This paper describes the system’s 7090/94 FORTRAN compiler. Com-~
ment is made on the design problem and objectives.

The general structure and operation of the compiler are examined.

Indexing procedures for array reference and iteration conirol within
the object programs produced by the compiler are detailed.

Design of an integrated programming
and operating system

Part IV: The system’s FORTRAN compiler
by R. Larner

This paper is devoted to the 7090/94 version of the system’s
FORTRAN compiler, 1BFrc, which translates FORTRAN 1v language
programs into MAp assembly language programs.

In addition to previous FORTRAN, FORTRAN IV includes language
for double precision and complex arithmetic. Although conse-
quently a more complicated language, this did not in itself neces-
sitate significant design modifications. On the other hand, the
compiler’s 1Bsys/1BJOB environment had a marked influence on
its design since (1) certain translation and compilation functions
are performed, respectively, by the system’s assembler and loader,
and (2) 1ocs is available during compiler and object program
operation. Thus, design of the compiler was substantially sim-
plified. This, in turn, permitted more attention to other design
problems, in particular:

o Generation of optimal object program code (in the sense of
speed of execution) especially for the execution of iterative
computations.

Preservation of modularity within the compiler so that sub-
sequent extension of its language or functional improvements
in its parts could be readily accommodated.

Attainment of higher translation speeds.

In this paper, we will (1) describe the over-all structure and
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operation of the compiler and (2) discuss in some detail the nature
of the object program code produced for array reference and
iteration control. Discussion (2) is included since the speed of
execution of an object program derived from a source program
written in FORTRAN is very often governed by the method em-
ployed for array reference and iteration control. This matter has
received a good deal of attention in the present compiler design.

The next section of the paper describes the general structure
and operation of the compiler and the final section details the
form and placement of the indexing instructions within an object
program.

Structure and operation of the compiler

The compiler produces three sets of Mar object program instruc-
tions:

Set 1. Storage allocating pseudo-operations for data and variables.

Set 2. Logical and arithmetic instruction sequences corresponding
to the executable source program statements.

Set 8. Indexing instructions for array reference and iteration
control.

For general reasons of efficiency, the translation is performed in
three phases. The first phase scans and internally encodes the
entire source program, producing an intermediate file which is
later used in compilation of Set 2 object program code. During
the second phase, Set 1 is compiled. Sets 2 and 3 are produced
during the third phase.

Basically, the compiler consists of a small control program,
compiler the FORTRAN Compiler Control program (rcc), and programs for
structure  the three phases mentioned above. The latter programs are desig-

nated, respectively, as Phase One (pu1), the Storage Allocator (sA),
and the Alternator (aur). The Alternator is actually the control
program for the final phase and its function is to alternate control
between two principal subroutines, the Indexer (inp) and the
Main Compiler (mc).! The hierarchy of control among these
programs is shown in Figure 1, with the controlling programs

Figure 1 IBFTC subprogram organization
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above and the controlled below. To effect one translation, rcc
calls the three phases in succession.

Isrrc is a collection of closed subroutines. In addition to
those already mentioned, there are four other important sub-
routines:

¢ Diagnostic Routine. A utility subroutine used for issuing diag-
nostic messages and assigning severity levels to them.
Table X Routine. An 1/0 routine tailored to accept one Table X
statement at a time as output from Phase One, and to issue
one Table X statement at a time to Phase Two.
Table Routine. A routine which dynamiecally assigns fixed
length blocks of core storage to a variety of tables, chains the
the blocks together, and performs routine information retrieval
functions.
Map Code Generator. An interpretive string concatenation
subroutine used to fabricate the rBmaP input cards.

Figure 2 illustrates the usage of the latter programs; again the
controlling programs are shown above the controlled.

To the monitor, Fcc is a closed subroutine representing the
entire compiler and for that reason is sometimes referred to as
IBFIC.

Phase One makes one pass over the source program, reducing
it statement by statement to tabular form. This process results
in the formation of the following tables:

o Table X. This table is a file containing an encoded representa-
tion of each executable statement appearing in the source program.
Each executable source program statement is represented by one
or more Table X statements. Each of the Table X statements
contains, as its first word, an internal formula number and a

number identifying the statement type. There is a unique format
for the text after the identifier for each type. For non-arithmetic
text, the entries in Table X are, for the most part, straightforward
tabulations of the source statements. For arithmetic statements,
an entry consists solely of an ordered Lambda string, which is a

Figure 2 IBFTC subroutine usage
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Table 1

Example of

o Lambda string

Level no.

