This paper compares factors governing the implementation of the
IBSYS/IBJOB operating systems for the 7090/94 and 7040/44 processing
systems.

Operation of the 7040/44 system’s monitors and the means of com-
munication between them are described.

Familiarity with the content of the previous five papers of this series*
is assumed, though for the most part, the paper can be read inde-
pendently.

Design of an integrated programming
and operating system

Part VI: Implementation on the 7040/44 data
processing system

by B. White and J. Trimble

Following the decision to produce 1Bsys/iByoB for the 7090/94,
it was decided to implement a similar system for the 7040/44.
The transfer of a system of the size and complexity of 1BsYs/1BJOB
to another machine required a re-evaluation of all parts of the
system and considerable new design work. Although generally
the 7040/44 Operating System is externally compatible with the
7090/94 IBSYS/IBJOB system, there are significant differences in
the internal structure. This paper describes the 7040/44 Operating
System as well as the differences between this system and the
7000/94 IBSYS/IBJOB system.

The first step in planning the 7040/44 Operating System was
a survey of the 7090/94 system to determine what elements could
be copied directly. It became evident almost immediately that
very little of the 7090/94 system could be used without change.
In addition to obvious differences in hardware, there were other
important considerations not common to both machines. At
this point, a number of basic decisions concerning compatibility
goals were made. It was decided that compatibility from the
view of the application programmer (in the use of FORTRAN,
coBoL, MAP, and sorT) was vital. Compatibility from the view

* Parts I through V have been published in the IBM Systems Journal as

follows: Parts I and II in Volume 2, June 1963; Parts III, IV, and V in Volume
2, September—December 1963.

IBM SYSTEMS JOURNAL * VOL. 3 * NO. 1 * 1964

historical
considerations

16 and 32K
memories

of the system programmer (in the use of operating system control
cards’) should not be arbitrarily different. However, internal
compatibility was deemed impracticable. Although initial plans
called for 10cs compatibility at the buffering system level, later
developments led to an alternative approach. All incompatibilities
introduced were due either to the different 7040/44 environment
or to advances in programming technology.

System differences

The designers of 7090/94 1BsYs/iBJoB had to contend with a
number of historical considerations. Many 7090/94 users had
progressed from the 704 to the 709 and then to the 7090 or the 7094.
These users had an investment in many systems: FORTRAN 1I,
FaP, Commercial Translator, etc. The implementation of these
systems under a common monitor, the 1Bsys basic monitor, had
to be accomplished without significantly changing their operating
characteristics. Thus, the design of the 1Bsys monitor, and later
the design of the 1BJOB monitor, were significantly influenced.
The 1BsYS monitor was forced to play a minimal role, whereas the
1BJoB monitor had to assume functions that otherwise could have
been performed at the 1BsYs level.

The programming support for the 7040/44 did not include
these earlier systems. It was therefore feasible and desirable
that the 7040/44 1BSYS monitor assume more control of the operation
of subsystems, with the imposition of additional standards.
All 7040/44 subsystem components depend upon 1Bsys for inter-
system communication, all use 7040/24 10Cs, all are assembled
by 1BMAP, all are maintained by the 1BEDT system, all accept
input and produce output in a standard peripheral format, and
all are capable of operating within a fully labeled system. These
standards, though they make possible a greatly simplified system
and one which is more fully integrated, do not prevent expansion
of the system to include new processors.

The factor which had the most widespread effect on the design
of the 7040/44 system was the requirement that it operate within
16K of memory. The 7090/94 1BJOB system as originally distributed
required approximately 9000 locations for supervisory and 1ocs
subroutines during subsystem execution. In a 32K system, this
allows 23,000 locations per subsystem phase. Transferred to a
16K 7040/44, this structure would allow only 7000 locations per
subsystem phase, with curtailed 1BIJOB facilities, impaired effi-
ciency, and unreasonably small processor tables. Instead, four
changes were incorporated to make more space available for
subsystem phases.

First, the input/output editors were written as relocatable
subroutines and placed in the relocatable subroutine library. In
this way, the input editor is included in only those subsystem
phases which require records from the system dnput unit, the
output editor is included in only those subsystem phases which
write on the system output unit, and the punch editor is included

B. WHITE AND J. TRIMBLE

only in those subsystem phases which use the system punch unit.

