads and writes 180,000 digits/second.

OUTLINE OF THE LOGICAL STRUCTURE

instruction
formats

Figure 6 Five basic instruction formats

FIRST HALFWORD SECOND HALFWORD THIRD HALFWORD

REGISTER {
OPERANDS
1 2

RR FORMAT' OP CODE | R | R

0 1112

REGISTER STORAGE
OPERAND QOPERAND
1 2

RX FORMATl OP CODE R X B ‘

0 78 1112 15|16

REGISTER STORAGE
' OPERANDS OPERAND
1 3 2

RS FORMAT OP CODE R R B

Q 78 11 12 15|16

IMMEDIATE STORAGE
‘ OPERAND ‘ OPERAND
2 1

S| FORMAT I OP CODE
o

OPERAND STORAGE STORAGE
LENGTHS OPERAND OPERAND
1 2 1 2

sS FORMATr OP GODE L L | 8 B I D
Q

78 1112 15 16

Instruction formats contain one, two, or three halfwords,
depending upon the number of storage addresses necessary for
the operation. If no storage address is required of an instruction,
one halfword suffices. A two-halfword instruction specifies one
address; a three-halfword instruction specifies two addresses. All
instructions must be aligned on halfword boundaries.

The five basic instruction formats, denoted by the format mne-
monics RR, RX, RS, sI, and ss are shown in Figure 6. rRrR denotes
a register-to-register operation, rx a register and indexed-storage
operation, rs a register and storage operation, s1 a storage and im-
mediate-operand operation, and ss a storage-to-storage operation.

In each format, the first instruction halfword consists of two
parts. The first byte contains the operation code. The length and
format of an instruction are indicated by the first two bits of the
operation code.

The second byte is used either as two 4-bit fields or as a single
8-bit field. This byte is specified from among the following:

Four-bit operand register designator (R)
Four-bit index register designator (X)
Four-bit mask (M)

Four-bit field length specification (L)
Eight-bit field length specification
Eight-bit byte of immediate data (I)

The second and third halfwords each specify a 4-bit base

. A, BLAAUW AND F. P. BROOKS, JR.

register designator (B), followed by a 12-bit displacement (D).
An effective storage address E is a 24-bit binary integer given,
in the typical case, by

E=B+X+D

where B and X are 24-bit integers from general registers identified
by fields B and X, respectively, and the displacement D is a
12-bit integer contained in every instruction that references
storage.

The base B can be used for static relocation of programs and
data. In record processing, the base can identify a record; in array
calculations, it can specify the location of an array. The index X
can provide the relative address of an element within an array.
Together, B and X permit double indexing in array processing.

The displacement provides for relative addressing of up to
4095 bytes beyond the element or base address. In array calcu-
lations, the displacement can identify one of many items associ-
ated with an element. Thus, multiple arrays whose indices move
together are best stored in an interleaved manner. In the pro-
cessing of records, the displacement can identify items within a
record.

In forming an effective address, the base and index are treated
as unsigned 24-bit positive binary integers and the displacement
as a 12-bit positive binary integer. The three are added as 24-bit
binary numbers, ignoring overflow. Since every address is formed
with the aid of a base, programs can be readily and generally re-
located by changing the contents of base registers.

A zero base or index designator implies that a zero quantity
must be used in forming the address, regardless of the contents of
general register 0. A displacement of zero has no special signifi-
cance. Initialization, modification, and testing of bases and indices
can be carried out by fixed-point instructions, or by BRANCH AND
LINK, BRANCH ON COUNT, or BRANCH ON INDEX instructions.
LOAD EFFECTIVE ADDRESS provides not only a convenient
housekeeping operation, but also, when the same register is
specified for result and operand, an immediate register-incre-
menting operation.

Sequencing

Normally, the cpu takes instructions in sequence. After an in-
struction is fetched from a location specified by the instruction
counter, the instruction counter is increased by the number of
bytes in the instruction.

