


Addressing 
In planning the addressing structure of SYSTEM/~BO,  many desirable 
characteristics were considered. The principal ones were: 

Binary addressing. 
Addressing to  the  byte. 
Ability to address  a  very large storage. 
Bit efficiency of programs. 
Efficient relocating loader. 
Use of shared programs. 
Feasibility of programming conventions for  dynamic relocation. 
For lookup purposes, binary addressing permits the use of 

arbitrary  bit  patterns as increments to table bases. Although 
lookup can be accommodated by addressing structures that utilize 
other radices, more manipulation is required in  these cases. Other 
advantages of binary addressing accrue from the greater com- 
pression of address  information  and  the  greater resolution of 
truncated addresses (bytes, halfwords, words, double words, etc. 
can be readily specified). 

The principal motivation  for  byte addressing appears in com- 
mercial application  areas. In this use, records consist of many 
fields of widely  differing lengths, where each length is normally de- 
fined in  terms of the required information  content. It is desirable 
that information be packed,  not  only to permit  storage efficiency, 
but also for efficiency of transmission between the peripheral  stor- 
age device and  the computer. It is also preferable that  the informa- 
tion  appear  in an order meaningful to humans who must com- 
municate  with a file. 

It seemed to  be desirable to enrich the  character set available 
to the  computer user and, a t  the  same  time, to compress informa- 
tion. At first  thought,  the  two  factors  appeared  incompatible. 
However, studies of commercial file statistics  indicated that more 
than 60 percent of the  characters in the  average record were 
decimal numerics. Both purposes could then be served by selection 
of an 8-bit  character, representing either  a single non-numeric 
character  or  a  pair of decimal digits. 

A similar argument applies to the  task of communication be- 
tween the human  and the machine. The least  restrictive mode 
of communication from the  human  standpoint  is the  ability  to 
provide and receive strings of symbols with  starting  and ending 
points that are  arbitrary in respect to machine word boundaries. 
Communication with humans must certainly be expected to take 
on increasing importance.  This  strongly recommends that a com- 
puter  be able to consider a  string of symbols as an  entity  and  to 
deal with the  string wherever i t  resides. 

Addressing to  the  bit  (as  in  the IBM 7030) was considered 
because it permits use of direct  techniques for manipulating 
arbitrary  bit groups. The low frequency of these applications, 
compared to byte  handling, as well as  the requirements for three 
additional  address bits  and more hardware  controls, made this 
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space, so that Iargc spans of code  nccd not be inspccted instruction 
by instruction,  and (2) in quantity,  by avoiding much of the 
replication involved in  storing  a complete address for each separate 
reference to a region. 

Sharing a common copy of a program between several con- 
current users is valuable in a number of application  areas to which 
computers recently have been applied. These  applications  are 
primarily characterized by the use of a central  computer to serve 
a  number of on-line  consoles, a t  each of which an operator  may be 
handling a  transaction  in one of many predefined ways. Examples 
are airline reservations, credit investigations,  and  bank teller 
functions. 

In these  applications,  the  program segment traffic generally 
exceeds the  data record traffic, although the space requirements 
for the program segments are usually less than for data residence. 
With  the  advent of larger storage devices, it  appears feasible to 
retain complete copies of a t  least  the heavily used service routines 
within core storage, provided that these copies need not  be dupli- 
cated. Such a procedure would reduce system  delays  due to con- 
tinued reference to peripheral  storage devices of relatively long 
access time. Also, traffic for  the programs, the  most  often  sought 
information in the  system, would be eliminated. 

Such a  technique  can be effectivc only if the addressing struc- 
ture of the computer  can accommodate a programming conven- 
tion that permits the code to remain unchanged throughout 
its execution. This requires that  the addresses for  all data  and 
working areas  currently allocatcd to a given user be available 
from the contents of the registers of the  central processing 
unit (CPU). 

Dynamic relocation of programs and/or data areas is a problem 
occurring in time-shared multiprogramming applications. In such 
an application,  a given latent program may be displaced from 
storage  either  by  the  requirements of an active program or a 
program of higher priority.  At a later time, it is desired to bring 
this program back into storage  and to resume its execution. At 
this  point,  two  alternatives  exist:  delay the  return of the dis- 
placed program  until its previous residence arcas become available, 
or relocate this program to regions of storage  currently  available. 
The former  alternative involves furthcr  delay  for  the displaced 
program; the  latter  alternative rcquires that all address-like in- 
formation be identified and  appropriately modified. It is easy 
enough to define an  automatic dynamic relocation addressing 
technique which entails considerable penalty  in  either  hardware 
or time, or in both. The challenge is to provide an addressing 
technique whose inherent  characteristics  permit the adopt.ion of 
programming conventions that  are capable of programmed re- 
location with reasonable efficiency. 

After much consideration of the foregoing desired charac- 
teristics in the computer’s addressing structure,  a modified form 
of base addressing was cmployed. The base addresses for address 
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I metic and logical operations  and  in branches,  excepting the in- 

dexing branches and  the multiple-register  loads and  stores.  Multi- 
ple-register  loads and  stores  are seldom invoked in  array processing. 

To  further improve the indexing and addressing  capabilities 
of  SYSTEM/^^^, the  set of fixed-point arithmetic  accumulators was 
chosen to serve  jointly  for  index  registers  and  base  registers.  The 
full power of the fixed-point arithmetic  functions was thus  made 
immediately  available  for  address and index  computations.  More- 
over, the  results of logical and fixed-point arithmetic  operations 
were made directly accessible to  the addressing  mechanism  for 
use in  data lookup or sequencing  functions. 