Second, in a similar manner, the file control blocks for the
system 1/0 units were placed in the relocatable subroutine library;
hence they are included, with their buffers, only in those sub-
system phases which require them.

Third, a post execution routine (a housekeeping routine which
assures proper return to the monitors) was written as a relocatable
subroutine and placed in the relocatable subroutine library for
inclusion in object programs. It is not included in the compilers,
assembler, or loader and is the only part of the 1BJOB monitor in
memory during execution of object programs.

Fourth, a small set of nucleus control subroutines (used by
all subsystems) was developed that can locate and load subsystem
phases from the system library. This set of control subroutines is
capable of operating with abbreviated eontrol information over
a single subsystem. In any situation where control must be
transferred outside the current subsystem, the control subroutines
locate and load the 1BsYS monitor and return control to it.

With these four changes, the amount of storage required
for permanent subroutines was reduced to approximately 5000
locations, leaving 11,000 locations available for subsystem phases.

The 11,000 locations of storage were considered sufficient
for implementation of the subsystems; however, considerable
redesign of each of the subsystems was necessary. In general,
each subsystem component required more phages than its 7090/94
counterpart, and in many instances information handled on the
7090/94 in internal tables required external file handling on the
7040/44.

In addition, each subsystem had to be planned for effective
usage of additional memory if available. For example, 1BMaP
symbol and macro tables are automatically increased, and 18LDR
processes files internally instead of externally when run on a
32K machine.

The 8-microsecond memory cycle of the 7040, as contrasted with
the 2.18-microsecond cycle of the 7090, also posed a critical prob-
lem. To compensate for this, the 7040/44 compilers went a step
further than their 7090/94 counterparts in reducing the amount
of character manipulation performed internally, Whereas in the
7090/94 system the interface between the compilers (FORTRAN and
coBoL) and IBMAP is in the form of BcD text, the equivalent
interface on the 7040/44 system is in the form of internal binary
records and prepared tables. This required two first phases for
the 7040/44 1BMAP, one for MAP language inputs, the other for the com-
pilers’ outputs. 1BMAP processes after the first phase are the
same for both input types.

The decision to change the compiler-assembly program inter-
face affected only internal processing; however, another decision,
which was primarily a result of the speed differences of the
machines, did have direct effect on the users. The original plan
to implement the 7090/94 buffering system on the 7040/44 was

IMPLEMENTATION OF THE SYSTEM ON THE 7040/44

cycle time

multiple
1/0 devices

memory protect,
storage clock

instructions
and channel
commands

abandoned. A minimum of 300 cycles was required for each
entry to the generalized read-write routines of the 7090/94 buffering
system. Implementation of the same buffering system on the
7040/44 would have required approximately the same number of
cycles per entry, and hence significantly more time, particularly
on the 7040. Timing studies revealed that under these conditions,
input/output on the 7040 would become process-limited in the
buffering system at an unreasonably low blocking factor. An
alternate buffering system, oriented toward processing logical
records (commonly known as GET-PUT logic) was developed
for the 7040/44. It is possible with this buffering system to process
a logical record in approximately 60 cycles.

Another factor which heavily influenced the redesign of 1ocs
was the requirement that the system support a multiplicity of
input/output devices. This was known at the beginning of the
7040/44 project, whereas additional devices were attached to
the 7090/94 after implementation of an 10cs designed only for
card/tape. For this reason, it was possible to make the 10cs for
the 7040/44 device independent for all sequential files. An inter-
mediate level of 10cs was created to handle all problems of device
type. All of the higher levels of 10cs (the file labeling and label
checking procedures, and the buffering system) operate through
this intermediate level and are therefore unconcerned with the
type of device used. Accordingly, all programs (either user pro-
grams or system programs) that make use of 1008 for operations
on sequential files are device independent. The 7040/44 10CS
currently supports multiple card equipment, an on-line 1BM 1401
data processing system, 1301 disk storage units, 7320 drum units,
and 729/7330 tapes. 1/0 operations on nonsequential files are
supported through standard 1ocs calling sequences. The design
of 10cs is such that new devices can be added with minimum
change to the intermediate level of 10cs and without change
to any other system part.

The 7040/44 programming system includes support of two
hardware features that did not have to be considered by 7090/94
programming: memory protect and a storage clock. Support of
the storage clock affected only the design of the monitors. The
memory protect feature, however, required serious consideration
in the design of 10cs and the monitors, and imposed conventions
on all subsystems.

