This paper oullines the structure and operation of the system’s
loader.

The new system functions which affect the loader are related to the
additional functions which the loader performs.

Descriptions of the algorithms employed by the loader for symbolic
unit asstgnment and buffer allocation are included.

Design of an integrated programming
and operating system

Part III: The expanded function of the loader

additiona!
functions of
the loader

by R. Hedberg

Historically, the principal funetions of a loader have been to:

Determine the operational locations of a program’s parts
(instructions and data).

Translate all non-absolute references (relative location ad-
dresses of data and instructions, and inter-program part
references) to their absolute forms.

Make the initial placement of data and instructions in core so
that the program may be properly executed.

However, the loader (1BLDR) within the 1BSYS/1BJOB System per-
forms a number of additional functions. The preceding paper
(Part II) has explained how the system has been constructed to
permit program segmentation with the use of control sections to
accommodate modular program design. As a consequence of this
feature of the system, the loader plays a larger role in assigning
the location of program parts. Other features which affect the
loader relate to channel and 1/0 unit assignment, and to buffering
within the object programs. Thus, 1BLDR must perform functions
in addition to the historical ones. It must:

s Remove the control section structure and transform the in-
structions and data of the various program parts into a single
operational entity.

IBM SYSTEMS JOURNAL °* SEPTEMBER-DECEMBER 1963

& Make certain determinations relative to channel and 1/0 unit
assignment.

& Make certain determinations relative to the number, core
location and assignment of buffers.

In this paper we will discuss the loader relative to the above
funections, outline the structure and operation of the loader, and
describe the symbolic unit assignment and buffer allocation
algorithms.

The program’s control section structure is not disturbed by
the assembly process. It is the loader that must eliminate the
control section structure and transform the instructions and data
of the various program parts into a single operational entity. This
transformation requires the loader to determine the appropriate
operational locations of the program’s parts and to make the
necessary memory assignments. The loader must interpret the
control cards to determine, for example, whether:

& Only certain parts of the program are to be loaded to form the
desired object program.
Certain parts of the program are to be obtained from the
library.
Certain parts of the program are fo be linked as program
overlay' segments.

Relative to overlay linkage (which the programmer indicates
by means of control cards inserted at appropriate points between
subprogram decks), the loader assumes the responsibility of
checking whether the resulting overlay operations are logically
consistent (e.g., a call for a program part that would subsequently
destroy the call would be improper). The loader automatically
supplies the proper link reading instructions for the object pro-
gram.

A large part of the loader’s activity is concerned with control
section processing. All intra-program references that have not been
reduced to relative numeric addresses by 1BMAP are in the form
of inter-control-section references. As such, they are processed in
a uniform manner. The techniques used for control section proc-
essing are of interest in that no table-searching mechanism is
used. The process uses hashing,’ chaining methods, and a special
technique for detecting nested control sections. Control section
processing is described in the literature.?

In the 1BsYs/1BJOB system, the physical 1/0 units assigned to
an object program are not identified until load time. A programmer
specifies 1/0 units by means of unit requests. The symbolic unit
assignment algorithm incorporated within the loader makes ‘‘ judg-
ments” as to which channels and units “best’” satisfy the unit
requests. The algorithm is described in some detail in a later
section.

IBLDR also makes judgments as to the number and location
in core of buffers associated with the input/output files. The 1/0

FUNCTION OF THE LOADER

processing
control
sections

judgments
by the
loader

buffer allocation algorithm is also described later in the paper and
an illustrative example appears in the Appendix.

