Operation of several systems as one multisystem to obtain increased
avatlability, improved cost/performance, or both, is considered.

System requirements for various applications are formulated, and the
multisystem capabilities of SYSTEM/360 are discussed in context.

The structure of sysTeMm/seo

Part V - Multisystem organization
by G. A. Blaauw

A system consisting of two or more central processing units that
can communicate without manual intervention is called a multi-
system. Thus defined, this term encompasses a large variety of
system configurations and should be distinguished from such terms
as multicomputer system or multiprocessing system, which usually
are given a more restricted definition.’

The motivation for multisystems stems principally from two
considerations: availability, and the ratio of cost to performance.

The term availability is used to describe the degree to which a
system can function in the presence of malfunctioning equipment.
When extra-high availability is not required, a multisystem must
be justified on the basis of improved cost/performance only. The
cost/performance ratio may be influenced by such considerations
as the limitation, specialization, separation, or pooling of equip-
ment.

For the purpose of this discussion, the different cost/per-
formance considerations will be discussed separately of each other
and of the availability requirements. An actual multisystem con-
figuration will most often be justified by a combination of these
reasons.

Cost/performance

To justify a multisystem solely by cost/performance, the multi-

IBM SYSTEMS JOURNAL °* VOL. 3 * NO, 2 * 1964

technology
limitation

processing
unit
specialization

182

system must show an economic advantage (for given workload,
function, and time constraints) over alternative solutions, such
as multiple independent systems or one single system of increased
capability. Competition from a single system is severe, since it
has been shown many times that the performance of one central
processing unit, (cpv), built for a cost equal to that of two smaller
cpU’s, easily exceeds the combined performance of the two. If
however, one ¢PU operating at the limit of available technology
has insufficient power, a multisystem suggests itself.

Constructing a multisystem out of several independent cpu’s
increases the combined cost/performance ratio of the cpu’s. This
increase is due to the cost of communication expressed in added
equipment, reduced speed of operation, and additional program
residence and execution time. Therefore, in the absence of a time
constraint, the multiple independent systems are more attrac-
tive. But if the period in which a major job within the work-
load must be completed is so short that a single system is in-
adequate, a multisystem may provide a solution.

A multisystem in a real-time environment is still in competition
with a single system having multiple arithmetic and logical units.
In such a system, logical circuits dynamically seleet strings of
instructions that can be performed simultaneously. Simultaneity
is sought within one program segment, rather than between
several program segments, as in the multisystem approach. Be-
cause of the greater integration of design and the absence of pro-
grammed interlocks, multiple arithmetic units are often more
efficient than the comparable multisystem.

In contrast to the use of multisystems to overcome technology
limitations, which has not been prominent, multisystems based on
processing unit specialization are finding increasing acceptance, as
in the case of attached peripheral computers.

A single cPu must be able to perform a variety of tasks, but is
not equally adept at each. In particular, high cpu performance is of
no avail for a task that is input/output (1/0) limited. Furthermore,
technological limitations become sooner apparent in character-
oriented operations than in word-oriented floating-point opera-
tions. In compiling or editing, processing time of a high-perfor-
mance CPU may be only marginally lower than that of a medium-
size cPU more adept at this class of operations, and a functional
division of work between the cpu’s often results in improved
cost/performance.

The logical design of sysTEM/360 permits, within its strictly
compatible definition, a wide degree of specialization that makes
it attractive for this type of multisystem. The advantage of com-
patibility becomes apparent in the reduction of programming
and educational costs.’

Because the specialized computers join in a common job,
data and programs must be communicated between them. This
communication may be manual, hence the application does not
in itself require a multisystem; e.g., an operator may carry tapes

G. A. BLAAUW

from the tape drives of one system to those of another. The high
overhead of manual intervention due to the short duration of an
average processing run can be reduced by batching, i.e., by treating
several programs jointly. However, any manual intervention is,
by nature, unreliable. The ability to switch tapes under program
control, which is one method of interconnecting systems into a
multisystem, eliminates the time and hazard of manual inter-
vention. Communication media with shorter access time can
further reduce {urn-around time, the interval between the moment
a program is presented to a computation center and the moment
the results of the run are available. This time may greatly affect
the productivity of the center and, therefore, justify a multi-
system of specialized cpru’s.

