
This  paper  outlines  the  structure  and  operation  of  the  system‘s 
loader. 

Th,e new  system  functions  which  afect   the loader  are  related  to  the 
additional  f t~nctims  which  the  loader  performs. 

Descriptions of the  algorithms  employed  by  the  loader  for  symbolic 
unit assignment  and  bufer  allocation  are  included. 

Design of an  integrated  programming 
and  operating system 
Part 111: The expanded function of the loader 

by R. Hedberg 

additional Historically, the principal  functions of a  loader  have been to: 
functions of 
the loader 

Determine  the  operational locations of a  program’s  part,s 
(instructions  and  data). 
Translate  all non-absolute  references  (relative  location ad- 
dresses of data  and inst,ructions, and  inter-program  part 
references) to  their  absolute forms. 
Make  the  initial placement of data  and instructions  in core SO 

that  the program  may be properly  executed. 

However, the loader (IBLDR) within the IBSYS/IBJOB system  per- 
forms  a  number of additional  functions.  The  preceding  paper 
(Part 11) has explained how the  system  has been  constructed t,o 
permit  program  segmentation  with  the use of control  sections to  
accommodate  modular  program  design. As a consequence of this 
feature of the  system,  the loader  plays  a  larger role in assigning 
the location of program  parts.  Other  features which affect the 
loader  relate t o  channel and I/O unit  assignment,  and to  buffering 
within the object  programs.  Thus, IBLDR must perform  functions 
in  addition  to  the historical  ones. It must: 

Remove the control  section structure  and bransform the in- 
structions and  data of the various  program  parts  into a single 
operational  entity. 
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Make  certain  determinations  relative to channel and I/O unit 

Make  certain  determinations  relative to  the  number, core 
assignment. 

location and assignment of buffers. 

In  this  paper we will discuss the loader  relative to  the above 
functions,  outline the  structure  and  operation of the loader, and 
describe the symbolic unit assignment and buffer allocation 
algorithms. 

The  program’s control  section structure  is  not  disturbed  by 
the assembly process. It is the loader that  must eliminate the 
control  section structure  and  transform  the  instructions  and  data 
of the  various  program  parts  into a single operational  entity.  This 
transformation  requires the loader to  determine the  appropriate 
operational  locations of the program’s  parts  and  to  make  the 
necessary memory  assignments. The loader must  interpret  the 
control  cards to  determine,  for  example,  whether: 

Only  certain  parts of the program are  to be  loaded to form the 

Certain  parts of the program  are t’o be obtained  from the 

Certain  parts of the  program  are to  be  linked as program 

desired  object  program. 

library. 

overlay’ segments. 

Relative to  overlay  linkage  (which the  programmer  indicates 
by  means of control  cards  inserted a t  appropriate  points between 
subprogram  decks), the loader  assumes the responsibility of 
checking  whether the resulting  overlay  operations are logically 
consistent (e.g., a call for  a  program part  that would subsequently 
destroy  the call would be  improper).  The loader  automatically 
supplies the proper  link  reading  instructions  for the object pro- 
gram. 

A  large part of the loader’s activity  is concerned with  control 
section processing. All intra-program references that have  not been 
reduced to  relative  numeric  addresses  by IBMAP are  in  the  form 
of inter-control-section references. As such,  they  are processed in 
a uniform  manner. The  techniques used for  control  section proc- 
essing are of interest  in  that  no table-searching  mechanism is 
used. The process uses hashing: chaining  methods, and a  special 
technique  for  detecting  nested  control  sections.  Control  section 
processing is described in  the  1iteratu1-e.~ 

In  the IBSYS/IBJOB system,  the physical I/O units assigned to 
an object  program  are  not identified until load time. A programmer 
specifies I/O units by means of unit requests. The symbolic unit 
assignment  algorithm  incorporated  within the loader  makes  judg- 
ments” as  to which channels and  units  “best”  satisfy  the  unit 
requests. The  algorithm  is described in some detail  in a later 
section. 