Operator

Operand

2
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string of words describing the arithmetic (or logical) expression,
ordered correctly for computation, but independent of machine
language. The Lambda string requires one word per entry. Each
entry is called a Lambda {riple, where “triple’’ refers to a level
number, an operand, and an operator. The level number identifies
a subexpression. The level numbers may be operands of triples
in other subexpressions. To illustrate, the Lambda string for the
expression A = B 4+ C*D is shown in Table 1. For additional
detail on Lambda strings, the reader is referred to the literature.”

e Name Tables. The Name Table is a dictionary of all source
program variables, function names, and subroutine names. Each
entry contains two words: the first contains the alphanumerie
representation of the name and the second contains a bit string
describing the name in terms of type and usage.

e TR Tables. A family of tables which are constructed, used,
and abandoned by the compiler as it performs the translation
process. A single table is made up of a set of blocks that are
chained together in a master pool of erasable blocks. The blocks
of a particular table are not necessarily sequential and there is
no minimum or maximum number set aside for any particular one.
Storage allocation for the Tr tables is controlled by the Table
Routine. During Phase One, TR tables are formed to store
EQUIVALENCE, COMMON, DIMENSION, FORMAT, and DATA
statement information.

Internally, Phase One may be divided into a:

Control program.

Classification routine.

Dictionary scan.

Family of statement processors.

Arithmetic master scan.

Arithmetic level analysis subroutine.

A Lambda string reordering and optimization subroutine.

In addition there is a common set of utility subroutines, the
most important of which is a group of character collecting routines.
These routines collect symbols and punctuation from the source
cards in any of several delimiting modes. The Phase One control
program collects a statement from the monitor and calls the
classification routine to classify the statement as either arithmetic
or non-arithmetic. If non-arithmetic, it calls the dictionary scan
to identify the statement, then calls the correct statement proc-
essor. If arithmetic, it calls the arithmetic master scan. The
arithmetic master scan may also be used by other statement
processors, such as those used to process statements involving
CALL and IF. All statement processors return control to the Phase
One control program when finished.

The arithmetic master scan collects, in order across the state-
ment, certain characters including operators and operands. This
collection of characters is ealled an N-word and contains the
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nucleus of what will become a Lambda triple. Every time an
N-word is collected, the level analysis subroutine is called. This
subroutine, as a result of its many calls by the arithmetic master
scan, generates a Lambda string for the arithmetic expression.
At the end of the expression, the arithmetic master scan calls the
reordering and optimization routine which reorders the Lambda
string for computation, putting it in proper form for inclusion in
the text of a Table X statement.

During the second phase of compilation, the Storage Allocator
processes the Name Table and those Tr tables which catalog
EQUIVALENCE, COMMON, DIMENSION, FORMAT, and DATA
source statements. As its first task, the Storage Allocator compiles
FORMAT statements. The Tr space occupied by the FORMAT
table is freed immediately afterward.

COMMON and EQUIVALENCE variables are processed next.
A string of variables with separating increments is set up for each
COMMON block. For each of these strings, matching strings
may be produced from the EQUIVALENCE table information. To
lay out all of the strings, several temporary Tr tables must be
employed. Considerable checking is done to insure proper parity
of double word variables. For each string, a set of BSS and EQU
pseudo-operations is compiled, allocating the storage for the
variables. Here, good use is made of the multi-location counter
feature of the MaP language, i.e., each COMMON block label is
defined in the object program as a control section which, in turn,
is assigned a unique symbolic location counter of the same name.
Thus, COMMON statements are simply compiled into a USE’
pseudo-operation followed by a sequence of BSS pseudo-operations.
Next, a similar matching of non-COMMON variables against
EQUIVALENCE strings is performed, and the storage allocation
pseudo-operations again are compiled.

A scan is then made over the Name Table to compile the
storage allocation for variables not appearing in COMMON or
EQUIVALENCE statements. Lastly, the DATA statement tables
are processed, i.e., location counters are reset to their appropriate
variable definitions and the data is compiled. This technique allows
“scatter” loading of data into COMMON blocks from several
BLOCK DATA programs.