Conceptually, all halfwords of an instruction are fetched from
storage after the preceding operation is completed and before
execution of the current operation, even though physical storage
word size and overlap of instruction execution with storage access
may cause the actual instruction fetching to be different. Thus,
an instruction can be modified by the instruction that immedi-

OUTLINE OF THE LOGICAL STRUCTURE

addressing

branching

program
status
word

interruption

128

Figure 7 Program status word format
8 4 4 16

i SYS MASK | KEY I CMWP | INTERRUPT CODE

2 2 4 24

o e | |

INSTRUCTION ADDRESS

SYSTEM MASK— MPX channel 1LC— Instruction length code
SEL channels 1-6
External €G- Condition code

KEY— Storage protection key . .raM MASK— Fixed point overflow
decimal averflow
CMWP— Character-set mode exponent underflow
Mach check significance
Wait state
Problem state

ately precedes it in the instruetion stream, and cannot effectively
modify itself during execution.

Most branching is accomplished by a single BRANCH ON
CONDITION operation that inspects a 2-bit condition register.
Many of the arithmetic, logical, and 1/0 operations indicate an
outcome by setting the condition register to one of its four pos-
sible states. Subsequently a conditional branch can select one of
the states as a criterion for branching. For example, the condition
code reflects such conditions as non-zero result, first operand high,
operands equal, overflow, channel busy, zero, etc. Once set, the
condition register remains unchanged until modified by an in-
struction execution that reflects a different condition code.

The outcome of address arithmetic and counting operations
can be tested by a conditional branch to effect loop control. Two
instructions, BRANCH ON COUNT and BRANCH ON INDEX,
provide for one-instruction execution of the most common arith-
metic-test combinations.

A program status word (psw), a double word having the for-
mat shown in Figure 7, eontains information required for proper
execution of a given program. A psw includes an instruction ad-
dress, condition code, and several mask and mode fields. The
active or controlling psw is called the current psw. By storing the
current psw during an interruption, the status of the interrupted
program is preserved.

Five classes of interruption conditions are distinguished : input/
output, program, supervisor call, external, and machine check.

For each class, two psw’s, called old and new, are maintained
in the main-storage locations shown in Table 1. An interruption
in a given class stores the current psw as an old psw and then
takes the corresponding new psw as the current psw. If, at the con-
clusion of the interruption routine, old and current psw’s are
interchanged, the system can be restored to its prior state and
the interrupted routine can be continued.

The system mask, program mask, and machine-check mask
bits in the psw may be used to control certain interruptions. When
masked off, some interruptions remain pending while others are
merely ignored. The system mask can keep 1/0 and external
interruptions pending, the program mask can cause four of the 15
program interruptions to be ignored, and the machine-check

G. A. BLAAUW AND F. P. BROOKS, JR.

mask can cause machine-check interruptions to be ignored. Other
interruptions cannot be masked off.

Appropriate cpU response to a special condition in the channels
and 1/0 units is facilitated by an 1/0 ¢nierruption. The addresses
of the channel and 1/0 unit involved are recorded in the old psw.
Related information is preserved in a channel status word that is
stored as a result of the interruption.

Unusual conditions encountered in a program create program
interruptions. Eight of the fifteen possible conditions involve over-
flows, improper divides, lost significance, and exponent underflow.
The remaining seven deal with improper addresses, attempted
execution of privileged instructions, and similar conditions.

A supervisor-call interruption results from execution of the
instruction SUPERVISOR CALL. Eight bits from the instruction
format are placed in the interruption code of the old psw, per-
mitting a message to be associated with the interruption. SUPER-
VISOR CALL permits a problem program to switch cpu control
back to the supervisor.

Through an external interruption, a cPU can respond to signals
from the interruption key on the system control panel, the timer,
other cpu’s, or special devices. The source of the interruption is
identified by an interruption code in bits 24 through 31 of the psw.

The occurrence of a machine check (if not masked off) termi-
nates the current instruction, initiates a diagnostic procedure,
and subsequently effects a machine-check interruption. A machine
check is occasioned only by a hardware malfunction; it cannot be
caused by invalid data or instructions.

Table 1 Permanent storage assignments

Address Byte length Purpose

0
8
16
24
32
40
48
56
64
72
76
80
84
88
96
104

Initial program loading psw
Initial program loading ccw 1
Initial program loading ccw 2
External old psw

Supervisor call old psw
Program old psw

Machine check old psw
Input/output old psw
Channel status word

Channel address word
Unused

Timer

Unused

External new psw

Supervisor call new psw
Program new psw

112 Machine check new psw

120 Input/output new psw

128 Diagnostic scan-out area*®

Q0 00 Q0 Q0 QO W~ > v W 00 00 00 OO 00 GO GO Q0 GO

* The size of the diagnostic scan-out area is configuration dependent.