IBLDR also  makes  judgments as  to  the number  and location 
in core of buffers associated  with the  input/out,put files. The I/O 
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igure 2 

structure 
and  operation 

buffer allocation  algorithm is also described later  in  the  paper  and 
an illustrative example appears  in  the Appendix. 

The IBJOB monitor supplies input  to IBLDR in  the  form of a 
load fi le.  Figure 1 displays the  inputs  and processes associated 
with  the load file. A load file consists of a collection of assembled 
program  decks  together  with  appropriate  control  cards. In  general, 
each  program deck contains a control  dictionary,  a file dictionary, 
and a  set of relocatable  instructions  known  as text. The IBLDR 

program  is  divided into five sections.  Section 1 stores  the load 
file information  internally in condensed tabular  form: 

First,  the control  dictionaries  are  stored in ascending memory 
locations  (the  area labeled CDICT (Control  Dictionary)  in 
Figure 2). 
Second, control  card  information and file dictionary  entries 
are  stored in condensed form (the  area labeled CISB (Control 
Information  Storage Block) in Figure 2 ) .  This  information is 
stored in descending core locations of CISB and a chaining 
mechanism is  established so that each item of information  is 
chained to all  items of the same type  in  the order of their 
occurrence (e.g., the first occurrence of a  particular  type of 
control  card is chained to  the second occurrence of the same 
type,  etc.). 
Third, relocatable  instruction text is stored in  the internal .file 
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area.  This  area  is a set of IOCS buffers, so that  the  text is  stored 
as  an IOCS internal file. The  internal file area  retains the 
properties of any IOCS file; it can,  for example, be  written  and 
read  again  later. Further,  it  may be  partially or totally  trans- 
ferred to m y  appropriate I/O device such as disk or tape. 

The working storage  requirements of Section 1 are  small  except 
for CDICT, the internal file, and CISB. The  tables  and file are assigned 
storage, as needed,  by a single storage  handling  routine. A possible 
overlap of a table  with  the file is  prevented  by spilling the  internal 
file to  tape or disk.  Generally,  programs  with less than GO00 source 
instructions  may  enter core and remain  in  memory until loading 
has been completed. 

Section 2 of IBLDR is concerned mainly  with  determining which 
set of subroutines will be  required  from the subroutine  library. 
The  Librarian (IBLDR operating  in  a special mode) will have 
prepared  a  number of entries  for  each  subroutine it  has placed 
in  the  library.  The first part of the  library  contains control  section 
information  for all the subroutines  in the library. A second part 
lists  all the control  dictionaries and file dictionaries. A third  part 
lists the  actual  text,  subroutine  by  subroutine. Scction 2 needs 
only to  read the first part of the library to determine the  identity 
of the complete set of called subroutines. It then  obtains  the 
corresponding  control and file dictionaries, and calls on Section 1 
(which has been left in core, see Figure 3 )  to complete the CDICT 

and CISB tables. 
The  information  in CISB is then processed by  type  in order of 

occurrence (Le., particular  type control  cards all a t  once, etc.). 
The  ability  to process these  by type, regardless of order of occur- 
rence, permits  control  cards to occur in  arbitrary order  in the load 
file. A set of tables is produced from CISB and stored just  after 
CDICT. The  tables  contain  the  information required  by  Sections 3 
and 4 to complete the loading  procedure. 

The main  responsibility of Section 3 is to allocate  storage  for 
the object  program. It assigns absolute core locations to  the decks 
and sections as they  are represented in CDICT. It also performs 
symbolic unit assignment and I/O buffer allocation. Before Section 
3 is  read  into core, the maximum  amount of working storage 
required by Sections 3 and 4 is  determined  from  the  number of 
control  sections and  the  number of files in the object  program. If 
the  amount available  is less than required, the  internal  text file 
is spilled before Section 3 is  loaded. 

Section 3 initiates the absolute  text  internal  Jle and generates 
certain  instruction  sequences which augment  the  object program. 
Section 4 is loaded at   the same  time as Section 3 because the 
Section 4 routines which control  formation of the  absolute  text 
internal file are also used by Section 3.  The  absolute  text  internal 
file is constructed  in the IOCS internal file format  and is located 
above  Section 3 in core (see Figure 4). 

