This part of the paper describes Gpss 11, a general purpose digital
systems stmulation program based on a block diagram language.

The program is a result of incorporating improvements dictated by
exlensive experience in the application of an earlier version. However,
this article is self-contained.

Development and application of the language are illustrated by
means of an example.

A general purpose digital simulator and
examples of its application
Part I — Description of the simulator

by R. Efron and G. Gordon

Recent years have seen the development of several general purpose
digital computer programs aimed at simplifying the task of carry-
ing out simulation studies." Among these is a program called the
General Purpose Systems Simulator (cpss).”’® Substantial ex-
perience accumulated in the use of this program has led to a
number of suggested improvements and the present article de-
scribes a second version of the program, called the General Purpose
Systems Simulator II (cpss 11).*"°

GPsSS I is consistent with the original Gpss program in the
sense that it employs the same principles and that all functions
performed by the earlier program can also be performed by
Gpss II. Although this paper does not assume prior knowledge of
Gpss, before describing the new program some insight may be
gained by giving a summary of the major improvements in-
corporated. In brief, these improvements are:

e Greater ability to sense the current state of the system, and
to implement decisions based upon that state. “Variable state-
ments” permit FORTRAN-like algebraic computations upon
system variables. These capabilities provide much improved
control over the flow of transactions in response to the cur-
rent state of the system.

The ability to associate a greater amount of information with
each transaction in the form of eight parameters.

IBM SYSTEMS JOURNAL °* VOL. 3 * NO. 1 * 1964

The introduction of an indirect specification feature which
permits a transaction to specify from its parameters the
characteristics of the block being entered, rather than re-
quiring these characteristics to be fixed for an entire simula-
tion. This adds flexibility and makes it possible to reduce the
size of certain types of models.

The generalization of epss functions to permit a wider variety
of arguments and a greater number of data points for inserting
data descriptive of the system.

An optional assembly feature which simplifies the description
of the block diagram by furnishing the block numbers from
symbolic names, and which enables the program to set up
and call in “block macros”. These macros are user-defined
segments of a block diagram which can be used repetitively
within a model, with the block characteristics varied as desired.
The ability to go into FAP subroutines prepared by the user.
Expanded output statistics and error information.

Generally faster execution.

In @pss 11, the structure of the system being simulated is
described in the form of a block diagram drawn with a fixed set
of predefined block types. Each block type represents a specific
action that is characteristic of some basie operation that can occur
in a system. Connections between the blocks of the diagram in-
dicate the sequence of actions that occur in the system. Where
there is a choice of actions, more than one connection is made
from a block to indicate the choice.

Moving through the system being simulated are certain basic
units that depend upon the nature of the system. For example,
a communication system is concerned with the movement of mes-
sages, a traffic system with vehicles or a data processing system
with data records, and so on. These units are identified with
entities called transactions. The sequence of actions occurring
in the system in real time is reflected in the movement of trans-
actions from block to block in simulated clock time.

Clock time is represented by an integral number, with the
interval of real time corresponding to a unit change of clock
time chosen by the program user. The program computes an
action time for each transaction entering a block to represent
the time taken by the system action simulated by the block.
The transaction remains at the block for this interval of simulated
time before attempting to proceed. The action time may be
a fixed interval (including zero), a random variable, or it can be
made to depend upon conditions in the system in various ways.
An action time is defined by giving a mean and modifier for the
block. If the modifier is zero, the action time is a constant equal
to the mean. If the modifier is a number (< mean), the action
time is a random variable chosen from the range, mean + modifier,
with equal probabilities given to each number in the range.

It is possible to introduce into the simulation, a number of

DESCRIPTION OF THE SIMULATOR

block
diagram
language

action
times

Table 1

system
entities

GPSS II
entity

System
entity

Facility
Storage
Logic switch

Facility
Storage
Logic switch

Card punch
Memory
Sense switch

Toll booth
Road
Traffic light

24

functions which are tables of numbers relating an input variable
2 to an output variable y. Any number (> 1) of pairs of values
(z, y) can be used in a table defining a function. The table can be
interpreted in the continuous mode by assuming linear variation
between the points, thereby approximating any desired function
with straight line segments. In the discrete mode, the table
defines a step function.

