An algorithm for the numeric solution of a common gear-train problem
ts developed.

A number-theory approach, relatively novel in current engineering
practice, is used in deriving the algorithm.

The form of the algorithm obtained is suitable for programming on
a digital compuler.

Algorithm for a gear-train problem
by H. G. ApSimon

A lathe manufacturer planned to incorporate a gear change that
would produce a range of metric pitches in addition to the normal
range of English pitches. The problem had previously been
resolved by using a special 127-tooth change gear to compound
the drive to the feedbox. However, such a large gear was awkward
to accommodate and involved a loss of production time whenever
a change had to be made. It was therefore decided to incorporate
four smaller gears in the feedbox, making it possible to use a
simple lever change to give direct drive for English pitches or
back-geared drive for metric pitches. The problem was to de-
termine the combination of four gears that would give the over-all
ratio most closely approximating the one desired.

Two members of the manufacturer’s staff worked together,
each with a tabulation in aseending order of all the ratios resulting
from combinations of any two gears having between 12 and 120
teeth, together with the seven-figure logarithms of these ratios.
One person worked up through the entries, subtracting each
logarithm in turn from the logarithm of the desired ratio. Each
result obtained was then compared by the second person with
the logarithms, and the entry having the nearest logarithm was
noted, together with the difference. Thus, a set of results was
built up, each involving a combination of two pairs of gears
and a measure of the difference between their over-all ratio and
the desired ratio. Combinations involving gears with less than
16 or more than 60 teeth were discarded. From the remaining
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results, the closest approximation was selected. The investigation
occupied 60 man-hours. Since the problem occurred infrequently
in this company, the approach was considered economically
feasible.

In other companies, mathematically similar problems arise
much more frequently. For example, a pair of mating helical
gears of unequal diameters has the same helix angle, but the
lead of the helix is different in each case. In the manufacture
of such gears, the lead obtained is normally dependent on the
lead which the hobbing machine can produce by virtue of the
change gears which the operator selects. In normal everyday
work, the usual practice is to refer to a table of leads which
tabulates those available from certain standard change gears.
For really accurate work, however, a computation such as that
described above is carried out.

A possible first reaction to the problem is to suggest the
compilation of a table giving, in ascending order of over-all ratio,
all possible combinations of four gears (subject to the practical
consideration that no gear shall have, for example, less than 15
or more than 100 teeth). This once-and-for-all solution is imprac-
ticable, since such a table would consist of the order of 107 entries.

This paper presents an algorithm whereby the closest possible
approximation to a pre-specified ratio can be established with
relatively little effort by means of two pairs of gears. This algorithm
can be readily programmed so that ecompanies encountering the
problem frequently may take advantage of a digital computer.

It is required to determine a gear train, comprising two pairs
of gears, with an over-all reduction ratio that approximates as
closely as possible a specified value, subject to the constraint
that the number of teeth in each of the four gears must lie within
certain specified bounds.

In mathematical terms, we wish to find the best approximation
to a given number x (0 <z <1) which is of the form (F,F,)/(FsF,),
where F, (r = 1, 2, 3, 4) are integers (denoted by capital letters
throughout this paper) satisfying

J<F, <K. (1)

If x ecan be expressed in the desired form, or if z < J°/K?,
the solution is immediate. It is assumed that x cannot be so
expressed, and that J°/K* < z < 1.

We obtain values '/ and F/’, satisfying (1), such that

(FIFD/(FiF) < o < (FU'FY)/(FYFY),
and such that there exists no set F* satisfying (1) and
FWF)/(FF) < (FAF%)/(FRFY) < (FUVF)/(FVFL).

We call (F{F;)/(FLF}) the best lower approximation, and (FI'F}')/
(F3'F57) the best upper approximation.

An irreducible fraction P/Q is called acceptable if there exists
an wmnteger C such that CP = F\F, and CQ = F,F,.
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Any acceptable fractional approximation to z has a denom-
inator less than or equal to K> We first obtain a close approxima-
tion which satisfies this condition, with the intention of using
it as a starting point in a search for the best approximation
satisfying all the conditions. To do so, we express z as a simple
continued fraction and calculate the successive convergents of
this continued fraction, breaking off the calculation with the last
convergent having a denominator less than or equal to K?. Let
this convergent be Py/Qy.

The Farey series ¥, of order M is the ascending series of
irreducible fractions between 0 and 1 whose denominators do not
exceed M. Clearly, any acceptable fractional approximation to x
18 a member of Fg..

Parenthetically, it is of interest to note that the number of
terms in F. is of the order of 3K*/#".

The major step in our procedure is, now, to generate that
part of Fx. which neighbors Py/Qy.

