This paper* discusses the design of an experimental character-process-
ing computer for the interpretive execution of higher-level language
Programs.

The design specifies a 100-nsec instruction cycle for the micro-
program instructions stored in a read-only memory, a fast memory
for intermediate ‘“‘scratch pad’® computation, and input/outpul
through a conventional computer coupled to a 2-usec main memory.
The object program to be interpreted is stored in the main memory.

As a part of the research, the design was stmulated on standard
equipment.

A character computer
for high-level language interpretation

higher-level
language

by J. E. Meggitt

Interest in fast character-processing computers that are con-
trolled by instructions in read-only memories is twofold:

e By using a design that permits the economical “writing” of
microprograms into read-only memory—as, for example, by
means of “pluggable” units—the apparent computer fune-
tion can be modified to suit particular applications.

The computer organization appears very attractive for higher-
level language interpretation.

The design discussed here and shown schematically in Figure 1
was motivated by experimental interest in the problems of build-
ing a machine that interprets a high-level language.

A high-level language with sufficiently general properties
was chosen to ensure that the resultant design would be suitable
for other high-level languages that might evolve. This language’
is FORTRAN-like, but with many extensions relative to (1) the
variety of operators included, and (2) the generality with which
arrays may be referenced through a concept of structured data.

* The research reported in this paper was sponsored in part by the Air
Force Cambridge Research Laboratories, Office of Aerospace Research, under
Contract AF19(628)-3257.

IBM SYSTEMS JOURNAL * VOL. 3 * NO. 1 * 1964

The notion of structured data can be explained by analogy
with the traditional organization of text in a book. Information
in a book is contained in a hierarchical structure, starting with
the book itself, broken down into chapters, sections, paragraphs,
sentences, words, and individual letters. Convenient reference
to an item in the book can be made by referring to the item’s
position in the hierarchy. It is also possible and convenient to
interpret literal reference to a particular part as reference to all
of its sub-parts. Data is stored according to structure and is
referred to by the high-level language in this manner. Conse-
quently, an operation described as “A+B” may denote the addi-
tion of many pairs of data quantities if A and B are data items
high in the hierarchy.

The original concept of microprogramming arose from the
observation that certain gates in a computer are open at each
instant of time, and that the control of the machine is speecified
by the sequence of signals sent to open the gates. The original
microprogrammed machines held, in a suitable read-only memory,
lists of gates to be opened at specified times, and they contained
a mechanism for accessing the lists in sequence. However, this
rather narrow concept broadened so that it now describes any
machine having a somewhat simpler internal computer which
executes interpretively the order code of the external machine.
Thus, most machines involve a certain degree of micropro-
gramming—as, for example, in executing multiplication by an
internal “program’ that controls a hardware adder.

A computer that “directly implements” a high-level language
must perform many complicated operations that are clearly
composite, i.e., composed of more elementary micro-operations.
Therefore, it seems to be advantageous to directly implement
a set of more restricted operations that represent the more compli-
cated operations. In this way, a microprogrammed machine
(according to the current definition) can be used for interpre-
tive execution of high-level language programs.

The complex high-level language chosen is expressed by an 8-bit
character set and conceived as machine independent. The ma-
chine word length is variable, and storage allocation is dynamic.
Thus it is not possible to specify useful basic word operations,
and it is necessary to process smaller basic units of data. Since
the largest high-level language units with hardware identity
are 8-bit characters, the value of an efficient character-processing
machine is evident.

A 2-usec conventional core memory is used to store high-
level language programs. It was found that, on the average,
about 50 basic character operations are required per core access,
the specific ratio being determined by the particular language.
Consequently, the character-processing machine must run as
fast as possible to keep the logic processing in step with the core
accessing. As a result, a simple character-processing machine
was specified with a speed of one instruction execution per 100

CHARACTER COMPUTER FOR HIGH-LEVEL LANGUAGE

design

considerations

Figure 1
of system

CONTROL LINES

Block diagram

CORE MEMORY

64K _WORDS
64 DATA BITS/WORD
#SEC CYCLE

64-BIT
DATA PATH

DATA REGISTER

64-BIT
DATA PATH

FAST MEMORY

128 CHARACTERS
8 BITS/CHARACTER
100 nSEC CYCLE
25 nSEC ACCESS

8-BIT
DATA PATH

ARITHMETIC AND
LOGICAL UNIT

8-BIT ADDER
8-BIT SHIFTER, ETC.