When data are collected and results are made available at
widely separated locations, cost/performance is often improved
by local systems that communicate with each other or with a
central system. Local processing can be justified where the savings
in reduced data transmission outweigh the cost of the additional
system.

Finally, cost/performance may be improved by pooling storage
and peripheral equipment among cpu’s. In this case, the tasks of
the individual systems may be basically independent, but the shar-
ing of facilities permits each system to perform a wide variety of
tasks with a reduced storage and 1/0 complement for each.
Pooling is even more attractive when not only storage but also
stored information can be shared, as exemplified by systems
programs on a shared disk file.

Equipment pooling is only attractive if the savings in equip-
ment are not offset by the cost of equipment interconnection.
The introduction of switching in what otherwise would be a single
connection always involves some cost and performance penalty.
The gating, selection, priority-determination, and powering in-
volves not only additional equipment but also some delay of trans-
mission. This delay is crucial for high-speed storage, where con-
nection of ¢pu and storage often leads to critical timing problems.

The concurrent use of one storage array by several cpu’s
results in delays, called #nferference, during which one cpu waits
because the storage array is performing a cycle for another cpu.
Since the cpU is not time-dependent, the loss of time causes no
further complications. However, when an 1/0 device competes
with other 1/0 devices for the use of shared storage, the permis-
sible rate of transmission is affected and an overrun may result.
As a result, the pooling of parts of a high-speed storage array
is less attractive than the pooling of individual arrays of a multiple-
array storage. Either case is advantageous only when additional
gains, such as increased availability, can be achieved.

Availability
The character of a multisystem designed for high availability is

primarily determined by the time allowed for reconfiguration, the

MULTISYSTEM ORGANIZATION

equipment
separation

component
pooling

reconfiguration

time

fail safe

184

ability to fail safely or softly, and the multiplicity and modu-
larity of the system. High availability may be required around the
clock or, perhaps, just during banking hours; in each case, special
measures must be taken to reduce the chance of failure during the
critical period.

The system components that communicate in the performance
of a given task are said to form a configuration. When components
are eliminated or introduced, a new configuration is formed, the
process of changing being called reconfiguration. The time required
to reconfigure upon the occurrence of a malfunction may be a
critical systems parameter. The time to reconfigure includes the
time required for fault detection, fault location, switching, manual
intervention, program restart, as well as for supervisory program
execution.

The time required to reconfigure is critical only in a real-time
environment. When much time is allowed, reconfiguration may
be entirely manual and, therefore, no multisystem is required.
In payroll applications, for example, reconfiguration is often
achieved by carrying the job from one installation to another.

When time constraints permit, the use of multiple independent
systems may be superior to the multisystem approach because
multiple independent systems have greater overall reliability. This
is explained by the same factors that apply in the case of cost/
performance. The added communication circuits, increased chance
of interference, and additional program steps required to prepare
for reconfiguration, detract from overall systems reliability, even
if only marginally.

In an increasing number of cases, however, reconfiguration
time must be limited to a few minutes, seconds, or fractions of
seconds, and the ability of a multisystem to communicate without
manual intervention becomes essential.

A system that can perform its entire workload in the presence
of any single malfunction is said to be fail safe. Since a malfunetion
may have catastrophic consequences, each system component
should have a potential replacement that is not required by the
workload and hence is redundant. Also, isolation should be pro-
vided so that failure of one component does not cause its replacc-
ment to fail.

A conceptually simple, and historically early, fail-safe system
is the stand-by system. Here the system required for the full
workload is duplicated, and thus has 100 percent redundancy.
The two systems communicate at several points, and reconfigura-
tion time can be of the order of a few instruction execution times.
Processing proceeds in duplicate and in parallel, each system being
internally checked. The supervisory task can be held to a minimum
and can be implemented by hardware.

When enough time is allowed for reconfiguration, i.e., files
can be accessed and several subroutines can be executed, less than
100 percent redundancy can be achieved by a system having
fail-softness or a greater degree of multiplicity.