I Sequencing 
The sequential  control of a  computing  system  should  provide  for: 

ConditionaI  branching on the outcome of Iogical or arithmetic 

Return  address  and/or calling sequence  information  (sub- 

Abrupt change in  sequence  control to special  routines  in  the 

Indirect execution of instructions. 

tests. 

routine  linkage). 

event of unusual  system conditions (interruption). 

Excepting  the index  branches, the S Y S T E M / ~ ~ O  branch  instruc- conditional 
tions  appear  in  both  the one-syllable and two-syllable formats, branching 
the two-syllable format  permitting double  indexing of the  branch 
address. 

In  S Y S T E M / ~ ~ O ,  the BRANCH O N  CONDITION instruction 
operates in conjunction  with a condition  register (cR). The CR 

is  variously set  to one of its four states  in  the course of arithmetic 
or logical operations.  For and, or, or exclusive or,  conditions are 
set  to indicate  either  a  complete zero result  or  a non-zero result. 
In  the case of compares, one of three  conditions  is set  to indicate 
low, equal, or high. For  tests of register contents,  again one of 
three  conditions  is indicated:  negative, zero, or positive.  Finally, 
for  add  and  subtract, one of four  conditions is set: negative, zero, 
positive, or overflow. No conditions are  set for multiply,  divide, 
load, or store;  it is desired that these  operations  be  performed 
without  disturbing the  current  value of the CN. and,  mo~*eover, 
result  conditions  can be predicted  from  initial  operand tests.  The 
BRANCH O N  COXDITIOX format  contains a 4-bit  tag, one bit 
position for each CR state.  The CR states effecting the  branch  are 
specified by 1’s in  the  bit positions  corresponding to selected 
states. If the CK. is  in a state  for which there  is a  corresponding 
1 (0) in  the condition tag,  the  branch occurs (docs not occur). 
Thus,  all combinations of states  may be symmetrically defined 
as branch or no-branch  situations.  Note that 111 1 in  the condi- 
tion  tag corresponds to  an unconditional  branch,  for a branch 
occurs on  any CR state.  On  the  other  hand,  with 0000 in  the condi- 
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CONDITION is a generalized instruction of considerable utility. 
A more specialized conditional branch  instruction is BRANCH 

O N  COUNT, which reduces the value in a specified register by 
one, and which takes a branch to a specified address if the result 
of the reduced quantity is non-zero. 

Another specialized area of conditional branching comprises 
two instructions: BRANCH  ON  INDEX  HIGH and BRANCH O N  
INDEX LOW OR EQUAL. The functions of these instructions  are 
essentially the same, except that  the condition for branching is 
complementary. In execution, the value of an index is incremented 
and  the new index quantity is then compared with a comparand. 
All values are contained in the general purpose registers. The 
structure  permits  the use of a single register for increment and 
comparand to give the equivalent of the 7090 TIX instruction. The 
branch is effected if the incremented register contents, when 
compared with the limit, take on the condition indicated in the 
instruction name. This  instruction  pair is carefully defined to 
be useful in the implementation of the FORTRAN DO statements. 
In general, the BRANCH  ON  INDEX LOW OR EQUAL would 
be  used to close a loop at  the bottom, and  the BRANCH  ON 
INDEX  HIGH to close the loop from the  top,  the  latter case 
permitting the extraction of vacuous cases. These instructions 
are defined so that they can remain invariant within executed 
code.  All quantities that could  possibly vary during execution 
(e.g., the index, the limit, and  the increment, in that order of 
likelihood) are provided from registers. Only the specification of 
the general purpose registers containing these  quantities,  and 
the branch  address itself, are included in the written  instruction. 
These simple tasks,  and indeed more general tasks, may be readily 
accomplished by  the use of three  instructions: a subtract or an 
add, a compare, and  a BRANCH  ON  CONDITION. However, 
the simple tasks occur with a frequency sufficiently  high to justify 
a  form more easily specified and more rapidly executable. 

Subroutine linkage is provided by the BRANCH  AND  LINK 
subroutine instruction. After the properly updated value of the program 
linkage counter is stored in a specified general purpose register, control 

is transferred to  the new address specified. Certain computer 
status information is stored  together  with the  updated value. 
The additional information, placed in the leftmost  eight  bits 
of the register, consists of the length of the BRANCH  AND  LINK 
instruction utilized, the  current  state of the condition register, 
and  the program mask (four bits defining the optional  arithmetic 
conditions for which interrupts should occur). Except for the 
length, which may be of marginal value, the remaining informa- 
tion is significant for subroutine utilization. Subroutines  frequently 
perform some function for the user and, upon completing this 
function, restore control to  the user’s sequence with the previous 
state of the condition register undisturbed. In another  situation, 
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the  subroutine  may require a different program mask to properly 
monitor its execution, but must  restore the user's program mask 
on return of control to  the user's sequence. Both restorations  are 
simultaneously accomplished by use of the instruction SET 
PROGRAM MASK, which loads the condition register and  the 
program mask register from the leftmost  eight hits of the specified 
general purpose register. 

that is not residing in the  current instruction sequence. Except execution 
for  an EXECUTE instruction, any instruction  may be so executed. 
EXECUTE introduces an additional  function to assist in attaining 
the objective of code invariance  during program execution. This 
function  permits modification of a portion of the instruction. 
The second byte of the operation code syllable may be modified 
by  or-in.g the low-order byte position of a general purpose register 
(specified by  the first register address tag of the EXECUTE 
instruction) into  the second byte of the operation code of the 
instruction to be executed as it resides in the operation decoding 
register. For example, this  technique  may provide the  lengths 
of fields in variable-field-length instructlions a t  execution time 
without program modification. 

