
T h e  general  structure  and  operation of the  compiler  are  examined. 

Indexing  procedures for array  reference  and  iteration  control  within 
the object programs  produced  by  the  compiler  are  detailed. 

Design of an  integrated 
and  operating  system 
Part IV: The system’s FORTRAN 

by R. Larner 

This  paper is devoted to  the 7090/94 version of the system’s 
FORTRAN compiler, IBFTC, which translates FORTRAN IV language 
programs into MAP assembly language programs. 

In addition to previous FORTRAN, FORTRAN IV includes language 
for double precision and complex arithmetic. Although conse- 
quently  a more complicated language, this did not in itself  neces- 
sitate significant design modifications. On the other  hand, the 
compiler’s IBSYS/IBJOB environment had a marked influence on 
its design since (1) certain translation  and compilation functions 
are performed, respectively, by the system’s assembler and loader, 
and (2) IOCS is available during compiler and object program 
operation.  Thus, design of the compiler was substantially sim- 
plified. This,  in turn, permitted more attention to other design 
problems, in  particular: 

Generation of optimal  object program code (in the sense of 
speed of execution) especially for the execution of iterative 
computations. 
Preservation of modularity within the compiler so that sub- 
sequent extension of its language or functional improvements 
in its parts could  be readily accommodated. 
Attainment of higher translation speeds. 

In this paper, we  will (1) describe the over-all structure  and 

programming 

compiler 
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operation of the compiler and ( 2 )  discuss in some detail the  nature 
of the object program code produced for array reference and 
iteration control. Discussion (2) is included since the speed of 
execution of an object program derived from a source program 
written  in FORTRAN is very often governed by  the method em- 
ployed for array reference and  iteration control. This  matter has 
received a good deal of attention  in  the present compiler design. 

The next section of the paper describes the general structure 
and  operation of the compiler and  the final section details the 
form and placement of the indexing instructions within an object 
program. 

Structure and operation of the compiler 
The compiler produces three  sets of MAP object program instruc- 
tions : 

Set I. Storage allocating pseudo-operations for data  and variables. 
Set 9. Logical and  arithmetic  instruction sequences corresponding 

Set 3. Indexing instructions for array reference and iteration 
to the executable source program statements. 

control. 

For general reasons of efficiency, the  translation is performed in 
three phases. The first phase scans and internally encodes the 
entire source program, producing an intermediate file  which is 
later used in compilation of Set 2 object program code. During 
the second phase, Set 1 is compiled. Sets 2 and 3 are produced 
during the  third phase. 

Basically, the compiler consists of a small control program, 
compiler the FORTRAN Compiler Control program (FCC), and programs for 
structure the three phases mentioned above. The  latter programs are desig- 

nated, respectively, as Phase One (PHI), the Storage Allocator (SA), 
and  the Alternator (ALT). The Alternator is actually the control 
program for  the final phase and  its  function is to alternate control 
between two principal subroutines, the Indexer (IND) and  the 
Main Compiler ( M C ) . ~  The hierarchy of control among these 
programs is shown in Figure 1, with the controlling programs 

Figure 1 IBFTC subprogram  organization 
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above  and  the controlled below. To effect one translation, FCC 

calls the  three phases  in succession. 
IBFTC is  a collection of closed subroutines. In  addition to  

those  already  mentioned,  there  are  four  other  important  sub- 
routines : 

Diagnostic  Routine.  A utility  subroutine used for issuing diag- 
nostic messages and assigning  severity levels to  them. 
Table X Routine. An I/O routine  tailored to  accept one Table X 
statement a t  a time as  output from  Phase  One,  and  to issue 
one Table X statement  at a time  to  Phase Two. 
Table  Routine. A  routine which dynamically assigns fixed 
length blocks of core storage to  a variety of tables,  chains  the 
the blocks together,  and performs  routine  information  retrieval 
functions. 
MAP Code  Generator. An interpretive  string  concatenation 
subroutine used to  fabricate the IBMAP input cards. 

Figure 2 illustrates  the usage of the  latter  programs;  again  the 
controlling  programs are shown  above the controlled. 