A number of instruction set and channel command differences
exist between the 7040/44 and the 7090/94. The channel command
differences were absorbed by the redesign of 10cs and the format-
ting of the system library. The lack of a convert instruction,
though counteracted somewhat by 7040/44 character handling
instructions, made infeasible the use of many 7090/94 scanning
techniques. The lack of sense indicators, the existence of the
transmit instruction, and the existence of the transfer and store
location counter instruction led to other differences in coding
techniques.

B. WHITE AND J. TRIMBLE

Implementation of the 7040/44 Operating System was begun
considerably after the start of the 7090/94 system design. This
“time lag” was both advantageous and disadvantageous to the
7040/44 system. On the one hand, many design problems had
been solved by the 7090/94 planners before the 7040/44 work had
begun. Also, problems common to both systems were uncovered
during the extensive testing of the 7090/94 system. On the other
hand, maintaining compatibility with a system undergoing change
was a difficult task for the 7040/44 programmers. In addition,
portions of 7090/94 coding that might have been copied, for the
most part were not yet debugged when they were needed by the
7040/44 programmers.

Another advantage was the opportunity to view customer
reaction to the initial version of the 7090/94 system. For example,
the need for better job definition and for an improved method
of symbolic input/output channel and unit assignment was made
apparent. It was possible in the 7040/44 system to satisfy the first
of these requirements immediately. The nature of the 7040/44
input/output unit assignment procedure made possible the use
of the system without symbolic channel assignment abilities
until an improved channel assignment scheme could be defined.

Another system difference appears in the 7040/44 SORT program.
A new internal sort technique, which increases the probability
of creating long strings, had been developed. The advantages
offered by this new technique, coupled with the ease of moving
records via the transmit instruction, and the lack of scatter-
gather input/output channel commands made desirable a change
from 7090 sorT techniques.

Organization and operation

The remainder of the paper desecribes the general organization
and operation of the 7040/44 Operating System centering around
the novel organization of monitors and special facilities.

We start with a description of the system library format
since it is so closely associated with the operations of the various
control routines. The system library is composed of phases (abso-
lute core storage loads), each of which consists of a series of
physieal records (blocks).

Figure 1 illustrates the format of a program phase in the
system library. The first word of the first block contains the name
of the phase (NAME). This word is checked whenever a phase
is requested to ensure that no mispositioning of the library unit
has occurred. The blocks constituting a phase are chained to-
gether using the last word of each block. In every block except
the last, this chain word is signed positive and contains the load
address (LAk) and the length (LNk) of the following block (the
kth). In the last block, this word is negative and contains the
address of the first instruction to be executed in the phase (EP).
Note particularly that the load address and length of the first
block are not present in the records.

IMPLEMENTATION OF THE SYSTEM ON THE 7040/44

later
design

Figure 1 System library
phase format

BCI 1.NAME

PZE LA2, ,LN2

PZE LA3,,LN3
.

—

PZE LAn, ,LNn

table of
contents

combined
monitor

system
monitor

nucleus

84

The table of contents consists of a three-word entry for each
phase of every system component that has been edited into the
system library. These entries are placed in the table in an order
which reflects the usual flow of control from phase to phase.
For a particular component, some phases may also be used by
other components, e.g., the phase of map which is used by both
the ForRTRAN Compiler and the cosor Compiler. Such phases
have multiple entries in the table.

Each three-word entry of the table of contents contains the
name of the phase, the load address and length of the first block,
a code number which indicates the appropriate library or utility
unit, and the physical record number of the first block of the
phase. Given this information and knowing the current position
of the unit involved, any phase in the system library or on a
utility unit is readily found.

In addition to the phase entries described above, the table
of contents also contains an ¢ndex. The index delimits the table
of contents entries for each component in the system. An index
entry is made up of two words. The first word contains the name
of the component (such as 1BMAP, IBLDR, ete.). The second
word points to the table of contents entry for the first phase of
the component and also indicates the total number of associated
entries.

The table of contents and the index are updated automatically
by the system library editor whenever an edit of the system
library is performed. They are placed in the system library as a
separate phase (1BToC) so that they can be loaded either with
the system editor or with the subsystem monitors. In order to
facilitate locating 1BTOC, it is always placed at a fixed position
in the system library.