By specifying the modifier at a block to be a function, the
output of the function controls the block time. There are several
modes of operating the functions, depending upon the choice of
the input variable for the function. If a random number mode
is selected, for example, the input is a random variable with uni-
form distribution between 0 and 1 so that the output is a random
variable with a distribution controlled by the function. Other
modes of operating functions are described later.

Associated with the system being simulated, there are certain
physical or control elements that operate on the units represented
by transactions and direct their flow through the system. Three
types of system entities are defined in apss to represent such
elements. Two, called facilities and storages, are characteristic of
the physical equipment of the system. A third, called logic switches,
is characteristic of the control elements of the system.

A facility is defined as any piece of equipment that can be
engaged by a single transaction at a time. A storage is defined as
any piece of equipment that can be occupied by many transactions
at a time up to some predetermined limit. A logic switch is a
two-level indicator that can be used to record the state of some
system condition that is instrumental in deciding when or how
operations are executed. A number of systems entities of each type
may be employed, and they are identified by number. Some
examples of how the systems entities might be interpreted are
shown in Table 1.

These definitions of the system entities are deseriptive and
are not meant to determine literally the manner in which system
elements are translated into simulation entities. Certain control
decisions that depend specifically upon the state of equipment
represented by facilities or storages can be made directly without
the need to employ a logic switch. On the other hand, facilities
and storages may be introduced in the simulation not to represent
identifiable items of equipment but to control the flow of trans-
action by the restrictions implied in their definitions. For example,
if a segment of a system can only be entered by a limited number
of units, entry to the part of the block diagram representing this
segment can be made contingent upon transactions being able to
enter a storage with a capacity set to this limit.

Similarly, the interpretation of transactions as representing
physical units moving through the system should not be inter-
preted too literally. Transactions may be introduced to help
control the system rather than to represent the basic units handled
by the system. In the systems of Table 1, for example, the logic

R. EFRON AND G. GORDON

switches might be controlled by transactions whose movements
from block to block represent changes in system environment
rather than the movement of some physical element.

Each block is given a number to identify it, and the connections
between blocks are made by specifying at each block the number
of the next block or blocks to which a transaction is to go. Provision
is made for making a choice by specifying two next blocks, re-
ferred to as next blocks A and B. The method to be used for
choosing between alternatives is indicated by a seleciton factor
which can be set to indicate one of several modes. If there is no
choice, the successor is next block A. A random choice can be
made by setting the selection factor, S, to a decimal fraction. The
probability of going to next block A is then 1~ S and to the
next block B is 8. A conditional mode, indicated by setting
8 = BOTH, sends a transaction to next block A if this move
is possible, and to next block B if it is not. A random selection
can also be made over any number of blocks by a selection mode
called PICK. The choice can then be any block in the range of
numbers A through B (B > A) with equal probability being given
to each. Similarly, a mode called ALL makes a conditional choice
over the range of blocks from numbers A through B by trying A
first, A + 1 next, and so on.

Each block type is represented by a particular symbol and
it is also given a name which is usually an imperative verb de-
seriptive of the block action. Figure 1 shows the symbols and
names of a number of the block types concerned with creating,
delaying, and removing transactions. Transactions are created
and entered into the simulation by a block type called ORIGINATE,
with the action time controlling the interval between successive
creations. The TERMINATE block removes the transactions from
the simulation. An ADVANCE block is used to represent any action
that takes time and therefore delays the transaction but does not
involve any equipment. It is also used as a buffer in which to
keep transactions while waiting for equipment to become available
or for some condition in the system to change.

Figure 2 illustrates a number of blocks concerned with the
use of equipment by transactions. The number of the item of
equipment employed by the block is indicated in the flag attached
to the symbol.

A HOLD block allows a transaction to engage a facility for as
long as the transaction remains in the block. The SEIZE block
similarly allows a transaction to engage a facility, but control of
the facility is not given up by the transaction until some time
later when it enters a RELEASE block. In a similar manner, the
STORE block allows a transaction to occupy space in a storage
while it is in the block, an ENTER block allows a transaction to
occupy space only, and a LEAVE block allows space to be vacated.