The 1BJOB monitor supplies input to 1BLDR in the form of a
structure load file. Figure 1 displays the inputs and processes associated
and operation with the load file. A load file consists of a collection of assembled

program decks together with appropriate control cards. In general,
each program deck contains a control dictionary, a file dictionary,
and a set of relocatable instructions known as text. The 1BLDR
program is divided into five sections. Section 1 stores the load
file information internally in condensed tabular form:

¢ First, the control dictionaries are stored in ascending memory
locations (the area labeled cpict (Control Dictionary) in
Figure 2).
Second, control card information and file dictionary entries
are stored in condensed form (the area labeled cise (Control
Information Storage Block) in Figure 2). This information is
stored in descending core locations of cisB and a chaining
mechanism is established so that each item of information is
chained to all items of the same type in the order of their
occurrence (e.g., the first occurrence of a particular type of
control card is chained to the second occurrence of the same
type, ete.).

e Third, relocatable instruction text is stored in the ¢nfernal file

Figure 1

JOB INPUT LOAD FILE

18J08B
1BJOB

CONTROL
CARDS MONITOR

CONSISTS
OF:

: FORTRAN
Figure 2 v

IBFTC
LANGUAGE COMPILER

IBSYS/IBJOB CONTROL
CARDS

1BLDR SUPERVISOR COBOL IBCBC
LANGUAGE COMPILER

OUTPUT BUFFERS

CONTROL
DICTIONARIES

IBLIB
LIBRARY
MAP IBMAP .
LANGUAGE ASSEMBLER ASSEMBLED

RELOCATABLE
SUBROUTINES

INTERNAL
TEXT FILE

RELOCATABLE

RELOCATABLE BINARY TEXT

DECKS FROM
PREVIOUS

IBMAP
ASSEMBLIES

INPUT BUFFERS

SINGLE
SECTION 1 il EXECUTABLE
PROGRAM
DATA OBJECT
PROGRAM

NOT USED

300 R. HEDBERG

area. This area is a set of 10cs buffers, so that the text is stored
as an T1ocs internal file. The internal file area retains the
properties of any 10cs file; it can, for example, be written and
read again later. Further, it may be partially or totally trans-
ferred to any appropriate 1/0 device such as disk or tape.

The working storage requirements of Section 1 are small except
for cpicrt, the internal file, and cisB. The tables and file are assigned
storage, as needed, by a single storage handling routine. A possible
overlap of a table with the file is prevented by spilling the internal
file to tape or disk. Generally, programs with less than 6000 source
instructions may enter core and remain in memory until loading
has been completed.

Section 2 of 1BLDR is concerned mainly with determining which
set of subroutines will be required from the subroutine library.
The Librarian (IBLDR operating in a special mode) will have
prepared a number of entries for each subroutine it has placed
in the library. The first part of the library contains control section
information for all the subroutines in the library. A second part
lists all the control dictionaries and file dictionaries. A third part
lists the actual text, subroutine by subroutine. Scction 2 needs
only to read the first part of the library to determine the identity
of the complete set of called subroutines. It then obtains the
corresponding control and file dictionaries, and calls on Section 1
(which has been left in core, sce Figure 3) to complete the cpier
and c1sB tables.

The information in cisB is then processed by type in order of
occurrence (i.e., particular type control cards all at once, ete.).
The ability to process these by type, regardless of order of occur-
rence, permits control eards to occur in arbitrary order in the load
file. A set of tables is produced from cisB and stored just after
cpict. The tables contain the information required by Sections 3
and 4 to complete the loading procedure.

The main responsibility of Section 3 is to allocate storage for
the object program. It assigns absolute core locations to the decks
and sections as they are represented in coict. It also performs
symbolic unit assignment and 1/0 buffer allocation. Before Section
3 is read into core, the maximum amount of working storage
required by Sections 3 and 4 is determined from the number of
control sections and the number of files in the object program. If
the amount available is less than required, the internal text file
is spilled before Section 3 is loaded.

Section 3 initiates the absolute text internal file and generates
certain instruction sequences which augment the objeet program.
Section 4 is loaded at the same time as Section 3 becausc the
Section 4 routines which control formation of the absolute text
internal file are also used by Section 3. The absolute text internal
file is constructed in the 10cs internal file format and is located
above Section 3 in core (see Figure 4).

