
This  paper” discusses the design of a n  experimental character-process- 
ing computer for the interpretive  execution of higher-level language 
programs. 

The  design speci$es a 100-nsec instruction cycle for the naicro- 
program  instructions stored in a  read-only  memory,  a  fast  memory 
for  intermediate  “scratch pad” computation,  and  inputloutput 
through  a  conventional  computer coupled to a 2-psec main  memory. 
The object program to be interpreted i s  stored in the main  memory. 

As a  part of the  research,  the design  was  simulated  on  standard 
equipment. 

A character  computer 
for high-level  language  interpretation 

by J. E. Meggitt 

Interest  in  fast character-processing computers that  are con- 
trolled by instructions  in read-only memories is twofold: 

By using a design that permits  the economical “writing” of 
microprograms into read-only memory-as, for example, by 
means of “ pluggable” units-the apparent computer func- 
tion  can be  modified to suit  particular  applications. 
The computer  organization  appears  very attractive for higher- 
level language interpretation. 

The design discussed here  and shown schematically in  Figure 1 
higher-level was motivated  by experimental interest  in the problems of build- 
language ing a machine that interprets a high-level language. 

A high-level language with sufficiently general properties 
was chosen to ensure that  the resultant design would  be suitable 
for  other high-level languages that might evolve. This language’ 
is FORTRAN-like, but with  many extensions relative to (1) the 
variety of operators included, and (2 )  the generality  with which 
arrays  may be referenced through  a concept of structured data. 

* The research  reported in this paper  was  sponsored in part by the Air 
Force  Cambridge  Research  Laboratories, Office of Aerospace  Research,  under 
Contract AF19(628)-3257. 
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The notion of structured data can be explained by analogy 
with the traditional  organization of text in a book. Information 
in  a book is contained  in  a hierarchical structure,  starting  with 
the book itself, broken down into  chapters, sections, paragraphs, 
sentences, words, and individual  letters.  Convenient reference 
to  an item in the book can be made by referring to  the item's 
position in  the hierarchy. It is also possible and convenient to 
interpret  literal reference to a  particular  part  as reference to all 
of its sub-parts. Data is stored according to structure  and is 
referred to by the high-level language in this manner. Conse- 
quently, an operation described as L ' ~ + ~ l '  may  denote the addi- 
tion of many  pairs of data quantities if A and B are  data items 
high in  the hierarchy. 

The original concept of microprogramming arose from the 
observation that certain  gates  in a computer are open at each 
instant of time, and  that  the control of the machine is  specified 
by the sequence of signals sent to open the gates. The original 
microprogrammed machines held, in a suitable read-only memory, 
lists of gates to be opened a t  specified times, and  they contained 
a mechanism for accessing the lists  in sequence. However, this 
rather narrow concept broadened so that  it now describes any 
machine having a somewhat simpler internal  computer which 
executes interpretively the order code of the external machine. 
Thus,  most machines involve a certain degree of micropro- 
gramming-as, for example, in executing multiplication by an 
internal "program" that controls a  hardware  adder. 

A computer that "directly implements" a high-level language 
must perform many complicated operations that  are clearly 
composite, i.e., composed of more elementary micro-operations. 
Therefore, it seems to be advantageous to directly implement 
a set of more restricted  operations that represent the more compli- 
cated  operations. In  this way, a microprogrammed machine 
(according to  the  current definition) can be used for interpre- 
tive execution of high-level language programs. 

The complex  high-level language chosen is expressed by an 8-bit 
character  set  and conceived as machine independent. The ma- 
chine word length is variable, and storage allocation is dynamic. 
Thus  it is not possible to specify useful basic word operations, 
and  it is necessary to process smaller basic units of data. Since 
the largest high-level language units  with  hardware  identity 
are 8-bit characters, the value of an efficient character-processing 
machine is evident. 