G. A. BLAATW

A fail-soft system performs only the essentials of its work-
load in the presence of malfunction. An analysis of the tasks to
be performed must determine which part of the workload can be
delayed in case the system has to revert to the reduced per-
formance level.

The fail-soft approach provides two advantages. First, only
the processing power for the essential, time-dependent workload
needs duplication. Second, in the absence of malfunction, the
duplicated processing power can be used to perform the nontime-
dependent workload. This workload can include diagnostic pro-
grams that serve to detect, at an early and convenient time, actual
or potential equipment malfunction. As a result, the efficiency and
availability are improved.

A typical fail-soft configuration consists of two equal or un-
equal cpu’s with a complement of storage and 1/0 equipment. The
smaller ¢pu should be able to perform the time-dependent tasks,
whereas the processing power of both cpu’s satisfies the overall
workload, including any work deferred because of malfunction.

The strict compatibility within the wide range of models of
sYSTEM/360 is particularly useful in matching a multisystem to
fail-soft requirements. Processing units of equal or unequal power
may be chosen as needed.

The term multiplicity is used to indicate the number of cpu’s
within the multisystem.

If one computer of power X is required for a full workload,
then two computers with total power 2X and 100 percent redun-
dancy permit a fail-safe system. But if we replace the single
computer by n computers with power X/n, then (n + 1) com-
puters with total power X(n + 1)/n and only 100/n percent
redundancy are required for fail-safe operation. Thus, increasing
the multiplicity reduces the redundancy.

This over-simplification ignores several factors. Iirst, the cost
of n 4+ 1 computers of power X /n may turn out to be of the order
of (n 4 1)/V/n times the cost of one computer if we assume that
performance increases as the square of equipment increase. In
that case, a two-computer system (n = 1) is the least costly.
Second, the increased amount of equipment, as reflected in the
cost, reduces the reliability and availability of the system. Third,
it may be impossible to divide an actual workload efficiently
among a multiplicity of computers. Fourth, actual equipment,
which always appears in discrete units, may not provide the
capacity ideally desired.

In practice, the number of ¢pu’s within a multisystem may be
expected to be small; two and three being the most frequent. As
a typical example, a three-computer system could provide, first,
fail-safe operation and, upon the occurrence of malfunction, fail-
soft operation.

The term modularity is used here to indicate the number of
system components that can function independently. System
components are considered logically independent if they are

MULTISYSTEM ORGANIZATION

fail soft

multiplicity

modularity

Figure 1 Functional structure of
basic system

DEVICE

interconnected by well-defined interfaces so that they can, upon
reconfiguration, operate without communicating with each other.
Examples of logically independent system components are storage
units, cPu’s, 1/0 control units, and 1/0 devices.

Although logically independent, these system components may
still be physically dependent because they share common equip-
ment. Thus, storage and ¢pu may be built within a common frame
and share power supplies; an 1/0 channel may share the logical
circuits of the cpu; or several 1/0 channels may use common
logical circuits as in the case of the multiplexor channel. These
are examples of integrated design. The decision to use an integrated
design is dictated by cost and performance considerations, and
not by logical dependency. Thus, the sysTEM/360 models differ
in the degree of integration across the performance range, yet they
have identical logical structure.

Storage units may be considered logically independent when
they are served by separate access mechanisms. A storage unit
may therefore be divided into as many physically independent
units as is economically justifiable. A major consideration in this
case is system performance. Increased modularity (i.e., many
small storage units) reduces interference for a single cpu as well
as for several cpu’s within a multisystem. For this reason, the
large sYSTEM/360 models use multiple storage units. This also
points to the desirability of multiple storage units once main
storage must be shared.

Since failure of a circuit element shared by several logically
independent system components causes malfunctioning of all
these components, physical as well as logical independence is
required if modularity is to help in obtaining improved systems
availability. Pooling of equipment, on the other hand, requircs
only logical independence.

For sysTEM/360, an integrated design was used only in those
instances where major savings in equipment could be obtained for
the particular performance goal. Such a reduction in equipment in-
creases the reliability and, in turn, the availability of the overall
system. This increase in system availability through component
reduction more than offsets the increase in availability which
physical independence would provide.

