

Addressing
In planning the addressing structure of SYSTEM/~BO, many desirable
characteristics were considered. The principal ones were:

Binary addressing.
Addressing to the byte.
Ability to address a very large storage.
Bit efficiency of programs.
Efficient relocating loader.
Use of shared programs.
Feasibility of programming conventions for dynamic relocation.
For lookup purposes, binary addressing permits the use of

arbitrary bit patterns as increments to table bases. Although
lookup can be accommodated by addressing structures that utilize
other radices, more manipulation is required in these cases. Other
advantages of binary addressing accrue from the greater com-
pression of address information and the greater resolution of
truncated addresses (bytes, halfwords, words, double words, etc.
can be readily specified).

The principal motivation for byte addressing appears in com-
mercial application areas. In this use, records consist of many
fields of widely differing lengths, where each length is normally de-
fined in terms of the required information content. It is desirable
that information be packed, not only to permit storage efficiency,
but also for efficiency of transmission between the peripheral stor-
age device and the computer. It is also preferable that the informa-
tion appear in an order meaningful to humans who must com-
municate with a file.

It seemed to be desirable to enrich the character set available
to the computer user and, a t the same time, to compress informa-
tion. At first thought, the two factors appeared incompatible.
However, studies of commercial file statistics indicated that more
than 60 percent of the characters in the average record were
decimal numerics. Both purposes could then be served by selection
of an 8-bit character, representing either a single non-numeric
character or a pair of decimal digits.

A similar argument applies to the task of communication be-
tween the human and the machine. The least restrictive mode
of communication from the human standpoint is the ability to
provide and receive strings of symbols with starting and ending
points that are arbitrary in respect to machine word boundaries.
Communication with humans must certainly be expected to take
on increasing importance. This strongly recommends that a com-
puter be able to consider a string of symbols as an entity and to
deal with the string wherever i t resides.

Addressing to the bit (as in the IBM 7030) was considered
because it permits use of direct techniques for manipulating
arbitrary bit groups. The low frequency of these applications,
compared to byte handling, as well as the requirements for three
additional address bits and more hardware controls, made this

PROCESSING UNIT DESIGN CONSIDERATIONS

space, so that Iargc spans of code nccd not be inspccted instruction
by instruction, and (2) in quantity, by avoiding much of the
replication involved in storing a complete address for each separate
reference to a region.

Sharing a common copy of a program between several con-
current users is valuable in a number of application areas to which
computers recently have been applied. These applications are
primarily characterized by the use of a central computer to serve
a number of on-line consoles, a t each of which an operator may be
handling a transaction in one of many predefined ways. Examples
are airline reservations, credit investigations, and bank teller
functions.

In these applications, the program segment traffic generally
exceeds the data record traffic, although the space requirements
for the program segments are usually less than for data residence.
With the advent of larger storage devices, it appears feasible to
retain complete copies of a t least the heavily used service routines
within core storage, provided that these copies need not be dupli-
cated. Such a procedure would reduce system delays due to con-
tinued reference to peripheral storage devices of relatively long
access time. Also, traffic for the programs, the most often sought
information in the system, would be eliminated.

Such a technique can be effectivc only if the addressing struc-
ture of the computer can accommodate a programming conven-
tion that permits the code to remain unchanged throughout
its execution. This requires that the addresses for all data and
working areas currently allocatcd to a given user be available
from the contents of the registers of the central processing
unit (CPU).

Dynamic relocation of programs and/or data areas is a problem
occurring in time-shared multiprogramming applications. In such
an application, a given latent program may be displaced from
storage either by the requirements of an active program or a
program of higher priority. At a later time, it is desired to bring
this program back into storage and to resume its execution. At
this point, two alternatives exist: delay the return of the dis-
placed program until its previous residence arcas become available,
or relocate this program to regions of storage currently available.
The former alternative involves furthcr delay for the displaced
program; the latter alternative rcquires that all address-like in-
formation be identified and appropriately modified. It is easy
enough to define an automatic dynamic relocation addressing
technique which entails considerable penalty in either hardware
or time, or in both. The challenge is to provide an addressing
technique whose inherent characteristics permit the adopt.ion of
programming conventions that are capable of programmed re-
location with reasonable efficiency.

After much consideration of the foregoing desired charac-
teristics in the computer’s addressing structure, a modified form
of base addressing was cmployed. The base addresses for address

PROCESSING UNIT D E S I G N CONSIDERATIONS

I metic and logical operations and in branches, excepting the in-

dexing branches and the multiple-register loads and stores. Multi-
ple-register loads and stores are seldom invoked in array processing.

To further improve the indexing and addressing capabilities
of SYSTEM/^^^, the set of fixed-point arithmetic accumulators was
chosen to serve jointly for index registers and base registers. The
full power of the fixed-point arithmetic functions was thus made
immediately available for address and index computations. More-
over, the results of logical and fixed-point arithmetic operations
were made directly accessible to the addressing mechanism for
use in data lookup or sequencing functions.