A 2-psec conventional core memory is used to store high- 
level language programs. It was found that, on the average, 
about 50 basic character  operations are required per core access, 
the specific ratio being determined  by the  particular language. 
Consequently, the character-processing machine must  run as 
fast as possible to keep the logic processing in step with the core 
accessing. As a result, a simple character-processing machine 
was specified with a speed of one instruction execution per 100 
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nsec, the highest speed that currently seems  possible. 
It is clear that  this high speed cannot be obtained if the 

control program for the character machine is stored in core, 
unless a complicated interleaved memory system is used. There- 
fore it is proposed to use a read-only memory for holding the 
instructions that constitute the control program. It is considered 
possible to build a read-only memory of sufficient  size  (16,000 
words of 17 bits each) with a 50-nsec access time  and  a 100-nsec 
cycle time  by using passive electrical networks. Such networks 
have  propagation  times measured in nanoseconds. A common 
arrangement involves a  rectangular array of crossed drive and 
sense lines. At certain chosen intersections, the lines are coupled 
together by resistive, capacitive, or inductive coupling according 
to  the particular design. 

It should be observed that a read-only memory is entirely 
adequate for the present purpose, since the programs for inter- 
preting the high-level language remain fixed. It is desirable that 
the read-only memory have  its information set up initially by an 
automatic process  which is controlled from punched cards or 
magnetic tape.  This  arrangement would make it possible to “write” 
into  the memory an exact copy of a program that has been tested 
by simulation on another computer. To allow a change of appli- 
cation from time to time, it is also desirable that  the read-only 
memory information be changeable with only modest effort. 

In addition to  the control memory, the character machine 
needs a  fast read-write memory to store  temporary  results and 
to  act  as a buffer between the relatively slow core memory and 
the character machine. This  fast  “scratch pad’’ may be small 
but should have a 100-nsec  cycle time  with an access time of 
25 or 30 nsec. For a reasonably efficient interpretive high-level 
language program, a memory size of 128 8-bit characters would 
be sufficient. It is considered possible to build a  thin magnetic film 
read-write memory to meet this specification. The  actual memory 
specified by the design is word-organized and arranged to contain 
16 words of  64 bits each. In  the normal mode of operation, the 
addressing of a  character causes the selection of one of the  16 
words and of one of the eight characters within the selected word. 
However, it is also  possible to address entire words in order to 
transfer  them from the fast memory to  the  data register of the 
core memory and vice versa. This operation allows the  fast memory 
to buffer the core memory. The core memory contains 72-bit 
words, but only 64 of these bits  are used for data,  the other eight 
being parity  bits. Hence, the word lengths of the core memory 
and of the  fast memory match. 

The core memory, the read-only memory, and  the fast scratch- 
pad memory are shown schematically in  Figure 1. To complete 
the design, it is necessary to determine some data flow paths  and 
to specify an instruction  set. Since the machine discussed here is 
a character processor, and since eight bits  are sufficient to express 
the character  set, the  data flow paths of the machine are generally 
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eight bits wide. The instruction  format is of the simple single- 
address  type,  and the address field of each instruction is eight bits 
wide, as discussed  below. 

The 128 characters of the  fast memory can be addressed 
directly  by the %bit field of an instruction, leaving one bit for 
future expansion. In many  interpretive programs, however, it is 
necessary to scan successive characters, which is  made possible 
by providing a set of index registers. In  most cases, the scan is 
made over not more than eight characters (one word), since re- 
lated  characters usually originate in words that have been trans- 
ferred, one word a t  a  time, from the core to  the  fast memory. 
Accordingly, the length of the index register is three  bits.  For 
convenience, however, the indexing adder is provided with carries 
that carry  into higher-order positions. 

An examination of the interpretive programs proved that  it 
would  be desirable to scan several strings of characters simul- 
taneously. For example, it is useful to scan the instruction  string, 
two operand  strings, and  the resultant  string at the same time. 
Thus, seven index registers were provided. 