To permit  greater flexibility in the selection of the  instruction 
to be executed, double indexing is provided. 

Only the basic structure, sequence of operation, and underlying interruption 
philosophy of the SYSTEM/360 interruption facilities are  described 
here. One of several broad considerations is that a  constant 
hardware monitoring of machine status should have  the  capability 
of redirecting the CPU activity when prescribed situations arise. 
Another consideration is that  the CPU must  save  adequate status 
information at the time of redirection to be able to return to  an 
interrupted  task. A primary consideration was that hardware 
provisions should perform all functions that  must necessarily be 
automatic,  such as storing volatile information,  and those func- 
tions that are difficult or excessively time consuming to obtain 
by programmed operations. Any additional  functions were  con- 
sidered a  program responsibility. 

The information collected and  stored is called a program 
status word (PSW). As shown in  Figure 2, a PSW is a double word, 
with the left word containing a system mask (defining the pro- 

An EXECUTE instruction  permits execution of an instruction indirect 

SYSTEM  MASK  KEY CMWP INTERRUPT CODE 

0 7 8  11 12 1516 31 

cc PROGRAM 
MASK 

INSTRUCTION ADDRESS I 
32 3334 35 36 39 40 63 

36 39 Prosram mask 

4 Selector channel 4 mark 
5 Selector channel 5 mark 
6 Selector channel 6 mark 
7 Bternal mark 

10,L ,lllrrl"pll"llL""c 
32.33 lnsfructton length code (ILC) 40 63 lnrtructlon address 
34 35 Candltion code (CC) 
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DOUBLE WORD (64) 

INlT PROG LOAD PSW 

lNlT PROG LOAD ccw 1 

INlT PROG LOAD ccw 2 

EXTERNAL OLD PSW 

SUPERVISOR CALL OLD PSW 

PROGRAM OLD PSW 

MACHINE CHECK OLD PSW 

INPUT/OUTPUT OLD PSW 

CHANNEL STATUS WORD 

EXTERNAL NEW  PSW 

SUPERVISOR CALL NEW  PSW 

PROGRAM NEW  PSW 

MACHINE CHECK  NEW  PSW 

INPUT/OUTPUT NEW  PSW 



Monitor control 

As computational  speeds  increase,  relative to  human  reaction 
times, and as computing  systems adapt  to on-line and real-time 
multiprogramming tasks,  the need for  fully automatic  systems 
increases. For such  a  fully automatic  system, i t  is imperative that 
the allocation of system resources be controlled by a  monitor 
program.  Provision  for this control  is embodied in  the following 
concepts : 

Monitor mode with  associated privileged instructions. 
Storage  protection to ensure the monitor’s  survival. 
Hardware  monitoring, as described earlier, in conjunction  with 

An interval  timer  to periodically return control to  the monitor. 
A  wait  state available to  the monitor,  rather  than a stop or 

the  ability  to perform interrupts. 

halt  instruction available to  the problem  programmer. 

The  primary  function of storage  protection  is to  prevent cur- storage 
rently  operating CPU or I/O channel  programs  from  intruding  into protection 
latent  program  and associated data areas. A number of different 
areas  should  be accessible and distinguishable  from  each  other, 
because the I/O channel  operations may be  related to  latent CPU 

programs  rather  than  the  current CPU program. In  addition to  
providing  separate  identification of areas  for  different  operating 
programs, it mould be  advantageous  for  storage  allocation  purposes 
to permit  identification of several  separated  areas  for one program. 

To  attain  as full  utilization of the  storage  capacity  as possible, 
i t  is  desirable to  allocate  storage  in  a piecemeal fashion. The 
allocation of storage  is  assumed to  take place dynamically  in an 
environment  in which several  programs  occupy  storage concur- 
rently, new programs are being introduced  into  storage,  and old 
programs  are releasing storage. It is  further assumed that a  given 
active  program may  request  or release additional data  and/or 
program  areas  as  its execution progresses. 

In  such an environment,  contiguous  storage  space  for  a  given 
program and  its associated data areas  cannot  be long maintained 
without  moving  massive  segments of information  from one storage 
area to  another. Such  time-consuming  movements of information 
can  be  reduced  by  permitting  portions of storage to  remain  unused 
for  periods of time, or by  storage  protection  techniques that  permit 
the allocation of thc unused regions scattered  throughout  the 
storage of the  computer.  Simulation of such an environment indi- 
cates  that unusable  storage, in a  system  requiring  contiguous 
allocation,  ranges  between  10 and 20 percent,  depending  on the 
distribution of storage  requirements  among  jobs to  be executed. 

The storage  protection  technique selected for SYSTEM/SBO per- 
mits  arbitrary assignment of any  number of 2,048-byte blocks of 
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storage to each of up to 16 active  and  latent programs. Storage 
protection is realized by providing each of the 2,048-byte blocks 
of storage with a 4-bit register. The monitor  may  store any 4-bit 
combination into any one of these registers. These combinations 
may be thought of as locks, each block of storage having its 
assigned lock. The 16 combinations are divided into two classes, 
zero and non-zero. The zero combination is considered as unlocked 
(either unassigned or common), and  the 15 non-zero combinations 
are considered as locked. 