I Sequencing
The sequential control of a computing system should provide for:

ConditionaI branching on the outcome of Iogical or arithmetic

Return address and/or calling sequence information (sub-

Abrupt change in sequence control to special routines in the

Indirect execution of instructions.

tests.

routine linkage).

event of unusual system conditions (interruption).

Excepting the index branches, the S Y S T E M / ~ ~ O branch instruc- conditional
tions appear in both the one-syllable and two-syllable formats, branching
the two-syllable format permitting double indexing of the branch
address.

In S Y S T E M / ~ ~ O , the BRANCH O N CONDITION instruction
operates in conjunction with a condition register (cR). The CR

is variously set to one of its four states in the course of arithmetic
or logical operations. For and, or, or exclusive or, conditions are
set to indicate either a complete zero result or a non-zero result.
In the case of compares, one of three conditions is set to indicate
low, equal, or high. For tests of register contents, again one of
three conditions is indicated: negative, zero, or positive. Finally,
for add and subtract, one of four conditions is set: negative, zero,
positive, or overflow. No conditions are set for multiply, divide,
load, or store; it is desired that these operations be performed
without disturbing the current value of the CN. and, mo~*eover,
result conditions can be predicted from initial operand tests. The
BRANCH O N COXDITIOX format contains a 4-bit tag, one bit
position for each CR state. The CR states effecting the branch are
specified by 1’s in the bit positions corresponding to selected
states. If the CK. is in a state for which there is a corresponding
1 (0) in the condition tag, the branch occurs (docs not occur).
Thus, all combinations of states may be symmetrically defined
as branch or no-branch situations. Note that 111 1 in the condi-
tion tag corresponds to an unconditional branch, for a branch
occurs on any CR state. On the other hand, with 0000 in the condi-

PROCESSING UNlT DESIGN CONSIDERATIONS 149

CONDITION is a generalized instruction of considerable utility.
A more specialized conditional branch instruction is BRANCH

O N COUNT, which reduces the value in a specified register by
one, and which takes a branch to a specified address if the result
of the reduced quantity is non-zero.

Another specialized area of conditional branching comprises
two instructions: BRANCH ON INDEX HIGH and BRANCH O N
INDEX LOW OR EQUAL. The functions of these instructions are
essentially the same, except that the condition for branching is
complementary. In execution, the value of an index is incremented
and the new index quantity is then compared with a comparand.
All values are contained in the general purpose registers. The
structure permits the use of a single register for increment and
comparand to give the equivalent of the 7090 TIX instruction. The
branch is effected if the incremented register contents, when
compared with the limit, take on the condition indicated in the
instruction name. This instruction pair is carefully defined to
be useful in the implementation of the FORTRAN DO statements.
In general, the BRANCH ON INDEX LOW OR EQUAL would
be used to close a loop at the bottom, and the BRANCH ON
INDEX HIGH to close the loop from the top, the latter case
permitting the extraction of vacuous cases. These instructions
are defined so that they can remain invariant within executed
code. All quantities that could possibly vary during execution
(e.g., the index, the limit, and the increment, in that order of
likelihood) are provided from registers. Only the specification of
the general purpose registers containing these quantities, and
the branch address itself, are included in the written instruction.
These simple tasks, and indeed more general tasks, may be readily
accomplished by the use of three instructions: a subtract or an
add, a compare, and a BRANCH ON CONDITION. However,
the simple tasks occur with a frequency sufficiently high to justify
a form more easily specified and more rapidly executable.

Subroutine linkage is provided by the BRANCH AND LINK
subroutine instruction. After the properly updated value of the program
linkage counter is stored in a specified general purpose register, control

is transferred to the new address specified. Certain computer
status information is stored together with the updated value.
The additional information, placed in the leftmost eight bits
of the register, consists of the length of the BRANCH AND LINK
instruction utilized, the current state of the condition register,
and the program mask (four bits defining the optional arithmetic
conditions for which interrupts should occur). Except for the
length, which may be of marginal value, the remaining informa-
tion is significant for subroutine utilization. Subroutines frequently
perform some function for the user and, upon completing this
function, restore control to the user’s sequence with the previous
state of the condition register undisturbed. In another situation,

150 Q. M. AMDAHL

the subroutine may require a different program mask to properly
monitor its execution, but must restore the user's program mask
on return of control to the user's sequence. Both restorations are
simultaneously accomplished by use of the instruction SET
PROGRAM MASK, which loads the condition register and the
program mask register from the leftmost eight hits of the specified
general purpose register.

that is not residing in the current instruction sequence. Except execution
for an EXECUTE instruction, any instruction may be so executed.
EXECUTE introduces an additional function to assist in attaining
the objective of code invariance during program execution. This
function permits modification of a portion of the instruction.
The second byte of the operation code syllable may be modified
by or-in.g the low-order byte position of a general purpose register
(specified by the first register address tag of the EXECUTE
instruction) into the second byte of the operation code of the
instruction to be executed as it resides in the operation decoding
register. For example, this technique may provide the lengths
of fields in variable-field-length instructlions a t execution time
without program modification.