In  addition to  an %bit  address field, each instruction  has a 
3-bit tag field. Except in one or two special cases, the effective 
address for an instruction consists of the specified address and  the 
contents of the specified 3-bit index register. Of course, when  some 
instructions use the address field to specify items  other than ad- 
dresses, the indexing logic is available. 

The read-only memory contains 16,000 words for implementing 
the high-level language. To reduce the amount of high-speed ad- 
dress decoding and  to specify read-only memory addresses by 
%bit fields, the read-only memory is physically arranged in 64 
pages (extendable to 256 pages) of 256 words each. The %bit 
word address is selected and decoded by instructions as  they 
occur, but  the page address is held in a 6-bit (or %bit) page register 
whose contents  are relatively static. 

Thus, only the word bits of an instruction  address  must be 
decoded at  high speed. The page bits  are, in general, already de- 
coded. This arrangement makes it possible for an instruction to 
describe branching within  a page by specifying only eight bits. 
Thus,  the branch instruction can use the same address  format as 
other instructions. 

This simple arrangement speeds up  the instruction fetching 
mechanism and saves instruction  bits.  Programs  are  written in 
such a manner that branches to different pages of the read-only 
memory occur infrequently. In  general, each high-level operation 
or suboperation is implemented on a  separate page. Thus a 
relatively cumbersome page changing mechanism does not make 
the programs unduly inefficient. For page changing, a special 6-bit 
register, the next-page register, is loaded before the branch in- 
struction is encountered. The loading of this register sets  a  latch 
which is tested on every branch instruction. If the  latch is not 
set, the branch instruction merely selects a new line on the cur- 
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rent page. If the  latch is set, the contents of the next-page register 
are transferred to  the page register, a new line is selected, and  the 
latch is turned off. I n  this way, both a new page and a new line are 
selected. Due to  the additional register-to-register transfer  and 
the additional decoding, a branch instruction that changes pages 
takes 300 nsec for its execution instead of the usual 100 nsec. 

The index registers play an important role in indexing the 
read-only memory as well as  the  fast memory. Thus these registers 
may be used advantageously to modify the line part of branch 
addresses, providing a  means of branching in as many as eight 
ways. 

The core memory, a conventional 2-psec  core, contains up  to 
65,000 words of eight information characters each. Since this 
memory looks like a slow I/O device to  the fast  character machine, 

: conventional ways of controlling I/O devices may be  used to control 
the core memory. Thus  the address of the word to be  accessed is 
first set  up in the 16-bit memory address register. A read or write 
instruction is then given, which starts  the reading or writing cycle. 
This action causes an autonomous data transfer between the 
memory and  its  data register while the character machine pro- 
ceeds to execute further  instructions.  During the transfer, the 
data register is  locked against further instructions, so that  any 
instruction that requests use of the  data register immediately 
stops the character machine until conlpletion of the transfer. 

The presence of this simple interlock makes it possible to  have 
core  access instructions in the microprogram as close together as 
desirable, without causing errors. However, it is better  to antici- 
pate core memory accesses and  then space them  appropriately to 
avoid time loss due  to waiting. 

Instructions  are provided that allow the contents of the core 
memory data register to be transferred,  eight  characters a t  a 
time, to one of the 16 word locations in the  fast memory and vice 
versa. This flow of information between the core memory and  the 
actual  character machine is inhibited when the core memory is 
busy. 

All other logic is accomplished by an arithmetic  and logical unit 
that processes pairs of 8-bit characters. In general, one operand is 
fed to  the logical unit from the machine’s %bit  accumulator, and 
the  other from either  the  address field of an instruction or the 
fast memory. The result is returned to  the accumulator. 

A binary  %bit  adder  contains a l-bit carry  store to hold the 
high-order output carry.  Instructions  are provided to allow the 
low-order input  carry  either to be forced or to come from the 
carry  store. When a subtract  instruction is decoded, one of the 
sets of inputs is 1’s complemented as it is  fed to  the adder.  To 
get a true  subtraction,  the low-order carry  must be correctly 
programmed. 