Even though the system components that are integrated may
fail at once, the integrated design is functionally acceptable for
several reasons. First, normally the programming system which
provides for the eventuality of an individual component failure
can handle the case of several failures at once. Second, the failure
of one component typically reduces the demand upon other com-
ponents. Third, the components eliminated from the operating
part of the system are often needed for diagnosing the failing part
of the system. Consider, for example, the multisystem components
storage and cpu. When one cpu fails, the multisystem system must
still anticipate the potential failure of a storage unit, while the
need for this second storage unit is reduced because less processing

G. A. BLAAUW

can be performed. Moreover, the storage unit associated with the
cpru is likely to be needed for performing diagnostics upon the cru.
These functional reasons combined with reduced cost and increased
availability make the integrated design attractive when perfor-
mance permits.

In summary, the modularity of a multisystem is determined
primarily by cost/performance rather than availability con-
siderations.

Means of communication

Communication between the cpu’s of a multisystem may be
achieved by transmitting information from one cpu to another
through a connecting link or by giving them access to a shared
storage medium.

Before considering these two types of communication, it is
well to review the major components of a single, or simplex,
system. Figure 1 shows these components, and their functional
dependencies, in simplified fashion. The interconnection between
channel and control unit is independent of the particular control
units connected or the particular implementation of the channel
logic. This interconnection in sysTeM/360 is called the 1/0 interface
(see Part IV). In contrast, the interconnection between control
unit and device is specialized for the device at hand and thus dif-
fers for tape drives, communication equipment, files, ete. The
interconnection between cpu and storage, the storage bus, also
serves for transmission of data between storage and channel.

To obtain communication between cru’s, the storage media and
interface connections already available in a simplex system are
used. The amount of extra equipment or equipment change that
must be introduced to achieve multisystem operation is thus
minimized.

Transmission of information is made possible by the channcl-
to-channel adapter and by the transmission control units.

A channel-to-channel adapter permits connection of 1/0 inter-
faces of two channels, as shown in Figure 2. The adapter’s main
purpose is to make each channel appear as a control unit to the
other channel. This is necessary, because the 1/0 interface is not
symmetric, but assumes the presence of a channel on one end,
and one or more control units on the other.

The channel-to-channel adapter normally connects channels
associated with different cpu’s, thus establishing a multisystem.
Transmission proceeds by byte at a rate established by the two
channels. Because of the standardization of the 1/0 interface,
the channel-to-channel adapter may connect any model of the
SYSTEM/360 to any other model, and may use any type of channel
on a given model. Any number of channel-to-channel adapters
may be used in a multisystem, but in most cases, one or two
suffice. Their main application is in a multisystem emphasizing
medium reconfiguration time or cquipment specialization.

MULTISYSTEM ORGANIZATION

Figure 2 Channel-to-channel

adapter

STORAGE

STORAGE

PROCESSING
UNIT

CHANNEL

CHANNEL

CHANNEL-
TO-CHANNEL
ADAPTER

CONTROL
UNIT

CONTROL
UNIT

DEVICE

Lo Lo b——4

DEVICE

|
r=="F4 r—==f-——

transmission

Figure 3 Transmiss
control units

shared
storage
media

ion

STORAGE

STORAGE

]____

PROCESSING
UNIT

PROCESSING
UNIT

=

CHANNEL

TRANS-
MISSION
CONTROL
UNIT

T
.LI

|

|

i
-4
T
4

|

I

I

]

1
2

COMMON
CARRIER

Figure 4 Shared control units

-
STORAGE

STORAGE

==

PROCESSING
UNIT

PROCESSING
UNIT

CHANNEL

CHANNEL

[

]

[
I
CONTROL
NI

UNIT

CONTROL
UNIT

==~ r~—r

DEVICE

DEVICE

[]

—
[00]
[ve]

A transmission control unit permits cpu-to-cPU communica~
tion by private line or common carrier. As indicated in Figure 3,
communication is established by means of the specialized device
interface rather than via the channel interface. Rate of trans-
mission is determined primarily by the line capacity. Any two
models of sysTEM/360, as well as those of any other system, can
be connected. The major application is for geographically separated
components. The maximum number of connections differs among
the sysTEM/360 models. Multisystems with hundreds of line con-
nections are possible.