In the 7040/44 Operating System, the supervisor (corresponding
to 1BSUP in the 7090/94 system) and all subsystem monitors
(except the soRT monitor) are contained in a single phase® and
are referred to as the combined monitor. The table of contents
(1BToc) is loaded whenever the combined monitor phase is loaded.
By combining the monitors, three things are accomplished:

e Communication between monitors is facilitated.

s System speed is improved.

e Use of common subroutines for similar monitor operations
is made possible. ‘ ‘

The system monitor in the 7040/44 Operating System is the
counterpart of the 1BsYs basic mondior in the 7090/94 system.
It consists of two parts, the nucleus (1BNUC) and the supervisor
(iBsur). The nucleus contains routines of general use to sub-
systems, and data and table areas necessary for system continuity.
The supervisor processes system monitor control cards and is
responsible for system continuity. ‘

The nucleus contains the following functional sections:

B. WHITE AND J. TRIMBLE

Words allocated for machine use.

System transfer points.
System data areas.
Control blocks.

¢ Nucleus routines.

¢ Lower levels of 10cs.

Table 1 shows the approximate core storage allocation for the
nucleus and higher levels of 10cs.

Two subroutines, the system lbrary loader and the system
return routtne, perform the main functions of the nucleus. They
operate upon information from two tables, the abbreviated table
of contents and the recognizable control card table, and from a
work area, the system save area.

Table 1

The nucleus and higher levels of 10CS

Section

Approzimale size

IBNUC
Machine Functions
Pointers and Data Words
*Symbolic Units Table
*Unit Control Blocks
*System Control Blocks
(Unit record or magnetic tape)
*System Control Blocks (1301)
Nucleus Routines
Customer Engineer Monitor

IOEX
Basic Functions
*Basic Functions Channel Tables
#1301 Functions
*1301 Functions Channel Tables

Interrupt Scheduler
*Interrupt Scheduler Channel Tables

Memory Protect

100P
Header
Magnetic Tape
*1301
*Unit Record
Common

IOLS
Reel Processing
Labels
System

10BS

93
130
1 word/device
9 words/device
4 words/device

8 words/unit
600
50

510
14 words/channel
140
4 words/channel
1.5 (approx) words/module
150
1 word/channel
11 words/level
40

*Variable, based on configuration.

IMPLEMENTATION OF THE SYSTEM ON THE 7040/44

85

The abbreviated table of contents is a nucleus table large
enough to contain all of the table of contents entries for a single
subsystem. Each subsystem monitor, utilizing the table of con-
tents, initializes the abbreviated table of contents for the sub-
system whenever it is entered.

The system library loader (not 1BLpR) loads only absolute
programs (the system component phases). It maintains phase-to-
phase continuity of the system. A calling sequence to the loader
determines which of the following functions are to be performed.

¢ DPosition the 1/0 device specified in the abbreviated table
of contents, load a phase from the device, and verify the
accuracy of the positioning.
Initiate positioning of the device to the next phase indicated
in the abbreviated table of contents.
Transfer control to the phase loaded.

The system library maintains a pointer to the appropriate
entry in the abbreviated table of contents and normally progresses
through the table sequentially. The pointer, however, can be
adjusted by a subsystem phase to permit execution of phases in
any sequence. The system library loader uses the intermediate
level of 10cs for all loading and positioning of the library.

The recognizable control card table contains a list of control
cards that can be processed within a subsystem without returning
to the monitor. This table, like the abbreviated table of contents,
is made up by a subsystem monitor when it is entered. Each
entry in the recognizable control card table contains the name of
a control card and the location in the abbreviated table of contents
of the first phase for the subsystem component associated with
that control eard.

The system return routine is the routine to which all sub-
system monitors and their components return control when they
desire to transfer control to the next appropriate component.
It maintains component-to-component continuity of the system.
The system return routine utilizes information in the system
save area, which normally contains the information from a control
card that has been read ahead by the program previously in
control. The system return routine compares the card image in
the system save area to the list of card names in the recognizable
control card table. If the card name is recognized, the system
return routine uses the system library loader to load the required
subsystem component and to pass control to it. If the next card
has not been saved or if it is not in the table, the system return
routine causes the system library loader to load the supervisor
and to return control to it.