Use of the carry  store allows correct adding or subtracting of 
strings of characters. The  carry  store, used also for comparing two 
numbers, may be tested  in  a conditional branch instruction. In 
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implementing the high-level language, the binary  adder is used 
mainly for housekeeping and address calculations. 

It is essential to work internally  in decimal arithmetic because 
the high-level language includes logical operations  on decimal 
digits, and  the  identity of the decimal digits must be preserved. 

For ease of processing, a pair of decimal digits is packed into 
an %bit  character inside the  character machine. Each  digit is repre- 
sented  in  a binary-coded excess-three form, which allows the binary 
adder to work rather simply in  a decimal mode. First, a binary 
addition is performed, and  the carries out of the low-order four 
bits  and  the high-order four bits  are inspected. The presence of a 
carry to  the left of a 4-bit block causes addition of a 3 to  the 
4-bit binary  result, and  the absence causes subtraction of a 3. 
In  this way, the decimal sum of two  pairs of digits as well as  the 
correct output  carry  are generated.  A low-order input  carry can 
be handled exactly as  in  the binary case. 

The adding or subtracting of 3’s does not  require  adders but 
merely logical functional changes, in a conditional way,  on the 
right and left four bits of the binary  sum. The logic for this process 
is trivial. 

The mechanism for binary  subtraction is employed to perform 
decimal subtraction.  Thus, when a decimal subtract instruction 
is decoded, the 1’s complement of one of the operands is fed to  the 
adder and is operated  in the decimal mode as above. This operation 
produces the difference of two pairs of digits, since the 1’s comple- 
ment is exactly the 99’s complement in  the chosen representation. 

The  adder is used also to function as a logical unit. It can 
generate the logical and as well as  the logical or of corresponding 
bits  in two characters. 

The  arithmetic  unit contains  a  shifter in which the  contents 
of the 8-bit accumulator  may be shifted up to eight  bit positions in 
either  direction.  Attached to  this shifter is a normalizing me- 
chanism. It is possible to normalize a number  in the accumulator 
by left-shifting or by right-shifting until  either the most significant 
or the least significant digit is a 1. The shift count for this  operation 
is placed into index register 7 where it is accumulated.  A  left 
normalize causes the  contents of index register 7 to be incremented 
by the shift  amount,  and a right normalize causes the  contents 
to be decremented. In  this way, index register 7 can be made to 
contain the  bit address of the first non-zero bit in the accumulator 
and,  by repeating the normalize operation lc times, the  bit address 
of the  kth non-zero bit. 

Since there is  no built-in  multiplication, this facility is very 
helpful for programming the multiplication of two strings.  For 
this  purpose,  a binary-coded character of the multiplier is placed 
in  the accumulator.  Multiples of a  multiplicand  character are 
stored  in successive character locations of the  fast memory 
and  are referenced by index register 7. Each successive normalize 
operation causes index register 7 to point to  the  appropriate 
character  multiple that must be added to  the  partial sum. 
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The normalize facility is also useful for a high-level lan- 
guage which uses a  dynamic  storage  allocation scheme in which 
maps of the core store are  kept  in a special part of the store, one 
bit  in  the  map representing  one word. The normalize facility 
allows scanning of the maps  in  a  very simple way. 

Instructions  are held in the read-only memory, each instruction 
occupying 17 bits. It may seem strange that this  number is not  a 
multiple of 8. However, data  and instructions, being held in 
separate memories, are fairly  independent, so that a match be- 
tween them is not essential. Some “immediate”  instructions cause 
eight of the 17 bits to be used as  data,  and  this  amount of inter- 
connection is sufficient. 

The machine is organized as a single-address computer,  and 
instructions  have the  format shown in  Figure 2 .  

In  general, an address is generated  by  adding to  the address 
bits  the  contents of the index register that is specified by the  tag. 

If the immediate  bit is 0, the effective address is used as 
the address of a character  in the  fast read-write memory. If the 
bit is set  to 1, the indexed quantity is used as a literal. In  an in- 
struction such as  an add or shift, this means that  the literal 
quantity is added or that  the shift is by  a  literal  amount, whereas 
otherwise the  add would be from the  fast memory or the shift 
by an amount held in  the  fast memory. 