When two or more cpu’s have access to a common storage
medium, information placed in the medium by one cpu can be
read by another cpu. In contrast to transmission, sending and
receiving are not simultaneous, and a one-to-one relation between
recording and retrieving is not necessary. The storage media
must be read and written without human intervention, thus
barring, for the present, punched cards and the printed page.
The choice of shared media is determined by access time, trans-
mission rate, capacity, and cost per bit.

Communication differing in application and implementation
is achieved by the sharing of disk files, drums, data cells, and tape
drives.

Shared devices are useful for restart information, which permits
recovery upon reconfiguration. Disk or drum may be pooled for
storage of programming systems. Disk, drum, and tape drives
are also useful as a means of communication between specialized
cPU’s to achieve improved turn-around time.

Because one control unit normally suffices for several files, a
switch between channel and control unit allows efficient sharing
of a control unit between two cpu’s. This possibility is depicted
in Figure 4.

As suggested by Figure 5, tape drives are shared between con-
trol units, rather than control units being shared between channels.
This choice is made because pooling of tape drives between control
units permits the simultaneous operation of any combination of
tape drives. This logical ability increases the power of both a
simplex system and a multisystem. As an example, the sharing of
any pair of tape drives by two control units can improve sorting
time significantly.

Either high-speed or large-capacity storage can be shared, as
is shown in Figure 6 for two cpu’s. Configurations can have all
storage shared, or can combine shared with private storage.

Where one program is executed in turn by different cru’s,
it is desirable that the locations of instructions and associated
data be identified for every ¢pu by the same address. This address-
ing convention was adopted uniformly in systrm/360 for multi-
system operation.

The main application of shared storage is in multisystems
requiring very short reconfiguration time. Typically, two or three
connections to each storage unit are expected.

G. A. BLAAUW

Methods of interconnection igure 5 Shared devices

STORAGE STORAGE

The method by which components of a multisystem are inter-
connected should be general, to permit freedom in choice of systems ““}7
components; expandable, to permit economic systems growth; and PROCESSING PROCESSING
reliable, to enhance systems availability.

sYsTEM/360 channel-to-channel adapters adhere to one 1/0 l‘“‘
interface definition, and the transmission control units adhere to CHANNEL CHANNEL
the industry standards for communication equipment. Since any
pair of sYSTEM/360 cPU’s can be connected, systems growth can "“l i‘“
be accomplished by adding more cpu’s to the system or, pre- ConTROL ConTRoL
ferably, by replacing a given cpu with one of a greater power. ___% I____

DEVICE DEVICE

in a communication network.

Interconnections for the sharing of system components may be
established between (1) main storage and cpu, (2) channel and Figure 6 Shared storage
control unit, as for disk and drum, and (3) control unit and device,

Improved availability can be attained by using several trans-

mission control units and the alternate paths normally present

as for tapes. Because the logical approach is the same for all three SToRAGE >< STomAeE
— |

_l_1

1
S I A o T B o

1
i

+

g

Lot Lo LA

cases, the interconnection of main storage and cpu serves to illus- — -
trate the discussion. PROCESSING PROCESSING
UNIT UNIT

Figure 7 shows an interconncection technique, known as the
crossbar switch, that allows connection of each of M cpu’s to any “"]7
one of N storage units. The M connections can be made simul- CHANNEL CHANNEL
taneously, provided that M is smaller than or equal to N. This . '
well-known switch can be implemented in two ways. In the ! !
centralized implementation, each cpu and each storage unit has
a single interconnection with a central switching network. Each
connection being simple, all complexity is concentrated in the
switching network, which must be viewed as an additional major
systetn component. Where availability is required, the switch
should be duplicated. Yet, the additional equipment adds no
additional processing power in either fail-safe or fail-soft mode.

An alternative is the distributed implementation shown in
Figure 8. This figure can be derived from Figure 7 when the com-
ponents represented by the vertical lines of Figure 7 are made
part of the storage units to which the vertical lines belong; cpu’s
still have single connections, but the storage units have multiple
connections, called multiple tails. The equipment of the crossbar
switch is thus divided among storage units.