To permit greater flexibility in the selection of the instruction
to be executed, double indexing is provided.

Only the basic structure, sequence of operation, and underlying interruption
philosophy of the SYSTEM/360 interruption facilities are described
here. One of several broad considerations is that a constant
hardware monitoring of machine status should have the capability
of redirecting the CPU activity when prescribed situations arise.
Another consideration is that the CPU must save adequate status
information at the time of redirection to be able to return to an
interrupted task. A primary consideration was that hardware
provisions should perform all functions that must necessarily be
automatic, such as storing volatile information, and those func-
tions that are difficult or excessively time consuming to obtain
by programmed operations. Any additional functions were con-
sidered a program responsibility.

The information collected and stored is called a program
status word (PSW). As shown in Figure 2, a PSW is a double word,
with the left word containing a system mask (defining the pro-

An EXECUTE instruction permits execution of an instruction indirect

SYSTEM MASK KEY CMWP INTERRUPT CODE

0 7 8 11 12 1516 31

cc PROGRAM
MASK

INSTRUCTION ADDRESS I
32 3334 35 36 39 40 63

36 39 Prosram mask

4 Selector channel 4 mark
5 Selector channel 5 mark
6 Selector channel 6 mark
7 Bternal mark

10,L ,lllrrl"pll"llL""c
32.33 lnsfructton length code (ILC) 40 63 lnrtructlon address
34 35 Candltion code (CC)

PROCESSIKG UKIT DESIGN CONSIDERATIONS 151

DOUBLE WORD (64)

INlT PROG LOAD PSW

lNlT PROG LOAD ccw 1

INlT PROG LOAD ccw 2

EXTERNAL OLD PSW

SUPERVISOR CALL OLD PSW

PROGRAM OLD PSW

MACHINE CHECK OLD PSW

INPUT/OUTPUT OLD PSW

CHANNEL STATUS WORD

EXTERNAL NEW PSW

SUPERVISOR CALL NEW PSW

PROGRAM NEW PSW

MACHINE CHECK NEW PSW

INPUT/OUTPUT NEW PSW

Monitor control

As computational speeds increase, relative to human reaction
times, and as computing systems adapt to on-line and real-time
multiprogramming tasks, the need for fully automatic systems
increases. For such a fully automatic system, i t is imperative that
the allocation of system resources be controlled by a monitor
program. Provision for this control is embodied in the following
concepts :

Monitor mode with associated privileged instructions.
Storage protection to ensure the monitor’s survival.
Hardware monitoring, as described earlier, in conjunction with

An interval timer to periodically return control to the monitor.
A wait state available to the monitor, rather than a stop or

the ability to perform interrupts.

halt instruction available to the problem programmer.

The primary function of storage protection is to prevent cur- storage
rently operating CPU or I/O channel programs from intruding into protection
latent program and associated data areas. A number of different
areas should be accessible and distinguishable from each other,
because the I/O channel operations may be related to latent CPU

programs rather than the current CPU program. In addition to
providing separate identification of areas for different operating
programs, it mould be advantageous for storage allocation purposes
to permit identification of several separated areas for one program.

To attain as full utilization of the storage capacity as possible,
i t is desirable to allocate storage in a piecemeal fashion. The
allocation of storage is assumed to take place dynamically in an
environment in which several programs occupy storage concur-
rently, new programs are being introduced into storage, and old
programs are releasing storage. It is further assumed that a given
active program may request or release additional data and/or
program areas as its execution progresses.

In such an environment, contiguous storage space for a given
program and its associated data areas cannot be long maintained
without moving massive segments of information from one storage
area to another. Such time-consuming movements of information
can be reduced by permitting portions of storage to remain unused
for periods of time, or by storage protection techniques that permit
the allocation of thc unused regions scattered throughout the
storage of the computer. Simulation of such an environment indi-
cates that unusable storage, in a system requiring contiguous
allocation, ranges between 10 and 20 percent, depending on the
distribution of storage requirements among jobs to be executed.

The storage protection technique selected for SYSTEM/SBO per-
mits arbitrary assignment of any number of 2,048-byte blocks of

PROCESSING UNIT DESIGN CONSIDERATIONS 153

storage to each of up to 16 active and latent programs. Storage
protection is realized by providing each of the 2,048-byte blocks
of storage with a 4-bit register. The monitor may store any 4-bit
combination into any one of these registers. These combinations
may be thought of as locks, each block of storage having its
assigned lock. The 16 combinations are divided into two classes,
zero and non-zero. The zero combination is considered as unlocked
(either unassigned or common), and the 15 non-zero combinations
are considered as locked.