Normally®, during the third and last phase of compilation,
the executable part of the object program is compiled. One se-
quential pass is made over Table X to compile the executable
code. During this phase, compilation is controlled by the Alter-
nator, which controls two subprograms, the Indexer and the Main
Compiler.

The Alternator controls the statement-by-statement processing
of Table X. By performing a concurrent scan of Tr tables which
catalog branches and DO loops, the Alternator can determine
when its position in Table X corresponds to the beginning of a
basic block® or DO nest. Everytime it is at one of these positions,
it calls the Indexer, which immediately compiles all of the indexing
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Figure 3 IBFTC
memory utilization
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instructions for that basic block or DO nest. Then, the Main Com-
piler is called once for each Table X statement within range of
the DO. Each time the Indexer is called, it generates certain TR
tables. These are used by the Main Compiler for making array
references within the range just processed by the Indexer, and by
the Alternator for collating the indexing instructions with the
Main Compiler instructions.

After processing all Table X statements, the Alternator com-
piles the prologue for the initialization of program argument
references, and compiles storage allocation pseudo-operations for
temporary storage as required by the compiled statements. When
this is finished an END ecard is compiled and the object program
file is complete.

The Main Compiler (mc), when called, translates a given
Table X entry into object program language (MAP). A pointer to
the Table X entry is passed to mc for use as an argument. A
minimal control program within Mc inspects the Table X identifier
word, compiles a location symbol for it, and calls a statement
processor according to the statement type. Corresponding to each
type of Table X statement, there is a unique statement processor.
For those statement processors dealing with Lambda strings,
there is a common routine which translates Lambda strings into
object code. The Lambda routine, together with its subroutines,
constitutes the bulk of the Main Compiler.

The order in which one carries out the “and” and “or” opera-
tions of a complex logical expression may affect the time required
for its evaluation. IBrrc translates logical expressions by means
of an “anchor point” technique. For example, the evaluation of
L1 .AND. L2 .AND. L3 is carried out by evaluating L1 first. If it
is false, then the evaluation of 1.2 and L3 is skipped. Non-zero
logical variables are considered true, and zero variables are con-
sidered false. Hence, the 7090 instructions NZT (non-zero test)
and ZET (zero test) are employed, always followed by transfers
to some ““true’’ or “false’” point in the expression. The equivalent
of this technique is employed for relational expressions, after the
right side of the relational operator has been subtracted from the
left. DeMorgan’s theorem® is not applied to the Lambda string
in Table X by Phase One. It is applied by the Lambda routine
when determining the proper test and branch for a particular
logical or relational operation.

The Main Compiler builds up several Tk tables during the
course of a compilation for processing by the Alternator after the
Table X pass. These tables catalog temporary storage requirements
of compiled arithmetic expressions and points at which references
to program arguments must be initialized in the prologue.

The Indexer, by scanning appropriate Tr tables, generates a
program’s indexing instructions. This function will be indicated
in some detail by the discussion of indexing in the object program
which is given in the last section of the paper.

Figure 3 shows 1BFTC memory utilization (not to scale). The

R. LARNER




upper memory boundary is a parameter furnished by the Basic
Monitor (1Bsys). The boundary between the TR tables and the
Name Table is not fixed until all Name Table entries have been
made, thereby allowing maximum utilization of erasable core
storage for Tr tables. All other boundaries are functions of
assembly parameters. As indicated at the bottom of the figure,
the three core maps corresponding to the three phases of com-
pilation are shown.

The procedure adopted for handling general core storage
tables (the TR tables) has made it possible to avoid all but one
1/0 scratch file during the translation. As previously mentioned,
there is no fixed maximum or minimum space set aside for any
one table. This approach has proved successful in avoiding table
overflow and has greatly simplified the development of the com-
piler.

The Tr table area is shown in Figure 3. Available space (de-
pending on which phase is operating) is segmented by the Table
Routine into a set of blocks of fixed length. When one of the
phases requires space, the Table Routine is called to furnish a
block. When more space is required, an identical call is made. The
blocks are chained together forwards and backwards by the Table
Routine using the first word of each block. The blocks for a given
table are not necessarily contiguous. Request calls may also be
made to the Table Routine to locate the first entry of a given
table, or to release all blocks of a given table, or to release leading
or trailing blocks from a given block.

