
Operation of several  systems  as m e  multisystem  to  obtain  increased 
availability,  improved  costlperformance, or both, i s  considered. 

System  requirements for various  applications  are  formulated,  and  the 
multisystem  capabilities of SYSTEM/~BO are  discussed in context. 

The structure of S Y S T E M ~ ~ O  

Part V - Multisystem organization 
by G. A. Blaauw 

A  system consisting of two or more central processing units that 
can  communicate  without  manual  intervention  is called a mult i -  
system. Thus defined, this  term encompasses a large variety of 
system configurations and should be distinguished from such terms 
as multicomputer  system or multiprocessing  system, which usually 
are given a more restricted definition.' 

The  motivation for multisystems  stems  principally  from  two 
considerations:  availability, and  the  ratio of cost to performance. 

The  term availability is used to describe the degree to which a 
system  can  function  in  the presence of malfunctioning  equipment. 
When  extra-high  availability is not required,  a  multisystem  must 
be justified on  the basis of improved costlperformance only. The 
cost/performance ratio  may  be influenced by such  considerations 
as the  limitation, specialization,  separation, or pooling of equip- 
ment. 

For the purpose of this discussion, the different cost/per- 
formance  considerations will be discussed separately of each  other 
and of the availability  requirements. An actual  multisystem con- 
figuration will most  often be justified by  a  combination of these 
reasons. 
Cost/performance 

To justify a multisystem solely by  cost/performance, the multi- 
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system  must show an economic advantage (for given  workload, 
function,  and  time  constraints) over alternative solutions,  such 
as multiple  independent  systems or one single system of increased 
capability.  Competition  from  a single system  is severe, since i t  
has been shown many  times  that  the performance of one central 
processing unit (CPU), built  for  a cost equal  to  that of two smaller 
CPU’S, easily exceeds the combined  performance of the two. If 
however, one CPU operating at   the limit of available  technology 
has insufficient power,  a  multisystem  suggests itself. 

Constructing  a  multisystem  out of several  independent CPU’S 

technology increases the combined  cost/performance ratio of the CPU’S. This 
limitation increase  is due  to  the cost of communication expressed in added 

equipment,  reduced  speed of operation,  and  additional  program 
residence and execution  time.  Therefore, in  the absence of a time 
constraint,  the  multiple  independent  systems  are more attrac- 
tive.  But if the period in which a  major  job  within the work- 
load must be  completed is so short  that a single system  is  in- 
adequate, a  multisystem  may provide  a  solution. 

A multisystem  in a real-time  environment  is  still  in  competition 
with  a single system  having  multiple  arithmetic  and logical units. 
In  such  a  system, logical circuits  dynamically  select  strings of 
instructions that can  be  performed  simultaneously.  Simultaneity 
is sought  within one program  segment,  rather  than between 
several  program  segments, as  in  the  multisystem  approach. Be- 
cause of the greater  integration of design and  the absence of pro- 
grammed  interlocks,  multiple arithmetic  units  are  often more 
efficient than  the comparable  multisystem. 

In  contrast  to  the use of multisystems to overcome technology 
processing limitations, which has  not been prominent,  multisystems  based  on 
unit processing unit specialization are finding increasing  acceptance, as 
specialization in  the case of attached peripheral  computers. 

A single CPU must be  able to perform  a variety of tasks,  but is 
not equally adept  at each. I n  particular,  high CPU performance is of 
no avail  for a task  that is  input/output (I/o) limited. Furthermore, 
technological  limitations become sooner apparent  in  character- 
oriented  operations than  in word-oriented  floating-point  opera- 
tions. In  compiling or  editing, processing time of a high-perfor- 
mance CPU may be only  marginally lower than  that of a medium- 
size CPU more adept  at  this class of operations,  and a functional 
division of work  between the CPU’S often  results  in  improved 
cost/performance. 

The logical design of S Y S T E M / ~ ~ O  permits,  within its  strictly 
compatible  definition,  a wide degree of specialization that makes 
it  attractive for this  type of multisystem. The  advantage of com- 
patibility becomes apparent  in  the  reduction of programming 
and educational costs.’ 

