
An algorithm for the numeric  solution of a cotnrnon gear-train  problem 
i s  developed. 

A number-theory  approach, relatively novel in current  engineering 
practice, i s  used in deriving the algorithm. 

The  form of the algorithm obtained i s  suitable for programming  on 
a digital  computer. 

Algorithm  for a gear-train  problem 
by H. G. ApSimon 

A lathe  manufacturer planned to incorporate a gear change that 
would produce a range of metric pitches in  addition to  the normal 
range of English pitches. The problem had previously been 
resolved by using a special 127-tooth change gear to compound 
the  drive  to  the feedbox.  However, such a large gear was awkward 
to accommodate and involved a loss of production time whenever 
a change had to be made. It was therefore decided to incorporate 
four smaller gears in the feedbox, making it possible to use a 
simple lever change to give direct drive for English pitches or 
back-geared drive  for  metric pitches. The problem was to de- 
termine the combination of four gears that would give the over-all 
ratio most closely approximating the one desired. 

Two members of the manufacturer’s staff  worked together, 
each with a tabulation in ascending order of all the ratios resulting 
from combinations of any two gears having between 12 and 120 
teeth,  together  with the seven-figure logarithms of these ratios. 
One person worked up through the entries, subtracting each 
logarithm in turn from the logarithm of the desired ratio.  Each 
result obtained was then compared by the second person with 
the logarithms, and  the  entry having the nearest logarithm was 
noted, together with the difference. Thus, a set of results was 
built  up, each involving a combination of two pairs of gears 
and a measure of the difference between their over-all ratio  and 
the desired ratio. Combinations involving gears with less than 
16 or more than 60 teeth were discarded. From the remaining 

IBM SYSTEMS JOURNAL * VOL. 3 * NO. 1 * 1964 95 



the 
problem 

mathematical 
description of 
the  algorithm 

results, the closest approximation was selected. The illvestigatioll 
occupied 60 man-hours. Since the problem occurred infrequently 
in this company, the approach was considered  economically 
feasible. 

In other companies, mathematically similar problems arise 
much more frequently. For example, a pair of mating helical 
gears of unequal diameters  has the same helix angle, but  the 
lead of the helix  is different in each case. In the manufacture 
of such gears, the lead obtained is normally dependent on the 
lead which the hobbing machine can produce by virtue of the 
change gears which the  operator selects. In normal everyday 
work, the usual practice is to refer to a  table of leads which 
tabulates those available from certain  standard change gears. 
For really accurate work, however, a  conlputation such as  that 
described above is carried out. 

A possible first reaction to  the problem is to suggest the 
compilation of a  table giving, in ascending order of over-all ratio, 
all possible combinations of four gears (subject to  the practical 
consideration that no gear shall have, for example,  less than 15 
or more than 100 teeth).  This once-and-for-all solution is imprac- 
ticable, since such a table would consist of the order of lo7 entries. 

This paper presents an algorithm whereby the closest  possible 
approximation to a pre-specified ratio can be established with 
relatively little effort by means of two pairs of gears. This algorithm 
can be readily programmed so that companies encountering the 
problem frequently may take  advantage of a digital  computer. 

It is required to determine a gear train, conlprising two pairs 
of gears, with an over-all reduction ratio that approximates as 
closely as possible a specified value, subject  to the constraint 
that  the number of teeth  in each of the four gears must lie within 
certain specified bounds. 

In mathematical  terms, we wish to find the best approximation 
to a given number x (0 < x  < 1) which  is of the form (F ,F2) / (FsF, ) ,  
where F, (r = 1, 2,  3, 4) are integers (denoted by capital  letters 
throughout  this paper) satisfying 

J 5 F ,  5 K .  (1) 

If x can be expressed in the desired form, or if x _< J 2 / K 2 ,  
the solution is immediate. It is assumed that x cannot be so 
expressed, and  that J 2 / K 2  < x < 1. 

We obtain values F: and F;‘, satisfying (l), such that 

(F:FL)/(F;F:) < x < (F{’FL’)/(FJ’Fi’j, 

and such that  there exists no set F*, satisfying (1) and 

(F:F@/(FJF:)  < (F:F:)/(F%F%) < (F;’Fi’)/(FJ’Fi’). 

We call ( F i F i ) / ( F J F i )  the best lower approximation, and (F;’Fi’)/ 
(FJ’F:’) the best upper  approximation. 

An irreducible fraction P/Q is called acceptable if there exists 



Any  acceptable  fractional  approximation to x has a  denom- 
inator less than or equal to K2.  We  first obtain a close approxima- 
tion which satisfies this condition,  with the intention of using 
it as a starting  point  in a search  for the best  approximation 
satisfying  all the conditions. To do so, we express z as a simple 
continued  fraction and calculate the successive convergents of 
this continued  fraction,  breaking off the calculation with  the  last 
convergent  having a denominator less than or  equal  to K2.  Let 
this convergent  be PN/Q,v. 

The  Farey series of order M is the ascending series of 
irreducible  fractions betweeu 0 and 1 whose denominators  do  not 
exceed AI. Clearly, any acceptable  fractional  approximation to 2 

is a  member of S K 1 .  
Parenthetically, it is of interest to note that  the number of 

terms  in F K z  is of the order of 3K4/n2. 
The  major  step  in  our procedure is, now, to generate that 

part of S K 1  which neighbors P,,,/QY. 
First, consider the case in which PN/&, is not itself acceptable. 