The system library loader, the system return routine, the
abbreviated table of contents, the recognizable control eard
table and the system save area, taken together, constitute a
miniature monitor capable of operating over a segment of the
library without any intervening help from the supervisor or the

B. WHITE AND J, TRIMBLE

subsystem monitors. Hence, it is possible within the 7040/44
Operating System for a subsystem to move freely from component
to component without requiring the recall of the supervisor or
the subsystem monitor between components. This feature has
resulted in an appreciable time saving in the operation of the
subsystems. The importance of this time saving can readily be
observed in a FORTRAN application requiring the compilation of
many subprograms.

In addition to the system library loader and the system return
routine, five other subroutines exist in the nucleus. These are the
interrupt routine, the interrupt test, the change communication
region routine, the restore portion of the restart routine, and the
bootstrap to the dump routine. The interrupt routine and the
interrupt test are used to process interrupt signals initiated by the
machine operator. The change communication region routine is
used to modify the contents of protected memory. It is used when-
ever cells in the nucleus must be changed; for example, when a
control card must be stored in the system save area. The restart
routine is used to reinitialize core storage and to pick up processing
at the checkpoint described in the calling sequence. The dump
routine is used to take a system dump when an unusual condition
occurs during processing. Both the restart routine and the dump
routine have their main program parts in the system library.

In addition to these system routines, it is possible to include
specialized routines in the nucleus, e.g., an installation’s account-
ing routine.

The nucleus also contains hardware trap cells, a table of
system transfer points, system data areas, the symbolic units
table, the unit control blocks, and the system control blocks. The
hardware trap cells are initialized in such a way that, upon trap-
ping, control is transferred to the appropriate trap supervisor
routine. The table of system transfer points contains transfer
instructions to entry points in the nucleus routines and the rocs
routines. The system data areas contain constant information
describing the system as well as variable data set by subsystem
components for communication to other subsystem components.
The symbolic units table, the unit control blocks, and the system
control blocks provide information about the organization and
availability of input/output units. These tables are deseribed
more fully in the discussion of the 10cs routines.

The supervisor consists of a series of routines which are part
of the combined monitor phase. Its principal functions are to
dynamically maintain the configuration status description in the
nucleus, to keep track of which subsystem is currently in control,
and to sereen control cards to ensure that no subsystem monitor
receives an inappropriate control card. The supervisor also in-
cludes several subroutines of general utility to the combined
monitors.

Maintenance of the system input/output configuration
description in the nucleus is accomplished by a set of subroutines

IMPLEMENTATION OF THE SYSTEM ON THE 7040/44

supervisor

in the supervisor. There is a subroutine for each of the following
control cards:

e S$ATTACH, which specifies that a certain unit be made available
for use.
$DETACH, which specifies that a certain unit be made unavaila-~
ble for use.
$SWITCH, which specifies that two units be interchanged.
$CLOSE, which specifies that certain end-of-file functions be
carried out.
$RESTORE, which specifies that the standard installation
1/0 configuration be reestablished.
$UNITS, which specifies that a description of the current
1/0 configuration be typed out.

Just as the system contains a table of contents for the entire
system, the supervisor includes a master table of valid control
cards for the system. This table contains information indicating
the subsystem for which each control card is appropriate and the
correct subsystem entry point for the processing of each card.
Whenever a monitor, either the supervisor or a subsystem monitor,
wishes to read a control card, it utilizes a general purpose control
card read routine in the supervisor. This routine reads a control
card, finds the appropriate entry in the master table of valid
control cards, compares the subsystem indicated in that entry
to a switch which indicates the subsystem in control, then either
returns control to the appropriate entry point or initiates appro-
priate error-correction procedures. Generalized subroutines are
available in the supervisor to assist any of the combined monitors
in the creation of the abbreviated table of contents and the table

of recognizable control cards, to check for uniqueness of utility
units, to type control cards, to scan control cards, and to set the
subsystem control switch.

The supervisor also contains routines that process control
cards not associated with any particular subsystem. Included
are the following:

¢ A routine that types the message from a $* comments card.
e A routine to acknowledge and process the operator’s interrupt
procedure—to change unit assignments or o start a special job.
A routine to link to the installation accounting routine upon
recognizing a $ID card.
A routine to pause or suspend processing upon recognizing
a $PAUSE card.
Routines to process the $TIME card and to control the interval
timer associated with the storage clock.
Routines to initiate or suspend the typing of control cards
upon the recognition of a $LIST or a $UNLIST card.
A routine to terminate an interrupt job or the series of jobs
on the system input unit after recognizing a $STOP card.