The communicants with storage (namely the CPU, each selector
channel, and the multiplex subchannel) are provided with inde-
pendent 4-bit key combinations by the monitor. These key assign-
ments are divided into two classes, zero and non-zero. The zero
key, considered as the master key to all locks, is assigned only to
appropriate sections of the monitor. The non-zero keys are con-
sidered as keys to matching locks only.

The protection function applies only to operations that store
into a locked block. Storage takes place only if the key and lock
combinations match or if the master key is used. Otherwise, the
store is inhibited, and a program error interruption occurs.

Store protection alone suffices to provide shared programs in
an environment of protected storage. The protection structure
could be extended to include protection on fetches for privacy or
vagrant reference monitoring. The extension could permit user
options on the class of protection desired without compromising
the options of other concurrent users.

Although I/O operation is not in itself a monitor concept, the
I/O control monitor program is inextricably involved in the division of I/O

operating functions. To control the allocation of system resources,
it is necessary that the monitor control the assignment and selec-
tion of all devices. Once the devices have been selected for use
by a problem programmer, it is desirable that they be utilized
as efficiently as possible. Since this utilization depends on the
characteristics of the user’s program, provision for controlling the
desired sequence of operations is made available to the user.

The monitor program carries out the I/O device selection to
the point where availability of the path to the device and of the
device itself is determined. It then provides the I/O channel with
the assigned storage protection key and the location of the first
I/O command word to be executed.

The problem program supplies the desired sequence of com-
mands to be carried out by the I/O device and the channel in
concert. Any sequence of commands may be supplied, but all refer
only to the one device selected. Both data chaining within physical
records and command chaining between physical records may be
performed. Termination of a chain of commands causes an inter-
rupt status in the channel; for normal ending conditions, this
interrupt can be suppressed.

Provision is also made to permit a channel-program-controlled
interrupt by means of sctting a flag bit in the appropriate com-

154 G. M . AMDAHL

mand. Upon reaching this command, the channel takes on an inter-
rupt status, but still continues executing the command(s). By
means of this facility, the CPU can keep track of the progress of
channel command execution. It is thus possible to dynamically allo-
cate data areas as needed for records of unpredictable length.

An interval timer is provided in byte locations 80 through 83
in storage. In the standard option, the contents of this word is
decremented by 5 X 256 every sixtieth of a second. It is planned
to provide an alternate decrementing by 6 X 256 every fiftieth
of a second when 50-cycle-per-second power is utilized. By means
of a higher-frequency oscillator, the multiplication by 256 permits
greater resolution of the time interval to a minimum interval of
about 13 microseconds. As the contents of this word location is
decremented, the decremented value is tested: if the value has
been reduced through zero, an external signal interrupt condition
is initiated. This condition is honored by the CPU as soon as per-
mitted by the CPU’S state.

Maintaining control of system resources requires that no
program can arbitrarily stop the CPU operation. When there is
no call for activation of CPU programs, it may be desirable to
place the CPU in a quiescent but responsive state. This is provided
in SYSTEM/^^^ by 5 bit in the PSW, indicating the CPU to be in a
‘‘wait state.)’ During this period, the CPU is quiescent, making no
memory references; but it is responsive to any possible interrupt
conditions, permitting immediate attention when called upon.

The CPU can be in either the monitor mode or in the problem
program mode, as defined by a bit in the PSW currently controlling
the CPU. In the monitor mode, all machine instructions may be
executed. In the problem program mode, however, the class of
instructions termed “privileged” cannot be executed, since i t
causes an interruption. The set of privileged instructions may be
classified into three groups:

Program status word (PSW) protection
LOAD PSW
SET SYSTEM MASK

I/O facilities protection
START 1/0
STOP 1/0
TEST 1/0
TEST CHANNEL

Storage protection
LOAD PROTECTION KEY
STORE PROTECTION KEY

By virtue of storage protection in combination with the
monitor mode and the associated privileged instructions, the
monitor can maintain absolute control. No other program can
accidentally or deliberately seize control without cooperation of
the monitor program.

PROCESSING UNIT DESIGN CONSIDEIlATIONS

The monitor program protects the interrupt locations and itself,
including all of its data used for resource allocation. Assignment of
protection combinations to storage (STORE PROTECTION KEY)
can be done only in the monitor mode. Assignment of the CPU

protection key and the monitor mode state can be done in either
the monitor mode (LOAD Psw) or by automatic reloading of a
new PSW from monitor-controlled interrupt locations. These two
provisions ensure the survival of all monitor functions. Any at-
tempt to usurp these functions brings the offending program to
the attention of the monitor.