Sequential scanning is of course slower with Tr tables than
with sequentially stored tables; however, most of the Tr tables
are not scanned but, rather, are referred to indirectly through
pointers in Table X and in other Tr tables.

Object program indexing and iteration control

Generally, the speed of execution of ForTRAN-compiled object
programs will be governed by the coding for the indexing associated
with programmed array references and iterations. We now examine
the nature of the object code produced by 1BFrc for indexing
procedures.

FoRrTRAN arrays are stored in core columnwise in ascending
memory sequence. For instance, a 3 by 4 by 2 array A would be
stored as shown in Table 2. In this example the location of the
general element, A(I,J,K), is A+12(K—1)43(J—1)+(I1—1).

In general, if A had dimension (M,N,P) then the location of the
element A(1,J,K) would be A+MN(K —1)4+M(J —1)+(I-1).

Distinct procedures are employed to produce code corre-
sponding to parts of the source program which are, respectively,
within and not within the range of DO statements.

The part of the source program outside the range of all DO
statements is divided into a set of basic blocks, defined as contiguous
stretches of program into which there are no transfers. Basic
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blocks are treated by the translator as units for purposes of
optimization. At the beginning of a block, array element references
within it are considered undefined; these indices must all be com-
puted and/or set either at the beginning of the basic block or
within it.

The base address of the array, adjusted by the contribution
of any constant terms in the complete address expression, is
inserted in the address field of an instruction which references a
subscripted variable. This address is modified by an index register
containing, in two's complement form, the appropriate inerement
(a function of subscript variables and coefficients).

As an example, assume there is a 5 by 10 array A and a source
reference A(I,3%*J—2). The complete address of A(I,3*J—2) is
A+(37—-3)5+I—1. The address field of the instruction is set equal
to A—16 and the index register is set equal to the two's complement
of 157+1. A source reference A(2,2) will simply produce an object
program reference A+6. Note that the last dimension of an array,
10 in the examples given, has no effect in either the address or
index.

For optimization within a basic block, the same index registers
are used for all quantities that are expressed by the same formula
and assignment priority is given to those formulas which occur
most frequently. The index quantity is computed and loaded at
the earliest point in the basic block at which all the subscript
variables have attained their last value.

According to a control card option, up to seven index registers
may be used by the object program. Index register 4 is reserved
for immediate usage only; that is, for calling sequence usage,
address computation, and for index quantities for which there is
no other available register. The latter are termed spill tags. At
the beginning of a basic bloek, the full set of index registers is
available and assignments are made, according to frequency
priority, in the order 1, 2, 3, 5, 6, 7. If there are more formulas
than available registers, the excess become spill tags, which are
loaded into index register 4 before every usage. It has been found
that spill tags occur very rarely, even when only registers 1, 2,
and 4 are available to the program.

Table 3 displays an example of a basic block composed of
six equations. It is assumed that only three index registers (1, 2,
and 4) will be available for the resulting object program. Equations
1, 3, 5, and 6 involve reference to array elements. Equations 2
and 4 (not explicity given) refer to setting the indices J and K
appropriately to accomplish the particular computation required
by the program. To follow the example, it will be useful to note
that the D array has 2 rows. Examination of the object code
reveals that index register 1 is used in addressing: A(K) appearing
in Equations 1 and 3; B(K) appearing in Equation 5; and A(K—1)
and A(K+1) which appear in Equation 6. Index register 2 is used
in addressing: D(I,1—-1) appearing in Equation 1; and D(I,I1-1),
D(L,1), and B(3*1—3) which appear in Equation 5. Index registers
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Table 3 Compilation of a basic block
Source Program Object Program
(1) A(K)=B(J)+D({I, I-1) LAC K, 1
LDQ
VLM =3Bl17,, 18
PAC
LAC
CLA
FAD
STO

2y J=---

(3) AW)=A(K) CLA
LAC
STO
4) K=--- .

— .