For a branch  instruction, an immediate  bit 1 causes use of the 
indexed literal quantity  as  the “line” address of the read-only 
memory to which the branch is made. On the  other  hand, if the 
bit is set to 0, the line  address is taken from an indexed location 
in the  fast memory, thus obtaining an indirect-branch  instruction. 
This instruction is essential since it is the means by which high- 
level language instruction  strings, which appear  as sequences of 
characters, are decoded. 

The instructions are listed  in  Table 1. AC indicates an 8-bit 
accumulator, X identifies an index register, CARRY means a 
1-bit carry  store, and C is a  carry  generated by the  adder.  Paren- 
theses  denote ((contents of,” and M denotes the  contents of a fast 
memory character location or, when appropriate,  a  literal; the 
distinction is made  in each instruction  by  means of the immediat,e 
bit. M denotes the 1’s complement of M. 

The  character machine is not provided with any I/O instructions 
as such, but instead receives its information from a  conventional 
computer which is coupled to  the core memory. The core store of 
the  character machine may be accessed by  the conventional 
machine which has  its own core memory as well as I/O channels 
and units. An interlock is provided for memory conflicts. 

Mutual  interrupt facilities are provided so that either machine 
can interrupt  the  other.  Thus,  the  character machine has  an 
additional  instruction that causes the  interruption of the  other 
machine. This instruction is executed after  the character machine 
has  set  up some control words in its core memory. The second 
machine inspects  these words to determine its action. 
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T y p e  of operation 

Clear and  add 
Clear and  add with carry 
Clear and  set 
Binary  add 
Binary  subtract 
Decimal add 
Decimal subtract 
And 
Or 
Store 
Right  shift 
Left  shift 
Load index register 
Save  index register 
Increment  and  test index* 

Decrement and  test index* 

Left normalize* 

Right normalize* 

Branch* 
Branch on zero* 
Branch  on  null* 
Branch on carry* 
Load data register 

Store data register 

Read 
Write 

Table 1 Instruction set 

Explanation of operation 

M --f (AC); 0 + (CARRY) 
M + (CARRY) --f (AC); C --f (CARRY) 
M "-f (AC); 1 --f (CARRY) 
(AC) + M --f (AC);  C (CARRY) 
(AC) + E + (AC); C + (CARRY) 
(AC) + M -+ (AC); C + (CARRY) 
(AC) + 6 -+ (AC); C -+ (CARRY) 
(AC) and M -+ (AC) 
(AC) or M + (AC) 
(AC) 4 M 
(AC)  shifted  right 1LI places 4 (AC) 
(AC) shifted left M places 4 (AC) 

M + ( X )  
(X) --f M 
(X) + 1 4 (X); if adder overflows, that 
is, if former (X) = 111, then  branch  to 
line M 
(X) - 1 + (X); if adder does not over- 
flow, that is, if former (X) = 000, then 
branch to line M 
(AC) shifted left  until most significant bit 
equals 1 + (AC); (X7) + shift amount 
-+ (X7); if (AC) = 00000000, branch to 
line M 
(AC) shifted right  until  least significant 
bit equals one + (AC); (X7) - shift 
amount "-f (X7); if (AC) = 00000000, 
branch to line M 
Branch to line M 
If (AC) = 00000000, branch to line M 
If (AC) = 11111111, branch  to line M 
If (CARRY) = I, branch to line M 
(Fast memory word) (core memory 
data register) 
(Core memory data register) + (fast 
memory  word) 
Start core memory read cycle 
St)art Core memory write cycle 

* All branch  instructions select a new page, in addition t o  a new line, if the 
latch associated with the next  page register is set. 