When the conditions for advancing a transaction are not
satisfied, several transactions may be kept waiting at a block.
Such transactions are kept in order by the program and allowed

DESCRIPTION OF THE SIMULATOR

choice of
paths

Figure 1

[]

ORIGINATE ADVANCE

creation,
delay, and
removal

RELEASE

use of
equipment

gathering
statistics

TERMINATE

MARK TABULATE

Figure 4 Enter message

processing
example

Figure 5 Read disk file

receiving
messages

Figure 6 Process message

d {

reading the
disk file

to move on by a first-in first-out rule. No information about the
queue of transactions is gathered, however, unless the queue
forms in a QUEUE block, shown in Figure 3, which is expressly
designed to measure the average and maximum queue lengths
and, if required, the distribution of time spent on the queue.

It is also desirable to measure the length of time taken by
transactions to move through the system or parts of the system,
and this can be done with the MARK and TABULATE blocks which
are also shown in Figure 3. Each of these block types notes the
time a transaction arrives at the block. Also, the TABULATE block
enters in a table the difference between the times of arrival at
the MARK and TABULATE blocks. In addition to working in
conjunction with a MARK block to derive transit times of trans-
actions, a TABULATE block may be used by itself to tabulate a
wide variety of different quantities, as described later.

To illustrate the features of the program that have been de-
scribed so far, consider the following example of simulating the flow
of messages in a real-time data processing system. A computer
receives messages from a terminal, locates corresponding re-
cords on a disk file, and uses these records to process the mes-
sages. It will be assumed that there are three disk files, each with an
independently operated arm, but with all three files sharing a single
channel for sending records into the computer. In this example,
each message is a transaction, and the unit of time chosen is
one millisecond. Action times, where used, are for simple rect-
angular distributions. In Figure 4, block 1 shows a mean of
50 and a modifier of 25 as indicated in the center of the block.
The numbers appearing at the top of the blocks are the block
numbers. At the bottom of some of the blocks, a selection factor
is indicated.

Figure 4 shows first the section of the block diagram con-
cerned with entering messages into the system. Block number 1
is an ORIGINATE block that creates the transactions and sends
them to a HOLD block using facility number 5 that represents
the central processing unit of the computer. The time at this
block, 1 millisecond, represents the time taken to read the message
into the computer. A storage, number 1, is defined to represent the
computer memory. The capacity of this storage is set to control
the number of messages that can be held in the computer at one
time. Messages occupy space by moving into an ENTER block.
The ENTER block uses a random selection mode PICK to send
transactions to one of three queues with equal probability. Here
they wait for the availability of one of the disk files. Since the block
diagram for each stream of transactions is identical from this
point on, except that differently numbered disk files are used,
only one stream is illustrated.

The disk file can only search for one record at a time. It is,
therefore, defined as a facility. The transactions in the QUEUE
block are waiting for the disk file to become available. When this
happens, the transaction at the head of the queue moves into the

R. EFRON AND G. GORDON

SEIZE block and so takes over control of the disk file (Figure 5). Figure 7 Simple real-time
The time at the SEIZE block represents the time taken to position =~ data processing system
the arm over the correct track of the disk. When the transaction
emerges from the SEIZE block, the arm is correctly positioned.
It must now wait for the record to come under the head of the
arm. The disk revolution time is assumed to be 50 milliseconds,
so the waiting time can be anything from 0 to 50 units. The
transaction is, therefore, sent to an ADVANCE block with a mean
and modifier both equal to 25.

One more condition must be satisfied before the record can
be read. The channel, which is being shared by all three disk files,
must be available at the time the record comes under the head.
To test for this condition, the transaction passes into an ADVANCE
block with zero time and a selection factor of BOTH. The channel
is represented by facility number 4, and if it is available, the
transaction passes into a HOLD block to use the channel. If the
channel is not free, the conditional selection mode at the ADVANCE
block sends the transaction to another ADVANCE block where it
waits for a period of 50 milliseconds and returns to try for the
channel again when the record next comes under the head. If
necessary, it keeps retrying in this manner until it does get
onto the channel.

When the transaction has passed through the HOLD block
representing the channel, the record has been read and the disk
file is released by moving the transaction to a RELEASE block
(Figure 6). The transaction moves into a HOLD block, using
facility number 5 to represent the processing being carried out
by the computer. When processing of the record at the HOLD
block is complete, the transaction goes to a LEAVE block to give
up the computer memory space and then goes to a TERMINATE
block to be removed from the simulation. The complete block
diagram is illustrated in Figure 7.