The communicants with storage (namely the CPU, each selector 
channel, and  the multiplex subchannel) are provided with inde- 
pendent 4-bit key combinations by the monitor. These key assign- 
ments  are divided into  two classes, zero and non-zero. The zero 
key, considered as the master  key to all locks, is assigned only to 
appropriate sections of the monitor. The non-zero keys are con- 
sidered as keys to matching locks only. 

The protection function applies only to operations that store 
into a locked  block. Storage  takes place only if the key and lock 
combinations match or if the master key is used. Otherwise, the 
store is inhibited, and a program error  interruption occurs. 

Store protection alone suffices to provide shared programs in 
an environment of protected storage. The protection structure 
could be extended to include protection on fetches for privacy or 
vagrant reference monitoring. The extension could permit user 
options on the class of protection desired without compromising 
the  options of other concurrent users. 

Although I/O operation is not in itself a monitor concept, the 
I/O control monitor program is inextricably involved in the division of I/O 

operating functions. To control the allocation of system resources, 
it is necessary that  the monitor control the assignment and selec- 
tion of all devices.  Once the devices have been selected for use 
by a problem programmer, it is desirable that they be utilized 
as efficiently as possible. Since this utilization depends on the 
characteristics of the user’s program, provision for controlling the 
desired sequence of operations is made available to  the user. 

The monitor program carries out  the I/O device selection to 
the  point where availability of the  path  to  the device and of the 
device itself is determined. It then provides the I/O channel with 
the assigned storage protection key  and the location of the first 
I/O command word to be executed. 

The problem program supplies the desired sequence of com- 
mands to be carried out by the I/O device and  the channel in 
concert. Any sequence of commands may be supplied, but all refer 
only to  the one device selected. Both  data chaining within physical 
records and command chaining between physical records may be 
performed. Termination of a chain of commands causes an inter- 
rupt  status  in  the channel; for normal ending conditions, this 
interrupt can be suppressed. 

Provision is also made to permit a channel-program-controlled 
interrupt by means of sctting a flag bit  in the  appropriate com- 
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mand. Upon reaching this command, the channel takes on an inter- 
rupt  status,  but still continues executing the command(s). By 
means of this facility, the CPU can keep track of the progress of 
channel command execution. It is thus possible to dynamically allo- 
cate  data areas  as needed for records of unpredictable  length. 

An interval  timer is provided in  byte locations 80 through 83 
in  storage. In the  standard option, the contents of this word is 
decremented by 5 X 256 every sixtieth of a second. It is planned 
to provide an alternate decrementing by 6 X 256 every fiftieth 
of a second when  50-cycle-per-second  power is utilized. By means 
of a higher-frequency oscillator, the multiplication by 256 permits 
greater resolution of the time interval  to a minimum interval of 
about 13 microseconds. As the contents of this word location is 
decremented, the decremented value is  tested: if the value has 
been reduced through zero, an external signal interrupt condition 
is initiated.  This condition is honored by the CPU as soon as per- 
mitted  by  the CPU’S state. 

Maintaining control of system resources requires that no 
program can arbitrarily  stop the CPU operation. When there is 
no call for activation of CPU programs, it may be desirable to 
place the CPU in a quiescent but responsive state. This  is provided 
in  SYSTEM/^^^ by 5 bit in the PSW, indicating the CPU to be in a 
‘‘wait state.)’  During  this period, the CPU is quiescent, making no 
memory references; but it is responsive to  any possible interrupt 
conditions, permitting immediate attention when called upon. 

The CPU can  be in either the monitor mode or in the problem 
program mode, as defined by  a  bit  in the PSW currently controlling 
the CPU. In the monitor mode, all machine instructions  may be 
executed. In  the problem program mode, however, the class of 
instructions termed “privileged” cannot be executed, since i t  
causes an interruption.  The  set of privileged instructions  may be 
classified into three groups: 

Program status word (PSW) protection 
LOAD PSW 
SET SYSTEM  MASK 

I/O facilities protection 
START 1/0 
STOP 1/0 
TEST 1/0 
TEST CHANNEL 

Storage protection 
LOAD PROTECTION KEY 
STORE PROTECTION KEY 

By  virtue of storage protection in combination with the 
monitor mode and  the associated privileged instructions, the 
monitor can maintain  absolute control. No other program can 
accidentally or deliberately seize control without cooperation of 
the monitor program. 
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The monitor  program  protects  the  interrupt locations and itself, 
including  all of its  data used for resource allocation.  Assignment of 
protection  combinations to  storage (STORE PROTECTION KEY) 
can  be  done only in  the  monitor mode. Assignment of the CPU 

protection  key  and  the  monitor mode state can  be  done  in  either 
the monitor mode (LOAD Psw) or by  automatic reloading of a 
new PSW from  monitor-controlled interrupt locations.  These  two 
provisions  ensure the  survival of all  monitor  functions.  Any  at- 
tempt  to usurp  these  functions  brings  the offending program to 
the  attention of the  monitor. 

Arithmetic  functions 
Even  though  the role of arithmetic  functions  in computing is the 
best  understood  functional class, many  subtleties  must be taken 
into consideration  in an optimal choice of instruction  formats, 
radices,  representations,  and word sizes. 