Because the specialized computers  join in a  common  job, 
data  and programs  must be  communicated  between them.  This 
communication may be  manual,  hence the application does not 
in itself require  a multisystem; e.g., an operator  may  carry  tapes 
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from the  tape drives of one system to those of another.  The high 
overhead of manual  intervention  due to  the  short  duration of an 
average processing run  can be reduced by batching, i.e., by  treating 
several  programs  jointly.  However, any  manual  intervention is, 
by  nature, unreliable. Thc  ability  to switch tapes under  program 
control, which is one method of interconnecting  systems into a 
multisystem,  eliminates  the  time  and  hazard of manual  inter- 
vention.  communication  media  with  shorter access time  can 
further reduce turn-around time, the  interval between the  moment 
a  program  is  presented to a  computation  center  and  the  moment 
the  results of the  run  are available.  This  time may  greatly affect 
the  productivity of the center and, therefore,  justify  a  multi- 
system of specialized CPU’S. 

When data  are collected and  results  are  made  available a t  
widely separated  locations,  costlperformance is often  improved 
by local systems that communicate  with  each  other or with  a 
central  system. Local processing can be justified where the savings 
in reduced data transmission outweigh the cost of the  additional 
system. 

Finally,  cost/performance  may be improved  by pooling storage 
and peripheral  equipment  among CPU’S. In  this case, the  tasks of 
the individual  systems  may be basically independent, but  the  shar- 
ing of facilities permits each system to perform a wide variety of 
tasks  with a reduced storage and I/O complement  for  each. 
Pooling is even more attractive when not only storage but also 
stored  information  can  be  shared, as exemplified by systems 
programs on a  shared  disk file. 

Equipment pooling is only attractive if the savings  in  equip- 
ment  are  not offset by  the cost of equipment  interconnection. 
The  introduction of switching  in what otherwise would be a single 
connection  always involvcs some cost and performance penalty. 
The  gating, selection, priority-determination, and powering in- 
volves not only  additional  equipment  but also some delay of trans- 
mission. This delay  is  crucial for high-speed storage, where con- 
nection of CPU and  storage  often  leads to critical  timing  problems. 

The concurrent use of one storage array  by several CPU’S 

results in delays, called interference, during which one CPU waits 
because the storage array is performing a cycle for another CPU. 

Since the CPU is not time-dependent, the loss of time causes no 
further complications. However, when an I/O device competes 
with  other I/O devices for the use of shared  storage, the permis- 
sible rate of transmission  is affected and  an overrun  may  result. 
As a result, the pooling of parts of a high-speed storage  array 
is less attractive  than  the pooling of individual arrays of a multiple- 
array storage. Either case is  advantageous  only when additional 
gains, such as increased availability,  can be achieved. 

Availability 

The  character of a  multisystem designed for high availability  is 
primarily  determined  by the  time allowed for reconfiguration, the 
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ability to fail safely or  softly, and  the multiplicity and modu- 
larity of the  system. High  availability may be required  around the 
clock or,  perhaps, just  during banking  hours; in each case, special 
measures must be taken  to reduce the chance of failure  during the 
critical  period. 

The  system components that communicate in  the performance 
reconfiguration of n givcn task  arc said to form a eonjiguration. When  components 
time are  eliminated or introduced,  a new configuration is formed, the 

process of changing being called reconjiguration. The time required 
to reconfigure upon  the occurrence of a  malfunction may be a 
critical  systems  parameter. The  time  to reconfigure includes the 
time  required for fault detection, fault location, switching, manual 
intervention,  program  restart,  as well as for  supervisory  program 
execution. 

The  time required to reconfigure is  critical only in  a  real-time 
environment.  When  much  time  is allowed, reconfiguration may 
be entirely  manual  and,  therefore,  no  multisystem  is  required. 
In  payroll  applications,  for  example, reconfiguration is  often 
achieved by carrying the job from one installation to another. 

When  time  constraints  permit, the use of multiple  independent 
systems  may be superior to  the nlultisystem  approach because 
multiple  independent  systems  have  greater overall reliability.  This 
is explained by  the same factors that apply  in  the case of cost/ 
performance. The  added communication  circuits, increased chance 
of interference, and  additional program  steps  required to prepare 
for reconfiguration, detract from overall systems  reliability,  even 
if only marginally. 