Section 4 begins a second pass over the input and processes the

FUNCTION OF THE LOADER

Figure 3

IBSYS/1BJOB

IBLDR SUPERVISOR

SECTION 2

CDICT

TABLES

INTERNAL
TEXT FILE

CISB

INPUT BUFFERS

SECTION 1

NQT USED

IBSYS/IBJOB

IBLDR SUPERVISOR

SECTION 4

CDICT

TABLES

INTERNAL TEXT FILE

SECTION 3

ABSOLUTE TEXT
INTERNAL FILE

RESERVED

NOT USED

Figure 5

1BSYS/I1BJOB

iBLDR SUPERVISOR

SECTION 4

CDiCT

TABLES

7

INTERNAL TEXT FILE

7

ABSOLUTE TEXT
INTERNAL FILE

RESERVED FOR SECTION 5

NOT USED

Figure 6

IBSYS/{BJOB

OBJECT
PROGRAM

1/0 %UEFERS
OBJECT PROGRAM

NOT USED

symbolic unit
assignment
algorithm

302

text stored by earlier sections. During operation of the first three
sections, the tables and cpicr were stored in lower core. Since
Section 4 is also loaded into lower core, the upper portion of core
is available for storing the program text (see Figure 5).

Processing begins with the unrelocated text in the internal
file found just above the midpoint of core. If that area is needed
for working storage, text is spilled to an 1/0 device and processing
is begun by reading it. As text is read and relocated, it is recorded
in the absolute text internal file. The storage originally assigned
to the internal text file is restricted so that the internal text could
be completely relocated and stored in the absolute text internal
file without conflict in storage. As soon as the unrelocated text
file is empty, the area occupied by it becomes available for further
growth of the absolute text internal file. The text of called sub-
routines is treated similarly. The absolute text internal file can
hold approximately 8,000 object program instructions. For the
larger programs which would require loading past the midpoint
of core, an overflow absolute text file is used, but only for the
amount that would fall above the lower boundary of the internal
file of absolute text.

If the object program is to be executed, Section 5 performs the
final movement of the absolute object program from the absolute
text file (in core and/or on tape/disk) to its position of execution
in core (see Figure 6).

The text of programs in the load file is generally not in con-
tiguous loading order. The reordering method employed is to
treat the text in its given order until the final movement prior
to execution, at which time it is scatter-written into its proper
order. This is accomplished by inserting control words into appro-
priate places in the text. The control words which contain the
destination information then direct a simple 1ocs read operation
to reorder the text in transit.

IBLDR's internal structure allows it to adapt efficiently to
different size loading jobs. The small program loads in system
tape time plus input tape time. The large program (say greater
than 8,000 total instructions) may require the use of two utility
tapes during Pass 1 and three utility tapes during Pass 2.

Figure 7 indicates the paths that the text of a job-segment* may
follow when it is processed by 1BLDR. The text starts out on the
load file and arrives in core as an absolute program load. All other
indicated 1/0 activity is dependent upon the size and complexity
of the object program. In Section 1, if the internal text file grows
too large (in the direction of c1sB), the internal text file “overflows”
to UT4; if cpicr grows too large (in the direction of the internal
text file), then the internal text file “spills” to UT3.

The symbolic unit assignment algorithm is designed to:

Minimize the number of machine halts required to mount tapes.
Balance channel usage for efficient overlapped 1/0 operations.

The physical 1/0 units are assigned to the object program in

R. HEDBERG

response to the unit requests which have been specified by the
programmer. There are several types of unit requests:

o System unit. The 1/0 unit being used for the named 1BsYS/1BJOB
system function is assigned.
True channel and unit. The channel that is specified is the
actual one assigned. The unit specification is interpreted
relatively—unit 1 is the first unit on the channel not in system
use.
True channel, no unit. Any one of the available units on the
specified channel may be assigned.
Reserve unit. This type of request is used to obtain a unit
whereby one job-segment may communicate with another.
The unit request, when it appears in the first job-segment, is
treated as a symbolic request (see below). The request, when
it appears in the second job-segment, is assigned the identical
unit that was assigned in the first job-segment.
Symbolic channel and unit. A channel which has relatively
little work already assigned and which has an appropriate
unit available is selected for assignment. All channel requests
using the same letter are, if possible, assigned to the same
channel. A unit specification, n, is assigned, if possible, the
nth unit in what is called an availability chain.® Identical
symbolic requests are always assigned the same 1/0 unit.
Symbolic channel, no unit. The channel is assigned as described
in the preceding entry. Any one of the available units on the
specified channel may be assigned. Two identical symbolic
requests are assigned distinct units.