Arithmetic functions
Even though the role of arithmetic functions in computing is the
best understood functional class, many subtleties must be taken
into consideration in an optimal choice of instruction formats,
radices, representations, and word sizes.

Most data reduction, engineering, and scientific applications
can accommodate themsclves to suitable fixed word sizes. The
performance payoffs of fixed word sizes, along with the ability
to control accuracy by problem formulation, make this accom-
modation possible and somewhat attractive. Commercial data
processing, on the other hand, deals with a variety of different
but quite well specified field lengths; problem reformulation cannot
materially alter the required or useful data lengths.

An analysis of a representative sample of executed 7090 codes
accumulators revealed that about 30 percent of the fetch and store functions
and were redundant. Data words were refetched whenever reused, and
instructions results were temporarily stored for later reuse. The analysis also

demonstrated that significant reductions in redundancy could be
achieved by providing multiple accumulators. The redundancy
dropped quite sharply with the first few accumulators and tailed
off thereafter. Provision of four accumulators accounted for more
than 90 percent of the reducible redundancies, the fourth accumu-
lator contributing only about 10 percent of this reduction.

Access time to storage increasingly limits performance as
processor speed improves. Multiple fast-access accumulators per-
mit a conceptual machine structure that depends less on storage
technology by providing faster access to some of the data. Short
register addresses, rather than larger storage addresses, reduce
the instruction information required. The number of storage
accesses needed to perform a given computational task is clearly
reduced by multiple accumulators.

To effectively utilize multiple accumulators, two or morc
address fields are required in an instruction. Averaged over
representative programs, two-address instructions are somewhat
more efficient than three. To maximize this efficiency, the opera-
tions provided should be made available both between register
pairs and between a register and a storage location. Lest the pro-

results should normally go to a register rather than to a storage
location. Stores should be separately provided.

As indicated earlier, binary addressing was chosen because of
efficiency of information storage and generality of table-lookup
functions. It was also explained that by combining the fixed-point
binary arithmetic unit with the indexing unit, the full power of
the fixed-point arithmetic functions becomes directly available
for address computations, and the results of fixed-point computa-
tions are directly available as index quantities in table lookup.
These decisions circumvent a drawback of the conventional
machine structure where fixed-point binary is associated with the
floating-point unit. In very-high-performance scientific computers,
floating-point operations are executed asynchronously and delayed
with respect to address computations; as a result, the sharing of
arithmetic facilities requires more complex interlocking than for
separated facilities.

The binary representation chosen for the indexing and fixed-
point numbers is 2’s-complement. In this representation, the left-
most bit has a negative weight corresponding to its position, and
all bits to its right have positive weights. Several consequences
of this choice are: (1) multiple precision operations are simplified
due to constant signs of low-order segments, (2) index quantities
properly reflect the sign, even though the sign position is never
involved in the effective address calculation, and (3) the trunca-
tion of a number always produces a “floor” (the largest integer
less than or equal to the untruncated number) which is of con-
siderable value in integer computations.

The normal fixed-point word size chosen is 32 bits, restricted
to be on 32-bit boundaries to ensure maximum performance. This
word size is sufficient to encompass the majority of fixed-point
engineering or scientific calculations.

To improve storage efficiency and performance in data re-
duction applications, a 16-bit word is provided, which is sufficient
to contain data from most sensing devices. These 16-bit words
are extended toward the left to 32 bits as they are introduced into
the arithmetic unit or accumulators. By virtue of this expansion,
mixed 16-bit and 32-bit operands may be interacted arithmetically.

Multiple precision operations are assisted by several provisions :
(I) logical addition and subtraction operations treat the leftmost
bit of low-order segments as having positive weight, both for
arithmetic results and for carries, (2) double-length dividends and
products are accepted and generated, and (3) double-length
register arithmetic and logical shifts arc included.

Automatic monitoring of fixed-point overflow by the interrupt
mechanism, provided as a programmer option, is one of four
maskable interrupt conditions. Divide check is a t all times moni-
tored by the interrupt mechanism.

The choice of representation of floating-point numbers was
to some extent tied to the choice of word sizes. A common ex-
ponent and sign representation was considered advantageous be-

PROCESSING UNIT DESIGN CONSIDERATIONS

cause it is needed in economical provisions for interacting operands
of differing size. A 64-bit word size is provided for the high-
precision requirements. Although the 36-bit word size had ap-
parently been adequate for more than 95 percent of the 7090
applications, it was considered more marginal as problem sizes
and complexities grew. However, an additional 32-bit word size
is provided for the sizeable number of applications for which this 1
precision is entirely adequate. Both word sizes are restricted to
be on boundaries of their size, again to ensure maximum per-
f ormance.