In  an increasing number of cases, however, reconfiguration 
time must be limited to a few minutes, seconds, or fractions of 
seconds, and  the  ability of a  multisystem to  communicate  without 
manual  intervention becomes essential. 

A system that can perform its  entire workload in  the presence 
fail safe of any single malfunction  is  said to be fail safe. Since a  malfunction 

may  have  catastrophic consequences, each  system  component 
should have  a  potential  replacement that is not required by  the 
workload and hence is redundant. Also, isolation should be pro- 
vided so that failure of one component does not cause its replacc- 
ment  to fail. 

A conceptually simple, and historically early, fail-safe system 
is the  stand-by  system.  Here  the  system required for the  full 
workload is  duplicated,  and  thus  has 100 percent  redundancy. 
The two  systems  communicate a t  several  points, and reconfigura- 
tion  time  can be of the order of a few instruction execution times. 
Processing proceeds in  duplicate and in  parallel, each system being 
internally checked. The supervisory task  can be held to a  minimum 
and can lx: implemented by hardware. 

When enough time is allowed for reconfiguration, i.e., files 
can be accessed and several  subroutines  can be executed, less than 
100 percent  redundancy  can be achieved by a  system  having 
fail-softness or a  greater degree of multiplicity. 
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A fail-soft system  performs  only the essentials of its work- 
load in  the presence of malfunction. An analysis of the  tasks  to 
be  performed must  determine which part of the workload can  be 
delayed in case the system  has  to  revert  to  the reduced per- 
formance level. 

The fail-soft approach  provides two  advantages.  First, only 
the processing power for the essential,  time-dependent  workload 
needs duplication.  Second,  in  the absence of malfunction, the 
duplicated processing power can be used to perform the nontime- 
dependent  workload. This workload  can  include  diagnostic  pro- 
grams that serve to  dctcct,  at  an early  and convenient  time, actual 
or potential cquipmerlt  malfunction. As a  result, the efficiency and 
availability  are  improved. 

A typical fail-soft configuration  consists of two  equal or un- 
equal CPU’S with  a  complement of storage  and I/O equipment.  The 
smaller CPU should be  able to perform the  time-dependent  tasks, 
whereas the processing power of both CPU’S satisfies the overall 
workload,  including any work  deferred  because of ndfunction. 

The  strict  compatibility  within  the wide range of models of 
S Y S T E M / ~ ~ O  is particularly useful in  matching  a  multisystem to 
fail-soft  requirements. I’rocessing unit,s of equal or unequal power 
may be chosen as needed. 

The  term multiplicity is used to indicate the  number of CPU’S 

within the multisystem. 
If one computer of power X is  required  for  a  full  workload, 

then  two  computers  with  total power 2X and 100 percent  redun- 
dancy  permit a fail-safe system. But if we replace the single 
computer  by n computers  with power X / n ,  then (n + I) com- 
puters  with  total power X ( n  + l) /n and only 100/n percent 
redundancy  arc  required  for fail-safe operation.  Thus, increasing 
the  multiplicity reduccs the  redundancy. 

This over-simplification ignores several  factors. E’irst, the cost 
of n + 1 computers of power X / n  may  turn  out  to be of the order 
of (n + l)/d; times  the cost of one computer if  we assume that 
performance  increases as  the  square of equipment  increase. In  
that case,  a  two-computer  system (n = 1) is  the least  costly. 
Second, the increased amount of equipment, as reflected in  the 
cost,  reduces the reliability and  availability of the  system.  Third, 
it  may be impossible to  divide an  actual workload efficiently 
among  a  multiplicity of computers. Fourth,  actual  equipment, 
which always  appears  in  discrete  units,  may  not  provide the 
capacity  ideally  desired. 

In practice,  the  number of CPU’S within  a  multisystem  may be 
expected to  be small;  two  and  three being the  most  frequent. As 
a  typical  example,  a  three-computer  system could provide,  first, 
fail-safe operation  and, upon the occurrence of malfunction, fail- 
soft  operation. 