Table 1 illustrates the order in which units are assigned for
the various types of unit assignment requests. A unit request with
no channel or unit specified is also treated as a symbolic request
(see below).

Table 1 IBLDR unit assignment order

Order of assignment
Sample requests 1 2 3 4

RDA, PUB x
B(3), C(1) x

Unat request type

Card equipment

True channel and unit
True channel, no unit C E
System unit oy, UT3
Reserve unit (previously assigned) J(1), K(2)
Reserve unit (to be assigned) K(2), L(1)
Symbolic channel and unit 8(2), T(3)
Symbolie channel no unit T, U,V
No special request
Symbolic secondary unit
True secondary unit
System secondary unit
Internal file

1301 disk

Hypertape

8(1), *

A(1), *

UT(3), *

INT x
CD00/0 x
EHO03/1 x

x denotes the relative time at which the specified unit is assigned.

FUNCTION OF THE LOADER

LBX

uT1

ABS
TEXT
OVRFLQ

303

1BJOB
MONITOR

J

SECTION 1
INPUT REDUCTION

UT4

ey

&)

uT3

SECTION 2
CROSS REFERENCE
AND SUBROUTINE

ANALYSIS

v

SECTION 3

ABSOLUTE

LOCATION
ASSIGNMENT

uTs

b SECTION 4
TEXT RELOCATION

J

G AR
TEXT
OVRFLQ,

UT:

SECTION 5
ABSOLUTE
PROGRAM LOAD

IBJOB
MONITOR

The symbolic unit assignment algorithm has two parts. The
first part constructs two tables: a channel characteristics table
(cuacr) and a channel requirements table (caart). For each true
channel ceART lists:

e The number of units available.

e The number of units “ready’’ (units that are in a loaded ready-
to-go position).
The negative of the sum of activities of files already assigned
(file activity numbers are normally supplied by the user,
otherwise a value of 1 is chosen).
The availability chain address (chain entries identify the
available units).

For each symbolic channel cHART lists:

The number of units required.

The number of “secondary” units required (a secondary unit
is the second unit required by a multi-reel file).

The number of ready units required.

The sum of activities of the associated files.

A chain address (chain entries identify the symbolic unit
request records).

Part 1 of the assignment algorithm sorts cHacT and cHART
into descending order and then matches them entry for entry.
Both cuAcT and cHART use entire entries as sorting keys. For
cuacr, the effecting sorting key fields are the number of available
units, the number of ready units, and the negative of the sum of
activities. CHART's effective sorting key fields are the number
of units required, the number of secondary units required, the
number of ready units required, and the sum of activities. The
keys reflect the objectives of matching channels with many units
available to channel requirements having large unit needs and,
secondarily, assigning channels with low activities to high activity
channel requirements.

Once the channels have been matched, symbolic requests are
assigned units from the availability chain. The first unit in the
chain which has the desired characteristics (ready, model type,
ete.) is chosen for the first symbolic request.

In this manner, all assignment requests may be satisfied only if
each symbolic channel can be matched with a channel having suffi-
cient units. Requests not assignable and requests without channel
specifications are assigned units by the second part of the algorithm.

Part 2 makes use of cHAcT entries and another tabulation
labeled TouT. Each unit request not assigned by the crACT-CHART
sort and match procedure is placed in the Tout table. For each
symbolic unit request Tour lists:

e The number of units required (one or two, two when a request
also calls for a secondary unit).
A “1” if the request is for a ready unit, “0”" otherwise.
The address of the symbolic unit request record.