To facilitate convenient access to production programs that

. WHITE AND J, TRIMBLE

are in the system library, the supervisor recognizes a $EXECUTE
card.” When a $EXECUTE card is processed, the supervisor
constructs the abbreviated table of contents for the program
named and passes control to the program through the system
library loader.

To facilitate job definition, the supervisor recognizes a $JOB
card as initiating a series of related applications. Upon detecting
this ecard, the supervisor performs all housekeeping necessary
to initialize a new job. Job skipping facilities are provided as
well as automatic skipping to the next job upon the occurrence
of a terminal error within a series of applications.

The processor monitor corresponds to the 1BJoB monitor in
the 7090/94 system. Due to the unique functions of the nucleus
and the increased functions of the system monitor, the processor
monitor has fewer functions to perform than those of the 7090/94
1BJoB monitor. The processor monitor is part of the combined
monitor phase. It is not in memory during execution of its com-
ponents or during execution of an object program. It more nearly
resembles a housekeeping subroutine than a monitor with full
system control properties.

The supervisor transfers control to the processor monitor
when a $IBJOB card is read. The processor monitor has the fol-
lowing functions:

o It decodes the $IBJOB card information and saves it.

o It sets up the input/output utility units for its components
and ensures availability of the units.
It creates the abbreviated table of contents and the table of
recognizable control cards using the $IBJOB card parameters.
It processes relocatable loader preprocessor cards, such as
$FILE and $LABEL, preparing the information for the loader
and saving it on a utility unit.
Upon encountering the first component control card, such
as a $IBFTC card, it places the card information in the system
save area and transfers to the system return routine. It should
be noted that this is the same procedure, utilizing the same
nucleus subroutines, as that performed by a ecomponent upon
encountering a $control card following its input.
It initiates and terminates alternate-input-unit and alternate-
output-unit processing for processor components upon en-
countering $IEDIT or $OEDIT cards.

Figure 2 indicates schematically the flow of control during a
processor application. Note in the illustrations that all components
and the processor monitor give up control to the system return
routine which may return directly to a component, to the super-
visor, or to the processor monitor through the supervisor. Which
return is made depends upon the contents of the system save area.

The system editor is used to maintain the system library of the
7040/44 Operating System. With the proper control cards, the
user can add, delete, replace, or modify any phase of any absolute

IMPLEMENTATION OF THE SYSTEM ON THE 7040/44

processor

system
editor

Figure 2 Control paths for a processor application

SYSTEM SYSTEM
SUPERVISOR F’a%%ﬁ%%" RETURN LIBRARY
ROUTINE LOADER

b I : L

FORTRAN MACRO

COBOL
ASSEMBLY
COMPILER COMPILER PROGRAM

l }

OBJECT
PROGRAM

l

program on the system library or add, replace, or delete any
subroutine on the relocatable subroutine library (1BLiB). The
system editor itself is incorporated in the system library as a
monitored subsystem that is called via the system monitor.

The system editor monitor is part of the combined monitor
phase. It is entered directly from the system monitor when a
$IBEDT card is encountered. The system editor monitor processes
the edit control cards and sets up the edit run in much the same
manner as the processor monitor sets up a processor application
run. The system editor monitor provides an example of the
flexibility and integrated nature of the 7040/44 Operating System.
It is possible in a single run to edit onto the system library a
component written in any of the source languages which the
processor monitor supports or any language for which a processor
has been added by an installation. The system editor monitor,
upon encountering a $IBJOB card, for example, gives control
to the processor monitor, which remains in control until the
processor operation is complete and then returns control to the
system editor monitor. The operation of the processor under
system editor monitor control is only slightly different from its
operation in a normal application. The relocatable loader, operat-
ing under the processor monitor, uses the same format in preparing
an absolute program for the system library as that used when an
object program overflows memory. The relocatable loader, when
loading a ‘‘large’” object program, dumps the object program on
a utility unit and lets the system library loader complete the
loading function. Figure 3 indicates the flow of control during an
edit run which makes use of the processor.

The system editor can accept the following types of input:

LOADER

MAP, FORTRAN, Or COBOL source language coding.
oct instruction cards.

Absolute column binary cards.

Absolute code in system library format.