EXECUTION REGISTER

Y

50 nSEC ACCESS

READ-ONLY MEMORY

control
program
store

working
store

memory
addressing

70

nsec, the highest speed that currently seems possible.

It is clear that this high speed cannot be obtained if the
control program for the character machine is stored in core,
unless a complicated interleaved memory system is used. There-
fore it is proposed to use a read-only memory for holding the
instructions that constitute the control program. It is considered
possible to build a read-only memory of sufficient size (16,000
words of 17 bits each) with a 50-nsec access time and a 100-nsec
cycle time by using passive electrical networks. Such networks
have propagation times measured in nanoseconds. A common
arrangement involves a rectangular array of crossed drive and
sense lines. At certain chosen intersections, the lines are coupled
together by resistive, capacitive, or inductive coupling according
to the particular design.

It should be observed that a read-only memory is entirely
adequate for the present purpose, since the programs for inter-
preting the high-level language remain fixed. It is desirable that
the read-only memory have its information set up initially by an
automatic process which is controlled from punched cards or
magnetic tape. This arrangement would make it possible to “write”
into the memory an exact copy of a program that has been tested
by simulation on another computer. To allow a change of appli-
cation from time to time, it is also desirable that the read-only
memory information be changeable with only modest effort.

In addition to the control memory, the character machine
needs a fast read-write memory to store temporary results and
to act as a buffer between the relatively slow core memory and
the character machine. This fast ‘“‘scratch pad” may be small
but should have a 100-nsec cycle time with an access time of
25 or 30 nsec. For a reasonably efficient interpretive high-level
language program, a memory size of 128 8-bit characters would
be sufficient. It is considered possible to build a thin magnetic film
read-write memory to meet this specification. The actual memory
specified by the design is word-organized and arranged to contain
16 words of 64 bits each. In the normal mode of operation, the
addressing of a character causes the selection of one of the 16
words and of one of the eight characters within the selected word.
However, it is also possible to address entire words in order to
transfer them from the fast memory to the data register of the
core memory and vice versa. This operation allows the fast memory
to buffer the core memory. The core memory contains 72-bit
words, but only 64 of these bits are used for data, the other eight
being parity bits. Hence, the word lengths of the core memory
and of the fast memory match.

The core memory, the read-only memory, and the fast scratch-
pad memory are shown schematically in Figure 1. To complete
the design, it is necessary to determine some data flow paths and
to specify an instruction set. Since the machine discussed here is
a character processor, and since eight bits are sufficient to express
the character set, the data flow paths of the machine are generally

J. E. MEGGITT

eight bits wide. The instruction format is of the simple single-
address type, and the address field of each instruction is eight bits
wide, as discussed below.

The 128 characters of the fast memory can be addressed
directly by the 8-bit field of an instruction, leaving one bit for
future expansion. In many interpretive programs, however, it is
necessary to scan successive characters, which is made possible
by providing a set of index registers. In most cases, the scan is
made over not more than eight characters (one word), since re-
lated characters usually originate in words that have been trans-
ferred, one word at a time, from the core to the fast memory.
Accordingly, the length of the index register is three bits. For
convenience, however, the indexing adder is provided with carries
that carry into higher-order positions.

An examination of the interpretive programs proved that it
would be desirable to scan several strings of characters simul-
taneously. For example, it is useful to scan the instruction string,
two operand strings, and the resultant string at the same time.
Thus, seven index registers were provided.

In addition to an 8-bit address field, each instruction has a
3-bit tag field. Except in one or two special cases, the effective
address for an instruction consists of the specified address and the
contents of the specified 3-bit index register. Of course, when some
instructions use the address field to specify items other than ad-
dresses, the indexing logic is available.

The read-only memory contains 16,000 words for implementing
the high-level language. To reduce the amount of high-speed ad-
dress decoding and to specify read-only memory addresses by
8-bit fields, the read-only memory is physically arranged in 64
pages (extendable to 256 pages) of 256 words each. The 8-bit
word address is selected and decoded by instructions as they
oceur, but the page address is held in a 6-bit (or 8-bit) page register
whose contents are relatively static.

Thus, only the word bits of an instruction address must be
decoded at high speed. The page bits are, in general, already de-
coded. This arrangement makes it possible for an instruction to
describe branching within a page by specifying only eight bits.
Thus, the branch instruction can use the same address format as
other instructions.

