The general nature of digital simulation of a system is discussed.

A machine-independent examination of the associated programmaing
problem s conducted and llustrated by means of an example.

Finally, the nature and application of simulation languages are noted.

Systems simulation with digital computers
by K. Blake and G. Gordon

By system, we have in mind the meaning accorded by Webster,
“a set of objects united by some form of regular interaction or
interdependence.” Change in a system is regarded as change in
the properties of the objects or in the relationships between the
objects. That is, when one considers a physical system or conceives
of a hypothetical system, one perceives certain distinct objects
such as machines, customers, messages, etc. Each object is seen
to possess certain properties of interest that may be used to define
it, machine availability, ecredit status, or length of a message.

Most important, one perceives certain changes taking place
as a result of events in the system. These changes, such as the
loading of a machine, making a payment, or sending a message,
describe relations among the objects and determine changes in
the values of their properties.

Associated with the design of a system, two objectives are al-

Figure 1 Direct and indirect .
° ways present. We wish to:

experimentation

v — 1. Be able to predict performance before the system is built.
OF SYSTEM 2. Have assurance that the system design selected is optimal in
terms of the design criteria adopted.

|
4

EXPERIVENT EXPERIMENT Consequently, systems studies are frequently conducted with

: some representation of the system, called a model. By working
i with a properly constructed model, the systems engineer is able
i RESULTS OF to make inferences about a proposed system from experiments

EXPERIMENT
conducted with the system model (Figure 1) and accomplish the

ON SYSTEM ON MODEL

IBM SYSTEMS JOURNAL * VOL. 3 * NO. 1 * 1964




first design objective. We note that the use of models amounts
to replacing ‘‘direct” by “indirect’”’ experimentation. Either
physical or mathematical models may be employed.

Physical models of a system represent the system to be studied
in a concrete manner by establishing some other physical system
that is equivalent to the system being studied. The alternative
system may be a scale model which is more convenient to experi-
ment with than the actual system, such as, for example, the use
of scale models in wind tunnels for the design of aircraft. Other
types of physical models rely upon an analogy between the system
being studied and some physical system of a different nature which
is easier to build or manipulate. Objects in the system being studied
can be identified with elements of the model, and the relationships
between the objects of the system can be reflected in the relation-
ships between the elements of the model because of some under-
lying similarity in the physical laws that control the two systems.
For example, electrical networks can be used to study problems
of mechanical vibration because of the similarity between the
equations governing the performance of electrical circuits and
mechanical systems. A correspondence can be established between
the inductance, capacitance, and resistance of electrical circuits
and the inertia, resilience, and friction of mechanical systems.

The second design objective can be partially satisfied by
constructing a number of different models, measuring the per-
formance of each and, by means of a comparative examination
of results, sclecting the best design. However, building physical
models is usually expensive and time consuming. IFurthermore,
there is no assurance that another design (other than those con-
sidered) would not be superior.

In contrast, a mathematical model of a system represents the
system in a more flexible manner. It is constructed by identifying
the objects and properties of the system with mathematical varia-
bles and representing the relationships of the system in the form
of mathematical relations among these variables. Analytic tech-
niques can then be applied. Other mathematical relations implicitly
determined but not explicitly included in the given ones may be
derived. For example, the model may include equations which
can be solved to determine functional relationships between varia-
bles that are not given directly by the model description. In
particular, it is often possible to determine relationships that may
be evaluated in order to make the desired predictions relative to
performance of the system. Sometimes this procedure can be
carried out in terms of parameters and, by means of optimization
techniques, values determined for assignment to the parameters
which will correspond to an optimal system design.

With complex systems, however, analytic methods often be-
come very difficult (or even impossible in terms of current mathe-
matical knowledge).

If analytic techniques are not possible, mathematical models
may be used to derive information about the system performance

SYSTEMS SIMULATION WITH DIGITAL COMPUTERS

physical
models

mathematical
models

digital
simulation

15




simulation with
digital computers

Figure 2 Simple telephone
exchange

CROSS LINKS

LINES 2] 3] ¢4

1
ON HOOK

2
OFF HOOK

3
ON HOOK

4
OFF HOOK

5
OFF HOOK

6
ON HOOK

7
OFF HOOK

by following the change of state of the system resulting from the
succession of events affecting the system. This can be accom-
plished by using numerical techniques to follow the corresponding
changes in the mathematical model, and the technique is called
digital simulation.

Of course, a ‘‘succession of events’” suggests presence of time
as the single independent variable, so that we are now focusing
attention on a particular type of system—but one including a wide
variety of important instances.

Model construction permits the use of any relationship that
can be described satisfactorily by a mathematical or a logical
statement. In particular, digital simulation is extremely valuable
for studying systems in which model relationships are not de-
terministic and the behavior of some variables must be deseribed
by probability distributions. With digital simulation, it is rela-
tively easy to accompany variables by probability distributions
and, at each mention of a variable, to simulate random sampling.
Where random processes are involved, simulation depends on
the disciplines of statistical inference and experimental design
for help in estimating probability distributions and in interpreting
results.