To  the monitor, FCC is  a closed subroutine  representing the 
entire compiler and for that reason is sometimes  referred to  as 
IBFTC. 

Phase One makes one pass  over the source  program,  reducing first 
it statement  by  statement  to  tabular form.  This process results phase of 
in  the  formation of the following tables: compilation 

Table X .  This  table is a file containing an encoded representa- 
tion of each  executable statement  appearing  in  the source program. 
Each executable source program statement is represented by one 
or more Table X statements.  Each of the  Table X statements 
contains, as its first  word, an  internal formula  number and a 
number  identifying the  statement  type.  There is a  unique  format 
for the  text  after  the identifier  for  each type. For non-arithmetic 
text,  the  entries  in  Table X are,  for  the most part, straightforward 
tabulations of the source statements. For arithmetic  statements, 
an  entry consists solely of an ordered Lambda  string, which is a 

Figure 2 IBFTC subroutine usage 
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Table 1 Example of 
a Lambda string 

Level no.  Operator Operand 
2 C 
2 D 
1 + 2 
1 + B 
0 - A 

* 
* 

- 

string of words describing the  arithmetic (or logical) expression, 
ordered correctly for computation, but independent of machine 
language. The Lambda  string requires one word per entry.  Each 
entry is called a Lambda  triple,  where “triple” refers to a level 
number,  an operand, and  an operator. The level number identifies 
a subexpression. The level numbers  may be operands of triples 
in other subexpressions. To illustrate, the Lambda  string  for the 
expression A = B + C*D is shown in  Table 1. For additional 
detail  on  Lambda  strings, the reader is referred to  the literature.’ 

Name  Tables .  The Name  Table is a  dictionary of all source 
program variables,  function names, and  subroutine names. Each 
entry contains  two words: the first  contains the alphanumeric 
representation of the name and  the second contains  a bit  string 
describing the name  in  terms of type  and usage. 

TR Tables. A family of tables which are constructed,  used, 
and  abandoned by  the compiler as it performs the  translation 
process. A single table is made up of a set of blocks that are 
chained together  in  a  master pool of erasable blocks. The blocks 
of a particular  table  are  not necessarily sequential  and  there is 
no minimum or maximum number  set aside for any  particular one. 
Storage allocation for  the TR tables is controlled by  the  Table 
Routine.  During  Phase One, TR tables  are formed to store 
EQUIVALENCE, COMMON, DIMENSION, FORMAT, and DATA 
statement information. 

Internally,  Phase One may be divided into a:  

Control  program. 
Classification routine. 
Dictionary scan. 
Family of statement processors. 
Arithmetic  master  scan. 
Arithmetic level analysis  subroutine. 
A Lambda  string reordering and  optimization  subroutine. 
In addition  there is a common set of utility  subroutines, the 

most  important of which is a  group of character collecting routines. 
These  routines collect symbols and  punctuation  from  the source 
cards  in any of several delimiting modes. The  Phase One control 
program collects a statement from the monitor  and calls the 
classification routine to classify the  statement as either  arithmetic 
or non-arithmetic. If non-arithmetic, it  calls the dictionary scan 
to identify the  statement,  then calls the correct statement proc- 
essor. If arithmetic, it calls the  arithmetic  master scan. The 
arithmetic  master scan may also be used by  other  statement 
processors, such as those used to process statements involving 
CALL and IF. All statement processors return control to  the Phase 
One control program when finished. 

The  arithmetic master  scan collects, in  order across the  state- 
ment,  certain  characters including operators  and  operands. This 
collection of characters is called an N-word and  contains the 
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nucleus of what will become a Lambda  triple.  Every  time  an 
N-word is  collected, the level analysis  subroutine  is called. This 
subroutine,  as a result of its many calls by  the  arithmetic  master 
scan,  generates a Lambda  string  for  the  arithmetic expression. 
At the end of the expression, the  arithmetic  master  scan calls the 
reordering and  optimization  routine which reorders the  Lambda 
string  for  computation,  putting  it  in proper  form  for inclusion in 
the  text of a Table X statement. 