This simple arrangement speeds up the instruction fetching
mechanism and saves instruction bits. Programs are written in
such a manner that branches to different pages of the read-only
memory occur infrequently. In general, each high-level operation
or suboperation is implemented on a separate page. Thus a
relatively cumbersome page changing mechanism does not make
the programs unduly inefficient. For page changing, a special 6-bit
register, the next-page register, is loaded before the branch in-
struction is encountered. The loading of this register sets a latch
which is tested on every branch instruction. If the latch is not
set, the branch instruction merely selects a new line on the cur-

CHARACTER COMPUTER FOR HIGH-LEVEL LANGUAGE

address
indexing

read-only
memory
addressing

core
memory
addressing

arithmetic and
logical unit

rent page. If the latch is set, the contents of the next-page register
are transferred to the page register, a new line is selected, and the
lateh is turned off. In this way, both a new page and a new line are
selected. Due to the additional register-to-register transfer and
the additional decoding, a branch instruction that changes pages
takes 300 nsec for its execution instead of the usual 100 nsec.

The index registers play an important role in indexing the
read-only memory as well as the fast memory. Thus these registers
may be used advantageously to modify the line part of branch
addresses, providing a means of branching in as many as eight
ways.

The core memory, a conventional 2-usec core, contains up to
65,000 words of eight information characters each. Since this
memory looks like a slow 1/0 deviee to the fast character machine,
conventional ways of controlling 1/0 devices may be used to control
the core memory. Thus the address of the word to be accessed is
first set up in the 16-bit memory address register. A read or write
instruction is then given, which starts the reading or writing cycle.
This action causes an autonomous data transfer between the
memory and its data register while the character machine pro-
ceeds to execute further instructions. During the transfer, the
data register is locked against further instructions, so that any
instruction that requests use of the data register immediately
stops the character machine until completion of the transfer.

The presence of this simple interlock makes it possible to have
core access instructions in the microprogram as close together as
desirable, without causing errors. However, it is better to antici-
pate core memory accesses and then space them appropriately to
avoid time loss due to waiting.

Instructions are provided that allow the contents of the core
memory data register to be transferred, eight characters at a
time, to one of the 16 word locations in the fast memory and vice
versa. This flow of information between the core memory and the
actual character machine is inhibited when the core memory is
busy.

All other logic is accomplished by an arithmetic and logical unit
that processes pairs of 8-bit characters. In general, one operand is
fed to the logical unit from the machine’s 8-bit accumulator, and
the other from either the address field of an instruction or the
fast memory. The result is returned to the accumulator.

A binary 8-bit adder contains a 1-bit carry store to hold the
high-order output carry. Instructions are provided to allow the
low-order input carry either to be forced or to come from the
carry store. When a subtract instruction is decoded, one of the
sets of inputs is 1’s complemented as it is fed to the adder. To
get a true subtraction, the low-order carry must be correctly
programmed.

Use of the carry store allows correct adding or subtracting of
strings of characters. The carry store, used also for comparing two
numbers, may be tested in a conditional branch instruction. In

J. E. MEGGITT

implementing the high-level language, the binary adder is used
mainly for housekeeping and address calculations.

1t is essential to work internally in decimal arithmetic because
the high-level language includes logical operations on decimal
digits, and the identity of the decimal digits must be preserved.

For ease of processing, a pair of decimal digits is packed into
an 8-bit character inside the character machine. Each digit is repre-
sented in a binary-coded excess-three form, which allows the binary
adder to work rather simply in a decimal mode. First, a binary
addition is performed, and the carries out of the low-order four
bits and the high-order four bits are inspected. The presence of a
carry to the left of a 4-bit block causes addition of a 3 to the
4-bit binary result, and the absence causes subtraction of a 3.
In this way, the decimal sum of two pairs of digits as well as the
correct output carry are generated. A low-order input carry can
be handled exactly as in the binary case.

The adding or subtracting of 3’s does not require adders but
merely logical functional changes, in a conditional way, on the
right and left four bits of the binary sum. The logic for this process
is trivial.

The mechanism for binary subtraction is employed to perform
decimal subtraction. Thus, when a decimal subtract instruction
is decoded, the 1’s complement of one of the operands is fed to the
adder and is operated in the decimal mode as above. This operation
produces the difference of two pairs of digits, since the 1’s comple-
ment is exactly the 99’s complement in the chosen representation.