Similarly, the conventional machine writes control words into 
the  character machine's core  memory  before interrupting it. When 
interrupting,  the line and page registers for addressing the read- 
only  memory are stored in a  pair of special locations in the  fast 
memory, and the line and page registers are reset to a special 
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program then decodes the message that  has been placed in  the 
core memory and  acts accordingly. 

This I/O solution,  adopted mainly to simplify the  character 
machine’s construction, has two attractive features. Since the 
I/O machine is intended  for use in  a multiprocessing environment, 
it is not  taxed  unduly  by the I/O function and can perform other 
operations at  the same  time. Secondly, there is the possibility of 
regarding the  character machine as  the I/O machine’s slave. In 
such an application, it would be possible to write some general- 
purpose  character-handling  operations for storage in  the read- 
only memory. The I/O machine would then  have  an extended 
instruction  set of fast character  operations which could be very 
useful for compiling and  editing. 

The  fast memory has a 7-bit address register and a 64-bit 
registers data register. The memory address register is loaded with an 

effective address by every instruction whose immediate bit is 
set to zero. A read or write is then performed. Character  operations 
use four of the address  bits to select a memory word, and  three 
bits to select a  character from the  data register. 

The read-only memory has a 6-bit (or  8-bit) page address 
register and an %bit line address  register. On certain  branch 
instructions, the page register is loaded automatically from the 
next-page register, as explained earlier. On all  branch  instructions, 
the line register is set  with the specified line address. The line 
register is connected to  an instruction  counter which increments 
the line register contents  on  all except branch  instructions. 
The read-only memory also has a 17-bit data register, where 
instructions are delivered and decoded. 

The next-page register is a  hardware 6-bit (or %bit) register 
and, simultaneously,  character location 2 of the  fast memory. 
Thus,  any  instruction that writes  into  location 2 causes loading 
of the next-page register and  setting of the associated latch.  The 
next succeeding branch  instruction causes transfer of the  contents 
of the next-page register to  the page register, as described earlier. 

The core memory has  a 16-bit memory address register and  a 
64-bit data register. Transfers  may explicitly be made between 
the  data register and  the  fast memory. The memory  address 
register is loaded when a  read  or  write  instruction  is decoded. Such 
instructions  name  a word in the  fast memory (usually word zero) 
which is read, and  the left-most two characters of the word are 
sent to  the core memory address register. In  this way,  character 
locations 0 and 1 of the fast memory appear to  the programmer as 
the core memory address register. Of course, these  locations  must 
be loaded before the read or write  instruction is given. 

The seven index registers are hardware registers, each three 
bits long. They  are connected to a 3-bit indexing adder,  having a 
carry  extended to cover eight bits, so that indexing can take place 
across word boundaries. 
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The  arithmetic  and logical operations  employ an 8-bit  hard- 
ware accumulator  and a l-bit  carry  store  as explained  earlier. 

The programs that  interpret  the high-level language are seg- 
mented  in such  manner that distinct  programs  are  on  distinct 
pages, as far as possible. 

A subroutine  linking  lnechanism  is  set  up  by  assigning  two 
words of the fast  memory to hold  a  list of line  and  page-return 
addresses. This list  is  pointed to  by one of the index  registers 
which is assigned for this purpose. As subroutines  are  entered, 
this index  register is incremented,  and vice versa. The programmer 
is responsible for the storing of addresses before the  jump  to  the 
subroutine is made. The  return consists of explicitly setting  the 
next-page register  from the subroutine  return-page  address  list 
and  transferring it indirectly to  the line  address. 

Since  one of the  main purposes of the  interpreter  program  is 
the decoding of high-level language  instruction  strings,  a  pro- 
grammed push-down organization  is used, There  are  two  main 
push-downs which work together:  the  instruction push-down 
in which operators and core addresses are  stored,  and  the  data 
push-down in which data  are stored.  Two  push-downs are needed 
because the high-level language  uses data of variable  length. 
For convenience, operators  and  their associated  addresses  occupy 
single %character words in  a fixed format, whereas data occupy 
as much room as necessary. 