OUTLINE OF THE LOGICAL STRUCTURE

129

interrupt
priority

program
status

130

Interruption requests are honored between instruction execu-
tions. When several requests occur during execution of an instruc-
tion, they are honored in the following order: (1) machine checlk,
(2) program or supervisor call, (3) external, and (4) input/output.
Because the program and supervisor-call interruptions are mutu-
ally exclusive, they cannot occur at the same time.

If a machine-check interruption occurs, no other interruptions
can be taken until this interruption is fully processed. Otherwise,
the execution of the cpu program is delayed while rsw’s are ap-
propriately stored and fetched for each interruption. When the
last interruption request has been honored, instruction execution
is resumed with the psw last fetched. An interruption subroutine
is then serviced for each interruption in the order (1) input/out-
put, (2) external, and (3) program or supervisor call.

Overall cpu status is determined by four alternatives: (1)
slopped versus operating state, (2) running versus watting state,
(3) masked versus interruptable state, and (4) supervisor versus
problem state.

In the stopped state, which is entered and left by manual
procedure, instructions are not executed, interruptions are not
accepted, and the timer is not updated. In the operating state, the
cPU is capable of executing instructions and of being interrupted.

In the running state, instruction fetching and execution pro-
ceeds in the normal manner. The wait state is typically entered
by the program to await an interruption, for example, an 1/0
interruption or operator intervention from the console. In the
wait state, no instructions are processed, the timer is updated,
and 1/0 and external interruptions are accepted unless masked.
Running versus waiting is determined by the setting of a bit in
the current rsw.

The cru may be interruptable or masked for the system, pro-
gram, and machine interruptions. When the cpu is interruptable
for a class of interruptions, these interruptions are accepted. When
the cpu is masked, the system interruptions remain pending, but
the program and machine-check interruptions are ignored. The
interruptable states of the cru are changed by altering mask bits
in the current psw.

In the problem state, processing instructions are valid, but all
1/0 instructions and a group of control instructions are invalid.
In the supervisor state, all instructions are valid. The choice of
problem or supervisor state is determined by a bit in the psw.

Supervisory Facilities

A timer word in main storage location 80 is counted down at a
rate of 50 or 60 cyecles per second, depending on power line fre-
quency. The word is treated as a signed integer according to the
rules of fixed-point arithmetic. An external interrupt occurs when
the value of the timer word goes from positive to negative. The
full cycle time of the timer is 15.5 hours.

G. A. BLAAUW AND F. P. BROOKS, JR.

As an interval timer, the timer may be used to measure elapsed
time over relatively short intervals. The timer can be set by a
supervisory-mode program to any value at any time.

Two instructions, READ DIRECT and WRITE DIRECT, pro-
vide for the transfer of a single byte of information between
an external device and the main storage of the system. These
instructions are intended for use in synchronizing cru’s and special
external devices.

For protection purposes, main storage is divided into blocks
of 2,048 bytes each. A four-bit storage key is associated with each
block. When a store operation is attempted by an instruction,
the protection key of the current psw is compared with the storage
key of the affected block. When storing is specified by a channel
operation, a protection key supplied by the channel is used as the
comparand. The keys are said to match if equal or if either is zero.
A storage key is not part of addressable storage, and can be
changed only by privileged instructions. The protection key of
the cpu program is held in the current psw. The protection key
of a channel is recorded in a status word that is associated with
the channel operation.

When a cpu operation causes a protection mismatch, its
execution is suppressed or terminated, and the program execution
is altered by an interruption. The protected storage location
always remains unchanged. Similarly, protection mismatch due
to an 1/0 operation terminates data transmission in such a way
that the protected storage location remains unchanged.

Communication between cru’s is made possible by shared con-
trol units, interconnected channels, or shared storage. Multisys-
tem operation is supported by provisions for automatic relocation,
indication of malfunctions, and cru initialization.

Automatic relocation applies to the first 4,096 bytes of storage,
an area that contains all permanent storage assignments and
usually has special significance for supervisory programs. The re-
location is accomplished by inserting a 12-bit prefix in ecach address
whose high-order 12 bits are zero. Two manually set prefixes
permit the use of an alternate area when storage malfunction
occurs; the choice between prefixes is preserved in a trigger that
is set during initial program loading.

