The general considerations underlying the design of the system’s
CcoBOL compiler are discussed.

A brief outline of the operation and structure of the compiler is
included.

Finally, attention is focused on certain techniques which are in-
corporated within the compiler.

Design of an integrated programming
and operating system

Part V: The system’s COBOL compiler

general design
considerations

by R. T. Dorrance

This paper describes the general considerations governing the
design of the system’s 7090/94 coBoL compiler (18cBe),"? gives a
brief outline of the structure of the compiler and explains some
of the techniques that were incorporated.

IBcBe operates under control of the 1BjoB monitor which is in
turn under the control of the system’s basic monitor, 1Bsys. Input
to the compiler is a coBor source program. Qutput from the
compiler consists of an augmented replica of the source program,
a list of messages describing errors detected during compilation,
and an intermediate tape of generated symbolic instructions.
IsMAP, a separate system component also under control of 1BIOB,
assembles the generated symbolic instructions into a form accept-
able to 1BLDR. Compiler and object program input/output func-
tions are performed by 1ocs.

In order to achieve simplicity in structure and speed in opera-
tion, the compiler was designed to retain all of the source program’s
symbolic names and their associated attributes in storage. Thus,
random references to the attributes can be made, and the necessity
of bringing such information in and out of memory is avoided.

IBcBc is broken into eleven phases whereas its predecessor,
the 7090 COMMERCIAL TRANSLATOR compiler, consisted of but four.
As soon as a function is completed, the memory space utilized
by the function is reassigned. This approach (used with discretion

IBM SYSTEMS JOURNAL * SEPTEMBER-DECEMBER 1963




to avoid the necessity of extra passes over the information streams)
has had a marked affect on the compiler’s speed by providing the
memory space necessary to apply certain techniques desecribed
later in the paper.

Excessive use of input/output devices can lead to slow com-
pilation. A common attack on the problem involves retention of
information in storage in the hope that overflow spilling can be
avoided. Iscsc utilizes conditional spilling for most of its major
information streams with the result that time benefits are realized
for all but relatively large source programs.

Some of the instruction generators are able to represent given
functions by in-line instructions or by subroutine linkages. The
former improves execution speed while the latter conserves space.
The compiler can make the choice of generation mode (subject to
overriding control by the user) according to the nature of the
function. For example, space is conserved for on-line printing
conversions while speed savings are obtained for like conversions
in arithmetic expressions.

Guessing is attempted for minor source program errors in
format but is avoided for errors in syntax. Many compiler instruc-
tions and much user misunderstanding are saved by the simplicity
of the standard response of the compiler: deletion of the offending
clause, issuance of an error message, and resumption of scanning
at the next recognizable clause.

As mentioned above, the compiler consists of eleven program
phases. The first of these remains in storage throughout the com-
pilation process. The other ten phases are loaded into storage
successively with each new phase replacing all or most of its
predecessor. Loading of the eleven phases occurs once for each
compilation of a source program.

Phase 1 contains a supervisory routine, a communication
region, and a set of general purpose subroutines which are used
by more than one phase of the compiler. The supervisory routine
controls the phase to phase and compiler to monitor transitions.
The communication region permits preservation of information
over more than one phase. The general purpose subroutines per-
form many functions; e.g., control of the numerous compiler tables,
isolation and classification of source program data, conversion
of values, and various dictionary operations.

Phase 2 generates object program initialization instructions
and scans the source program’s Identification Division.® Like all
other phases, this phase may generate requests for the issuance of
specific diagnostic messages.

Phase 3 scans the source program’s Environment Division and
makes dictionary entries for object program input/output files
and specially defined hardware device names.

Phase 4 scans the source program’s Data Division. Principal
functions achieved are the definition of data item names and
formats, the preservation of more file attributes, and the prepara-
tion of text for Phase 5.

THE SYSTEM’S COBOL COMPILER

the
translation
process




scanning

method

324

Phase 5 uses dictionary and input text information to ealculate
the lengths and relative locations of data items, to generate data
storage reservation, and to generate length caleulation subroutines
for variable length arrays.

Phase 6 scans the source program’s Procedure Division. Two of
its principal functions are the definition of procedure names and
the preparation of a condensed internal text representing the
content of properly written source program statements.