(5) DI, I—1) =D(I, I)+B(3*I -3)—B(K) LAC
CLA
FAD
FSB
STO

OxEwo R
L
CRE

=
- | w |
=~

(6) AK-1)=A(K+1)+A(L)

B
L
— H

1 and 2 are loaded only once. Index register 4 is used for the spill
tags associated with B(J) in Equation 1, A(J) in Equation 3 and
A(L) in Equation 6 so that it is necessary to load the register
three times. Note that the spill tags have been associated with
items less frequently used in the program.

The procedure for indexing with DOs present is quite different
from the non-DO case. A complete DO nest is treated as an opti-
mization unit, whereas the basic block was used in the non-DO
case. An index register quantity in a DO nest is always an integral
multiple of the index of the immediately controlling DO. The
address field of an instruction contains the value of any remaining
terms of an array reference. As a result, the address field may
require a modification within the body of the object program.
The objective is to minimize the number of instructions within
the innermost DO loops. Since the address field value is not a
function of the immediately controlling DO index, it may usually
be initialized outside the loop, often outside bounding loops as
well. The procedure reduces the number of index register quantities
required to be active within the DO. As an example, assume we
have a 5 by 10 array A, a 5 by 2 by 10 array Z and a singly dimen-
sioned array Q. Within the immediate range of a DO with index J,
references to A(J,I), A(J,P), Z(J,3%L,2), A(J+2,P—3) all require the
same index register quantity J. Further, A(I,J), Z(L,J,L), Q(5%J)
all require the same index register quantity 5J.
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Figure 4 Use of index registers
a DO nest
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Instructions to perform address modifications are generated
and placed outside the nest, or at a position as near to the outside
as possible, depending on points of redefinition of its factors. This
“push out’ is affected by transfers in the nest, fixed point variables
on the left of arithmetic statements, input lists, CALL arguments,
ete. Similarly, the computation of initial load values, test values
and increment values is pushed out as far as possible.

Consider the DO nest example shown in Figure 4 which has
array element symbols shown at various points to indicate that,
at the particular point, the program references the array. In the
object program, the address modification instructions will be
placed as indicated in Table 4. C(J) requires no address modifica-
tion. A(M,L) requires no index register. The initial load value for
the index quantity for D(I1,J,K) and D(I,M,K), being variable and
a function of I, is computed outside the J loop. No other load values
require object program computation. All initial loads are per-
formed just outside the controlling DO loop.

Table 4 Placement of array reference instructions

Array reference Object program placement

AL L) outside the nest

B(1, M) outside the nest

D(, J, K) outside the K loop

DI, M, K) outside the first J loop

AL ) outside the first J loop

AW, T) outside the second J loop

AM, L) outside the nest

A1, K) immediately following the transfer destination shown

In this nest, 5 index registers will suffice for the complete nest
with no saves or reloads required. If only 2 registers are available,
then they will suffice for the I and J loops, but will be saved and
reloaded at the peripheries of the K loop. No spill tags are required
in the example as the complete set of available registers may be
used in the immediate range of every DO. As in the non-DO case,
spill tags always require index register 4 and are reloaded before
every usage.
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FOOTNOTES

1.

In other literature, this principal set of programs operative during the
third phase of compilation (the Alternator, Indexer, and Main Compiler)
have been referred to collectively (and incongruously) by the formal name
Phase Two.

. This notational technique is essentially that developed by Peter B. Sheridan

and reported in his paper, ‘“The Arithmetic Translator—Compiler of the
IBM FORTRAN Automatic Coding System” appearing in Communica-
tions of the ACM, February, 1959.

. “USE” is a MAP pseudo-operation which specifies a location counter to

be used for relative location assignment of successive instructions. The
MAP language allows multiple location counters to be specified.

. In case of a BLOCK DATA compilation, the third phase is not executed.

The purpose of BLOCK DATA compilation in IBFTC is to allow the
insertion of literals in COMMON areas.

. A Dbasic block is a contiguous set of program instructions which is outside

the range of any DO statement and into which there are no transfers.

. The application of DeMorgan’s theorem to logical expressions allows, for

example, the expression “.NOT. (U .AND. V)” to be replaced by “(.NOT.
U) .OR. ((NOT. V).” Such a distribution of .NOT.’s yield expressions
which are most easily computed (require the fewest machine instructions).
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