During  the second phase of compilation, the Storage  Allocator 
processes the Name  Table  and those TR tables which catalog 
EQUIVALENCE, COMMON, DIMENSION, FORMAT, and DATA 
source statements. As its first task,  the  Storage Allocator compiles 
FORMAT statements.  The TR space occupied by  the FORMAT 
table  is freed  immediately  afterward. 

COMMON and EQUIVALENCE variables  are processed next. 
A string of variables with  separating  increments  is  set  up for  each 
COMMON block. For each of these  strings,  matching  strings 
may be  produced  from the EQUIVALENCE table  information.  To 
lay  out  all of the  strings, several  temporary TR tables  must  be 
employed.  Considerable checking is  done to  insure  proper parity 
of double word variables. For each  string,  a  set of BSS and EQU 
pseudo-operations  is compiled, allocating the storage  for the 
variables.  Here, good use is  made of the multi-location  counter 
feature of the MAP language, i.e., each COMMON block label  is 
defined in  the  object program as a  control  section which, in  turn, 
is assigned a  unique symbolic location  counter of the same  name. 
Thus, COMMON statements  are simply  compiled into a USE3 
pseudo-operation followed by  a  sequence of BSS pseudo-operations. 
Next, a similar matching of  non-COMMON variables  against 
EQUIVALENCE strings  is  performed,  and the storage  allocation 
pseudo-operations  again are compiled. 

A scan is then  made over the Name  Table to  compile the 
storage  allocation  for  variables not  appearing  in COMMON or 
EQUIVALENCE statements.  Lastly,  the DATA statement  tables 
are processed, i.e.,  location  counters are reset to  their  appropriate 
variable  definitions and  the  data  is compiled. This technique allows 
“scatter”  loading of data  into COMMON blocks from  several 
BLOCK DATA programs. 

Normally4,  during the  third  and  last phase of compilation, 
the executable part of the object  program  is compiled. One se- 
quential  pass is made  over Table X to compile the executable 
code. During  this  phase, compilation  is  controlled by  the Alter- 
nator, which controls two  subprograms, the Indexer  and  the  Main 
Compiler. 

The Alternator  controls  the  statement-by-statement processing 
of Table X. By performing  a  concurrent  scan of TR tables which 
catalog  branches and DO loops, the Alternator  can  determine 
when its position in  Table X corresponds to  the beginning of a 
basic block5 or DO nest.  Everytime it is a t  one of these  positions, 
it calls the  Indexer, which immediately compiles all of the indexing 
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Figure 3 IBFTC 
memory utilization 
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instructions  for that basic block or DO nest.  Then,  the  Main Com- 
piler is called once for  each  Table X statement  within  range of 
the DO. Each  time  the  Indexer is called, it generates  certain TR 

tables.  These  are used by  the  Main Compiler for  making  array 
references within the range just processed by  the  Indexer,  and  by 
the Alternator  for  collating  the  indexing  instructions  with  the 
Main Compiler instructions. 

After processing all  Table X statements,  the  Alternator com- 
piles the prologue for the initialization of program argument 
references, and compiles storage  allocation  pseudo-operations  for 
temporary  storage  as required by the compiled statements. When 
this  is finished an END card  is compiled and  the  object  program 
file is  complete. 

The  Main Compiler (MC), when called, translates a given 
Table X entry  into  object  program language  (MAP).  A  pointer to 
the  Table X entry  is passed to  MC for use as  an argument.  A 
minimal  control  program  within MC inspects the Table X identifier 
word, compiles a  location  symbol  for it,  and calls a statement 
processor according to  the  statement  type. Corresponding to each 
type of Table X statement,  there is a  unique  statement processor. 
For those statement processors dealing  with Lambda  strings, 
there  is  a common routine which translates  Lambda  strings  into 
object code. The  Lambda  routine,  together  with  its  subroutines, 
constitutes the bulk of the  Main Compiler. 