Phase 7 expands, converts, and permutes the text of the
preceding phases in order to render it suitable for input to the
instruction generators in Phase 10.

Phase 8 summarizes the file information and produces 10cs
control cards.

Phase 9 uses dictionary and table information to generate ad-
dress calculation subroutines for subseripted expressions. Utilized
dictionary and table information is destroyed at the conclusion of
this phase to make room for the bulk of the subsequent phase.

Phase 10 contains most of the instruction generators. Input to
the generators is the statement text prepared by Phase 7. Gener-
ator output is an encoded text converted immediately by a general
purpose subroutine to the 1BMAP symbolic instruction form.

Phase 11 processes accumulated message requests and pro-
duces replete diagnostic messages cross-referenced to source pro-
gram card numbers. Upon conclusion of Phase 11, control is
returned to the 1BJoB monitor for transition to rBMAP.

The remainder of the paper is devoted to a description of
certain techniques that have been incorporated within the com-
piler.

Although thorough syntactical scanning of source programs
is potentially an expensive method in both space and time, the
following approach proved to be both practical and rapid.

The 1BCBC scanning method may be considered as a sequence
of questions posed by the compiler and computed responses—
wherein the action taken and the choice of the next question de-
pend upon the response. For example, in scanning an identified
clause, proper syntax can be established by use of an appropriate
series of such questions.

Iscse scanning is governed by a set of syntax vectors, each of
which occupies three machine words. The first word contains a
specific question (relative to a particular coBoL word) or a cate-
gorical question (relative to class membership, such as whether an
entity is a literal, arithmetic operator, or data~-name). The second
word contains both a location of an executable stream of instrue-
tions and a location of the subsequent syntax vector. The second
word is chosen if the response is ‘“‘true.” Similarly, the third word
has two location references and is used if the response is “false.”

A group interpreter routine controls matching of questions with
responses and determines the resultant routing. Scanning pro-
gresses alternatively in or out of an interpretive mode since each
execution of a stream of action instructions is concluded by a

R. T. DORRANCE




return to the group interpreter for processing of the next syntax
vector. Significantly, the group interpreter has two entry points.
The first is used to request classification of the next source pro-
gram information group before another question is posed. The
second dictates retention of the current information group for
further interrogation.

The group interpreter is supported by four other routines. The
unit level scan obtains and classifies the next source program unit
(such as an alphanumeric name). The group level scan calls upon
the unit level scan until able to classify the next information group
(such as a data name with associated qualifying names). The
subscript scan assists the group level scan in the examination of
subscript expressions. The dictionary routine enters name defini-
tions in the symbolic dictionary, recognizes references to defined
names, and prepares the internal text equivalent of source program
information groups.

A technique aimed at preventing capacity overflow of any of
the compiler’s numerous tables is accomplished by means of the
Coalesced Indirect Table Reference Unification Scheme (CITRUS).

Cirrus permits dynamic definition of the boundaries of a
general table region. Individual tables are assigned to the general
table region and “float” about in the region in compliance with
the requirements for space.

Each table is governed by a table control block which contains
the current location of the table origin and the relative position
of the most recent table entry. With the use of crrrus, a table
may be opened or eclosed at any time. The reserved area for an
individual table may be reduced to encompass only the actual
table data. Automatic reduction of the reserved area and/or
relocation of tables may occur to make room for another table
growing beyond its reserved boundary. It is important to note
that such growth is permitted.

Statistics gathered on crrrus performance indicate that the
time spent in movement of table data is normally negligible.

The compiler constructs two dictionaries in storage. The
symbolic dictionary contains defined source program names, and
the attribute dictionary contains properties associated with the
names.

Name definitions appear in the symbolic dictionary in the
same order as in the source program. This fact simplifies evaluation
of qualified name references since a qualification hierarchy is
determined by source program order. Association of a name
reference with a previously defined name may seem to imply a
linear search of the symbolic dictionary. Actually, such associa-
tion is achieved by applying a transformation to the name to
obtain a relative position in an intermediate table. Entries in
the intermediate table point to appropriate symbolic diction-
ary entries. Difficulties arising from the fact that identical
values may result from the transformation of different names
are resolved by provision for association of a set of pointers,

THE SYSTEM’S COBOL COMPILER

table
handling

dictionary
methods




locating and
remembering

error and
warning
messages

with positive identification achieved by name comparison.