Most  data  reduction, engineering, and scientific applications 
can  accommodate  themsclves to suitable fixed word sizes. The 
performance payoffs of fixed word sizes, along  with the  ability 
to control  accuracy  by  problem  formulation,  make  this accom- 
modation possible and somewhat attractive. Commercial data 
processing, on  the  other  hand, deals  with  a variety of different 
but  quite well specified field lengths;  problem  reformulation  cannot 
materially  alter  the required or useful data lengths. 

An analysis of a  representative  sample of executed 7090 codes 
accumulators revealed that  about 30 percent of the  fetch  and  store  functions 
and were redundant.  Data words were refetched  whenever  reused, and 
instructions results were temporarily  stored  for  later  reuse.  The  analysis  also 

demonstrated that significant  reductions in redundancy could be 
achieved by providing  multiple  accumulators. The  redundancy 
dropped  quite  sharply  with  the  first few accumulators  and tailed 
off thereafter. Provision of four  accumulators  accounted  for more 
than 90 percent of the reducible redundancies,  the  fourth accumu- 
lator  contributing only about 10 percent of this  reduction. 

Access time to storage  increasingly  limits  performance as 
processor speed  improves.  Multiple fast-access accumulators  per- 
mit a  conceptual  machine  structure  that  depends less on  storage 
technology by providing faster access to  some of the  data.  Short 
register  addresses, rather  than larger  storage  addresses,  reduce 
the instruction  information  required. The number of storage 
accesses needed to perform  a  given  computational task  is clearly 
reduced by multiple  accumulators. 

To effectively utilize  multiple  accumulators,  two or morc 
address fields are required in  an  instruction. Averaged  over 
representative  programs,  two-address  instructions  are  somewhat 
more efficient than three. To maximize this efficiency, the opera- 
tions  provided  should be made  available both between  register 
pairs  and between  a  register and a  storage  location.  Lest  the pro- 



results  should  normally go to  a register rather  than  to a storage 
location. Stores should  be  separately  provided. 

As indicated  earlier,  binary  addressing  was chosen because of 
efficiency of information  storage and generality of table-lookup 
functions. It was also explained that  by combining the fixed-point 
binary  arithmetic  unit  with  the indexing unit,  the full power of 
the fixed-point arithmetic  functions becomes directly  available 
for address  computations,  and the results of fixed-point computa- 
tions are directly  available as index quantities  in  table  lookup. 
These decisions circumvent a drawback of the conventional 
machine structure where fixed-point binary  is  associated  with the 
floating-point unit.  In very-high-performance scientific computers, 
floating-point  operations are executed  asynchronously and delayed 
with  respect to address  computations;  as  a  result,  the  sharing of 
arithmetic facilities  requires  more complex interlocking than for 
separated  facilities. 

The binary  representation chosen for the indexing and fixed- 
point  numbers is 2’s-complement. In  this  representation, the left- 
most  bit  has a negative  weight  corresponding to  its position, and 
all  bits  to  its  right  have positive  weights.  Several consequences 
of this choice are: (1) multiple precision operations are simplified 
due to constant  signs of low-order segments,  (2) index quantities 
properly reflect the sign,  even  though the sign position  is  never 
involved in  the effective address  calculation, and (3) the  trunca- 
tion of a  number  always  produces  a  “floor”  (the  largest  integer 
less than or equal to  the  untruncated  number) which is of con- 
siderable  value  in  integer  computations. 

The normal fixed-point word size chosen is 32 bits,  restricted 
to  be  on 32-bit  boundaries to ensure  maximum  performance. This 
word size is sufficient to encompass the  majority of fixed-point 
engineering or scientific calculations. 

To improve  storage efficiency and performance  in data re- 
duction  applications,  a  16-bit word is  provided, which is sufficient 
to  contain data from  most sensing devices. These  16-bit  words 
are  extended  toward the left to 32 bits  as  they  are  introduced  into 
the  arithmetic  unit or accumulators.  By  virtue of this expansion, 
mixed 16-bit and 32-bit  operands  may  be  interacted  arithmetically. 

Multiple precision operations  are assisted by  several provisions : 
(I) logical addition  and  subtraction  operations  treat  the  leftmost 
bit of low-order segments as having  positive  weight, both  for 
arithmetic results and for  carries,  (2)  double-length  dividends and 
products  are accepted and  generated,  and (3)  double-length 
register arithmetic  and logical shifts  arc included. 

Automatic  monitoring of fixed-point overflow by  the  interrupt 
mechanism,  provided as a  programmer  option,  is one of four 
maskable  interrupt conditions.  Divide check is a t  all  times moni- 
tored by  the  interrupt mechanism. 

The choice of representation of floating-point  numbers  was 
to  some extent tied to  the choice of word sizes. A common ex- 
ponent  and sign representation  was considered advantageous be- 
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cause it is needed in economical provisions for interacting  operands 
of differing size. A 64-bit word size is provided for the high- 
precision requirements. Although the 36-bit word  size had  ap- 
parently been adequate  for more than 95 percent of the 7090 
applications, it was considered more marginal  as problem sizes 
and complexities grew. However, an additional 32-bit word size 
is provided for the sizeable number of applications  for which this 1 
precision is entirely  adequate.  Both word  sizes are restricted to 
be on boundaries of their size, again to ensure maximum per- 
f ormance. 

Precision greater than  that of the 64-bit word is programmable. 
However, no special provision for  this case was considered neces- 
sary because of the low frequency of multiple precision coding on 
the 7090. It is assumed that only a small fraction of this coding 
would not be  adequately served, since the 64-bit representation 
chosen is  equivalent to a double precision 7090 representation. 