The  term modularity is used hero to indicate  the  number of 
system  components that can  function  independently.  System 
components  are considered logically independent if they  are 
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Figure 1 Functional structure of 
basic system 
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interconnected by well-defined interfaces so that  they  can, upon 
reconfiguration, operate  without  communicating  with  each  other. 
Examples of logically independent  system  components  are  storagc 
units, CPU'S, I/O control units,  and I/O devices. 

Although logically independent,  these  system  components  may 
still be physically  dependent because they  share common equip- 
ment.  Thus, storage  and CPU may  be  built within  a common frame 
and  share power supplies; an I/O channel may share the logical 
circuits of the CPU; or several I/O channels may use common 
logical circuits as in the case of the multiplexor  channel.  These 
are examples of integrated design. The decision to use an integrated 
design is  dictated by cost and performance  considerations,  and 
not by logical dependency. Thus,  the S Y S T E M / ~ ~ O  models differ 
in  the degree of integration  across  the  performance  range,  yet  they 
have  identical logical structure. 

Storage  units may be considered logically independent when 
they  are served by  separate access mechanisms. A storage unit 
may therefore be divided into as many physically  independent 
units  as is economically justifiable. A major  consideration  in  this 
case is  system  performance.  Increased  modularity (i.e., many 
small  storage units) reduces  interference  for a single CPU as well 
as for  several CPU'S within a multisystem. For this reason, the 
large  SYSTEM/^^^ models use multiple  storage  units. This also 
points to  the desirability of multiple  storage units once main 
storage must be shared. 

Since failure of a  circuit  element  shared by several logically 
independent  system  components causes malfunctioning of all 
these  components,  physical as well as logical independence is 
required if modularity is to help in  obtaining  improved  systems 
availability.  Pooling of equipment,  on the other  hand, requircs 
only logical independence. 

For S Y S T E M ~ B O ,  an integrated design was used only in those 
instances where major  savings in  equipment could be obtained for 
the  particular performance goal. Such a reduction in equipment  in- 
creases the reliability and,  in  turn,  the  availability of the overall 
system.  This increase in  system  availability  through  component 
reduction more than offsets the increase in  availability which 
physical  independence would provide. 

Even  though  the  system components that  are integrated  may 
fail at once, the integrated design is  functionally  acceptable  for 
several reasons. First, normally the programming  system which 
provides for the eventuality of an individual  component  failure 
can  handle  the case of several  failures at once. Second, the failure 
of one component  typically  reduces the demand  upon  other com- 
ponents. Third,  the components  eliminated  from the operating 
part of the system  are often needed for diagnosing the failing part 
of the system. Consider, for example, the multisystem  components 
storage  and CPU. When one CPU fails, the multisystem  system must 
still  anticipate the potential  failure of a  storage  unit, while the 
need for this second storage unit is reduced because less processing 
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can be performed.  Moreover, the storage  unit associated  with the 
CPU is  likely to  be needed for performing  diagnostics  upon the CPU. 

These  functional  reasons combined with reduced cost and increased 
availability  make the integrated design attractive when perfor- 
mance  permits. 

In  summary,  the  modularity of a  multisystem is determined 
primarily  by cost/performance rather  than  availability con- 
siderations. 

Means of communication 

Communication  between the CPU’S of a  multisystem  may be 
achieved by  transmitting  information  from one CPU to  another 
through a connecting  link or by giving them access to a  shared 
storage  medium. 

Before considering these two  types of communication, it is 
well to review the major  components of a single, or simplex, 
system.  Figure 1 shows these  components, and  their  functional 
dependencies, in simplified fashion. The interconnection  between 
channel and control  unit  is  independent of the particular  control 
units connected  or the particular  implementation of the channel 
logic. This interconnection in SYSTEM/~BO is called the I/O interface 
(see Part  IV).  In  contrast,  the interconnection  between  control 
unit  and device is specialized for the device a t  hand  and  thus dif- 
fers  for tape drives,  communication  equipment, files, etc.  The 
interconnection  between CPU and  storage,  the  storage bus,  also 
serves  for  transmission of data between  storage and channel. 