. HEDBERG

The cuAcT table, updated according to the Part 1 assignments,
and the Tour table are sorted in descending order. The sorting
keys are again entire table entrics. For Tour, this yields two
effective sorting keys: the number of units required and a ready
request indication.

The first TouT entry is assigned one unit (or two if requested
and still possible) from the top cmacr entry, the second Tour
entry is assigned a unit from the second cuacr channel and so on
until the end of ToUT or cHACT is reached. TouT is then regenerated
from the remaining symbolic requests, caacT and TouT are again
sorted, and the one for one match repeated. This process is con-
tinued until all requests are assigned or until no appropriate units
remain. The process tends to rotate the real channels as candidates
for assignment to files without channel specifications and has the
tendency to balance channel usage when there is no exact fit of
a symbolic channel to a real channel.

In summary, the algorithm minimizes the number of tape
mounting stops by selecting ready units whenever possible. Effi-
cient 1/0 operation is achieved by balancing channel usage ac-
cording to activity. A final point not previously mentioned—the
algorithm also provides complete directions as to the actions
required by the machine operator.

It is often difficult to decide how a fixed piece of memory
should be allocated for buffering a set of files. Two questions arise:

e After all the procedural parts of a program are combined,
how much memory is left for use in buffering files?
If available memory is limited so that the optimum number
of buffers for each file is not possible, which files should be

given preference?

In this system it is not necessary for the programmer to determine
the buffer allocation specifications. If buffering is not explicitly
given by the programmer, the loader calls on its buffer allocation
algorithm. The algorithm will determine buffer specifications and,
in doing so, will make an effort to allocate the buffering on an
“optimal” basis.

Some terminology will be needed to describe the algorithm:

Block size. The length of a physical 1/0 record where ““physical”’
is used to suggest a record as it appears on an 1/0 device. (A
procedural record description is usually not descriptive of the
physical record.)

Buffer. A core area used for communication between an 1/0
device and the cru. Its length is equal to or greater than the
block size.

Pool. A group of buffers of the same size.

Activity number. A number assigned to a file which reflects its
expected usage relative to the expected usage of the set of
files of the program. Activity specifications are normally sup-
plied by a user. If not, a value of 1 is chosen.

FUNCTION OF THE LOADER

I/0 buffer
allocation
algorithm

306

The algorithm does not allocate buffers directly to individual
files but rather to pools. This is done to allow flexibility in 10cs
operation (when called on by the object program, 1ocs assigns
buffers to files as needed).

There are three distinet parts to the allocation algorithm.
First, the “minimum’ number of buffers per pool is allocated
(in the absence of explicit user specification, one buffer per file
is the minimum). If this minimum need cannot be met, an appro-
priate error message is prepared and object program execution
is inhibited.

During the second part of the algorithm, a ‘‘preferred’” number
of buffers per pool is allocated if possible (the preferred number
being twice the number of files in the pool since two buffers per
file allow the file to be processed simultaneously by computer
and data channel). If available storage is not sufficient to satisfy
all preferred needs, then a buffer by buffer assignment is made to
those pools with the greatest individual “need”’. A pool’s need is
measured by the product of the sum of activities and the ““deficit”’
number (the preferred number minus the number assigned) of
buffers.

After the above rules have been applied, the third part of the
algorithm distributes any remaining storage (in buffer size units)
in proportion to each pool’s output activity number (the sum of
activities of its output files). Only output file activities are con-
sidered since rocs does not normally use more than two buffers
per input file, whereas 10cs may (according to demand) use any
number of buffers for an output file. Note that the only candidates
for “extra’” buffers under Part 3 of the buffer allocation algorithm
are those pools with preferred numbers already assigned.

An example illustrating the operation of the buffer allocation
algorithm is given in the Appendix.

Appendix: An example to illustrate operation of the
buffer allocation algorithm

The buffer allocation procedure consists of six phases. The func-
tions of the phases are:

Phase 1. Determines the number of buffer pools to be generated.

Phase 2. Assigns files to pools.

Phase 3. Computes storage requirements for each pool.

Phase 4. Assigns extra storage according to the activity specifica-
tion and buffer size requirements.