Each symbolic or attribute dictionary entry occupies one
machine word. Overlong entries are stored in an overflow table,
and appropriate pointers become their dictionary representation.
The use of one word per entry permits very rapid processing.

Two methods of referring to object program logical records
are used. One, called the locate mode, permits references to logical
records which are variably located within input/output buffer
areas. This mode tends to conserve storage and is fast when the
frequency of reference is low. The other, called the transmit mode,
requires that successive logical records be moved between a
variably located input/output area and a fixed location work area.
This mode is attractive when the frequency of references is high
or, in case of an output file, when a significant amount of constant
information is to be included with each logical record.

The compiler normally generates instructions for the locate
mode but allows the transmit mode, using the coBoL statements

INTO and WRITE FROM. The latter mode
poses no special problems since each data field appears in a fixed,
predetermined location. In the locate mode, however, the relative
position of a field within a logical record is known, but the starting
address of the logical record must be computed. The resolution of
this problem involves assignment of an erasable storage word,
called a base locator, for each input/output file. The base locator
is set each time a logical record is read or written.

Stated simply, an index register is loaded from a base locator
for each reference to a field whose location is relative to the partic-
ular base address. In reality, however, the loading is significantly
reduced by the compiler’s ability to remember a loaded value over
a limited sequence of generated instructions. Further reduction in
loading requirements results from the fact that loading of different
bases is rotated over the set of available index registers.

The compiler diagnostic messages are designed to be com-
prehensive and clear.

The messages are comprehensive in the sense that they are
issued for any detected error or questionable practice. The intent
is to avoid the need for many compilations by determining ail
evident difficulties. Since this philosophy can lead to voluminous
message output, an effort was made to prevent the generation
of messages containing redundant information.

Clarity results from the use of a standard message form which
consists of a severity code (warning, error, or disaster), a source
program card number, a specific statement of the difficuity, and
indication of the compiler action taken. Parametric substitution
is used to tailor the message to the particular fault. For example,
a message referring to a variable’s improper format may include
the variable’s name, its actual format, and the format assumed
by the compiler. Clarity is also obtained by minimal use of abbre-
viations and ambiguous terminology, and by the use of an initial
heading to define the message format.

R. T. DORRANCE




The basic text for the messages is concentrated in the final
compiler phase rather than being scattered throughout the various
phases. As a result, all of the messages are processed and printed
last. The common alternative technique of printing each message
immediately following the representation of the associated state-
ment was rejected for several reasons. First, such a scheme requires
distribution of full message text through all phases of a compiler.
Second, the rejected scheme makes necessary the time-consuming
merging of error messages with the output representation of the
source program (in order that the messages for errors detected
on passes other than the first appear in proper order). On the
other hand, the scheme adopted requires the presence of only the
skeletal forms necessary for issuing message requests. Further-
more, the implemented scheme provides storage for elaborate
message construction from the message skeletons and substitution
parameters, permits the use of the same message by different
phases, and centralizes the message function for easy maintenance
and review.

ACKNOWLEDGMENT

Credit for the concepts presented in this article belong to the
members of both the 7090/94 coBoL and the 7090/94 COMMERCIAL
TRANSLATOR projects.

CITED REFERENCES AND FOOTNOTES

1. For a description of the COBOL language, see IBM 7090/7094 Program-
ming Systems: IBJOB Processor: Part 5: COBOL Compiler (IBCBC),
Systems Reference Library J28-6260, International Business Machines
Corporation, 1962.

. For a description of the organization of IBCBC and its relationship to
other IBJOB components, see IBM 7090/7094 Programming Systems:
IBJOB Processor, Systems Reference Library (C28-6275, International
Business Machines Corporation, 1963.

. “Identification Division”, “Environment Division’’, “Data Division”’ and
“Procedure Division” are the formal names of the parts of a COBOL
source program. The reference in Footnote 1 discusses the makeup and
purpose of each part.

THE SYSTEM’S COBOL COMPILER

327