Within the limits of model accuracy, digital simulation
predicts the performance of a system before it is built. Finite
experimentation never guarantees an optimal design, but the
economy and speed of digital simulation permits more trial and
improvement than is feasible with physical models.

There are two principal tasks involved in preparing a digital
computer to carry out a simulation. A model of the system to be
simulated must be produced, and a program must be written to
carry out the procedures involved in following the changes in the
model. Essentially, a digital computer is a device for storing
numbers and manipulating the numbers according to certain rules
embodied in the computer program. To make a computer simulate
a system, therefore, it is necessary to create an image of the system
in the form of a set of numbers that represent the state of the
system, and to write a computer program that embodies the
relationships controlling the changes of state in the system.

To illustrate the principles involved in a digital simulation,
consider the simple example of a telephone exchange illustrated
in Figure 2. The system consists of a number of telephones, each
connected to an exchange by its own line. The exchange contains
a number of cross links which have the ability to connect any two
lines together subject to the condition that only one connection
at a time can be made to any given line. The current state of the
system (Fig. 2), is that line 2 is connected to line 5 through cross
link 1, and line 4 is connected to line 7 through cross link 2.

One way in which this system can be represented as a set of
numbers is illustrated in Figure 3, which has three tables of
numbers recording the state of the various system elements.
One table shows the current status of each line. A zero means the

K. BLAKE AND G. GORDON




line is not connected, a mon-zero number means the line is con-
nected, and the value of the number represents the link used for the
connection. A second table shows the status of the links. Here a
zero means the link is not being used, and a one means that the
link is being used. There is also a table of calls that are either in
the system or waiting to enter the system. Several numbers are
needed to record the information relevant to each call. Different
numbers show the origin and destination of the call, the time it
is due to begin and, for calls that are connected, the time the call
will finish (this information being generated as explained below).

The sets of numbers in these three tables record the current
state of the system and detail the potential events with their
expected times of execution. They therefore constitute a model
of the system which can be interpreted to determine the next
state of the system. The simulation program must manipulate
this model in a way that represents the succession of states followed
by the real system. To do this with the system being described,
it must have a number that represents the clock time existing in the
real system. It must also have a procedure by which to introduce
new calls to the system as the clock advances. A predetermined
list of calls ordered by time of arrival and giving their duration
may have been prepared, or a computational procedure can be
employed to derive from probability distributions the interval
between successive arrivals and the length of each call.

The set of numbers in Figure 3, for example, shows that at
time 1027, the connections in the system are as shown in Figure 2,
and it can be deduced that the next event will be that the call
between lines 2 and 5 will be disconnected at time 1053. The
simulation program determines that this is the next event, and
proceeds to record the change of state that will occur at that
time by modifying the numbers in Figure 3 to the form shown
in Figure 4. The clock has been updated, the terminated call has
been removed, and the fact that lines 2 and 5 and cross link 1
are now free is noted.

If a potential event cannot be implemented because of some
condition in the system, the simulation program must determine
this fact and take whatever action is dictated by the logic of the

Figure 3 System image before change

LINES CROSS LINKS BEGIN FINISH

1 1016 1053

1 1019 1064

] 1056

0 1072

CLOCK

N PN

SYSTEMS SIMULATION WITH DIGITAL COMPUTERS 17




Figure 5 General organization

of simulation

ENTER
NEW
INPUT

CHANGE

GENERATE
OUTPUT

18

Figure 4 System image after change
CALLS
LINES CROSS LINKS BEGIN FROM T0 FINISH

0 1019 4 7 1064

1056 3 7

1072 6 2

N

system. For example, the next potential event after time 1053
will be that a new call from line 3 attempts to connect to line 7
at time 1056. However, line 7 will be busy at that time. If the
logic of the system is that such a blocked call will be lost, the
program must remove this call. If, however, a blocked call waits
until the line being called becomes free, then the program must
remember this fact and offer line 7 to line 2 as soon as the call
between 4 and 7 is terminated.

By following the state of the system, step by step, in the manner
that has been illustrated, a simulation can follow the behavior
of the system. With appropriate programming, a great deal of
valuable information can be derived about the performance of
the system by accumulating statistics on such factors as queue
lengths, equipment utilization and the time taken to complete
transactions of the system.

There are many ways in which a simulation program could
be organized, and a complete procedure for writing simulation
programs cannot be given here. The over-all operations to be
performed by a simulation program, however, can be illustrated
as shown in Figure 5. Given a model of the system, the program
must first find the next event that might occur in the system.
Among the potential occurrences, it may be time to enter a new
input into the system, and the program must arrange for this
entry. Having found the next potential event, the program must
study the relationships inherent in the system and determine
whether the event can be executed. If so, the state of the model
is changed. If not, the program proceeds to the next potential
event, noting that the blocked event may re-appear as a future
event when conditions in the system change.