Precision greater than that of the 64-bit word is programmable.
However, no special provision for this case was considered neces-
sary because of the low frequency of multiple precision coding on
the 7090. It is assumed that only a small fraction of this coding
would not be adequately served, since the 64-bit representation
chosen is equivalent to a double precision 7090 representation.

In the floating-point representation adopted, the leftmost 8-
bit byte of either of the two word sizes contains the fraction’s
sign and the exponent (excess 64). The byte size was chosen to
maintain consistency with data boundaries. The remaining three
and seven bytes, respectively, of the two word sizes represent the
absolute value of the fraction. The exponent represents a power
of 16 rather than of 2, so the fraction is normalized in 4-bit shifts
rather than single-bit shifts. The use of radix 16 permits twice
the effective range of the exponent in the 7090 representation. An
analysis of experimental computation indicates that, on the
average, approximately 2.3 of the leftmost fraction bits are zeros.

When in the arithmetic section of the computer, a 32-bit
floating-point word occupies the left half of a 64-bit floating-point
register. Except for products, all results of loads or arithmetic
operations leave the right half of these registers undisturbed. In
the case of multiplication, the right half is replaced with the low-
order part of the product, allowing multiplication and summation
with minimum accumulation of truncation error. By not disturb-
ing the right half of the accumulator contents, higher performance
is achieved on computers with data flow widths of less than 64 bits.

To aid in retaining the maximum significance in the 32-bit
addition and subtraction operations, a 4-bit digit of a preshifted
operand is retained to the right of the word boundary when intro-
duced into the floating-point adder. If a left shift of the resulting
fraction is required to maintain normalization, this additional
digit is retained in the result. No corresponding provision was felt
necessary for the 64-bit word size.

In floating-point division, no remainder is retained. The use
of the remainder in floating-point computation is far less frequent
than in fixed point. Moreover, a large share of the uses encountered
can be achieved by alternative operations of nearly equal efficiency.
Retaining the remainder would require another accumulator for
each division, reducing the effectiveness of the four accumulators
during most floating-point computations. A similar argument

155 G . M . AMDAHL

eliminates the use of an accumulator for holding the low-order
segment of the product of 64-bit words.

Automatic monitoring of exponent underflow and of lost
significance (vanishing fraction) by the interrupt mechanism are
provided as separate programmer options. These are two of the
four maskable interrupt conditions. Appearance of either condi-
tion causes the result to be set to zeros, a condition treated as a
true zero by the computer. Division by zero and exponent overflow
are a t all times monitored by the interrupt mechanism.

It was indicated earlier that two decimal digits are represented
in one 8-bit character or byte. Decimal number fields, t,hen, are
an integral number of such bytes. The algebraic sign of the decimal
number occupies the rightmost decimal digit position in this field,
providing an odd number of decimal digits plus sign.

The maximum length of a decimal field must be adequate to
permit representation of numbers that may be declared in COBOL,

therefore requiring fields up to 18 decimal digits plus sign. The
actual field size readily permitted by the structure is 31 decimal
digits plus sign, providing a suitable margin for untruncated
products occurring during computations.

Considerable effort was expended in determining whether
registers or storage locations should be used for accumulators in
decimal arithmetic operations. Sharing of the floating-point ac-
cumulator for this purpose would yield two decimal accumulators.
Several small problems were coded and timed, yielding no par-
ticularly conclusive evidence. To aid in resolving this alternative,
several typical COBOL source programs were analyzed. These pro-
grams showed clearly that the arithmetic strings were very short,
and that normally a large number of accumulators would be
referenced before succeeding strings would apply to the same ac-
cumulator contents. This information clearly suggested retention
of accumulator fields in storage, thus eliminating many redundant
store and load operations, and precluding strong pressures for
global optimization of COBOL codes for most efficient register usage.

Operations on operands of differing size are permitted by the
instruction format. Two field-length tags are associated with two
corresponding storage addresses. The first tag specifies the length
of the accumulator or result, and the second tag specifies the
length of the interacting operand. Improper specifications, e.g.,
the absence of a sign on the right of the field or a sign embedded
in a field, are recognized by the decimal arithmetic unit and initiate
an interrupt. Automatic monitoring of accumulator overflow by
the interrupt mechanism is a programmer option-another one
of the four maskable interrupt conditions. Divide check is a t
all times monitored by the interrupt mechanism as in fixed-point
arithmetic.

Non-arithmetic data manipulation
The non-arithmetic operations are still not well understood; no
well-ordered formal procedures have been constructed for dealing

PROCESSING UNIT DESIGN CONSIDERATIONS

of such limitations, these operations form a substantial portion
of today’s computing task. They normally appear in the pro-
grammed interface between human-oriented language and ma-
chine-oriented language. Their principal uses are in the extracting,
categorizing, transforming, rearranging, and editing of information
entering or leaving the computer system. The operations are dis-
cussed in groups that possess similar functions.