First, consider the case in which Py/Q, is not itself acceptable.
We obtain successively higher members R,/S, of Fx., starting
from R,/S, = Py/Qy and terminating the process when an
acceptable member R,/S, is obtained. Since there is no acceptable
fraction between P,/Q, and z (see Lemma 3, Appendix I),
it follows that R,/S, corresponds to the best upper approximation,
(FI'F)/(FY'F)). We then repeat the process with successively
lower members of F., starting again from R,/S,, to obtain the
best lower approximation.

In the particular case in which R,/S, = Px/Qy is in itself
acceptable, it corresponds to either the best lower approximation
(if N is even) or the best upper approximation (if N is odd),
and the search for the other required approximation must be
directed accordingly.

The algorithm is given in numerical form and in sufficient  the
detail to be used by a person with no previous knowledge either algorithm
of continued fractions or Iarey series.

Step 1. In order to determine Py/Qy, form successively’ integers
Ay, Ay, ooe Ay, e
by the system of equations
A+ 2 0Lz <D
= A, + z, 0V<z, <l

and caleulate simultaneously the integers

PI;PZ)”'7PH"'1 QUQQ;”'}QM"'
by the system of equations
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P =1, P, = A,, = AP, + P,
Q =4, Q. =44,+1 - = A.Q.-, + Q.-
Terminate the process when either

z, =0 (at r = N, say)

or

Q... > K* (at r = N, say).

Carry forward to the next step the values

PN——I) QN—I) PNy QN
so obtained and the value of (—1)".

Step 2. The preliminary step in obtaining the Farey series is to
form the next higher fraction after Py/Qy having a denominator
less than or equal to K°. Form

K* — (=1)"Qn-
Ro=| *
' Qv
K2 _ (" 1)NQN—
si=| 1
1 QN
where the symbol “|_ | is used to denote the floor operation,® e.g.,
| a | denotes the greatest integer a’ such that ' < a. Then, R,/S,
is the desired fraction (see Lemma 1, Appendix I). Carry forward

to the next step the values Py, @y (relabeled as R,, S,) and the
values R, S, just obtained.

Jpv + o,

JQN + (=1 Qu-s,

Step 8. The Farey series is developed as follows. We have now
two adjacent members R,/S,, B,/S, of Fx.. We obtain successively
higher members of F,. by means of the system of equations
(see Lemma 2, Appendix I)

2
Rr = \—_‘K_S_F_—:ls_f‘_‘_?‘er_l - Rr—-2)

2
g, = LKSLS__ Js — Sn.
r—1

For each pair (R,, S,) so obtained, we determine the highest
prime factor of R, and the highest prime factor of S,. If either
of these primes exceeds K, we proceed to the calculation of the
next successive pair in the sequence. If both R, and 8, are de-
composable into prime factors all less than or equal to K, we
determine whether there exists an integer C such that CR. can
be expressed in the form F,F, and CS, can be expressed in the
form F,F,. If so, (F,F,)/(FsF,) is the required best upper approx-
imation (F{’F}’)/(F}'F;’), and we need not examine further pairs
in this sequence. If the condition is not met, we must proceed
to the caleulation of the next successive pair in the sequence.

The best lower approximation is obtained in a similar manner,
using the equations
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2
R, = ‘__K_j-_ﬁr:_zJRm ~ Rl
Sr+1

2
S, = LK—S—JL@-JS — S,

starting with the known values of (R,, S,), (R,, S,) and proceeding
through negative values of r.

The mathematical technique used, though elementary, does
not seem to have been previously applied to the solution of this
common engineering problem.

In Appendix II, an example is given to illustrate application
of the algorithm. The time to work through this example manually
was 2.5 hours—a significant improvement on the 60 man-hours
required to achieve similar results by the previous method.

It will be apparent that the algorithm is readily programmable,
with an execution time measured in minutes even on the more
modest computers.

Appendix I — Derivation of lemmas
Lemma 1. R./S, is the successor fraction to Py/Qy in F,, where

R, = LM = ((EN”NQN“JPN + (=1)"Pyy,

5 = | L=CDa o 4 1.,

and Py_./Qy_, 1s the convergent preceding Py/Qy in the con-
tinued fraction expression of z.