To alert one cru to the possible malfunction of another, a
machine-check signal from a given cpU can serve as an external
interruption to another cru. By another special provision, initial
program loading of a given cpu can be initiated by a signal from
another cpu.

Input/Output

Input/output devices include card equipment, magnetic tape
units, disk storage, drum storage, typewriter-keyboard devices,
printers, teleprocessing devices, and process control equipment.
The 1/0 devices are regulated by control units, which provide the

OUTLINE OF THE LOGICAL STRUCTURE

direct control

storage
protection

multisystem
operation

devices and
control units

1/0
instructions

channels

Figure 8 Channel status word format

r KEY | 00 00 I COMMAND ADDRESS
[} 34 78

STATUS
32 47 48

Bits O through 3 contain the storage protection key used in the operation,
Bits 4 through 7 contain zeros.
Bits B through 32 specify the)ocatxon of the last CCW used
Bits 32 through 47 contain an [/0-dk 4

byte The status bytes prov»de such Infnrmatmn a5 data check cnang

ing check, control-unit end, etc.
Bits 48 through 63 contain the residual count of the last CCW used.

electrical, logical, and buffering capabilities necessary for 1/0
device operation. From the programming point of view, most
control-unit and 1/0 device functions are indistinguishable. Some-
times the control unit is housed with an 1/0 device, as in the case
of the printer.

A control unit functions only with those 1/0 devices for which
it is designed, but all control units respond to a standard set of
signals from the channel. This control-unit-to-channel connection,
called the 1/0 interface, enables the cPU to handle all 1/0 operations
with only four instructions.

Input/output instructions can be executed only while the cpu
is in the supervisor state. The four 1/0 instructions are START
1/0, HALT I/0, TEST CHANNEL, and TEST 1/0.

START I/0 initiates an 1/0 operation; its address field specifies
a channel and an 1/0 device. If the channel facilities are free, the
instruction is accepted and the cpU continues its program. The
channel independently selects the specified 1/0 device. HALT 1/0
terminates a channel operation. TEST CHANNEL sets the condi-
tion code in the psw to indicate the state of the channel addressed
by the instruction. The code then indicates one of the following
conditions: channel available, interruption condition in channel,
channel working, or channel not operational. TEST 1/0 sets the
psw condition code to indicate the state of the addressed channel,
subchannel, and 1/0 device.

Channels provide the data path and control for 1/0 devices
as they communicate with main storage. In the multiplexor chan-
nel, the single data path can be time-shared by several low-speed
devices (card readers, punches, printers, terminals, ete.) and the
channel has the functional character of many subchannels, each
of which services one 1/0 device at a time. On the other hand, the
selector channel, which is designed for high-speed devices, has
the functional character of a single subchannel. All subchannels
respond to the same 1/0 instructions. Each can fetch its own con-
trol word sequence, govern the transfer of data and control signals,
count record lengths, and interrupt the cPu on exceptions.

Two modes of operation, burst and multiplex, are provided for
multiplexor channels. In burst mode, the channel facilities are
monopolized for the duration of data transfer to or from a par-
ticular 1/0 device. The selector channel functions only in the
burst mode. In multiplex mode, the multiplexor channel sustains
several simultaneous 1/0 operations: bytes of data are interleaved

G. A, BLAAUW AND F, P. BROOKS, JR.

Figure 9 Channel command word format

l COMMAND CODE i DATA ADDRESS
o

s o o :9_ COUNT

32 36 37 47 48 63

Bits O through 7 specify the command code. Bit 34 causes a possible incorrect length indication to be suppressed.
Bits 8 through 31 specify the location of a byte in main storage. Bit 35 suppresses the transfer of information to main storage.
Bits 32 through 36 are fiag bits. Bit 36 causes an intersuption.
Bit 32 causes the address portion of the next CCW to be used. Bits 37 through 39 must contain zeros.
Bit 33 causes the command code and data address in the next Bits 40 through 47 are ignored, N .
CCW to be used. Bits 48 through 63 specify the number of bytes in the operation.

and then routed between sclected 1/0 devices and desired locations
in main storage.