Shifting operations are used for many of the processes of
shifting isolating, concatenating, and aligning groups of contiguous bits.

Left and right shifts, specifying either a single register or an
even-odd adjacent register pair, are provided. The amount of
shift is specified by an address syllable, allowing specification by
immediate or register information, or by both. Although the
results after shifting are tested on the corresponding set of arith-
metic shifts, testing after logical shifts is left for subsequent opera-
tions. A single set of such tests was found to be of marginal utility.

Logic operations on operand pairs are principally intended for
operand-pair extracting, testing, modifying, and recombining bit groups which,
logic if non-contiguous, are localized in bytes, words, or byte strings.

Provision for these operations is variously made in four of the
five instruction formats. The register-to-register operations are
all between 32-bit words. The storage-to-register operations are
also between 32-bit words, with the exception of the pair for
single-character load and store. All storage-to-register operations
are doubly indexed to enhance addressing flexibility. The storage-
to-storage operations are performed between two equal-length
operands, each ranging from 1 to 256 bytes. All immediate-to-
storage operations are between the second byte of the operation
code syllable of the instruction and the byte addressed in storage,
the latter byte being in all cases the result byte for these operations.

The data moving instructions are described first. Four have
the storage-to-register format: LOAD and STORE for 32-bit
operands, and INSERT CHARACTER and STORE CHARACTER
for 8-bit operands. INSERT CHARACTER alters the low-order
byte of the specified register only, replacing i t with the byte from
storage. In the other three formats, a single MOVE instruction is
provided. The data moving operations leave the condition register
undisturbed. Although it would be desirable a t times to make
tests during the movement of data, it is more advantageous to
be able to move data between a deliberate test operation and the
conditional branch on this test.

A second group is formed by COMPARE LOGICAL, which ap-
pears in four formats and treats all bits within the operand bound-
aries as having positional binary magnitude properties. The con-
dition register is set to one of three states: low, equal, or high.

A third group consists of AND, OR, and EXCLUSIVE OR,
which appear in all formats and consider all bits within the
operand boundaries as independent of each other. A N D is normally
used to force 0’s into certain bit positions, OR to force l’s, and

160 G . hf. AMDAHL

EXCLUSIVE OR to alternate the binary values of these bit posi-
tions. These operations set the condition register to either the
zero or the non-zero state, depending upon the magnitude of
the result.

A final group consists of the one instruction TEST UNDER
MASK, which appears in the immediate-to-storage format only.
TEST UNDER MASK does not alter the byte in storage, but selects
those bits from the byte in storage that are specified by 1’s in
the corresponding bit positions of the immediate byte. This col-
lection of selected bits is tested for three conditions: all O’s, all
l’s, or mixed 0’s and 1’s. The condition register is set in accordance
with the outcome.

Code translation and recognition functions are provided by
the instructions TRANSLATE and TRANSLATE A N D TEST. Both
instructions provide two storage addresses. The first address
specifies an argument operand, ranging from 1 to 256 bytes in
length. The second address specifies the origin of a function table
of bytes defining the desired translation or testing transformation.

The TRANSLATE instruction performs a history-independent
translation. Each byte of the argument, scanning from left to
right, is in turn replaced by a function byte from the table. The
location of the function byte is obtained by adding the argument
byte to the table origin. The condition register is not altered as a
result of this operation.

TRANSLATE is useful for rearranging records as well as for
code translation. For this usage, the record to be rearranged is
considered the function table, and the desired rearrangement pat-
tern is given by the argument. Each argument byte specifies a
location in the function record. In the process of translation, the
argument bytes are replaced by the appropriate bytes from the
function.

The name of the instruction TRANSLATE AND TEST is some-
what a misnomer. Up to the point of replacing the argument byte
with the function byte, the execution is similar to that of TRANS-
LATE. However, no actual translation takes place. Instead, each
function byte is inspected to see if it is zero or non-zero. If the
function byte is zero, the corresponding argument byte is con-
sidered of no interest, and the process repeats on the succeeding
argument byte. A non-zero byte, however, is considered of interest,
and three actions are taken: (1) the address of the argument byte is
inserted in the three low-order byte positions of register 1, (2) the
non-zero function byte is inserted in the low-order byte position of
register 2, and (3) the operation is terminated.

The address saved is generally useful for three purposes. Most
obvious but least useful is the fetching of the argument byte of
interest. In most cases, the significance of this byte is defined by
the function byte retained, which may be used for branching to
an appropriate routine. The address can specify the starting
address for continuing a TRANSLATE AND TEST operation, and
can be used to determine the terminal point of a sequence of un-

PROCESSING UNIT DESIGN CONSIDERATIONS

interesting argument bytes. Such a sequence constitutes an item
of information (such as a name in a FORTRAN statement or a mes-
sage in a communication from a console) if the interesting byte
is a delimiter.