The adder is used also to function as a logical unit. It can
generate the logical and as well as the logical or of corresponding
bits in two characters.

The arithmetic unit contains a shifter in which the contents
of the 8-bit accumulator may be shifted up to eight bit positions in
either direction. Attached to this shifter is a normalizing me-
chanism. It is possible to normalize a number in the acecumulator
by left-shifting or by right-shifting until either the most significant
or the least significant digit is a 1. The shift count for this operation
is placed into index register 7 where it is accumulated. A left
normalize causes the contents of index register 7 to be incremented
by the shift amount, and a right normalize causes the contents
to be decremented. In this way, index register 7 can be made to
contain the bit address of the first non-zero bit in the accumulator
and, by repeating the normalize operation & times, the bit address
of the kth non-zero bit.

Since there is no built-in multiplication, this facility is very
helpful for programming the multiplication of two strings. For
this purpose, a binary-coded character of the multiplier is placed
in the accumulator. Multiples of a multiplicand character are
stored in successive character locations of the fast memory
and are referenced by index register 7. Each successive normalize
operation causes index register 7 to point to the appropriate
character multiple that must be added to the partial sum.

CHARACTER COMPUTER FOR HIGH-LEVEL LANGUAGE

decimal
adder

logic and
shifting

The normalize facility is also useful for a high-level lan-
guage which uses a dynamic storage allocation scheme in which
maps of the core store are kept in a special part of the store, one
bit in the map representing one word. The normalize facility
allows seanning of the maps in a very simple way.

Instructions are held in the read-only memory, each instruction

instruction occupying 17 bits. It may seem strange that this number is not a

format multiple of 8. However, data and instructions, being held in
separate memories, are fairly independent, so that a match be-
tween them is not essential. Some ‘“‘immediate’ instructions cause
eight of the 17 bits to be used as data, and this amount of inter-
connection is sufficient.

The machine is organized as a single-address computer, and

Figure 2 Instruction format instructions have the format shown in Figure 2.
OPERATION Remoer ADDRESS In general, an address is generated by adding to the address
N bits the contents of the index register that is specified by the tag.
8IS | e H 2 | L8 H—| If the immediate bit is 0, the effective address is used as
e the address of a character in the fast read-write memory. If the
INDICATOR bit is set to 1, the indexed quantity is used as a literal. In an in-
struction such as an add or shift, this means that the literal
quantity is added or that the shift is by a literal amount, whereas
otherwise the add would be from the fast memory or the shift

by an amount held in the fast memory.

For a branch instruction, an immediate bit 1 causes use of the
indexed literal quantity as the ‘line” address of the read-only
memory to which the branch is made. On the other hand, if the
bit is set to 0, the line address is taken from an indexed location
in the fast memory, thus obtaining an indirect-branch instruction.
This instruction is essential since it is the means by which high-
level language instruction strings, which appear as sequences of
characters, are decoded.

The instructions are listed in Table 1. AC indicates an 8-bit

internal accumulator, X identifies an index register, CARRY means a

instruction 1-bit carry store, and C is a carry generated by the adder. Paren-

set theses denote “contents of,” and M denotes the contents of a fast
memory character location or, when appropriate, a literal; the
distinction is made in each instruction by means of the immediate
bit. M denotes the 1’s complement of M.

The character machine is not provided with any 1/0 instructions
as such, but instead receives its information from a conventional
computer which is coupled to the core memory. The core store of
the character machine may be accessed by the conventional
machine which has its own core memory as well as 1/0 channels
and units. An interlock is provided for memory conflicts.

Mutual interrupt facilities are provided so that either machine
can interrupt the other. Thus, the character machine has an
additional instruction that causes the interruption of the other
machine. This instruction is executed after the character machine
has set up some control words in its core memory. The second
machine inspects these words to determine its action.