Section 4 begins a second pass  over the  input  and processes the 
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text  stored  by earlier  sections. During  operation of the first three 
sections, the tables  and CDICT were stored in lower core. Since 
Section 4 is  also  loaded into lower core, the upper  portion of core 
is available  for  storing the program  text (see Figure 5 ) .  

Processing  begins with  the unrelocated text  in  the  internal 
file found  just  above  the  midpoint of core. If that  area is  needed 
for working storage,  text is spilled to  an I/O device and processing 
is  begun by reading it. As text  is read and relocated, i t  is recorded 
in  the  absolute  text  internal file. The  storage originally assigned 
to  the  internal  text file is  restricted so that  the  internal  text could 
be completely  relocated and stored in  the absolute  text  internal 
file without conflict in  storage. As soon as  the unrelocated text 
file is empty,  the  area occupied by  it becomes available  for further 
growth of the absolute  text  internal file. The  text of called sub- 
routines  is  treated similarly. The  absolute  text  internal file can 
hold approximately 8,000 object  program  instructions. For the 
larger  programs which would require  loading past  the  midpoint 
of core, an overflow absolute  text file is  used, but only  for the 
amount  that would fall  above  the lower boundary of the  internal 
file of absolute  text. 

If the object  program  is to  be  executed,  Section 5 performs the 
final  movement of the absolute  object  program  from the absolute 
text file (in core and/or on tape/disk) to  its position of execution 
in core (see Figure 6). 

The  text of programs in  the load file is generally not  in con- 
tiguous  loading  order. The reordering  method  employed is to  
treat  the  text  in its given  order until  the final movement  prior 
to  execution, a t  which time it is  scatter-written  into its proper 
order.  This is accomplished by inserting  control words into  appro- 
priate places in  the  text.  The control  words which contain the 
destination  information  then  direct a simple IOCS read  operation 
to  reorder the  text  in  transit. 

IBLDR’S internal  structure allows it  to  adapt efficiently to  
different size loading  jobs. The small  program  loads  in  system 
tape  time  plus  input  tape  time.  The large  program  (say  greater 
than 8,000 total  instructions)  may require the use of two  utility 
tapes  during  Pass 1 and  three  utility  tapes  during  Pass 2. 

Figure 7 indicates the  paths  that  the  text of a  job-segment4 may 
follow when it is processed by IBLDR. The  text  starts  out on the 
load file and  arrives  in core as an absolute  program  load. All other 
indicated I/O activity  is  dependent  upon  the size and complexity 
of the object  program. In  Section 1, if the  internal  text file grows 
too  large  (in the direction of CISB), the  internal  text file “overflows” 
to  UT4; if CDICT grows too large  (in the direction of the  internal 
text file), then  the  internal  text file “spills” to  UT3. 

The symbolic unit assignment  algorithm is designed to: 

Minimize the number of machine halts required to  mount  tapes. 
Balance  channel usage for efficient overlapped I/O operations. 

The physical I/O units  are assigned to  the object  program  in 
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response to  the unit requests which have been specified by  the Figure 7 
programmer. There are several  types of unit  requests: 

System  unit. The I/O unit being used for  the named IBSYS/IBJOB 

system  function is assigned. 
True channel  and unit. The channel that is  specified is the 
actual one assigned. The  unit specification is interpreted 
relatively-unit 1 is the first unit on the channel not  in  system 
use. 
True  channel,  no  unit. Any one of the available units on the 
specified channel may be assigned. 
Reserve unit. This  type of request is  used to obtain  a  unit 
whereby one job-segment may communicate with  another. 
The  unit request, when it appears  in the first job-segment, is 
treated  as  a symbolic request (see below). The request, when 
it  appears  in  the second job-segment, is assigned the identical 
unit that was assigned in  the first job-segment. 
Symbolic channel and unit. A channel which has  relatively 
little work already assigned and which has  an  appropriate 
unit  available is selected for assignment. All channel requests 
using the same letter  are, if possible, assigned to  the  same 
channel. A unit specification, n, is assigned, if possible, the 
nth unit  in  what is called an availability chain.5  Identical 
symbolic requests  are always assigned the same I/O unit. 
Symbolic  channel, no  unit. The channel is assigned as described 
in the preceding entry. Any one of the available  units on the 
specified channel may be assigned. Two identical symbolic 
requests  are assigned distinct  units. 