As described so far, transactions have no particular identity. transaction
Each is treated by a block in the same manner as any other. properties
In fact, transactions have two attributes—priority and parameters,
which influence the way they are processed by blocks.

Each transaction has a priority assigned to it. There are eight
priority levels, 0 being the lowest level which is the level set at
the time of creating the transaction. At any point in the block
diagram, the priority can be reset up or down by a PRIORITY
block illustrated in Figure 8. Where there is competition between
transactions to occupy a block or take over equipment, the service
rule established by the program is to advance transactions in
order of priority and first-in, first-out within a priority class.

Parameters are integral positive numbers that can be attached
to a transaction. Up to eight parameters can be placed on any one
transaction. They are placed there by an ASSIGN block (Figure 8)
which can use as a source for the parameter any function or any
of the system variables that are described later. An ASSIGN
block can either add to, subtract from, or replace a parameter. PRIORITY

Figure 8

DESCRIPTION OF THE SIMULATOR

Figure 9 Indirect addressing
TRANSACTION

PARAMETERS 1
2

3

o [

DIRECT INDIRECT

Figure 10 Data processing
system—using indirect
addressing

28

The meaning of parameters is determined by the program user
and depends upon the use to be made of the parameter. The
most important use of parameters is through a program feature,
called indirect addressing, that is associated with blocks. When a
block is defined normally (directly), a set of numbers must be
given to determine such factors as the mean, modifier, equipment
number, and the next blocks. With indirect addressing, one or
more of these numbers can be left unspecified at the time of de-
fining the block. Instead, the program can be instructed to take
for this number a parameter that has been assigned to the
transaction entering the block. In this way, the manner in which
the block processes the transaction depends upon the transaction
itself.

Figure 11 Listing of problem input

NAME p. € Y Z SEL NBA NBB MEAN MOD REMARKS

MESSAGES FROM A TERMINAL ARE READ INTO A COMPUTER.
A SEARCH IS MADE ON ONE OF THREE DISK FILES FOR A
RECORD WHICH IS THEN PROCESSED. THE SYSTEM HAS
THREE INDEPENDENT DISK FILES WHICH SHARE A COMMON
CHANNEL. TIME UNIT IS 1 MILLISEC.

ORIGINATE 50 25
ASSIGN FN1

ASSIGN FN2

PRIORITY

HOLD

PRIORITY

ENTER

QUEUE

SEIZE 120
ADVANCE 25
ADVANCE BOTH GO WAIT
ADVANCE TRY 50
HOLD 4 5

RELEASE *

HOLD 5 FN3
LEAVE 1

TABULATE 1

TERMINATE R COUNT TO END OF SIMULATION

FUNCTION FOR ASSIGNING MESSAGE LENGTH. RANDOM MODE

FUNCTION RN1 C5
5 2 6 4 9 6 19 8 24 10 25

FUNCTION FOR ASSIGNING DISK NUMBER. RANDOM MODE

FUNCTION RN1 D3
1 667 2 10 3

FUNCTION TO DETERMINE PROCESSING TIME. PARAMETER MODE

FUNCTION PL C2
0 25 10

CARD TO DEFINE CAPACITY OF STORE

CAPACITY 1500

CARD TO ESTABLISH TABULATION INTERVALS

TABLE M1 0 250 25 TABULATES TIME IN SYSTEM
CARD TO CONTROL LENGTH OF RUN

START 1000 RUN UNTIL 1000 TRANS, TERMINATE
END PLACED AT END OF ALL PROBLEMS BEING RUN

R. EFRON AND G. GORDON

Indirect addressing is indicated by placing an asterisk followed
by a parameter number in a field defining the block. For example,
*3 in the equipment number field of a HOLD block makes that
block use the value of parameter number 3 as the facility number,
Such an indirectly defined HOLD block entered by a transaction
with the number 15 in parameter 3 would act exactly as a HOLD
block in which the facility was specified directly as being 15.
This is illustrated in Figure 9. Indirect addressing increases the
ability of the program to represent systems. It can also sub-
stantially decrease the size of the block diagram representing
the system by making it unnecessary to duplicate segments
of the diagram which are functionally equivalent but differ in
specific values.