J. E. MEGGITT

Table 1 Instruction set

Type of operation

Ezplanation of operation

Clear and add
Clear and add with carry
Clear and set
Binary add

Binary subtract
Decimal add
Decimal subtract
And

Or

Store

Right shift

Left shift

Load index register
Save index register

Increment and test index*

Decrement and test index*

Left normalize*

Right normalize*

Branch*

Branch on zero*
Branch on null*
Branch on carry*

Load data register
Store data register

Read
Write

M — (AC); 0 — (CARRY)

M + (CARRY) — (AC); C — (CARRY)
M — (AC); 1 - (CARRY)

(AC) + M — (AC); C — (CARRY)
(AC) + M — (AC); C — (CARRY)
(AC) + M — (AC); C — (CARRY)
(AC) + M — (AC); C — (CARRY)
(AC) and M — (AC)

(AC)or M — (AC)

(AC) - M

(AC) shifted right M places — (AC)
(AC) shifted left M places — (AC)
M — (X)

xXy—-M

(X) + 1 — (X); if adder overflows, that
is, if former (X) = 111, then branch to
line M

(X) — 1 — (X); if adder does not over-~
flow, that is, if former (X) = 000, then
branch to line M

(AQ) shifted left until most significant bit
equals 1 — (AC); (X7) 4+ shift amount,
— (X7); if (AC) = 00000000, branch to
line M

(AC) shifted right until least significant
bit equals one — (AC); (X7) — shift
amount — (X7); if (AC) = 00000000,
branch to line M

Branch to line M

If (AC) = 00000000, branch to line M
If (AC) = 11111111, branch to line M
If (CARRY) = 1, branch to line M

(Fast memory word) — (core memory
data register)

(Core memory data register) — (fast
memory word)

Start core memory read cycle

Start core memory write cycle

* All branch instructions select a new page, in addition to a new line, if the
latch associated with the next page register is set.

Similarly, the conventional machine writes control words into
the character machine’s core memory before interrupting it. When
interrupting, the line and page registers for addressing the read-
only memory are stored in a pair of special locations in the fast
memory, and the line and page registers are reset to a special

CHARACTER COMPUTER FOR HIGH-LEVEL LANGUAGE

registers

76

value. A program that starts at this address is executed, storing
contents of the other registers and part of the fast memory. The
program then decodes the message that has been placed in the
core memory and acts accordingly.

This 1/0 solution, adopted mainly to simplify the character
machine’s construction, has two attractive features. Since the
1/0 machine is intended for use in a multiprocessing environment,
it is not taxed unduly by the 1/0 function and can perform other
operations at the same time. Secondly, there is the possibility of
regarding the character machine as the 1/0 machine’s slave. In
such an application, it would be possible to write some general-
purpose character-handling operations for storage in the read-
only memory. The 1/0 machine would then have an extended
instruction set of fast character operations which could be very
useful for compiling and editing.

The fagt memory has a 7-bit address register and a 64-bit
data register. The memory address register is loaded with an
effective address by every instruction whose immediate bit is
set to zero. A read or write is then performed. Character operations
use four of the address bits to select a memory word, and three
bits to select a character from the data register.

The read-only memory has a 6-bit (or 8-bit) page address
register and an 8-bit line address register. On certain branch
instructions, the page register is loaded automatically from the
next-page register, as explained earlier. On all branch instructions,
the line register is set with the specified line address. The line
register is connected to an instruction counter which increments
the line register contents on all except branch instructions.
The read-only memory also has a 17-bit data register, where
instructions are delivered and decoded.

The next-page register is a hardware 6-bit (or 8-bit) register
and, simultaneously, character location 2 of the fast memory.
Thus, any instruction that writes into location 2 causes loading
of the next-page register and setting of the associated latch. The
next succeeding branch instruction causes transfer of the contents
of the next-page register to the page register, as described earlier.

The core memory has a 16-bit memory address register and a
64-bit data register. Transfers may explicitly be made between
the data register and the fast memory. The memory address
register is loaded when a read or write instruction is decoded. Such
instructions name a word in the fast memory (usually word zero)
which is read, and the left-most two characters of the word are
sent to the core memory address register. In this way, character
locations 0 and 1 of the fast memory appear to the programmer as
the core memory address register. Of course, these locations must
be loaded before the read or write instruction is given.

The seven index registers are hardware registers, each three
bits long. They are connected to a 3-bit indexing adder, having a
carry extended to cover eight bits, so that indexing ean take place
across word boundaries.

J. B. MEGGITT

The arithmetic and logical operations employ an 8-bit hard-
ware accumulator and a 1-bit carry store as explained earlier.

The programs that interpret the high-level language are seg-
mented in such manner that distinct programs are on distinct
pages, as far as possible.