~ 

~ 

U IBJOB 
MONITOR 

Table 1 illustrates the order in which units  are assigned for 
~ the various  types of unit assignment requests. A unit  request  with 

no channel or unit specified  is also treated  as  a symbolic request 
(see below). 

I Table 1 IBLDR unit assignment order 

Order of assignment 
U n i t  request  type  Sample  requests 1 2 3 4 

Card equipment RDA, PUB X 
True channel and  unit B(3), C(1) X 
True channel, no unit c, E X 
System unit OU, UT3 X 
Reserve unit (previously  assigned) J( l), K ( 2 )  X 
Reserve unit  (to be assigned) W ) ,  L(1) X 
Symbolic channel and  unit S(2), T(3) X 
Symbolic channel no unit T, u, v X 
No special request X 
Symbolic secondary unit SO), * X 
True secondary  unit A(I), * X 

System  secondary unit W 3 ) ,  * X 
Internal file I N T  X 
1301 disk CDOO/O x 
Hypertape  EH03/1 Y 

~ 

~ ~ ~ 

x denotes the relative time at which the specified unit is assigned. 
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The symbolic unit assignment algorithm has  two  parts.  The 
first part constructs two tables:  a channel characteristics table 
(CHACT) and a channel requirements table (CHART). For each true 
channel CHART lists : 

The number of units available. 
The number of units  “ready”  (units  that  are in  a loaded ready- 
to-go position). 
The negative of the  sum of activities of files already assigned 
(file activity numbers are normally supplied by  the  user, 
otherwise a value of 1 is chosen). 
The availability chain address (chain entries identify the 
available units). 

For each symbolic channel CHART lists: 

The  number of units required. 
The number of “secondary”  units required (a secondary unit 

The number of ready  units required. 
The sum of activities of the associated files. 
A chain address (chain entries identify the symbolic unit 

is the second unit required by  a multi-reel file). 

request records). 
Part 1 of the assignment algorithm sorts CHACT and CHART 

into descending order and  then  matches  them  entry for entry. 
Both CHACT and CHART use entire  entries as sorting keys. For 
CHACT, the effecting sorting  key fields are the number of available 
units, the number of ready  units,  and  the negative of the sum of 
activities. CHART’S effective sorting key fields are  the number 
of units  required, the number of secondary units required, the 
number of ready  units  required,  and the sum of activities.  The 
keys reflect the objectives of matching channels with many  units 
available to channel requirements having large unit needs and, 
secondarily, assigning channels with low activities to high activity 
channel requirements. 

Once the channels have been matched, symbolic requests are 
assigned units from the availability chain. The first unit  in  the 
chain which has  the desired characteristics (ready, model type, 
etc.) is chosen for the first symbolic request. 

In  this manner,  all assignment requests may be satisfied only if 
each symbolic channel can be matched  with a channel having suffi- 
cient units.  Requests  not assignable and requests without channel 
specifications are assigned units by the second part of the algorithm. 

Part 2 makes use of CHACT entries  and  another  tabulation 
labeled TOUT. Each  unit request not assigned by  the CHACT-CHART 

sort  and  match procedure is placed in  the TOUT table. For each 
symbolic unit request TOUT lists: 

The number of units required (one or two,  two when a request 

A “  1” if the request is for a ready unit, “0” otherwise. 
The address of the symbolic unit request record. 

also calls for a secondary unit). 
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The CHACT table,  updated according to  the  Part 1 assignments, 
and  the TOUT table  are  sorted  in descending order. The  sorting 
keys are again  entire  table entries. For TOUT, this yields two 
effective sorting  keys:  the  number of units  required  and a ready 
request  indication. 