Phase 6. Generates the 1ocs file list including the location of any
non-standard label processing routine.

Phase 6. Generates calling sequences for 1ocs initialization at
object time.

To illustrate the phase-by-phase application of the algorithm,
consider the example given in Table Al. Phase 1 groups the files by
block size and develops the information shown in Table A2. Phase 2
summarizes the pool requirements as shown in Table A3 where:

R. HEDBERG

Table A1 Sample set of file requirements

File Block size Activity Type

F1 198 2 Output
F2 198 1 Input
F3 98 Output
F4 98 Output
F5 98 Output
F6 48 Input
F7 .48 Input
F8 48 Input
F9 98 Output

Assume 1670 words of storage are available for buffers.

Table A2 Pool requirements

Pool Buffer size Number of files

1 200 2 (F1, F2)
2 100 4 (F3, F4, F5, F9)
3 50 3 (F6, F7, F8)

Note: IOCS requires two control words for each buffer.

Table A3 Summarized pool requirements, first form

No. of Buffer Minimum Deficit ~ Sum of Sum of
Pool files size buffers buffers activity output activily

1 2 200 2 2 3 2
2 4 100 4 4 3 3
3 3 50 3 3 4 0

Table A4 Summarized pool requirements, second form
Buffer Minimum Deficit ~ Minimum Preferred Sum of
Pool size buffers buffers storage storage activity

1 200 2 2 402 802 3
2 100 4 4 402 802 3
3 50 3 3 152 302 4

Totals 956 1906 10

The minimum number of buffers per pool is taking as being
the number of files per pool (unless otherwise specified by the
user). Rule-—one buffer per file is the minimum requirement.
The deficit number of buffers per pool is set equal to the
minimum number of buffers per pool. Rule—the deficit buffer
count measures the difference between the preferred number
of buffers and the minimum number of buffers (the preferred
number is twice the number of files).

The summation of activity per pool is the sum of the activities
of the members of that pool.

The summation of output activity per pool is the sum of the
activities of the output members of that pool.

Phase 3 further processes the information to obtain Table A4
where:

FUNCTION OF THE LOADER

Table A5 Weighing factors ¢ The minimum storage per pool equals the buffer size times
Pool Deficit Activity D*A the minimum number of buffers plus two cells for control words.
The preferred storage per pool equals the buffer size times the
1 2 3 6 .
2 4 3 12 optimum number of buffers plus two cells for control words.

3 3 4 12

As originally stated in the example, 1670 words are available
for 1/0 buffer assignment. In this example it is shown that 1906
words are required for preferred storage and 956 for minimum
storage. The minimum number of 956 is assigned first. Phase 3
then computes a table of weighting factors by forming the products
of the deficit and activity numbers. The weighting factors are
shown in the “D*A4” column of Table A5.

The weighting factors table is sorted in descending D*A order
and, within that order, in descending buffer size. The pool with
the largest D*A value is assigned one buffer if storage permits.
In this case, Pool 2 is assigned an additional buffer. Deficits are
adjusted, weighting factors are recomputed, and the pool with
the largest remaining D*A is assigned a buffer if possible. This
process is continued until a pool cannot be assigned a buffer
because of insufficient storage (its deficit is considered unreconcil-
able and set equal to zero) and until all deficits equal zero. Table
A6 summarizes the deficit buffer assighment for the example and
Table A7 shows the final pool assignments.

In this example, if there had been at least 1906 words (the
preferred storage) available, then all buffers would have been
assigned automatically and the last mentioned procedure would
have been by-passed.

Table A6 The deficit buffer assignment procedure

Avarl- Pool 1 Pool 2 Pool 3
able Buff size = 200 Buff size = 100 Buff size = 50 Pool
Iteration words D D*A D D*4 D D*A4 selected

714
614
564
464
414
214
114

64

64

64

(o]
b
~

1 12 Pool 2

12 Pool 3
Pool 2
Pool 3
Pool 1
Pool 2
Pool 3
None
None
None

W ~Id O W=
Pt bt ek et = DN DD DN RO
SoOwWWWoHooo oo,
= ke e = DD DD DD D O
S WWWDHIDIDN L O
SO S~ NN W W

Table A7 Final pool assignments

Minimum Newly assigned Total Buffer Total
Pool buffers buffers buffers size storage

3 200 602
7 100 702
3 6 50 302

Total words used = 1606, words unused = 64.