In  the floating-point representation  adopted, the leftmost 8- 
bit  byte of either of the two word  sizes contains the fraction’s 
sign and  the exponent (excess 64). The  byte size was chosen to 
maintain consistency with data boundaries. The remaining three 
and seven bytes, respectively, of the two word  sizes represent the 
absolute  value of the fraction. The exponent  represents  a power 
of 16 rather  than of 2, so the fraction is normalized in 4-bit shifts 
rather  than single-bit shifts. The use of radix 16 permits twice 
the effective range of the exponent in  the 7090 representation. An 
analysis of experimental  computation  indicates that, on the 
average,  approximately 2.3 of the leftmost  fraction bits  are zeros. 

When in  the arithmetic section of the  computer, a 32-bit 
floating-point word occupies the  left half of a 64-bit floating-point 
register. Except  for  products,  all  results of loads or arithmetic 
operations leave the  right half of these registers undisturbed. In 
the case of multiplication, the  right half is replaced with the low- 
order part of the  product, allowing multiplication  and  summation 
with minimum accumulation of truncation  error.  By  not  disturb- 
ing the  right half of the accumulator  contents, higher performance 
is achieved on computers  with data flow widths of less than 64 bits. 

To aid  in  retaining the maximum significance in  the 32-bit 
addition  and  subtraction  operations,  a 4-bit digit of a preshifted 
operand is retained to the  right of the word boundary when intro- 
duced into  the floating-point adder. If a  left  shift of the resulting 
fraction is required to maintain  normalization,  this  additional 
digit is retained  in the result. No corresponding provision was felt 
necessary for  the 64-bit word  size. 

In floating-point division, no remainder is retained. The use 
of the remainder in floating-point computation is far less frequent 
than in fixed point. Moreover, a large share of the uses encountered 
can be achieved by  alternative  operations of nearly equal efficiency. 
Retaining the remainder would require another  accumulator  for 
each division, reducing the effectiveness of the  four  accumulators 
during  most floating-point computations. A similar argument 
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eliminates the use of an accumulator for holding the low-order 
segment of the product of 64-bit words. 

Automatic monitoring of exponent underflow and of lost 
significance (vanishing fraction)  by  the interrupt mechanism are 
provided as  separate programmer options. These are two of the 
four maskable interrupt conditions. Appearance of either condi- 
tion causes the result to be set  to zeros, a condition treated  as a 
true zero by  the  computer. Division by zero and  exponent overflow 
are a t  all  times monitored by the  interrupt mechanism. 

It was indicated earlier that two decimal digits are represented 
in one 8-bit  character or byte. Decimal number fields, t,hen, are 
an integral  number of such bytes. The algebraic sign of the decimal 
number occupies the rightmost decimal digit position in this field, 
providing an odd number of decimal digits  plus sign. 

The maximum length of a decimal field must be adequate to 
permit  representation of numbers that may be declared in COBOL, 

therefore requiring fields up  to 18 decimal digits plus sign. The 
actual field  size readily permitted  by  the  structure is 31 decimal 
digits plus sign, providing a suitable margin for  untruncated 
products occurring during  computations. 

Considerable effort was expended in determining  whether 
registers or storage locations should be used for  accumulators  in 
decimal arithmetic operations. Sharing of the floating-point ac- 
cumulator  for  this purpose would  yield two decimal accumulators. 
Several small problems were  coded and timed, yielding no par- 
ticularly conclusive evidence. To aid in resolving this  alternative, 
several typical COBOL source programs were analyzed. These pro- 
grams showed clearly that the  arithmetic  strings were very  short, 
and that normally a large number of accumulators would be 
referenced before succeeding strings would apply to  the same ac- 
cumulator  contents. This information clearly suggested retention 
of accumulator fields in storage, thus eliminating many  redundant 
store  and load operations, and precluding strong pressures for 
global optimization of COBOL codes for  most efficient register usage. 

Operations on operands of differing size are permitted by  the 
instruction  format.  Two field-length tags  are associated with two 
corresponding storage addresses. The first tag specifies the length 
of the  accumulator or result,  and the second tag specifies the 
length of the interacting  operand.  Improper specifications, e.g., 
the absence of a sign on the  right of the field or a sign embedded 
in a field, are recognized by  the decimal arithmetic  unit  and  initiate 
an  interrupt. Automatic monitoring of accumulator overflow by 
the  interrupt mechanism is a programmer option-another one 
of the four maskable interrupt conditions. Divide check is a t  
all  times monitored by  the  interrupt mechanism as  in fixed-point 
arithmetic. 

Non-arithmetic  data  manipulation 
The non-arithmetic  operations are still  not well understood;  no 
well-ordered formal procedures have been constructed for dealing 
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of such  limitations,  these  operations  form  a  substantial  portion 
of today’s  computing  task.  They  normally  appear  in the pro- 
grammed  interface  between  human-oriented  language and ma- 
chine-oriented language. Their principal uses are  in  the  extracting, 
categorizing,  transforming,  rearranging, and editing of information 
entering or leaving the computer  system.  The  operations  are dis- 
cussed in  groups  that possess similar  functions. 

Shifting  operations  are used for many of the processes of 
shifting isolating,  concatenating,  and  aligning  groups of contiguous bits. 