The first TOUT entry is assigned one unit (or two if requested 
and  still possible) from  the  top CHACT entry,  the second TOUT 

entry is assigned a unit from the second CHACT channel and so on 
until the end of TOUT or CHACT is  reached. TOUT is then regenerated 
from the remaining symbolic requests, CHACT and TOUT are  again 
sorted,  and  the one for one match  repeated.  This process is con- 
tinued  until all  requests are assigned or until  no  appropriate  units 
remain. The process tends  to  rotate  the real  channels as candidates 
for  assignment to files without  channel specifications and  has  the 
tendency to balance  channel usage when there  is no exact fit of 
a symbolic channel to a  real  channel. 

In  summary,  the algorithm minimizes the number of tape 
mounting  stops by selecting ready units whenever possible. Effi- 
cient I/O operation  is achieved by balancing  channel usage ac- 
cording to activity. A final point not previously mentioned-the 
algorithm also provides complete directions as to  the actions 
required by  the machine  operator. 

It is often difficult to decide how a fixed  piece of memory 
should be allocated for buffering a set of files. Two  questions arise : 

After all the procedural parts of a  program  are combined, 
how much  memory  is  left for use in buffering files? 
If available  memory  is  limited so that  the optimum  number 
of buffers for each file is not possible, which files should be 
given preference? 

In  this  system it is not necessary for the programmer to determine 
the buffer allocation specifications. If buffering is not explicitly 
given by  the programmer, the loader calls on its buffer allocation 
algorithm. The algorithm will determine buffer specifications and, 
in doing so, will make an effort to allocate the buffering on an 
“optimal” basis. 

Some terminology will be needed to describe the  algorithm: 

Block  size. The length of a physical I/O record where “physical” 
is used to  suggest a record as it appears on an I/O device. (A 
procedural record description  is usually not descriptive of the 
physical record.) 
Buger. A core area used for communication between an I/O 

device and  the CPU. Its length is equal to or greater than  the 
block size. 
Pool. A group of buffers of the same size. 
Activity number. A number assigned to a file which reflects its 
expected usage relative to  the expected usage of the  set of 
files of the program.  Activity specifications are  normally  sup- 
plied by a user. If not, a value of 1 is chosen. 
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The algorithm does not allocate buffers directly to  individual 
files but  rather  to pools. This is  done to  allow flexibility in IOCS 

operation (when called on by  the object  program, IOCS assigns 
buffers to files as needed). 

There  are  three  distinct  parts  to  the allocation  algorithm. 
First,  the  ((minimum”  number of buffers per pool is allocated 
(in the absence of explicit user specification, one buffer per file 
is the minimum). If this minimum need cannot be met,  an  appro- 
priate  error message is prepared  and  object  program execution 
is  inhibited. 

During the second part of the algorithm,  a ((preferred”  number 
of buffers per pool is allocated if possible (the preferred  number 
being twice the  number of files in  the pool since two buffers per 
file allow the file to be processed simultaneously by computer 
and  data channel). If available  storage is not sufficient to satisfy 
all preferred needs, then a buffer by buffer assignment  is  made to 
those pools with  the  greatest individual  (‘need”. A pool’s need is 
measured by  the  product of the  sum of activities  and  the “deficit” 
number  (the preferred number  minus  the  number assigned) of 
buffers. 

After the above rules have been applied, the  third  part of the 
algorithm  distributes  any  remaining  storage (in buffer size units) 
in proportion to each pool’s output  activity number (the  sum of 
activities of its  output files). Only output file activities  are con- 
sidered since IOCS does not normally use more than two buffers 
per input file, whereas IOCS may (according to demand) use any 
number of buffers for an  output file. Note  that  the only candidates 
for (‘extra’’ buffers under Part 3 of the buffer allocation  algorithm 
are  those pools with preferred numbers  already assigned. 

An example illustrating  the operation of the buffer allocation 
algorithm  is given in the Appendix. 