B, WHITE AND J. TRIMBLE

Whenever an edit is performed, the system editor inserts, deletes,
replaces, or reorders the specified programs on the system library
and creates a new master table of contents to reflect the changes.
The system editor also maintains the relocatable subroutine
library used by the relocatable loader.

The sorT monitor is the only subsystem monitor not included
in the combined monitor phase. A small routine, entered by the
supervisor upon encountering a $IBSRT card, is included with
the combined monitor phase. This routine passes control to the
sorT monitor. The procedures used in transfer of control between
its components and return of control to the supervisor are identical
to those deseribed previously for the other subsystems.

The 7040/44 Input/Output Control System has four logical
parts:

s Input/Output Executor, 10EX.

& Input/Output Operations, 100P,

&~ Input/Output Labeling System, 1ows.
o Input/Output Buffering System, 10Bs.

10EX processes all data channel traps and schedules the use
of data channels for input/output operations. It also services
central processing unit traps and schedules the use of the central
processing unit for programs of various priorities.

100P performs all reading, writing, and non-data-transmitting
operations required by r1ocs. 1oop handles all peculiarities of
device type. It consists of two parts: toor1 which contains the
calling sequence interpretation routine, the unit synchronizer
routine, and the select and error recovery routines for 729/7330
Magnetic Tape units, 1301 Disk Storage, and 7320 Drum Storage;
1o0r2 which contains the select and error recovery routines for
the 1402 Card Read Punch, the 1403 Printer, and the 1622 Card
Read Punch.

1oLs performs all processing necessary to verify and create
1BM standard labels and performs necessary reel handling and
unit switching functions. It uses 100P to read and write labels.

10Bs processes logical records and performs the blocking,

Figure 3 Use of processor by the system editor

SYSTEM EDITOR PHASE 1
MONITOR MONITOR

T
I

3

PROCESSOR
MONITOR

PHASE 2

|
|
|
i
|
|
|
|
!
|
|
|

1

FORTRAN COBOL SUBROUTINE
COMPILER COMPILER * LOADER LIBRARY

IMPLEMENTATION OF THE SYSTEM ON THE 7040/44

91

1/0 configuration

definition

92

deblocking, and buffer switching functions of a typical GET-PUT
buffering system. This buffering system is capable of handling
fixed or variable length records. It also provides the user with
an automatic means of preparing or aceepting variable length,
mixed mode records in the 7040/44 standard peripheral format.
10Bs uses 100P to perform all required reading and writing of
physical records. It uses 1orLs for all reel handling and label
processing.

This structure of 1ocs makes possible three distinet approaches
to input/output programming. The programmer may use IOBS
(requires the presence of 10EX, 100P, and at least part of 10Ls)
or 100P (requires the presence of I0EX; IOLS is optional) or I0EX
(10Ls is optional—but if used, requires 100P). Figure 4 illustrates
the use of 10cs by the various system components and its optional
use by an object program.

Every input/output device attached to the 7040/44 must be
defined in the nucleus for 10cs and the Operating System. Three
tables form the definition of an installation configuration.

¢ Symbolic units table.
& Unit control blocks.
s System control blocks.

These tables, and 10cs itself, are hand tailored through assembly
to represent the particular installation.

The symbolic units table contains a one-word entry for each
logical unit to be referenced. For magnetic tape, there is a one-to-
one correspondence between logical units and physical units

Figure 4 7040/44 operating system use of core storage

NUCLEUS

100P1 (I0EX)

T
| OPTIONALLY
100P2 | st

OPTIONALLY
IoLs USED

1
|
{
t
|
I

SYSTEM
DUMP
PHASES

OPTIONALLY
SORT USED
MONITOR

SORT COMBINED | FORTRAN COBOL LOADER OBJECT
PHASES | MONITORS PHASES PHASES PHASES PROGRAM

B. WHITE AND J. TRIMBLE

(drives). However, for a 1301 disk, many logical units may be
defined within the same physical unit (module). Each logical
unit has a name, either a system unit name (e.g., S.8IN, 8.800U)
or a utility unit name (8.8Ugo, 8.8U01, ... , S.8U99), and each
such name is associated with a particular entry in the symbolic
units table.

Each entry in the symbolic units table contains two pointers,
one indicating a particular unit control block and one indicating
a particular system control block. For each symbolic units table
entry (and thus for each logical unit) there is a unique system
control block. For each physical unit there is a unique unit control
block.