At the time of changing the state of the model, it may be
necessary to extract some statistics which will form part of the
output, showing how the system performs. This cycle of operations
is repeated as many times as is necessary to complete the simula-
tion, and upon completion, there may be a final phase of com-
putation for gathering statistics and reporting on the performance
of the system.

The operations being performed in this process of simulation

K. BLAKE AND G. GORDON




are reflected in the programming tasks illustrated in Figure 6.
The model representing the system must be converted into a set
of tables such as that shown in Figure 3. Determining the next
event of the system involves scanning the events recorded in
tables, and introducing new inputs involves the generation of
new data. Determining whether an event can be executed requires
a number of logical tests. According to the results of these tests,
the tables that constitute the model must be updated or the
program begins another cycle of actions. Generating the output
involves the computation of statistics and organizing these sta-
tistics in reports.

In constructing the model that represents the system, the model
main problems to be considered are the efficient use of computer construction
memory space and the effect of the model organization on the
simulation processing time. In some parts of the model, such as the
line and cross link status tables of Figure 3, the number of ele-
ments is known and the required table size is fixed once the amount
of information to be recorded about the elements has been deter-
mined. The program must constantly refer to this information to
carry out the tests that determine whether an event can be
executed or not. The main concern, therefore, is to organize such
data compactly to save space and yet minimize the amount of
time spent extracting fields and decoding information.

Other parts of the model, such as the records of calls in the
system of Figure 3, represent elements that fluctuate in number
and tend to arrive and depart in a random manner. Such records
must be scanned to determine the sequence of events in the
system. Careful consideration must therefore be given to the
efficient organization of such records in order to preserve space
while minimizing scanning time.

Two basic methods can be used to represent the flow of time Figure 6 Programming tasks
in a simulation, and these methods influence the way in which a performed in simulation
scan is organized. In some simulations, the clock is updated in GENERATE
uniform intervals of time; the scan is then aimed at finding
any events coinciding with the new clock time. A second method
is to update the clock to the next most imminent event. Usually
one scan is needed to identify the next clock time, and a second
scan is then needed to pick out the events that coincide with this
time. In a system in which events can be expected to occur in a
regular manner, the first method is usually more efficient. Where
events occur unevenly in time, the second method is usually
more efficient. Frequently the scan is, in fact, a number of scans
arranged to consider the different categories of events separately.
The next event in each category is determined first, and the next
system event is chosen from among these.

Following the general procedure that has been outlined, it is
possible to write a special program for simulating each system to
be studied. The maximum possible flexibility is usually incorpo-
rated in these programs by arranging an easy modification of the COMPUTE
various system operation options that are under the designers’ e

SCAN
EVENTS

SYSTEMS SIMULATION WITH DIGITAL COMPUTERS 19




simulation
languages

control. The effects of these design options on system performance
can then be checked with different simulation runs. The usual
procedure is to arrange that such options are entered as input
data for the simulation program used in initializing the model.

However, recent years have seen the development of many
general purpose programs aimed at simplifying the tasks of
performing simulations on a variety of models. In general, such
programs provide a language with which to describe the model
of the system and a set of routines capable of carrying out the
simulation procedure. The task of simulating a system then
becomes one of deseribing the model in the simulation language
and of leaving the establishment of the program’s tables and the
process of simulation to be performed automatically by the
general purpose simulation program.

The various general purpose simulation programs that are
available differ in the extent to which they can be applied to
different systems and in the degree to which they render the
simulation process automatic. Some programs concentrate on a
particular class of systems problems, such as job shop operation
or inventory control. They are thereby able to employ a language
specifically designed for that class of problem and are also able
to make the simulation process highly automatic by reflecting
the structure of the system in the model and scanning procedure.
Other programs, such as gpss 11,' provide a language that can be
applied generally to a broad class of systems while maintaining a
relatively fixed set of procedures for carrying out the simulation
automatically. Yet other programs, such as simscrrpr,” provide a
language suitable for a broad class of systems and allow for greater
flexibility in organizing the simulation procedures.

The simulation program best suited for a particular simulation
study depends upon the nature of the system and upon the pro-
gramming skill of the individual conducting the study. As a general
rule, an increase in the flexibility of a simulation program is ob-
tained at the cost of requiring more understanding of programming
proeedures.

The future will undoubtedly see a steady improvement in
general purpose simulation programs resulting from a better
understanding of simulation languages evolving from applications
of simulation and from the use of more skillful programming
techniques.

CITED REFERENCES

1. R. Efron and G. Gordon, “A General Purpose Digital Simulator and
Examples of its Application: Part I—Description of the Simulator,”” IBM
Systems Journal 3, No. 1, 22 (1964).

2. B. Dimsdale and H. M. Markowitz, “A Description of the siMscripT
Language,” IBM Systems Journal 3, No. 1, 57 (1964).

K. BLAKE AND G. GORDON