Economic considerations favor a distributed crossbar switch
because separate frame and powering are not required. Since each
added storage unit comes with its own section of the switch,
smooth system growth is possible. Additional cpu’s are accom-
modated by additional tails on storage units. Flexible system de-
sign is possible because the number of tails need not be the same for
all storage units. Moreover, storage units private to one cpu can be
incorporated, and high-speed storage can be treated differently
from large-capacity storage.

High availability ecan be attained without duplication since

MULTISYSTEM ORGANIZATION

failure of a switch element is counted as part of storage unit
failure. The fractional reduction in storage unit reliability is easily

offset by the removal of a major systems component (the stand-
alone switch).

Figure 7 Centralized crossbar switch

STORAGE STOSAGE STOZAGE
1

Figure 8 Distributed crossbar switch

STORAGE
1

190 G. A. BLAAUW

For high availability, the bus® connecting a cpu with multiple-
tail storage units requires proper isolation. Failure of a storage
unit should not impede the operation of the buses to which its
tails are connected. Neither should the failure of a bus, driven
and controlled by a cpu, prevent storage units connected to it
from communicating with other buses. Such a design can eliminate
the need for physically disconnecting a component when failure
OCCUurs.

A distributed switeh proves equally desirable for the connection
of control units to channels; control units can be connected,
through multiple tails, to different channels.

Because the 1/0 interface is standard for all channels and
control units, this interconnection is independent of the models
involved. For main storage, the bus must be specialized for the
particular ¢pu and storage type to attain maximum performance.
Therefore, normally only cpu’s of the same model share high-
speed storage.

A centralized switch connects tape control units to tape drives;
here, availability requirements can usually tolerate equipment
failure upon power malfunction. Tape-switching often occurs in
a simplex system. When tape drives are shared between several
cpU’s, long reconfiguration time is neeessary to permit rewinding
and manual tape handling. For these reasons, the tape switch
normally need not be duplicated. I'urthermore, since the number
of shared tape-drive configurations is limited, it is possible to
design a centralized switch with enough features to satisfy antici-
pated requirements.

In a multisystem, the allocation of shared storage to a cpu
is entirely the responsibility of the programming system. In some
applications, a multisystem is separated into two or more inde-
pendently working parts, this process being called partitioning.
Partitioning requires no additional functions as long as the super-
visory program can be trusted. If it cannot be assumed to operate
correctly, manual controls provide a more dependable method of
partitioning.

Communication aids

Communication between cru’s should be supplemented in various
applications by

¢ Multiprogramming of supervisory programs and problem
programs.
Signaling that a message has been or is to be transmitted.
Interlocking the use of storage to prevent conflict.
Requesting intervention in the case of malfunction.
Permitting initialization to attempt recovery from malfunction.

In multiprogramming, the attention of the cpu is switched
among two or more programs that are simultaneously in storage.
Multiprogramming is assumed to be the normal mode of operation

MULTISYSTEM ORGANIZATION

multiprogramming

signaling

for both simplex and multisystem sYSTEM /360 configurations. This
assumption is based on the fact that a large majority of existing
systems already use some kind of supervisory program, part of
which resides in storage during problem program execution.

In a multisystem, the main occasions for multiprogramming
are twofold. First, the supervisory program that directs com-
munication among cpu’s makes use of multiprogramming akin to
that used by the supervisor of a simplex system. The program re-
quires the storage protection, privileged operations, and efficient
program switching included within sysTEM/360. Second, in systems
sharing main storage, one subroutine may be executed simul-
taneously by several ¢cpu’s. This type of program operation is es-
sentially the same as for multiple programs in a simplex cpu sharing
the same subroutine, and again, the multisystem can use the sim-
plex features. An essential requirement for such a subroutine is that
its instructions remain unaltered during execution. The instruction
set and formats of sysrim/360 were specified with this in mind.
Address modification is amply provided by base and index regis-
ters. The modification of operation codes, length, and register
specification can be performed with the EXECUTE instruction. For
correct execution of a subroutine by multiple cpu’s, or by multiple
programs within onc ¢ru, it is further necessary that the data areas
belonging to the different programs do not overlap and are
properly identified by base addresses. A subroutine satisfying
these requirements is said to be re-entrant.