A subroutine linking mechanism is set up by assigning two
words of the fast memory to hold a list of line and page-return
addresses. This list is pointed to by one of the index registers
which is assigned for this purpose. As subroutines are entered,
this index register is incremented, and vice versa. The programmer
is responsible for the storing of addresses before the jump to the
subroutine is made. The return consists of explicitly setting the
next-page register from the subroutine return-page address list
and transferring it indirectly to the line address.

Since one of the main purposes of the interpreter program is
the decoding of high-level language instruction strings, a pro-
grammed push-down organization is used. There are two main
push-downs which work together: the instruction push-down
in which operators and core addresses are stored, and the data
push-down in which data are stored. Two push-downs are needed
because the high-level language uses data of variable length.
For convenience, operators and their associated addresses occupy
single 8-character words in a fixed format, whereas data occupy
as much room as necessary.

The top two levels of the instruction push-down store are
programmed to be physically in the fast memory. The other levels
are put into the core store. The top location in the core is pointed
to by the contents of a pair of locations in the fast memory. The
data store is entirely in the core store and is addressed through
the fast memory.

The current word of the high-level language instruction stream
occupies a word in the fast memory. As a scan is completed, a
new word is obtained by the program.

Stated with some oversimplification, the high-level language
instruction string consists of names of variables, separated by
operators. The allocation of storage is dynamie, and high-level
language programs refer to data through symbolic names. The
oceurrence of a name causes the addresses of the associated data
to be looked up in lists that are provided in a programmed way.

One purpose of the instruction scan is to decide when names
are encountered and to call the name look-up program. Another
purpose is to see whether the current operation can be executed
or not. If it can be executed, the appropriate program is called
to implement the operation; if it cannot be executed, the instruc-
tion push-down is pushed down, and the top location is loaded
with the operator and address of that data in core on which it
is to operate.

An operation can be executed or not, depending on its relative
precedence in the instruction stream. The allocation of precedences
is part of the specification of the language. In the present system,

CHARACTER COMPUTER FOR HIGH-LEVEL LANGUAGE

program
organization

push-down
organization

scan and
execution

7

simulation

concluding
remarks

this precedence is expressed directly by the arithmetic values that
are given to the character codes representing the operators.

When an operation has been performed, the instruction push-
down is pushed up again, and a test is made to see whether the
operation now at the top may be executed.

The data push-down is used to store temporary results. Every
operation that generates temporary results places these results
into the data push-down. Similarly, every operation using an
operand that is in this push-down causes a pushing-up operation
after the operand has been used. Because of the structure of the
push-downs, the required operands are always at the top of the
data push-down.

One of the attractive features of implementing a high-level
language machine in the way described is that the logic can be
checked by simulation. When the character machine was sim-
ulated on a 7094, each page of the microprogram was assembled as
though it were a FaP subroutine, and microinstructions were
expressed as though they were 7094 instructions. In brief, a dummy
operation was written in the rAp operator field, a symbolic address
referring to either the read-only memory or the fast memory
was written in the Fap address field, the character machines tag
was written in the tag field, and a symbolic name of a character
machine operation was written in the raP decrement field.

The 7094 interpreter was arranged not to execute these as-
sembled subroutines, but to interpret them. In this way, it was
possible to write read-only memory programs in a symbolic manner
and have all the advantages of an assembly program, without
actually writing one.

It has proved possible to write the programs that interpret
the high-level language in a direct way, with an effort similar to
that needed to write a compiler.

It is perhaps worthwhile emphasizing again the two points
of view from which the system may be seen. On the one hand,
it is a direct implementation of a high-level language machine
in which the various logical suboperations are rather formalized.
On the other hand, it is a character-handling machine, one of
whose jobs is the interpretation of a high-level language.

The discussion points to the value of regarding logical design
and programming in an integrated way. If all operating and
control programs being used on current computer systems were
regarded in this way, the effect on systems design might well be
significant.

FOOTNOTE

1. A. P. Mullery, R. F. Schauer, and R. Rice, “ADAM: A Problem Oriented
Symbol Processor,” Proceedings of the Spring Joint Computer Conference,
1963. The reference describes the high-level ADAM language as well as a
tentative machine design. The character computer discussed here imple-
ments this language, but differs from the machine design of the reference.

J. E. MEGGITT