Proof of Lemma 1.
LM — (=1D)"Qu-,
Qv

<M — (éNl)”QN—l) Qx + (=1)"Qu_s

8, = JQN + (—=1)"Qy-,

=M.
Hence
O0<R, <S5 <M.
Hence R,/S, is a member of §,,. Also,’
QvRy — PyS; = (=1)"(@QwPy_y — PiQy-y) = 1,

and

M- ('— 1)NQN—l
Qn

> (L=l o, 4 gy + (10w

JQN + Qv + (—1)"Quy-,

o+ 8 =|

= M,
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Qv+ 8, > M. 3)

Now, if R,/S, is not the successor to Py/Qy in Fy, there
exists a fraction ¥/Z for which

Py/Qv < Y/Z < R,/S,, “)
Z< M. 6))
Hence

1 — QNRI _ PNSI
QS QxS
B _ By
S Qu
_RZ =S8V QY -~ Pz
- S.Z QxZ

> 1Z—FQNZ by (4)

Qv + 8

M
> mﬁ by (3)

1
> oS, by  (5)

which is impossible. The lemma follows.

Lemma 2. R,/8, is the successor fraction to R,_,/S._, in Far,
where R,_,/8S,_, is the successor fraction to R._,/8,_, and

R, = L%%)&;ZJR"I _ Rr—2,

8, = L.]W_t‘gr_-zJSr_l - 8,_,.
Sr—l

Proof of Lemma 2. The proof follows the same lines as that for
Lemma 1. We can show:

0<R <8 <M,
so that R./8, is a member of 5, and that

S, R, — R,.\S, = 8,,R,.;, — R,_,8,_, = 1. 2"
We can also show

S,.i+ 8, > M. 3"

Then, if R,/S, is not the successor to R._,/8,., in &, there is
a fraction Y/Z for which

R,.,/8,.. < Y/Z < R,/S, 4
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and
Z< M.
Hence

1 — Sr——er _ Rr—lsr
SrSr—l Srsr—l

S Z

— Sr-‘] + Sr
 8.8,-.7Z

M
S,.S._.7Z

1
2 88,

which is impossible. The lemma follows.

by (3"

by (5"

Lemma 3. There is no fraction between z and Py/Qy having a
denominator less than or equal to K>

Proof of Lemma 3. Consider the case in which N is even. Then
Py/Qxy < z. By the particular case of Lemma, 1 in which M = Q. ,,
the successor fraction to Py/Qy in Fq,.,, is B*/S*, where

QN+1 —_ QN-1

R* = L—QIV——JPN 4+ Py, = Py,

- QN+1_'QN—-1
st = | g

‘IQN + Qv = Qniae

Hence, the successor fraction to Py/Qy in F,,, is greater than .
Since K* < Qu.4, it follows that the successor fraction to Py/Qy
in Fg. is greater than z. A similar argument applies when N is odd.
The lemma follows.

Appendix II — INlustration of algorithm

We illustrate application of the algorithm by considering the
case x = 1/m (withJ = 15, K = 45).

The continued fraction expression for 1/7 is known, so that
it is not strictly necessary to carry out the first step. However,
for illustrative purposes, suppose that we had been required to
find the continued fraction expression, with its convergents, for
1/(3.14159265359). From Step 1 of the algorithm we obtain the
results given in Table 1.
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314159265359 14159265359
100000000000 100000000000

100000000000 885142487
14159265359 14159265359

14159265359 882128054

885142487 885142487 333

885142487 3014433
882128054 882128054

882128054 1913618
3014433 ) 3014433

113 355

33102 103993

Table 2

Reason for continuing search

has prime factor
has prime factor
has prime factor
has prime factor
has prime factor
has prime factor
has prime factor
has prime factor
has prime factor

VVVVVVVVYV

Since 103993 > 45°, we now terminate this process and carry
forward to the next step

P, 106, Qv-y

Py 13, Q=

(=" 1.

Now, following Step 2 of the algorithm:

[452 — 333

k. = 355

J113 + 106 = 4 X 113 + 106

S, =

L452 — 333
355

J355 + 333 = 4 X 355 + 333

We obtain and carry forward
R, = 113, S, = 355,
R, = 558, S, = 1753.
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Now, carrying out Step 3 of the algorithm, the first acceptable pair
(R., 8,) for positive r is found to be (Rs,, Ss.), namely (375, 1178),
giving the best upper approximation to 1/z of (15 X 25)/(31 X 38).
The process is illustrated in detail in the search for the best
lower approximation. We obtain successively the entries in Table 2.

Now

1200 =2 X2 X2X3X5
377 = 13 X 29.

By taking ¢ = 2, we can express R_,,/S_ a8

240 15 X 16,
754~ 26 X 29°

this is the best lower approximation to 1/x.
Then, satisfying the given conditions, we have that the best
possible approximations to

1/x =~ 0.3183099

are

15 X 16
26 X 29

~ (0.3183024 (lower)

and

15 X 25

31 % 38 ~ (0.3183362 (upper).

It is clear that the best lower approximation is, in this case,
the better of the two.
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