We  obtain successively higher  members R,/S, of FK*, starting 
from R,/S, = P N / Q N  and  terminating  the process when an 
acceptable  member R J S ,  is obtained. Since there  is no acceptable 
fraction between PN/QN and x (see Lemma 3,  Appendix I), 
it follows that RJS,  corresponds to  the best  upper  approximation, 
(F;’F;’)/(FL’F;’). We  then  repeat  the process with successively 
lower menlbers of S K 2 ,  starting  again from R,/S,, to obtain the 
best lower approximation. 

In  the particular case in which Iz,/S, = P N / Q N  is in itself 
acceptable, it corresponds to  either  the best lower approximation 
(if N is  even)  or the best  upper  approximation (if N is odd), 
and  the search  for the  other required  approximation  must  be 
directed  accordingly. 

The algorithm is given in numerical  form and  in sufficient 
detail  to  be used by a  person  with  no  previous knowledge either 
of continued  fractions  or Farey series. 

Step I .  In  order to determine P,/QN, form successively’ integers 

A,,  A,, . . .  , A , ,  . * -  
by the system of equations 

l /x = A ,  + 5 1  (0 I 2‘ < 1) 

I/., = A, + x2 (0 5 zz < 1) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1/x7-1 = A,  + 2 ,  (0 5 z, < 1) 
............................... 

and  calculate simultaneously the integers 

PI, p a  . . .  , P,, * .  . . Q I ,  Q z ,  . . . .  Q r ,  . . .  
by  the  system of equations 
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P ,  = 1, P, = A,, . . .  , P, = A J ' v - 1  + PI-2; 

Q1 = A,,  Q2 = A 1 A 2  + 1, * .  * &, = A , Q , - 1  + Q 7 - 2 .  

Terminate  the process when either 

x, = 0 (at r = N ,  say) 

or 

Q 7 + 1  > K 2  (at r = N ,  say). 

Carry forward to  the next step the values 

P N - 1 ,  Q N - 1 ,  P N ,  Q N  

so obtained  and the value of (- 1)". 

Step 2. The preliminary step  in  obtaining the Farey series is to 
form the next higher fraction  after P N / Q N  having a denominator 
less than or equal  to K'. Form 

where the symbol "1 _I" is used to denote the floor operation,' e.g., 
La1 denotes the greatest integer a' such that a' 5 a. Then, R,/X, 
is the desired fraction (see Lemma 1, Appendix I). Carry forward 
to  the next  step the values PN,  QN (relabeled as R,, X,) and  the 
values R,, X, just  obtained. 

Step 3. The  Farey series is developed as follows.  We have now 
two adjacent members R,/S,, Rl/Xl of S K Z .  We obtain successively 
higher members of 5K1 by means of the system of equations 
(see Lemma 2, Appendix I) 

For each pair (Rrl X,) so obtained, we determine the highest 
prime factor of R, and  the highest prime factor of X,. If either 
of these primes exceeds K ,  we proceed to  the calculation of the 
next successive pair in the sequence. If both R, and X, are de- 
composable into prime factors all less than or equal to K,  we 
determine whether there exists an integer C such that CR, can 
be expressed in the form F,F2 and CX, can  be expressed in  the 
form F,F,. If so, (F,F,) / (F,F,)  is the required best upper approx- 
imation (F;'F;')/(F;'F;'), and we need not examine further  pairs 
in  this sequence. If the condition is not met, we must proceed 
to  the calculation of the next successive pair  in the sequence. 

The best lower approximation is obtained  in a similar manner, 
using the equations 
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starting  with  the known values of (R,, S,), (Ro, So) and proceeding 
through negative values of r .  

The mathematical technique used, though elementary, does 
not seem to have been previously applied to  the solution of this 
common engineering problem. 

In  Appendix 11, an example is given to  illustrate application 
of the algorithm. The time to work through  this example manually 
was 2.5 hours-a significant improvement on the 60 man-hours 
required to achieve similar results by the previous method. 

It will be apparent that  the algorithm is readily programmable, 
with an execution time measured in  minutes even on the more 
modest computers. 

Appendix I - Derivation of lemmas 
Lemma 1. R,/S,  is the successor fraction  to P,/QN in F M ,  where 

and PN-l/QN--I is the convergent preceding PN/QN in the con- 
tinued  fraction expression of x. 

Proof of Lemma 1. 
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and 

Hence 

by (2') 

which is impossible. The lemma follows. 

Lemma 3. There is no  fraction  between x and P N / Q N  having  a 
denominator less than or equal  to K 2 .  

Proof of Lemlna 3. Consider the case in which N is even. Then 
P N / Q N  < x. By the particular case of Lemma 1 in which Ad = Q N f l ,  

the successor fraction to P,/Q, in 50N+, is R"/S*, where 

I Hence, the successor fraction  to PN/QN in T ~ ~ + ~  is greater  than X. 
Since K 2  < Q N + l ,  it follows that  the successor fraction to PN/QN 
in 5gl is  greater  than x. A similar argument applies when N is odd. 
The lemma follows. 

Appendix  I1 - Illustration of algorithm 

We illustrate  application of the algorithm  by considering the 
case x = l/s (with J = 15, K = 45). 

The continued fraction expression for l/s is known, so that 
it is not  strictly necessary to  carry  out  the first step. However, 
for illustrative  purposes,  suppose that we had been required to 
find the continued  fraction expression, with its convergents,  for 
1/(3.14159265359). From  Step 1 of the algorithm we obtain  the 
results  given  in  Table  1. 
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