The  top two  levels of the instruction push-down store  are 
programmed to be physicalIy in  the  fast  memory.  The  other levels 
are  put  into  the core store. The  top location in  the core is  pointed 
to by the  contents of a  pair of locations  in the  fast memory. The 
data  store is entirely  in the core  store and is  addressed through 
the fast memory. 

The  current word of the high-level language  instruction  stream 
occupies a word in  the fast memory. ,4s a  scan  is  completed,  a 
new word is obtained  by the program. 

Stated  with some oversimplification, the high-level language 
instruction  string  consists of names of variables,  separated  by 
operators. The allocation of storage  is  dynamic,  and high-level 
language  programs  refer to  data through symbolic names. The 
occurrence of a  name  causes the addresses of the associated data 
to be looked up in  lists that  are provided in a  programmed  way. 

One  purpose of the instruction  scan  is to decide when names 
are encountered and  to call the name look-up program.  Another 
purpose is to see whether the  current  operation  can be executed 
or not. If it can  be  executed, the  appropriate program is called 
to  implement the operation; if it cannot'  be  executed, the instruc- 
tion push-down is pushed  down, and  the  top location  is  loaded 
with the  operator  and  address of that  data in core on which it 
is to  operate. 

An operation  can be executed  or not, depending on  its relative 
precedence in the instruction  stream.  The allocation of precedences 
is part of the specification of the language. In  t'he  present  system, 
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this precedence is expressed directly  by the  arithmetic  values  that 
are given to  the character codes representing the operators. 

When an operation has been performed, the instruction  push- 
down is pushed up again, and a test is made  to see whether the 
operation now at the  top  may be executed. 

The  data push-down is used to store  temporary  results.  Every 
operation that generates  temporary  results places these  results 
into  the  data push-down.  Similarly,  every  operation using an 
operand that is  in  this push-down  causes a pushing-up  operation 
after  the  operand  has been used.  Because of the  structure of the 
push-downs, the required  operands are always at the  top of the 
data push-down. 

One of the  attractive  features of implementing a high-level 
simulation language  machine in  the way  described is that  the logic can  be 

checked by simulation. When  the  character  machine  was sim- 
ulated  on a 7094, each  page of the microprogram  was  assembled as 
though it were a FAP subroutine, and microinstructions were 
expressed as though  they were 7094 instructions. In  brief, a dummy 
operation was written  in  the FAP operator field, a  symbolic  address 
referring to  either the read-only  memory or the  fast memory 
was written  in  the FAP address field, the  character machines tag 
was written  in  the  tag field, and a symbolic name of a character 
machine  operation was written  in  the FAP decrement field. 

The 7094 interpreter  was  arranged  not to  execute  these as- 
sembled subroutines, but  to  interpret  them.  In  this way, it was 
possible to  write read-only  memory  programs in a symbolic manner 
and  have  all  the  advantages of an assembly  program, without 
actually  writing one. 

It has proved possible to write the programs that  interpret 
the high-level language in a direct  way,  with an effort similar to 
that needed to  write  a  compiler. 

It is  perhaps  worthwhile  emphasizing  again the two  points 
concluding of view from which the system  may be  seen.  On the one  hand, 
remarks it is a direct  implementation of a high-level language  machine 

in which the various logical suboperations are  rather formalized. 
On the other  hand, it is a character-handling  machine,  one of 
whose jobs is the  interpretation of a high-level language. 

The discussion points to  the value of regarding logical design 
and programming in  an integrated  way. If all  operating  and 
control  programs being used on  current  computer  systems were 
regarded  in this way, the effect on  systems design  might well be 
significant. 

FOOTNOTE 

1. A. P. Mullery, R. F. Schauer, and R. Rice, “ADAM: A  Problem  Oriented 
Symbol Processor,” Proceedings of the Spring Joint  Computer Conference, 
1963. The reference describes the high-level ADAM language as well as a 
tentative machine design. The character  computer discussed here imple- 
ments  this language, but differs from the machine design of the reference. 
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