All references to units in the calling sequences to 100P (or
higher levels of 10cs) are in the form of system unit or utility
unit names. From the associated symbolic unit table entries,
100P can determine the system control block and unit control
block to be used. Since these control blocks contain all necessary
device-dependent information, 100P can then convert the device-
independent calling sequence into the correct sequence of opera-
tions. The particular control blocks associated with a given
symbolic units table entry can be changed by the use of the
$ATTACH, $DETACH and $SWITCH control cards.

The design of the 7040/44 Operating System is flexible and
adaptable. A number of features have been implemented, and
others, which go beyond the required functions of the initially
released system, are in the planning stage.

For example, an object program may use the system dump
facilities. The system dump program is normally used by system
components when terminal errors occur. It can produce selective
memory dumps, error messages, and formatted dumps of the
1/0 configuration tables. It may, upon completion of its dump
function, return control to some specified return point or give
control to the supervisor for initiation of the next job. An object
program involved in certain standard error situations (e.g.,
violation of protected memory, parity errors) automatically uses
the system dump procedures. However, an object program may
use these facilities or add facilities for any type of detected error
situation. This means that the user program need not be concerned
with treating standard errors nor with transition procedures to
the next job when such errors occur. Also, since the particular
action taken for a given error condition is contained in the dump
program itself and is easily accessible for change, an installation
can design its own standard error procedures.

The 7090/94 1BsYs/1BJOB system includes an overlay feature
which facilitates segmentation of an object program. The 7090/94
overlay method requires a highly sophisticated algorithm in the
relocatable loader and was not planned to be included in the
initial 7040/44 system. It was clear, however, that segmentation
facilities were seriously needed by the 7040/44 users. A detailed
study of some basic design features of the 7040/44 Operating System

IMPLEMENTATION OF THE SYSTEM ON THE 7040/44

additional
features

revealed a simple way of obtaining the segmentation features
required. The resulting scheme, less sophisticated than the 7090/94
overlay methods, is named cHAIN. It was easily implemented
due to the ability of the relocatable loader to turn out absolute
core storage loads in the format of the system library. The various
segments of the object program are simply spilled onto a utility
unit in system library format, an abbreviated table of contents
is created to represent the series of segments, and a cHAIN sub-
routine is made up which controls the loading of the various
segments (through the use of the system library loader). The
implementation of cHAIN was accomplished in approximately
five man-months, including testing, and was released with the
system. It was completed early enough for use by nearly all of
the subsystems.

It was mentioned previously that the entire 7040/44 system
is assembled by 1BmMaP. All system parts, except nucleus and
10cs, are relocatable. When a user assembles nucleus and 1ocs
for his particular configuration, he re-edits the entire system,
and all components are given new origins accordingly. This means
that no two installations are likely to have exactly the same
system. It is therefore impossible to release absolute changes
during maintenanece of the system. The 7040/44 Operating System
is completely maintained in symbolic form. The entire system
may be reassembled at any time, and a user is assured of having
up-to-date 1BMAP symbolic input. User changes to the system
to further adapt it to his needs are greatly facilitated. Symbolic
update programs are provided to assist the user in maintaining
the system and his own programs.

The operation and maintenance of the 7040/44 Operating
System (16K/32K) is fully described in the literature.*®°® A

fuller discussion of many of the ideas touched upon in this paper
may be found there.

CITED REFERENCES AND FOOTNOTES

1. Control cards contain the information necessary to ensure an even flow
of processing from application to application. Reference 5 describes the
many types of control cards that are usable in the 7040/44 Operating
System. All control cards have a $ symbol in the first column.

. The combined monitor phase is not in memory during execution of sub-
system components.

. In the 7040/44 Operating System, a $EXECUTE card is used for produc-
tion programs which have been edited into the system library. It is not
used to pass control to subsystem monitors. Subsystem monitor control
cards contain the subsystem name following the $ symbol.

. IBM 7040/7044 Operating System (16/32K): Programmer’s Guide, Systems
Reference Library C28-6318, International Business Machines Corporation,
1963.

. IBM 7040/7044 Operating System (16/32K): Operator’s Guide, Systems
Reference Library C28-6338, International Business Machines Corporation,
1963.

. IBM 7040/7044 Operaling System (16/32K): Systems Programmer’s Guide,
Systems Reference Library (C28-6339, International Business Machines
Corporation, 1963.

. WHITE AND J. TRIMBLE