As an example, Figure 10 shows the same system described
before, but in this case making use of priority, parameters, and
indirect addresses. The transactions leaving the ORIGINATE block
are sent through two ASSIGN blocks. The first block places in
parameter number 1 a number representing the message length
which is derived from a continuous function, number 1, operating
in g random number mode. The second ASSIGN block sets param-
eter number 2 to be a number 1, 2, or 3 derived from a discrete
function, number 2, operating in a random number mode, which
represents the disk file to be searched. The proportion of trans-
actions sent to each of the disk files can be controlled with this
function by choosing the values of x at which it is defined; in this
case, the probabilities of going to the three disks are equal.

To illustrate the use of priority, the system is arranged to
give priority for the use of the central processing unit to new
messages arriving in the system. This is done by sending the
transactions to a PRIORITY block that sets the level of priority
to 1 just prior to the HOLD block representing the process of
reading messages into the computer, and then resetting the
priority to zero when the message has been read in. Now, with
indirect addressing, it is no longer necessary to draw a separate
segment of the block diagram for each of the transaction streams.
Instead, a single QUEUE and a single SEIZE block are used with
the queue number and the facility number specified indirectly by
parameter number 2. The remainder of the block diagram is the
same as before except that the RELEASE block that gives up the
disk file is also indirectly addressed on parameter number 2.

Two other uses of parameters are illustrated in this example.
Functions can operate in a parameter mode in which case they take
as the input variable a parameter of the transaction calling for
the function. At block number 15 of Figure 10, this feature is
used to make the processing time depend upon the message
length as indicated by parameter number 1. It is also possible
to allow a parameter to control the amount of space the transaction
occupies in a storage. This feature is used at block numbers 7
and 16 of Figure 10, to make the space occupied by the trans-
action equal to the number of characters in the message.

DESCRIPTION OF THE SIMULATOR

indirect
addressing

example of
indirect
addressing

further
uses of
parameters

Having drawn the complete block diagram, as shown in Figure
program 10, one card is punched for each block, and this set of cards, to-
input gether with some control and definition cards, forms the input to

the program. The cards are read by the program and used to set up
the simulation model, execute the simulation for a specified length
of time, and print out results in a single program run. Figure 11
shows a listing of the cards that need to be punched for the block
diagram of Figure 10. There is an assembly option in the program
that allows block numbers to be given symbolically and also
assigns sequential block numbers automatically. This option has
been employed in Figure 11. After assembly of the cards shown
in Figure 11, the block numbers are assigned as shown in Figure 10.

Figure 12 Results of simulation run

CLOCK TIME REL 52758 ABS 52758

BLK TRANS,TOTAL BLK TRANS,TOTAL BLK TRANSTOTAL BLK TRANS,TOTAL BLK TRANSTOTAL
1 0, 1074 2 , 1074 3 0, 1074 4 0, 1074 5 0, 1074
6 0, 1074 7 0, 1074 8 71, 1074 9 2, 1003 10 1, 1001
1 0, 1071 12 0, 71 13 0, 1000 14 0, 1000 15 0, 1000
16 0, 1000 17 0, 1000 18 0, 1000

FACILITY AVERAGE NUMBER AVERAGE
NR UTILIZATION ENTRIES TIME/TRANS TRANS $TRANS
1 .9769 336 153.39 65,8 0
2 .9616 333 152.35 32,8 0
3 L9987 334 157.75 36,8 0
4 .0948 1000 5.00 0 0
5 11213 2074 3.08 0 0

STORAGE CAPACITY AVERAGE AVERAGE NUMBER AVERAGE CURRENT
NR CONTENTS UTILIZATION ENTRIES TIME/TRANS CONTENTS
1 1500 606.06 .4040 15227 2099.87 984

QUEUE MAXIMUM AVERAGE TOTAL ZERO PER CENT AVERAGE TABLE CURRENT
NR CONTENTS CONTENTS ENTRIES ENTRIES ZIEROS TIME/TRANS NUMBER CONTENTS