The order in which one  carries out  the  “and”  and ((or” opera- 
tions of a complex logical expression may affect the  time required 
for its evaluation. IBFTC translates logical expressions by  means 
of an  “anchor  point” technique. For example, the evaluation of 
LI .AND. L2 .AND. L3 is carriled out  by evaluating L l  first. If it 
is  false, then  the  evaluation of L2 and L3 is skipped. Non-zero 
logical variables are considered true,  and zero variables are con- 
sidered false. Hence, the 7090 instructions NZT (non-zero test) 
and ZET (zero test)  are employed,  always followed by  transfers 
to some “true” or “false”  point  in  the expression. The equivalent 
of this technique  is employed for  relational expressions, after  the 
right  side of the relational  operator  has been subtracted  from  the 
left.  DeMorgan’s  theorem6  is  not  applied t o  the  Lambda  string 
in  Table X by  Phase One. It is applied by  the  Lambda  routine 
when determining the proper test  and  branch for a  particular 
logical or relational  operation. 

The  Main Compiler builds up several TR tables  during the 
course of a  compilation  for processing by  the Alternator  after  the 
Table X pass.  These tables  catalog  temporary  storage  requirements 
of compiled arithmetic expressions and  points a t  which references 
to  program arguments  must be  initialized in  the prologue. 

The Indexer, by scanning  appropriate TR tables,  generates a 
program’s  indexing  instructions.  This  function will be  indicated 
in some detail by  the discussion of indexing in  the  object program 
which is given in  the  last section of the paper. 

Figure 3 shows IBFTC memory  utilization  (not to  scale).  The 
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upper  memory  boundary is a parameter furnished by  the Basic 
Monitor (IBSYS). The  boundary between the TR tables  and  the 
Name  Table  is  not fixed until  all  Name  Table  entries  have been 
made,  thereby allowing maximum  utilization of erasable core 
storage  for TR tables. All other  boundaries  are  functions of 
assembly  parameters. As indicated at  the  bottom of the figure, 
the  three core maps corresponding to  the  three phases of com- 
pilation  are shown. 

The procedure adopted for  handling  general core storage 
tables  (the TR tables) has  made it possible to  avoid  all but one 
I/O scratch file during the translation. As previously  mentioned, 
there is no fixed maximum  or  minimum  space  set  aside for any 
one  table.  This  approach  has proved successful in avoiding table 
overflow and  has  greatly simplified the development of the com- 
piler. 

The TR table  area is shown in  Figure 3. Available  space  (de- 
pending on which phase  is  operating)  is  segmented  by the  Table 
Routine  into a set of blocks of fixed length.  When one of the 
phases  requires  space, the  Table  Routine is called to furnish  a 
block. When more space is  required, an identical call is  made. The 
blocks are chained  together  forwards  and  backwards  by the  Table 
Routine using the first word of each  block. The blocks for a  given 
table  are  not necessarily contiguous.  Request calls may also  be 
made to  the  Table  Routine  to locate the first entry of a given 
table,  or to  release all blocks of a  given  table, or to  release leading 
or trailing blocks from  a  given block. 

Sequential  scanning is of course slower with TR tables than 
with sequentially  stored tables; however,  most of the TR tables 
are  not scanned but,  rather,  are referred to  indirectly through 
pointers  in  Table X and  in  other TR tables. 

Object  program indexing and  iteration  control 
Generally, the speed of execution of  FORTRAN-COMpiled object 
programs will be governed by the coding for the indexing  associated 
with  programmed array references and  iterations. We now examine 
the  nature of the  object code produced by IBFTC for  indexing 
procedures. 

FORTRAN arrays  are  stored  in core columnwise in  ascending 
memory  sequence. For instance,  a 3 by 4 by 2 array A would be 
stored  as shown  in  Table 2. In  this example the location of the 
general  element, A(I,J,K), is A+12(K- l )+3(J - l )+ ( I - l ) .  

In  general, if A had  dimension (M,N,P) then  the location of the 
element A(I,J,K) would be A+MN(K-l)+M(J-l)+(I-1) .  

Distinct procedures are employed to  produce code corre- 
sponding to  parts of the source program which are, respectively, 
within  and  not  within  the range of DO statements. 

The  part of the source program  outside the range of all DO 
statements  is divided into a set of basic blocks, defined as contiguous 
stretches of program  into which there  are  no  transfers. Basic 
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blocks are  treated  by  the  translator  as  units  for purposes of 
optimization.  At the beginning of a block, array element references 
within it are considered undefined; these indices must all be com- 
puted  and/or  set  either a t  the beginning of the basic block or 
within it. 