Left  and  right  shifts, specifying either a single register or an 
even-odd adjacent register  pair, are  provided.  The  amount of 
shift  is specified by  an address  syllable, allowing specification by 
immediate or register  information, or by  both. Although the 
results  after  shifting  are  tested on the corresponding set of arith- 
metic  shifts,  testing  after logical shifts  is  left  for  subsequent  opera- 
tions.  A single set of such tests was  found to be of marginal  utility. 

Logic operations  on  operand  pairs  are  principally  intended  for 
operand-pair extracting,  testing,  modifying,  and recombining bit groups  which, 
logic if non-contiguous, are localized in  bytes, words, or byte strings. 

Provision  for  these  operations  is  variously  made in  four of the 
five instruction  formats. The register-to-register operations  are 
all  between 32-bit words. The storage-to-register  operations are 
also  between  32-bit words, with  the exception of the pair for 
single-character  load and  store. All storage-to-register  operations 
are  doubly indexed to  enhance  addressing flexibility. The storage- 
to-storage  operations are performed  between two  equal-length 
operands,  each  ranging  from 1 to 256 bytes. All immediate-to- 
storage  operations  are  between  the second byte of the operation 
code syllable of the  instruction  and  the  byte addressed in  storage, 
the  latter  byte being in  all cases the result byte  for these  operations. 

The  data moving  instructions  are described first. Four  have 
the storage-to-register format: LOAD and STORE for  32-bit 
operands,  and INSERT CHARACTER and STORE CHARACTER 
for  8-bit  operands. INSERT CHARACTER alters  the low-order 
byte of the specified register  only, replacing i t  with the  byte from 
storage. In  the other  three  formats, a single MOVE instruction  is 
provided. The  data moving  operations  leave  the  condition  register 
undisturbed.  Although it would be desirable a t  times to  make 
tests  during  the  movement of data,  it is more advantageous to 
be  able to  move data between  a  deliberate test  operation  and  the 
conditional branch on this  test. 

A second group is formed by COMPARE LOGICAL, which ap- 
pears  in  four  formats  and  treats  all  bits  within  the  operand bound- 
aries as  having positional binary  magnitude  properties.  The con- 
dition  register  is set  to one of three  states: low, equal,  or  high. 

A third  group consists of AND, OR, and EXCLUSIVE OR, 
which appear  in all formats  and consider all bits  within  the 
operand  boundaries as independent of each  other. A N D  is  normally 
used to  force 0’s into  certain  bit positions, OR to force l’s, and 
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EXCLUSIVE OR to  alternate  the  binary values of these bit posi- 
tions.  These  operations set  the condition  register to either the 
zero or the non-zero state, depending  upon the magnitude of 
the  result. 

A final group  consists of the one instruction TEST UNDER 
MASK, which appears  in  the immediate-to-storage format only. 
TEST UNDER MASK does not  alter  the  byte  in  storage,  but selects 
those  bits  from the  byte  in  storage  that  are specified by 1’s in 
the corresponding bit positions of the  immediate  byte.  This col- 
lection of selected bits  is  tested for  three  conditions: all O’s, all 
l’s, or mixed 0’s and 1’s. The condition  register  is set  in accordance 
with  the outcome. 

Code  translation  and  recognition  functions  are  provided  by 
the  instructions TRANSLATE and TRANSLATE A N D  TEST. Both 
instructions  provide  two  storage  addresses. The first  address 
specifies an argument  operand,  ranging  from 1 to 256 bytes  in 
length. The second address specifies the origin of a function  table 
of bytes defining the desired  translation or testing  transformation. 

The TRANSLATE instruction  performs a history-independent 
translation.  Each  byte of the  argument, scanning  from  left to  
right,  is  in  turn replaced by a function  byte  from  the  table.  The 
location of the  function  byte  is  obtained  by  adding  the  argument 
byte  to  the table origin. The condition  register is not altered as a 
result of this  operation. 

TRANSLATE is useful for  rearranging  records as well as for 
code translation.  For  this usage, the record to  be  rearranged  is 
considered the function  table,  and the desired rearrangement pat- 
tern  is given by  the  argument.  Each  argument  byte specifies a 
location  in the  function record. In  the process of translation,  the 
argument  bytes  are replaced by  the  appropriate  bytes  from  the 
function. 

The name of the instruction TRANSLATE AND TEST is some- 
what a misnomer. Up to  the point of replacing the  argument  byte 
with the function  byte,  the execution  is  similar to  that of TRANS- 
LATE. However, no  actual  translation  takes place. Instead,  each 
function  byte is inspected to  see if it is zero or non-zero. If the 
function  byte is zero, the corresponding argument  byte is con- 
sidered of no  interest, and  the process repeats  on  the succeeding 
argument  byte. A non-zero byte, however,  is considered of interest, 
and  three  actions  are  taken: (1) the address of the  argument  byte  is 
inserted  in the  three low-order byte positions of register 1, (2) the 
non-zero function  byte is inserted  in the low-order byte position of 
register 2, and (3) the operation  is  terminated. 

The  address  saved  is generally useful for  three  purposes.  Most 
obvious but least  useful is  the  fetching of the  argument  byte of 
interest. In  most cases, the significance of this  byte  is defined by 
the function  byte  retained, which may be used  for  branching to 
an  appropriate  routine.  The  address  can specify the  starting 
address  for  continuing a TRANSLATE AND TEST operation,  and 
can  be used to  determine the  terminal  point of a sequence of un- 
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interesting argument  bytes. Such  a sequence constitutes an item 
of information (such as a  name  in a FORTRAN statement or a mes- 
sage in a communication from a console) if the  interesting  byte 
is  a  delimiter. 