To  obtain communication  between CPU’S, the storage  media  and 
interface  connections  already  available  in  a simplex system  arc 
used. The  amount of extra  equipment or equipment  change that 
must  be  introduced to  achieve multisystem  operation  is  thus 
minimized. 

Transmission of information is made possible by thc channcl- 
to-channel adapter  and  by  the transmission  control  units. 

A channel-to-channel adapter  permits connection of I/O inter- 
faces of two channels, as shown in Figure 2. The  adapter’s  main 
purpose  is to  make  each  channel  appear  as a  control  unit  to  the 
other  channel. This  is necessary, because the I/O interface  is not 
symmetric, but assumes the presence of a  channel on one end, 
and one or more control  units on the other. 

The channel-to-channel adapter normally  connects  channels 
associated with different CPU’S, thus establishing  a  multisystem. 
Transmission proceeds by  byte  at a rate established by  the  two 
channels. Because of the  standardization of the I/O interface, 
the channel-to-channel adapter  may connect any model of the 
SYSTEMI360 to  any other model, and  may use any  type of channel 
on  a  given model. Any number of channel-to-channel adapters 
may be used in  a  multisystem, but  in  most cases, one or two 
suffice. Their  main  application is in a  multisystem  emphasizing 
medium  reconfiguration time or cquipment  specialization. 
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A transmission  control unit  permits cPu-to-cPu communica- 
tion by  private line or common carrier. As indicated  in  Figure 3, 
communication is established by means of the specialized device 
interface rather  than  via  the channel  interface. Rate of trans- 
mission is  determined  primarily by  the line capacity. Any two 
models of  SYSTEM/^^^, as well as those of any  other  system, can 
be connected. The  major application  is for geographically separated 
components. The maximum  number of connections differs among 
the SYSTEM/%O models. Multisystems  with  hundreds of line con- 
nections  are possible. 

When  two or more CPU'S have access to a common storage 
shared medium,  information placed in the medium by one CPU can be 
storage read by another CPU. In contrast to transmission,  sending and 
media receiving are  not simultaneous,  and  a one-to-one relation between 

recording and retrieving  is not necessary. The storage  media 
must  be read and  written  without  human  intervention,  thus 
barring,  for the present,  punched  cards and  the  printed page. 
The choice of shared  media  is  determined by access time,  trans- 
mission rate,  capacity,  and cost per  bit. 

is achieved by  the  sharin 
Figure 3 Transmission Communication differing in application and implementation 
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Methods of interconnection 

The  method  by which components of a multisystem  are  inter- 
connected  should  be  general, to  permit freedom in choice of systems 
components;  expandable, to permit economic systems  growth; and 
reliable, to  enhance  systems  availability. 

SYSTEM/~RO channel-to-channel adapters  adhere  to one I/O 

interface  definition, and  the transmission  control units  adhere  to 
the  industry  st,andards  for communication  equipment. Since any 
pair of S Y S T E M / ~ ~ O  CPU'S can  be  connected,  systems  growth  can 
be accomplished by adding more CPU'S to  the system or, pre- 
ferably,  by replacing a given CPU with one of a greater  power. 
Improved  availability  can  be  attained  by using several  trans- 
mission control units  and  the  alternate  paths normally  present 
in a communication  network. 

Interconnections  for the sharing of system  components may be 
established  between (1) main  storage  and CPU, (2 )  channel and 
control unit, as for  disk and  drum,  and (3) control unit  and device, 
as for  tapes. Because the logical approach is the  same for all  three 
cases, the interconnection of main  storage  and CPU serves to  illus- 
trate  the discussion. 

Figure 7 shows an intcrcorlncction  technique,  known as the 
crossbar  switch, that allows connection of each of M CPU'S to  any 
one of N storage  units.  The M connections  can be  made simul- 
taneously,  provided that M is  smaller than or equal to  N .  This 
well-known switch  can  be  implemented in  two ways. In  the 
centralized implementation,  each CPU and each  storage  unit  has 
a single interconnection with a central  switching  network. Each 
connection being simple,  all  complexity  is  concentrated in  the 
switching  network, which must  be viewed as an additional  major 
system  component.  Where  availability  is  required, the switch 
should be  duplicated.  Yet, the additional  equipment  adds  no 
additional processing power in  either fail-safe or fail-soft  mode. 