The base address of the  array,  adjusted  by  the contribution 
of any  constant  terms  in  the complete address expression, is 
inserted  in the address field of an instruction which references a 
subscripted  variable. This address is  modified by an index register 
containing, in two's complement form, the  appropriate  increment 
(a function of subscript  variables  and coefficients). 

As an example, assume there is a 5 by 10 array A and  a source 
reference A(I,3*J-2). The complete address of A(I,3*J-2) is 
A+(3J-3)5+1-1. The address field of the  instruction is set  equal 
to A-16 and  the index register is set  equal to  the two's complement 
of 15JS-I. A source reference A(2,2) will simply produce an object 
program reference A+6. Note  that  the Last dimension of an  array, 
10 in  the examples given, has no effect in  either the address  or 
index. 

For  optimization  within a basic block, the same index registers 
are used for  all  quantities that are expressed by  the same  formula 
and assignment priority is given to those formulas which occur 
most frequently. The index quantity is computed and loaded a t  
the earliest point in the basic block a t  which all the subscript 
variables  have attained  their  last value. 

According to a control card  option,  up  to seven index registers 
may  be used by  the object program. Index register 4 is reserved 
for immediate usage only;  that is, for calling sequence usage, 
address  computation,  and  for index quantities  for which there is 
no  other  available register. The  latter  are termed spill tags. At 
the beginning of a basic block, the full set of index registers is 
available  and  assignments are made, according to  frequency 
priority,  in  the  order 1, 2, 3, 5, 6, 7. If there  are more formulas 
than available registers, the excess  become spill tags, which are 
loaded into index register 4 before every usage. It has been found 
that spill  tags occur very  rarely,  even when only registers 1, 2, 
and 4 are available to  the program. 

Table 3 displays an example of a basic block composed of 
six equations. It is assumed that only three index registers (I, 2, 
and 4) will be  available  for the resulting object  program.  Equations 
1, 3, 5, and 6 involve reference to  array elements. Equations 2 
and 4 (not explicity given) refer t o  setting  the indices J and K 
appropriately to accomplish the  particular computation required 
by  the program. To follow the example, it will be useful to note 
that  the D array  has 2 rows. Examination of the object code 
reveals that index register 1 is used in  addressing: A(K) appearing 
in  Equations 1 and 3; B( K )  appearing  in  Equation 5 ;  and A( K-  1)  
and A(K+l )  which appear  in  Equation 6. Index register 2 is used 
in addressing: D(1,I-1) appearing  in  Equation I ;  and D(I,I--I), 
D(I,I), and B(3*1-3) which appear  in  Equation 5 .  Index  registers 
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Table 3 Compilation of a basic block 

Source  Program Object Program 
(1)  A(K)=B(J)+D(I,  1-1) LAC K, 1 

LDQ I 
VLM =3B17, , 18 
PAC , 2 
LAC J, 4 
CLA B - l , 4  
FAD D - 7 , 2  
ST0 A - 1 , 1  

(2) J = . . .  

(3) A(J)=A(K) CLA A - 1 , 1  
LAC J, 4 
ST0 A - I ,  4 

(4) E ( = . . .  

(5) D(1, 1-1)  =D(I,  I)+R(3*1-3)-R(K) LAC K, 1 
CLA D - l , 2  
FAD B - 4 , 2  
FSB B - 1 , l  
ST0 D - 7 , 2  

(6) A(K- l )=A(K+l )+A(L)  LAC I,, 4 
CLA A - 1 , 4  
FAD A, 1 
ST0 A - 2 , l  

1 and 2 are loaded only once. Index register 4 is used for the spill 
tags associated with B(J) in  Equation 1, A(J) in  Equation 3 and 
A(L) in  Equation 6 so that it is necessary to load the register 
three  times.  Note that  the spill tags  have been associated with 
items less frequently used in  the program. 