1 32 14.52 364 7 1.9 2105.22 0 28

2 14 3.76 343 17 5.0 577.94 0 10

3 37 21.19 367 1 .3 3045.78 0 33

TABLE NUMBER 1
ENTRIES IN TABLE MEAN ARGUMENT STANDARD DEVIATION
1000 2089.295 1555.665 NON-WEIGHTED

UPPER OBSERVED PER CENT CUMULATIVE CUMULATIVE MULTIPLE DEVIATION
LIMIT FREQUENCY OF TOTAL PERCENTAGE REMAINDER OF MEAN FROM MEAN
0 0 .00 .0 100.0 .000 —1.343
250 57 5.70 5.
500 134 13.40 19.
750 105 10.50 29.
1000 47 70 34.
1250 68 41.
1500 60
1750 21
2000 37
2250 26
2500 46
2750 41

3000
3250
3500
3750
4000
4250
4500
4750
5000
5250
5500
5750
OVERFLOW

120 —1.182
.239 —1.022
.359 .861
479 .700
.508 .540
718 379
.838 218
957 L0567
1.077 .103
1.197 .264
1.316 .425
1.436 .585
1.556 .746
1.675 .907
1.795 .068
1.915 .228
2.034 .389
2.154 .550
2.273 710
2.393 871
2.513 032
2.632
2.752

88

PO I T SRR AR

USRS I NP AP D s
DO DO B e

30 R. EFRON AND G. GORDON

The assembly program also allows the user to define macros
consisting of sets of blocks describing some segment of a system
which is to be used repeatedly. Once defined, the macro is given
a name and thereafter can be called by that name. Any number
of the fields defining the blocks in the macro can be left un-
specified at the time of definition—instead they are supplied
at the time of calling the macro.

The results of a run in which 1000 messages were processed
are shown in Figure 12. Information is given about the number
of times each block is entered; the utilization made of the facilities
and storages; the size of the queues and the tabulation of the transit
times through the system. In this case, because the transit time
is measured from the time of creation, it is not necessary to use
a MARK block.

Some of the block types, illustrated in Figure 13, are concerned
with the use of logic switches and the control of transaction flow.
One block type, called LOGIC, allows a transaction to either set,
reset, or invert a logic switch. Another block type, called GATE,
is able to test the status of a logic switch, facility, or storage. The
program allows a transaction into this block only if the con-
dition being tested is satisfied. Also shown in Figure 13 is a LOOP
block which decrements a specified parameter and sends the
transaction one way or the other, according to whether the result
is zero or not (the COMPARE block is discussed later).

To show how these blocks are used in controlling the flow of
transactions, suppose that in the previous example there are
several terminals sending messages to the computer, and a simple
polling system is set up whereby each terminal in turn gets access
to the computer for a fixed length of time. If, for example, there
are three terminals, each represented by an ORIGINATE block,

the entry of messages into the system would be controlled as
shown in Figure 14. One logic switch is associated with each
terminal, and transactions leaving the ORIGINATE blocks are

Figure 14 Polling terminals with equal times

1,K3

TO COMPUTER

DESCRIPTION OF THE SIMULATOR

Figure 13

program
output

controlling
transaction
flow

simple
polling
system

31

COMPARE

system
variables

more advanced
polling system

checked by a GATE block looking for the switch to be set. Trans-
actions can enter the computer only when the switch is set.

In a small closed loop there is a single transaction cycling
around that opens and closes each logic switch in turn. This is
done by making parameter number 1 of this control transaction
represent, the number of the terminal to be checked. At the begin-
ning of a cycle, this parameter is set to 3, and it is then used at a
LOGIC block to set one of the switches by indirect addressing.
The switch remains set for a fixed length of time 7 and is then
reset when the control transaction moves to a second LOGIC
block. The LOOP block decrements the parameter by 1 and sends
the transaction to the next switch unless the parameter has been
reduced to zero, in which case it restarts the eycle. In this way, the
three logic switches are each opened, in turn, for a fixed interval 7',
thereby giving each terminal in sequence access to the computer.

The control of transaction flow in the examples described so
far has depended upon the state of facilities, storages, and logic
switches. In addition, the program can make use of various items
of data known collectively as system variables. These are numbers
that describe the state of the system, and they can be referenced
by the program through the use of symbols. For example, the
number of transactions at block 20 is represented by W20; the
contents of storage 15 by S15; the length of queue number 5 by
Q5, and so on. In addition to system properties, reference to an
absolute number, such as 6, can be made by using the symbols K 6.
It is also possible to form combinations of system variables using
simple mathematical operators to form what are called variable
statements. For example, variable statement V1 might be defined
as V1 = 86 + Q 5/K 2. This provides a system variable V1 whose
value is the contents of storage number 6, plus half the contents
of queue number 5.