An alternative  is  the distributed implementation  shown  in 
Figure 8. This figure can be derived  from  Figure 7 when the com- 
ponents  represented by  the vertical lines of Figure 7 are  made 
part of the storage  units  to which the  vertical lines belong; CPU'S 

still  have single connections, but  the storage  units  have  multiple 
connections, called multiple  tails. The  equipment of the crossbar 
switch is thus divided  among  storage units. 

Economic  considerations  favor  a  distributed  crossbar  switch 
because separate  frame  and powering are  not  required. Since each 
added  storage  unit comes with  its own section of the switch, 
smooth  system  growth is possible. Additional CPU'S are accom- 
modated by additional  tails  on  storage units. Flexible system de- 
sign  is possible because the number of tails need not be the same  for 
all  storage  units.  Moreover,  storage  units  private to  one CPU can be 
incorporated,  and high-speed storage  can  be  treated differently 
from  large-capacity  storage. 

High  availability  can  be  attained  without  duplication since 
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For high  availability,  the  bus3  connecting  a CPU with  multiple- 
tail  storage  units requires  proper  isolation.  Failure of a  storage 
unit should not impede the  operation of the buses to which its 
tails  are connected.  Neither  should the failure of a bus,  driven 
and controlled by a CPU, prevent  storage  units connected to  it  
from  communicating  with  other  buses.  Such  a  design  can  eliminate 
the need for  physically  disconnecting  a  component when failure 
occurs. 

A distributed  switch  proves  equally  desirable  for  the  connection 
of control  units to  channels;  control units  can be  connected, 
through  multiple  tails, to  different  channels. 

Because the I/O interface  is standard for  all  channels and 
control  units, this interconnection  is  independent of the models 
involved. For  main  storage,  the  bus  must be specialized for the 
particular CPU and  storage  type  to  attain  maximum  performance. 
Therefore,  normally only CPU’S of the  same model  share high- 
speed storage. 

A centralized  switch  connects tape  control  units to  tape drives; 
here,  availability  requirements  can  usually  tolerate  equipment 
failure  upon power malfunction.  Tape-switching  often occurs in 
a simplex system.  When  tape drives  are  shared  between  several 
CPU’S, long reconfiguration  time is necessary to permit  rewinding 
and  manual  tape  handling.  For  these reasons, the  tape  switch 
normally need not be  duplicated.  Furthermore, since the  number 
of shared  tape-drive  configurations is limited, i t  is possible to 
design a centralized  switch  with  enough  features to satisfy  antici- 
pated  requirements. 

In  a  multisystem, the allocation of shared  storage to a CPU 

is entirely the responsibility of the programming  system. In  some 
applications,  a  multisystem  is  separated  into  two  or  more inde- 
pendently working parts,  this process being called partitioning. 
Partitioning requires no  additional  functions  as long as  the super- 
visory  program  can  be  trusted. If i t  cannot  be  assumcd to  operate 
correctly, manual controls  provide  a more dependabIe  method of 
partitioning. 

Communication aids 

Communication  between CPU’S should be supplemented  in  various 
applications  by 

Multiprogramming of supervisory  programs and problem 

Signaling that a message has been or is to  be  transmitted. 
Interlocking  the use of storage to  prevent conflict. 
Requesting  intervention  in the case of malfunction. 
Permitting initialization to  attempt recovery  from  malfunction. 

programs. 

In  multiprogramming, the  attention of the CPU is switched multiprogramming 
among two or more  programs that  are simultaneously  in  storage. 
Multiprogramming is assumed to  be  the normal  mode of operation 
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for both simplex and  multisystem SYSTEM/360 configurations. This 
assumption is based on  the  fact  that a large majority of existing 
systems  already use some kind of supervisory  program, part of 
which resides in storage  during  problem  program  execution. 