from the non-DO case. A complete DO nest is treated  as  an  opti- 
mization unit, whereas the basic block was used in  the non-DO 
case. An index register quantity  in a DO nest is always an integral 
multiple of the index of the immediately controlling DO. The 
address field of an instruction  contains  the  value of any remaining 
terms of an  array reference. As a  result, the address field may 
require a modification within the body of the object  program. 
The objective is to minimize the number of instructions  within 
the innermost DO loops. Since the address field value is not  a 
function of the immediately controlling DO index, it may usually 
be initialized outside the loop, often outside bounding loops as 
well. The procedure reduces the  number of index register quantities 
required to  be active  within the DO. As an example, assume we 
have a 5 by 10 array A, a 5 by 2 by 10 array Z and  a singly dimen- 
sioned array Q. Within  the immediate range of a DO with index J, 
references to A(J,I),  A(J,P),  Z(J,3*L12),  A(J+2,P-3) all  require the 
same index register quantity J. Further, A(I,J), Z(L,J,L), Q(5*J) 
all  require the same index register quantity 55. 

The procedure for indexing with DOs present is quite different DO case 
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Figure 4 Use of index registers 
a DO nest 

DC I .  I = _ _ .  

DO, J =  ... 

i, DO, K=l,.  . . 

Instructions to per€orm address modifications are generated 
and placed outside the nest, or a t  a position as near to  the outside 
as possible, depending on points of redefinition of its factors.  This 
"push  out" is affected by  transfers  in  the  nest, fixed point  variables 
on the left of arithmetic  statements,  input  lists, CALL arguments, 
etc. Similarly, the computation of initial load values, test values 
and increment  values is pushed out  as  far  as possible. 

Consider the DO nest example shown in  Figure 4 which has 
array element symbols shown a t  various  points to indicate that, 
a t  the  particular  point,  the program references the  array.  In  the 
object  program, the address modification instructions will be 
placed as indicated  in  Table 4. C(J) requires no address modifica- 
tion. A(M,L) requires no index register. The  initial load value for 
the index quantity for D(I,J,K) and D(I,M,K), being variable  and 
a function of I, is computed outside the J loop. No other load values 
require object  program  computation. All initial  loads  are per- 
formed just  outside the controlling DO loop. 

Table 4 Placement of array reference instructions 

Object program placement 

outside the nest 
outside the nest 
outside the K loop 
outside the first J loop 
outside the first J loop 
outside the second J loop 
outside the nest 
immediately following the transfer  destination shown 

In this  nest, 5 index registers will  suffice for the complete nest 
with  no saves or reloads required. If only 2 registers are available, 
then  they will suffice for  the I and J loops, but will be saved and 
reloaded at  the peripheries of the K loop. No spill tags  are required 
in  the example as  the complete set of available registers may be 
used in  the immediate range of every DO. As in  the non-DO case, 
spill tags  always require index register 4 and  are reloaded before 
every usage. 
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FOOTNOTES 

1. In  other literature, this principal set of programs  operative during  the 
third phase of compilation (the Alternator,  Indexer, and  Main Compiler) 
have  been referred to collectively (and incongruously) by  the formal name 
Phase Two. 

2. This  notational technique is essentially that developed by  Peter B. Sheridan 
and reported in his  paper, “The Arithmetic Translator-Compiler of the 
IBM  FORTRAN Automatic Coding System”  appearing in Communica- 
tions of the ACM, February, 1959. 

3. “USE” is a MAP pseudo-operation which specifies a location  counter to 
be used for  relative  location  assignment of successive instructions. The 
MAP language allows multiple  location  counters to  be specified. 

4. In  case of a BLOCK  DATA compilation, the  third phase  is not executed. 
The purpose of BLOCK  DATA  compilation in  IBFTC is to allow the 
insertion of literals in  COMMON areas. 

5. A basic block is a contiguous set of program instructions which is outside 
the range of any DO statement  and  into which there  are no  transfers. 

6. The application of DeMorgan’s  theorem to logical expressions allows, for 
example, the expression “.NOT. ( U  .AND. V)” to  be replaced by “(.NOT. 
U) .OR. (.NOT. V).” Such a distribution of .NOT.’s yield expressions 
which are most easily computed  (require the  fewest machine instructions). 
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