At the conclusion of an operation launched by START I/0 or
TEST I/0, an 1/0 interruption occurs. At this time a channel status
word (csw) is stored in location 64. Figure 8 shows the csw for-
mat. The csw provides information about the termination of the
1/0 operation.

Successful execution of START I/0 causes the channel to fetch
a channel address word from main-storage location 72. This word
specifies the storage-protection key that governs the 1/0 oper-
ation, as well as the location of the first eight bytes of information
that the channel fetches from main storage. These 64 bits comprise
a channel command word (ccw). Figure 9 shows the ccw format.

One or more cocw’s make up the channel program that directs
channel operations. Each cow points to the next one to be fetched,
except for the last in the chain which so identifies itself,

Six channel commands are provided: read, write, read back-
ward, sense, transfer in channel, and control. The read command
defines an area in main storage and causes a read operation from
the selected 1/0 device. The write command causes data to be
written by the selected device. The read-backward command is
akin to the read command, but the external medium is moved in
the opposite direction and bytes read backward are placed in
descending main storage locations.

The control command contains information, called an order,
that is used to control the selected 1/0 device. Orders, peculiar
to the particular 1/0 device in use, ean specify such functions as
rewinding a tape unit, searching for a particular track in disk
storage, or line skipping on a printer. In a functional sense, the
cpU executes 1/0 instructions, the channels execute commands,
and the control units and devices execute orders.

The sense command specifies a main storage location and
transfers one or more bytes of status information from the selected
control unit. It provides details concerning the selected 1/0 device,
such as a stacker-full condition of a card reader or a file-protected
condition of a magnetic-tape reel.

A channel program normally obtains ccw’s from a consecutive
string of storage locations. The string can be broken by a transfer-
in-channel command that specifies the location of the next cow
to be used by the channel. External documents, such as punched
cards or magnetic tape, may carry ccw’s that can be used by the

OUTLINE OF THE LOGICAL STRUCTURE

channel
program

Table 2 System/380 Instructions

RR Format

XXXX

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
111

BRANCHING AND
STATUS SWITCHING

0000xxxx

FIXED-POINT FULLWORD
AND LOGICAL

0001xxxx

FLOATING-POINT
LONG

0010xxxx

FLOATING-POINT
SHORT

0011xxxx

SPM SET PROGRAM MASK
BALR BRANCH AND LINK
BCTR BRANCH ON COUNT
BCR BRANCH/CONDITION
SSK SET KEY

ISK INSERT KEY

SVC SUPERVISOR CALL

LOAD POSITIVE
LOAD NEGATIVE
LOAD AND TEST
LOAD COMPLEMENT

AND
COMPARE LOGICAL
OR

EXCLUSIVE OR
LOAD
COMPARE

SUBTRACT
MULTIPLY

DIVIDE

ADD LOGICAL
SUBTRACT LOGICAL

LPDR LOAD POSITIVE
LNDR LOAD NEGATIVE
LTDR LOAD AND TEST
LCDR LOAD COMPLEMENT
HDR HALVE

LOAD
COMPARE
ADD N
SUBTRACT N
MULTIPLY
DIVIDE

ADD U
SUBTRACT U

LPER LOAD POSITIVE
LNER LOAD NEGATIVE
LTER LOAD AND TEST
LCER LOAD COMPLEMENT
HER HALVE

LOAD
COMPARE
ADD N
SUBTRACT N
MULTIPLY
DIVIDE

ADD U
SUBTRACT U

RX Format

XXXX

0000
0001
0010
0011
0100
o101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