Before one ¢pu sends information to another, it should alert
the receiving cpu. Once alerted, the receiving cpuU can specify the
proper storage area and transfer incoming bytes under control
of a read command, while the transmitting cpu transfers bytes
under control of a write command. sysTeEM /360 alerts a program to
an incoming message in a general fashion by an attention signal
which interrupts the cpu. In the case of the channel-to-channel
adapter, the initiating write command generates the attention sig-
nal in the receiving channel. Once the receiving cpu responds with a
read command, communication is established. When transmission
is completed, both receiving and transmitting cPu’s ean be inter-
rupted.

For communication through a common storage facility, a cru
must be alerted to the fact that a message has been prepared for
it by another cpu. This alert can be programmed, of course, by
periodic inspection of a signal bit. A more rapid response, however,
is attained through interruption. The direct-control instructions
and external-interruption lines of sysTEM/360 are intended for
this purpose.

Associated with the direct-control instructions is an interface
at which eight signals can be made available. A signal from one
cPU may be connected to one of the external-interruption lines
of another cru. By the instructions READ DIRECT and WRITE
DIRECT, the program in one cpU can cause an external interrup-
tion in another cru. The direct-control feature further provides

G. A. BLAAUW

static signals that can be sent to, or read from, other cpu’s or
special-purpose external devices.

Shared storage is often a common medium for data, restart
information, programs, and results that are updated by different
cru’s of a multisystem. To prevent logical conflict, sufficient
interlocks must be provided.

A control unit or 1/0 device responds with a busy indication
when a new data transfer is attempted before a preceding transfer
has been completed. Because only one message at a time can be
transmitted between any cpu and a shared 1/0 device, a satis-
factory interlock exists. Where time is longer, as for the arm move-
ment of a disk mechanism, additional controls are supplied by
which a program can reserve and release an access mechanism.

When main storage is the means of communication, interlocks
are provided for the period of one storage cycle. When two cpu’s
simultaneously request access to storage, a tie-breaking priority
circuit grants access to one cru, then gives the next cycle to the
other cpu. This simple rule prevents one cpu from locking out,
and therefore effectively halting, another cpu.

Access to storage is granted for the duration of one storage
cycle, not for the duration of an entire instruction. Since, as a
rule, information is processed in internal registers, a typical
procedure is to fetch data from storage, process the data in regis-
ters, and store the result in storage. The storage interlocking
mechanism, unaware of the relation between successive storage
accesses, makes it possible for one cpu to store results in a location
after a second cpu has fetehed its operands from that location, but
prior to storage of the results by the second cpu. This possibility
necessitates a programmed interlock in the use of core storage as a
shared medium.

In a multisystem designed for high availability, it is not
sufficient to back one cpu by other cpu’s, but it is necessary to
determine when this backup should take place. The properly
operating part of the multisystem should be alerted to the fact
that malfunctioning has oceurred in a cpu. This malfunction may
be caused by a program or the hardware.

Program malfunctioning, as such, does not require multi-
processing, but only multiprogramming; it suffices to identify

" and discontinue the faulty program under control of the super-
visor, and subsequently to proceed with the next available task.

To help detect the malfunctioning of the program, two basic
tools are provided. Tirst, the execution of a faulty program often
leads to execution of an invalid instruction, use of invalid data,
and reference to an invalid address or protected location. Since
all programming exceptions are verified (policed) in SYSTEM /360,
this type of malfunction is soon identified and signaled by a pro-
gram interruption. As a second tool, the timer may be used to
detect programming errors, such as unending loops, which are
not detected by policing. The timer can be set to cause an inter-
ruption when the time allowed to a program segment is exceeded.

MULTISYSTEM ORGANIZATION

interlocking

malfunction
alerting

recovering

194

Perhaps the most important use of the extensive checking
included in all sysTem/360 equipment is fault location. A high
degree of checking makes it possible to recognize the occurrence
of a malfunction on short notice and, thus, to preserve the state
of the cpru for a subsequent diagnosis. The information provided
to the engineer servicing the equipment reduces the mean repair
time and contributes to availability.