To illustrate how system variables are used, suppose in the
previous example concerned with polling terminals that the system
is arranged to skip a terminal if no messages are waiting at
that terminal. The loop controlling the polling would then look
as shown in Figure 15. A COMPARE block has been added to
check whether a terminal is empty or not. This block type operates
like the GATE block, but the condition tested can be a comparison
between any two system variables. References to system variables
can be made indirectly. Here the COMPARE block is used to
check whether the number of transactions at the block indicated
by parameter number 1 of the control transaction is zero. This
parameter represents the number of the terminal to be checked
next in the polling sequence. If this number is zero, there are
no messages waiting at that terminal and the control transaction
does not enter the COMPARE block. Instead, it is diverted directly
to the LOOP block to step on to the next terminal. If there are
messages waiting, the control transaction passes through the
COMPARE block and switches a logic switch in the manner de-
scribed before.

R. EFRON AND G. GORDON

Figure 15 Polling terminals—skipping empty terminals

BENOENORNO
e <3a <3e

TO COMPUTER

Systems variables greatly enhance the logical ability of the
program. They also extend the ability to derive statistical data
about the performance of the system, since any system variable
can be tabulated by a TABULATE block to derive a statistical

distribution or it can be printed out to give a chronological record.
In addition, any system variable may be used as the input variable
of a function. The random number, clock, storage, and parameter
modes of operating functions are examples of system variables
used for this purpose.

Brief descriptions are given of some of the other block types.
The INTERRUPT block (Figure 16) represents a higher-level
use of the facility by a transaction. A transaction is admitted to
the block only if the facility it is to interrupt is not already
interrupted by another transaction. The facility remains inter-
rupted until the transaction exists from the INTERRUPT block.
If another transaction is using the facility at the first level of
usage, that transaction is suspended in its progress through the
block diagram until the interrupt concludes. The suspension is
not unconditional, but the various special conditions can be
ignored by the user, since the program maintains all the necessary
records and automatically takes the proper action in every case.
The PREEMPT block also represents a higher-level use of a facility
by a transaction, but differs from the INTERRUPT block in that
a separate block, the RETURN block, is used to signal the conclu-
sion of the interrupt.

DESCRIPTION OF THE SIMULATOR

some other
block types

Figure 16

INTERRUPT

33

PREEMT

Figure 17

ASSEMBLE

34

The SPLIT, MATCH, ASSEMBLE, and SAVEX blocks are shown
in Figure 17. The SPLIT block creates a duplicate of each trans-
action that enters the block. The transactions thus created are
said to be members of an assembly set. Further creation of trans-
actions by splitting adds members to the set. Since the duplicate
transaction may be synchronized with the original, the SPLIT
block is useful in representing simultaneous events in a system.
The MATCH blocks, used in pairs, synchronize the progress of two
transactions of an assembly set. The transactions do not join, but
continue to advance independently through the block diagram. An
ASSEMBLE block joins a specified number of transactions from
an assembly set into a single transaction. The final merging of
independently manufactured parts is frequently represented by
an ASSEMBLE block. The SAVEX block permits the user to
gather and print information from the block diagram, and to
transmit information from one transaction to another. Entry to
a SAVEX block causes storage of the value of a specified system
variable in certain memory locations—referred to as savex
locations.

Not all the block types and features of the gpss 11 program
have been described, but it is hoped that enough information has
been given to illustrate the principles of the program and its
operation.

CITED REFERENCES

1. K. Blake and G. Gordon, “Systems Simulation With Digital Computers,”’
IBM Systems Journal 3, No. 1, 14 (1964).
2. G. Gordon, “A General Purpose Systems Simulator,”” IBM Systems
Journal 1, 18 (1962).
. General Purpose Systems Simulator, Program Library, Reference 7090-
CS-05X, International Business Machines Corporation.
. General Purpose Systems Simulator II, Reference Manual, International
Business Machines Corporation.
. General Purpose Systems Simulator 11, Program Library, Reference 7090-
CS-13X, International Business Machines Corporation.

R. EFRON AND G. GORDON