In  a multisystem,  the  main occasions for  multiprogramming 
are twofold. First,  thc sllpervisory  program that directs com- 
munication  among CPU’S makes use of multiprogramming  akin to 
that used by thc supervisor of a simplex system.  The  program re- 
quires the storage  protection, privileged operations, and efficient 
program  switching  included  within SYSTEM/360. Second,  in  systems 
sharing  main  storage, one subroutine  may be cxccuted simul- 
taneously  by  several CIJU’S. This  type of program  operation  is es- 
sentially the same as for  multiple  programs  in  a simplex CPU sharing 
the same  subroutine,  and  again,  the  multisystem  can use the sim- 
plex features.  An  essential  requirement  for  such a subroutine is that 
its instructions  remain  unaltered  during  execution. The instruction 
set  and  formats of SYSTICM/360 were specified with  this i n  mind. 
Address modification is  amply provided by base and index regis- 
ters.  The modification of operation codes, length, and register 
specification can be performed with  thc EXECUTE instruction.  For 
correct  execution of a  subroutine  by  multiple CPU’S, or  by  multiple 
programs  within onc CPU, it is further necessary that  the  data areas 
belonging to  the difierent  programs do  not  overlap  and  are 
properly identified by base  addresses.  A  subroutine  satisfying 
these  requirements is said to be re-entrant. 

Before one CPU sends  information to  another,  it should alert 
signaling the receiving CPU. Once alerted, the receiving CPU can specify the 

proper  storage  area  and  transfcr incoming bytes  under  control 
of a read conmand, while the  transmitting CPU transfers  bytes 
under  control of a  writc  command. SYSTEM/360 alerts a program to 
an  incoming message in a general  fashion by an  attention signal 
which interrupts  the  CPU.  In  the case of the channel-to-channel 
adapter,  the  initiating  write command  generates the  attention sig- 
nal  in  the receiving channel. Once the receiving CPU responds  with  a 
read  command,  communication  is  established.  When  transmission 
is completed, both receiving and  transmitting CPU’S can  be  inter- 
rupted. 

For communication  through a common storage  facility,  a CPU 

must be  alerted to  the  fact  that a message has been prepared  for 
it  by  another  CPU.  This  alert  can be  programmed, of course, by 
periodic inspection of a  signal bit. A more rapid response, however, 
is attained  through  interruption.  The direct-control  instructions 
and  external-interruption lines of SYSTEM/~BO are  intended for 
this purpose. 

Associated with  the direct-control  instructions  is an interface 
a t  which eight  signals  can  be  made  available. A signal  from one 
CPU may  be connected to one of the  external-interruption lines 
of another CPU. By  thc  instructions READ DIRECT and WRITE 
DIRECT, the program  in one CPU can cause an external  interrup- 
tion  in  another CPU. The direct-control feature  further provides 



static signals that can be sent  to, or read from,  other CPU’S or 
special-purpose external devices. 

Shared  storage  is  often  a common medium  for data,  restart 
information,  programs,  and  results that are  updated  by different 
CPU’S of a  multisystem. To prevent logical conflict, sufficient 
interlocks must be provided. 

A control  unitj  or T/O device responds with a busy indication 
when a new d a b  transfer is attempted bcforc a preceding transfer 
has been completed. Because only one message a t  a time  can be 
transmitted between any CPU and a shared I/O device, a satis- 
factory  interlock  exists.  Where  time  is longer, as for the  arm move- 
ment of a disk mechanism,  additional  controls  are supplied by 
which a  program  can reserve and release an access mechanism. 

When  main  storage is the means of communication,  interlocks 
are  provided for the period of one storage cycle. When  two CPU’S 

simultaneously  request access to storage,  a  tie-breaking  priority 
circuit grants access to one CPU, then gives the  next cycle to  the 
other CPU. This simple rule prevents one CPU from locking out, 
and therefore effectively halting,  another CPU. 

Access to storage is granted for the  duration of one storage 
cycle, not for t,he duration of an entire  instruction. Since, as a 
rule,  information is processed in  internal  registers, a typical 
procedure is to fetch data from storage, process the  data in regis- 
ters,  and store the result  in  storage. The storage  interlocking 
mechanism,  unaware of the relation between successive storage 
accesses, makes it possible for one CPU to store  results  in a location 
after a second CPU has  fetched its operands from that location, but 
prior to storage of the results  by the second CPU. This possibility 
necessitates a programmed  interlock  in the use of core storage as a 
shared  medium. 