When the malfunction is intermittent, the machine-check
interruption and a programmed restart make it possible for the
crU to recover. When the malfunction is solid, the cpPu cannot
recover and a second cpu should take over. A malfunection signal,
of the same nature as a direct-control signal, can give an external
interruption in the second cpv. The signal, which requires no pro-
gramming, is issued as soon as a machine malfunction is detected.

Each cpu of sysTEM/360 uses permanently assigned storage
(locations 0 through 127) for program status words, channel
address and status words, the timer, and diagnostic scan areas.
Were these locations common, they would be shared by several
cpu’s. Therefore, to provide each cPu with separate preferred
storage, a quantity called the prefiz is used to relocate dynamically
all addresses referring to the first 4,096 storage locations. Since
each cpu can have a different prefix, the sharing of these locations
can be avoided.

The prefix relocates all locations that can be directly addressed
{using a zero base and zero index specification) by the displace-
ment. Such absolute addressing is useful when the supervisor
must store the general purpose registers in program switching.
The prefix makes this programming technique possible even if
locations 0 through 4095 are not available to a system.

When only storage is malfunctioning, the system can resume
operation immediately by eliminating the faulty storage unit. If
the faulty storage contains the permanently assigned storage
locations for the cpu, new locations can be provided by introducing
an alternate prefix. For this reason, a second prefix quantity is
provided for a cpu as part of the sysTem/360 multisystem feature.
Normally, the two prefix quantities relocate the preferred-storage
locations to different storage units. Thus, the cPU becomes inde-
pendent of a specific storage unit for its operation.

The identity of the cpu executing a program may be deter-
mined by setting apart one of the addresses in the range of 0
through 4095 as the address of an identifying location. Since the
actual location is determined by the prefix, the content of this
location may serve to identify cpu and prefix currently used.

When the cPU can resume operation, it is desirable to minimize
operator action. Introduction of a new program status word and
the corresponding instructions may best be performed by the
still-operating part of the multisystem. For this reason, means
are provided for one cPu to initiate the initial program loading
of another cpu. This signaling again has been defined to be con-
sistent with the signals of the direct-control circuitry. Two signal

G. A. BLAAUW

inputs are provided, each of which causes initial program loading
when a signal is received. The choice between the two signal inputs
determines which prefix is used and, hence, the location of the
permanently assigned storage addresses. In this case, initial pro-
gram loading consists of loading an initial program status word
from loeation 0 and performing the necessary system reset. Prior to
the initial program loading, the necessary program status words
should have been established.

Summary

sSYSTEM/360 is designed for multiprogramming as a basic mode of
operation, and for multisystem operation as an increasingly im-
portant mode of operation.

The design of sysTEM/360 for use with an operating system led
to the inclusion of many multiprogramming features, such as
storage protection, privileged operations, program switching, read-
only instructions, instruction policing, and the timer. The ex-
tension from a multiprogrammed simplex system to a multi-
system in which multiple cpu’s interact with each other requires:

e The basic ability to communicate among cPu’s by means of
transmission or shared storage media.
The proper signaling for message alert, storage interlocking,
malfunction alerting, and recovery.

Multisystem operation is already established as a means of
dividing tasks between an 1/0-oriented peripheral cpu and a high-
performance main cpu, resulting in an improved overall cost/per-
formance ratio. The need for multisystems of highly improved
availability is clearly foreseen as new computer applications con-
tinue to be formulated and developed.

CITED REFERENCE AND FOOTNOTES

1. The name multisystem is also associated with a feature available in some
sYsTEM/360 models. This feature, which makes several types of multisystem
operation possible, should not be considered essential for all multisystem
operations.

. G. M. Amdah], G. A. Blaauw, and F. P. Brooks, Jr., “Architecture of the
IBM System/360,” IBM Journal of Research and Development 8, No. 2,
87-101, April 1964.

. The detailed structure of a bus, which may be either a multiplexed or
multiple simplex design, is determined by cost, transmission rate, and
interference considerations and differs for the various models of sys-
TEM/360.

MULTISYSTEM ORGANIZATION

195