FIXED-POINT HALFWORD
AND BRANCHING

0100xxxx

FIXED-POINT FULLWORD
AND LOGICAL

0101xxxx

FLOATING-POINT
LONG

0110xxxx

FLOATING-POINT
SHORT

0111xxxx

STORE

LOAD ADDRESS
STORE CHARACTER
INSERT CHARACTER
EXECUTE

BRANCH AND LINK
BRANCH ON COUNT
BRANCH/CONDITION
LOAD

COMPARE

ADD

SUBTRACT
MULTIPLY

CONVERT-DECIMAL
CONVERT-BINARY

STORE

AND
COMPARE LOGICAL
R

O

EXCLUSIVE OR
LOAD
COMPARE

ADD

SUBTRACT
MULTIPLY

DIVIDE

ADD LOGICAL
SUBTRACT LOGICAL

STORE

LOAD
COMPARE
ADD N
SUBTRACT N
MULTIPLY
DIVIDE

ADD U
SUBTRACT U

STORE

LOAD
COMPARE
ADD N
SUBTRACT N
MULTIPLY
DIVIDE

ADD U
SUBTRACT U

RS, Sl Format

XXXX

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

BRANCHING
STATUS SWITCHING
AND SHIFTING

1000xxxx

FIXED-POINT
LOGICAL AND
INPUT/OUTPUT

100Lxxxx

1010xxxx

101Ixxxx

SSM SET SYSTEM MASK

LPSW LOAD PSW
DIAGNOSE
WRITE DIRECT
READ DIRECT
BRANCH/HIGH
BRANCH/LOW-EQUAL
SHIFT RIGHT SL
SHIFT LEFT SL
SHIFT RIGHT S
SHIFT LEFT §
SHIFT RIGHT DL
SHIFT LEFT DL
SHIFT RIGHT D
SHIFT LEFT D

WRD
RDD
BXH
BXLE
SRL
SLL
SRA
SLA
SRDL
SLDL
SRDA
SLDA

STORE MULTIPLE
TEST UNDER MASK
MOVE

TEST AND SET

AND
COMPARE LOGICAL
OR

EXCLUSIVE OR
LOAD MULTIPLE

START I/0
TEST 1/0

HALT I/0

TEST CHANNEL

§S Format

XXXX

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

NOTE:

1100xxxx

LOGICAL
1101xxxx

1110xxxx

DECIMAL
111 Ixxxx

MOVE NUMERIC
MOVE

MOVE ZONE

AND

COMPARE LOGICAL
[9)

R
EXCLUSIVE OR

TR
TRT
ED
EDMK

TRANSLATE
TRANSLATE AND TEST
EDIT

EDIT AND MARK

MVO MOVE WITH OFFSET
PACK PACK
UNPK UNPACK

ZERO AND ADD
COMPARE

ADD

SUBTRACT
MULTIPLY
DIVIDE

N NORMALIZED
8L BINGLE LOGICAL

DL = DOUBLE LOGICAL
U = UNNORMALIZED

& = BINGLE
D = DOUBLE

A, BLAAUW AND F.

P. BROOKS, JR.

channel to govern the reading of the documents.

The input/output interruptions caused by termination of an
1/0 operation, or by operator intervention at the 1/0 device, enable
the cpu to provide appropriate programmed response to con-
ditions as they occur in 1/0 devices or channels. Conditions re-
sponsible for 1/0 interruption requests are preserved in the 1/0
devices or channels until recognized by the cpu.

During execution of START 1/0, a command can be rejected
by a busy condition, program check, etc. Rejection is indicated
in the condition code of the psw, and additional detail on the
conditions that precluded initiation of the 1/0 operation is pro-
vided in & csw.

The need for manual control is minimal because of the design
of the system and supervisory program. A control panel provides
the ability to reset the system; store and display information in
main storage, in registers, and in the psw; and load initial program
information. After an input device is selected with the load unit
switches, depressing a load key causes a read from the selected
input device. The six words of information that are read into
main storage provide the psw and the ccw’s required for sub-
sequent operation.

The sysTEM/360 instructions, classified by format and function,
are displayed in Table 2. Operation codes and mnemonic abbrevi-
ations are also shown. With the previously described formats in
mind, mueh of the generality provided by the system is apparent
in this listing.

Summary

In the svysTEM/360 logical structure, processing efficiency and
versatility are served by multiple accumulators, binary addressing,
bit-manipulation operations, automatic indexing, fixed and vari-
able field lengths, decimal and hexadecimal radices, and floating-
point as well as fixed-point arithmetic. The provisions for pro-
gram interruption, storage protection, and flexible crpu states
contribute to effective operation. Base-register addressing, the
standard interface between channels and input/output control
units, and the machine-language compatibility among models
contribute to flexible configurations and to orderly system ex-
pansion.

FOOTNOTE

1. A seventh embodiment, the Model 92, is not discussed in this paper. This
model does not provide decimal data handling and has a few minor differ-
ences arising from its highly concurrent, speed-oriented organization. A
paper on Model 92 is planned for future publication in the IBM Systems
Journal.

OUTLINE OF THE LOGICAL STRUCTURE

manual
control

instruction
set