Appendix:  An  example  to  illustrate  operation of the 

The buffer allocation procedure consists of six phases. The func- 
tions of the phases are: 

Phase 1. Determines the  number of buffer pools to be  generated. 
Phase 2. Assigns files to pools. 
Phase 3. Computes  storage  requirements for each pool. 
Phase 4. Assigns extra  storage  according to  the  activity specifica- 

Phase 5. Generates the IOCS file list including the location of any 

Phase 6. Generates calling sequences for IOCS initialization a t  

buffer allocation algorithm 

tion  and buffer size requirements. 

non-standard  label processing routine. 

object  time. 

To illustrate  the phase-by-phase application of the algorithm, 
consider the example given in  Table A1 . Phase 1 groups the files by 
block size and develops the information shown in  Table A2. Phase 2 
summarizes the pool requirements as shown in  Table A3 where: 

306 R. HEDBERG 







The assignment of extra buffers to  buffer pools (beyond  those 
assigned in  Phases 1 to 3) is performed by  Phase 4 in accordance 
with the criteria: 

If the user specified a buffer count  for some pool, then  that 

The  activity of input files is  not  counted  in the determination 
pool is  not eligible for extra  storage assignment. 

of extra  storage assignments. 

The  amount of extra  storage assigned to  each pool is  deter- 
mined as a  certain  fraction of the  total  storage available. The 
fraction  is  computed  as the  ratio of each pool’s output  activity 
to  the  sum of the  output  activity for pools which have  not  yet 
been considered for extra  storage (zero divided by zero is  taken 
to  be equal  to zero). The  ratios  are  computed  in one pass over the 
table  by processing it backwards. The pool with the largest buffer 
size is assigned extra  storage first. The  ratio calculations  for the 
example are shown in  Table AS. 

Storage is then assigned to  pools in forward  order throughout 
the table.  The example was constructed to illustrate the  Phase 3 
process and does not  illustrate  Phase 4. 

Thus, we will change the example by assuming that there  are 
3000 words of storage  available in  addition to  the preferred  storage 
of 1906 words. Then  the procedure of Phase 4 is illustrated  by 
Table A9. It will be  noted that in  this example the  ratio of extra 
storage assigned is 1800 to  1200 or 3 to 2, which reflects the 3 to 2 
output  activities of the two pools. 

Table A9 The extra storage  assignment  procedure 

Storage 
Available  times  Buffer  Buffers  Storage  Remaining 

storage  Pool Ratio  ratio  size  assigned  used storage 

3000 1 0.4 1200 200 6 1200 1800 
1800 2 1.0 1800 100 18 1800 0 

0 3 0.0 0 50 0 0 0 

Phases 5 and 6 of the buffer allocation  procedure  generate the 
correct  initialization  instructions  for IOCS and perform  validity 
checks on the file dictionary  information. The buffer counts  and 
sizes in  the  generated  instructions  are  taken  from  the  entries in 
the pool table. 
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CITED  REFERENCES AND FOOTNOTES 

1. Overlay  program  techniques are discussed in Reference 3. 
2. Hashing refers to  the process of using an  arithmetic manipulation on a 

name in such a way  that  the name  determines a unique storage  location 
in some prescribed table. 

3. IBM 7090/7094 Programming  Systems: IBJOB Processor, Systems Refer- 
ence Library C28-6275, International Business Machines  Corporation, 
1963. 

4. A job in  IBSYS  may  be viewed as the deck of cards submitted to  IBSYS 
by a single user (its beginning and  end  are indicated by control  cards). 
It may require the functioning of a number of the  IBSYS subsystems 
(IBJOB, SOSORT, etc.). A job-segment on the  other  hand is taken  to 
mean a single functioning of one of the subsystems. It again may be 
viewed as a deck of cards, a subdeck of a job deck. One functioning of the 
IBJOB subsystem (a job-segment) corresponds to   a t  most one functioning 
of IBLDR. 

5. The availability  chain was originally kept  in reverse  order of most  recent 
usage. The  intent was that successive object  program  loads would make 
use of different 1/0 units for their symbolic unit needs, thereby spreading 
the work  load  among the  tape drives and giving the  operator  time  to 
remove tapes. A recent IBSYS design change generalizing the notion of a 
job (see 4 above) has negated the above by effectively keeping the avail- 
ability chain in one fixed order. 
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