In  a  multisystem designed for high availability, it  is not 
sufficient to back one CPU by  other CPU’S, but  it is necessary to 
determine when this  backup  should  take  place.  The  properly 
operating part of the  multisystem should be alerted to  the  fact 
that malfunctioning  has occurred in a CPIJ. This  malfunction may 
be caused by a  program or the hardware. 

Program  malfunctioning, as such, does not require  multi- 
processing, but only  multiprogramming; it suffices to identify 
and discontinue the  faulty program  under  control of the super- 
visor,  and  subsequently to proceed with  the  next available task. 

To help  detect the malfunctioning of the program,  two basic 
tools are provided. First,  the execution of a  faulty  prograln  often 
leads to cxecution of an invalid  instruction, use of invalid data, 
and reference to  an invalid  address or protcctcd  location. Since 
all  programming exceptions are verified (policed) in SYSTEM/360, 

this  type of malfunction  is soon identified and signaled by a pro- 
gram  interruption. As a second tool, the timer  may be used to 
detect programming  errors,  such as unending loops, which are 
not  detected  by policing. The timer  can be set  to cause an inter- 
ruption when the  time allowed to a  program  segment  is exceeded. 
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Perhaps  the  most  important use of the extensive checking 
included in  all SYSTEM/~GO equipment  is  fault location. A high 
degree of checking makes it possible to recognize the occurrence 
of a  malfunction on short  notice and,  thus,  to preserve the  state 
of the CPU for a  subsequent diagnosis. The information provided 
to  the engineer servicing the  equipment reduces the  mean repair 
time  and  contributes to availability. 

When the malfunction  is intermittent,  the machine-check 
interruption  and  a  programmed  restart  make it possible for the 
CPU to recover. When the malfunction  is solid, the CPU cannot 
recover and a second CPU should take over. A malfunction signal, 
of the same nature  as a  direct-control signal, can give an external 
interruption in  the second CPU. The signal, which requires no pro- 
gramming, is issued as soon as a machine  malfunction  is  detected. 

Each CPU of SYSTEM/~BO uses permanently assigned storage 
recovering (locations 0 through 127) for program status words, channel 

address and  status words, the  timer.  and diagnostic scan  areas. 
Were these  locations common, they would be shared by several 
CPU’S. Therefore, to provide  each CPU with  separate preferred 
storage,  a quantity called the prejix is used to relocate dynamically 
all  addresses referring to  the first 4,096 storage  locations. Since 
each CPU can  have  a different prefix, the sharing of these  locations 
can be avoided. 

The prefix relocates all  locations that can be directly  addressed 
(using a zero base and zero index specification) by  the displace- 
ment. Such  absolute addressing is  useful when the supervisor 
must  store  the general  purpose registers in program  switching. 
The prefix makes this programming  technique possible even if 
locations 0 through 4095 are  not available to a  system. 

When only storage is malfunctioning, the  system can resume 
operation  immediately by eliminating the  faulty storage unit. If 
the  faulty storage  contains  the  permanently assigned storage 
locations  for the CPU, new locations  can  be  provided by introducing 
an  alternate prefix. For this reason, a second prefix quantity is 
provided  for  a CPU as  part of the SYSTEM/~GO multisystem  feature. 
Normally, the two prefix quantities  relocate  the preferred-storage 
locations to different storage  units. Thus,  the CPU becomes inde- 
pendent of a specific storage unit for its operation. 

The  identity of the CPU executing a program may be deter- 
mined by setting  apart one of the addresses  in the range of 0 
through 4095 as  the address of an identifying  location. Since the 
actual location is determined by  the prefix, the  content of this 
location  may  serve to identify CPU and prefix currently  used. 

When the CPU can resume operation, it is desirable to minimize 
operator  action.  Introduction of a new program status word and 
the corresponding instructions  may  best be performed by  the 
still-operating part of the multisystem. For this reason,  means 
are provided for one CPU to initiate  the  initial program loading 
of another CPU. This signaling again  has been defined to be con- 
sistent  with the signals of the direct-control  circuitry.  Two signal 
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