The condition register is set  to one of three  states: (1) all 
function  bytes encountered  are zero, (2) the  argument is not  yet 
fully  translated or ended on a zero function  byte, or (3) the 
final byte of the  argument  had a non-zero function  byte. 

The editing  functions described here are determined  in part 
editing by  the  nature of the extended code employed in IBM cards  and  the 

practices developed during its history,  and in part  by  the use of 
the 8-bit  byte  for  external communication.  Moreover,  various 
editing  conventions are  met for user convenience. The editing 
instructions  fall  into  three categories of two  instructions each. 

The first  two  instructions  are based on  the  frequent use of zone 
overpunching of numeric fields on IBM cards to hold class informa- 
tion.  These  instructions, MOVE ZONES and MOVE NUMERICS, 
permit  the  separation or recombination of zone and numeric data. 
MOVE ZONES reads  the  four high-order bits of each byte from the 
source operand  location and  inserts  them  into  the four high-order 
bits of the  bytes  in  the sink operand, leaving the four low-order 
bits  undisturbed. MOVE NUMERICS performs the  equivalent 
operation on the four low-order bits.  Both operands  are of the 
same  length, which may  range  from I to 256 bytes. No condition 
register  setting is  made. 

PACK and UNPACK arc used for  packing and unpacking deci- 
mal fields on IBM cards;  these  instructions  assume  the  probable 
use of sign overpunching  on the low-order digit of the decimal field. 
The  instructions specify two  operand fields of independent  lengths, 
each  ranging  from 1 to 16 bytes.  The  operands  are processed from 
right  to left. 

PACK takes  the first byte of the source, switches zone and 
numeric positions, and  stores  the result into  the first byte position 
of the sink, thus placing the probable sign into  the proper  position. 
From  this  point on, the numeric fields of each  pair of successive 
source bytes  are compressed into one byte of the sink. If the 
source runs  out before the sink field is filled, the sink is filled out 
with zeros. If the sink field  fills before the source runs  out,  the 
operation  is  terminated. TJNPACK is very  nearly the inverse of 
PACK, except that  the zones to be associated with the unpacked 
numerics  are  automatically supplied for all but  the first  byte, 
including any zeros used to fill out  the unpacked  sink field. Be- 
cause neither of these  operations  is  contingent upon the presence 
of sign overpunching, but merely accommodate this practice, they 
also permit  rapid  editing of hexadecimal information. 

A third  instruction  pair  permits editing of packed decimal 
information  for  printing. EDIT and EDIT AND  MARK suppress 
or protect leading zeros, and can also provide  punctuation (such 
as commas and periods) and suppression of sign-controlled print 
fields. EDIT AND MARK indicates the position for  proper  insertion 
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of a dollar sign. Each of these instructions specifies two operand 
fields. The source is a packed decimal field  or a series of packed 
decimal fields. The sink is an editing pattern,  and  the length 
specification applies to  the  pattern field. An operation proceeds 
from left to right  and is completed in one pass. 

In execution, use is made of a significance trigger which starts 
in  the off position. The trigger is  turned on either when the first 
non-zero source digit encountered is requested by a digit-select 
character in the  editing pattern, or when a significance-start 
character is encountered in the  editing pattern.  The trigger is 
turned off again  either  upon  encountering  a positive sign code as 
the  next source digit  (immediately,  with  no  waiting  for a digit- 
select character  in  the  editing  pattern) or upon encountering  a 
field-separator character  in the editing pattern. 

A pattern character is first inspected to determine the function 
to be performed. After performance of this  function, the  pattern 
character is replaced by  a fill character if the significance trigger 
is off. This permits the suppression of significance-dependent 
characters, such as  punctuation,  and sign-dependent characters, 
e.g., credit symbols. The fill character employed is the first 
character encountered in the  editing  pattern. If this character is 
also a functional  character, the function is performed. 

If the significance trigger is on after  the  function requested by 
the  pattern character has been performed, any one of three opera- 
tions  may  be carried out: (1) if the  pattern contains  a digit-select 
or a significance-start character, the  current source digit is ex- 
panded to zoned format  and  stored over the  pattern  character; 
(2) if the  pattern contains  a field-separator character, it is re- 
placed by  the fill character; (3) if the  pattern contains any  other 
character, it  is left  undisturbed. 

The source field is advanced to the succeeding digit position 
either  after encountering a digit-select or significance-start char- 
acter  in  the editing  pattern, or after encountering a sign code as 
a source digit. 

In EDIT AND MARK, an additional  operation is performed. 
Whenever the significance trigger is first turned on by  the  ap- 
pearance of a non-zero digit, the address of this  byte position 
in  the editing pattern is inserted into  the  three low-order bytes 
of register 1. After completion of editing, the condition register 
is set to  the sign of the  last field edited. 

address  and data values. The CONVERT TO BINARY and CON- 
VERT TO DECIMAL instructions  appear in the storage-to-register 
format  with double indexing. The binary  operand always appears 
in the register and is 32 bits long. The decimal operand always 
appears  in  storage  in a 64-bit field aligned on double word bound- 
aries. Both  operands are  treated  as signed integers, the binary 
operand having the 2’s complement form when negative, and  the 
decimal operand  having a packed-decimal magnitude  with the 
low-order digit position containing the sign code. 

Conversion operations  are provided for radix conversion of conversion 
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