The condition register is set to one of three states: (1) all
function bytes encountered are zero, (2) the argument is not yet
fully translated or ended on a zero function byte, or (3) the
final byte of the argument had a non-zero function byte.

The editing functions described here are determined in part
editing by the nature of the extended code employed in IBM cards and the

practices developed during its history, and in part by the use of
the 8-bit byte for external communication. Moreover, various
editing conventions are met for user convenience. The editing
instructions fall into three categories of two instructions each.

The first two instructions are based on the frequent use of zone
overpunching of numeric fields on IBM cards to hold class informa-
tion. These instructions, MOVE ZONES and MOVE NUMERICS,
permit the separation or recombination of zone and numeric data.
MOVE ZONES reads the four high-order bits of each byte from the
source operand location and inserts them into the four high-order
bits of the bytes in the sink operand, leaving the four low-order
bits undisturbed. MOVE NUMERICS performs the equivalent
operation on the four low-order bits. Both operands are of the
same length, which may range from I to 256 bytes. No condition
register setting is made.

PACK and UNPACK arc used for packing and unpacking deci-
mal fields on IBM cards; these instructions assume the probable
use of sign overpunching on the low-order digit of the decimal field.
The instructions specify two operand fields of independent lengths,
each ranging from 1 to 16 bytes. The operands are processed from
right to left.

PACK takes the first byte of the source, switches zone and
numeric positions, and stores the result into the first byte position
of the sink, thus placing the probable sign into the proper position.
From this point on, the numeric fields of each pair of successive
source bytes are compressed into one byte of the sink. If the
source runs out before the sink field is filled, the sink is filled out
with zeros. If the sink field fills before the source runs out, the
operation is terminated. TJNPACK is very nearly the inverse of
PACK, except that the zones to be associated with the unpacked
numerics are automatically supplied for all but the first byte,
including any zeros used to fill out the unpacked sink field. Be-
cause neither of these operations is contingent upon the presence
of sign overpunching, but merely accommodate this practice, they
also permit rapid editing of hexadecimal information.

A third instruction pair permits editing of packed decimal
information for printing. EDIT and EDIT AND MARK suppress
or protect leading zeros, and can also provide punctuation (such
as commas and periods) and suppression of sign-controlled print
fields. EDIT AND MARK indicates the position for proper insertion

,

of a dollar sign. Each of these instructions specifies two operand
fields. The source is a packed decimal field or a series of packed
decimal fields. The sink is an editing pattern, and the length
specification applies to the pattern field. An operation proceeds
from left to right and is completed in one pass.

In execution, use is made of a significance trigger which starts
in the off position. The trigger is turned on either when the first
non-zero source digit encountered is requested by a digit-select
character in the editing pattern, or when a significance-start
character is encountered in the editing pattern. The trigger is
turned off again either upon encountering a positive sign code as
the next source digit (immediately, with no waiting for a digit-
select character in the editing pattern) or upon encountering a
field-separator character in the editing pattern.

A pattern character is first inspected to determine the function
to be performed. After performance of this function, the pattern
character is replaced by a fill character if the significance trigger
is off. This permits the suppression of significance-dependent
characters, such as punctuation, and sign-dependent characters,
e.g., credit symbols. The fill character employed is the first
character encountered in the editing pattern. If this character is
also a functional character, the function is performed.

If the significance trigger is on after the function requested by
the pattern character has been performed, any one of three opera-
tions may be carried out: (1) if the pattern contains a digit-select
or a significance-start character, the current source digit is ex-
panded to zoned format and stored over the pattern character;
(2) if the pattern contains a field-separator character, it is re-
placed by the fill character; (3) if the pattern contains any other
character, it is left undisturbed.

The source field is advanced to the succeeding digit position
either after encountering a digit-select or significance-start char-
acter in the editing pattern, or after encountering a sign code as
a source digit.

In EDIT AND MARK, an additional operation is performed.
Whenever the significance trigger is first turned on by the ap-
pearance of a non-zero digit, the address of this byte position
in the editing pattern is inserted into the three low-order bytes
of register 1. After completion of editing, the condition register
is set to the sign of the last field edited.

address and data values. The CONVERT TO BINARY and CON-
VERT TO DECIMAL instructions appear in the storage-to-register
format with double indexing. The binary operand always appears
in the register and is 32 bits long. The decimal operand always
appears in storage in a 64-bit field aligned on double word bound-
aries. Both operands are treated as signed integers, the binary
operand having the 2’s complement form when negative, and the
decimal operand having a packed-decimal magnitude with the
low-order digit position containing the sign code.

Conversion operations are provided for radix conversion of conversion

PROCESSING UNIT DESIGN CONSIDERATIONS 163

164 G. If. AMDAHL