308 R. HEDBERG

The assignment of extra buffers to buffer pools (beyond those
assigned in Phases 1 to 3) is performed by Phase 4 in accordance
with the eriteria:

s If the user specified a buffer count for some pool, then that
pool is not eligible for extra storage assignment.
The aetivity of input files is not counted in the determination
of extra storage assignments.

The amount of extra storage assigned to each pool is deter-
mined as a certain fraction of the total storage available. The
fraction is computed as the ratio of each pool's output activity
to the sum of the output activity for pools which have not yet
been considered for extra storage (zero divided by zero is taken
to be equal to zero). The ratios are computed in one pass over the
table by processing it backwards. The pool with the largest buffer
size is assigned extra storage first. The ratio ealculations for the
example are shown in Table AS8.

Storage is then assigned to pools in forward order throughout
the table. The example was constructed to illustrate the Phase 3
process and does not illustrate Phase 4.

Thus, we will change the example by assuming that there are
3000 words of storage available in addition to the preferred storage
of 1906 words. Then the procedure of Phase 4 is illustrated by
Table A9. It will be noted that in this example the ratio of extra
storage assigned is 1800 to 1200 or 3 to 2, which reflects the 3 to 2
output activities of the two pools.

Table A9 The extra storage assignment procedure

Storage
times Buffer
Ratio ratio size

Avatlable
storage Pool

3000 1 0.4 1200 200 6 1200 1800
1800 2 1.0 1860 100 18 1860 0
0 3 0.0 0 50 0 0 0

Buffers Storage
assigned used

Remaining
storage

Phases 5 and 6 of the buffer allocation procedure generate the
correct initialization instructions for 1ocs and perform validity
checks on the file dictionary information. The buffer counts and
sizes in the generated instructions are taken from the entries in
the pool table.

ACKNOWLEDGMENT

The 1BLDR system design philosophy and programming tech-
niques described in this paper represent the work of four addi-
tional members of Programming Systems, 1Bm Data Systems
Division, Los Angeles, California. D. Stark, co-designer of the
system; N. Gentry, unit assignment; M. Minami, text relocation;
and R. Jacobson, first pass input and control card processing.

FUNCTION OF THE LOADER

Table A8 Ratio calculations

Buffer
Pool size

1 200 2 0.4
2 100 3 1.0
3 50 0 0.0

Oulput
actwity Ratio

CITED REFERENCES AND FOOTNOTES

. Overlay program techniques are discussed in Reference 3.

. Hashing refers to the process of using an arithmetic manipulation on a
name in such a way that the name determines a unique storage location
in some prescribed table.

. IBM 7090/7094 Programming Systems: IBJOB Processor, Systems Refer-
ence Library C28-6275, International Business Machines Corporation,
1963.

. A job in IBSYS may be viewed as the deck of cards submitted to IBSYS
by a single user (its beginning and end are indicated by control cards).
It may require the functioning of a number of the IBSYS subsystems
(IBJOB, 90SORT, etc.). A job-segment on the other hand is taken to
mean a single functioning of one of the subsystems. It again may be
viewed as a deck of cards, a subdeck of a job deck. One functioning of the
IBJOB subsystem (a job-segment) corresponds to at most one functioning
of IBLDR.

. The availability chain was originally kept in reverse order of most recent
usage. The intent was that successive object program loads would make
use of different I/0 units for their symbolic unit needs, thereby spreading
the work load among the tape drives and giving the operator time to
remove tapes. A recent IBSYS design change generalizing the notion of a
job (see 4 above) has negated the above by effectively keeping the avail-
ability chain in one fixed order.

310 R. HEDBERG

