
Interconnecting processors i s one approach to organizing a computer
facility to better serve its users.

The objective of such system organization i s to reduce the elapsed time
a job resides in the system (turnaround time) while simultaneously
increasing the workload the equipment can handle (throughput.)

Alternative philosophies of multiprocessing are discussed and, in
particular, a concept which enables coupling an IBM 7090 and an
IBM 7040 to meet this objective. I n this system the smaller machine
performs supervisory and input-output functions while th larger
one performs program assembly and computation.

A directly coupled multiprocessing system
by E. C. Smith, Jr.

We will be concerned with a general computer center which
processes, primarily, problems originating with engineers and
scientists in the normal course of their work.

Since the computational aspects of such problems can often
be expressed algebraically, they often reach the computer center
in the form of a detailed algorithm or program in an algebraic
language, such as FORTRAN. The job of the center is to perform
the algorithm and return computational results. If the program
does not perform as desired, it may be changed and resubmitted
to the computer center several times so that the checkout or
debug phase of the computation must be considered.

Hence, in order to best fulfill its purpose, the computer center
must perform and return each job as rapidly as possible. The
elapsed time required to perform this cycle is commonly referred
to as “turnaround” time. Once the user has accepted the con-
straints of specified programming languages and organizational
procedures, his primary concern for better computational service
is the reduction of turnaround time. He has, of course, a con-
comitant concern for the cost of this service. Consequently, if
for example, FORTRAN functioning under the IBSYS OPERATING

SYSTEM’ dictates his only programming mode, then he asks only
for better turnaround time constrained by reasonable cost. Of
course, over-all problem solution may be considerably aided by

218 IBM SYSTEMS JOURNAL SEPTEMBER-DECEMBER 1963

other means of problem and algorithmic statement, including
such things as graphic input/output, conversational (real-time)
coding and calculation, etc. However, that is not of concern in
this paper.

Without the dominant constraint of cost one could duplicate
equipment and consulting or service personnel so that each client
could receive immediate service. Hence, the pertinent question
is one or both of:

How to provide better service with a given set of equipment

How to provide better service with a given amount of money.

These are organizational questions-organization of equipment
and organization of people. Moreover, the first is a generalized
statement of the question of “throughput”; the question of the
amount of work that can be performed by a given set of resources.

Since a certain amount of work must be performed on each
job between the time it leaves the problem originator and returns
to him, the system engineer’s job is to design a better system by
an effort in three directions:

Elimination of unnecessary work.
Performance of each step as fast as possible.
Performance of as many steps simultaneously as possible.

Multiprocessing is one approach to the latter concept of paral-
lelism.

Simultaneous execution of two or more functions within a
computer has been done for some time. Actually, the IBM 704
was designed so that in some instances an instruction is obtained
from memory before the execution of the preceding instruction
is completed. The “look ahead” feature of the IBM 7030 (STRETCH)

accomplishes parallelism of a similar nature in a much more
sophisticated way.

On another level, the data channels on the IBM 709 allow com-
putation to proceed in parallel with the transmittal of information
into and out of core memory. This is carried much further in the
IBM 7909 data channel on the IBM 7090194. Here, a stored program
of instructions is actually interpreted and executed in the data
channel in parallel with interpretation and execution of the main
program by the central processing unit.

More generally, the common “peripheral operations” of the
transfer of information from card to tape and from tape to printer
or punch usually proceed in parallel with the execution of programs
by the main computers in an installation. Furthermore, the trans-
mittal of information from the user to the computer room and
back to the client proceeds in parallel with processing of other
information.

In this paper, multiprocessing will be used in the following
sense: multiprocessing exists only when two or more processing
units, each capable of interpreting and executing its own stored

and personnel.

DIRECTLY COUPLED MULTIPROCESSING SYSTEM

program, operate simultaneously on the same problem. Furthermore,
during such processing (although not necessarily constantly) there
must be a transfer of information between the processing units
(or their primary working memories) at or near memory access
speeds. This communication is automatically satisfied if the main
memories are not distinct, as is the case for the 7909 and the
7090/94. Thus, of the examples given in the previous section,
only the 7909 data channel on the 7090/94 would be called multi-
processing.

Consider now two general purpose computers. In order to be
specific, let them be an IBM 7040 and IBM 7090 although other
pairs might be considered, such as the IBM 7044 and IBM 7094 11.
Sometimes we may refer to them as the inputloutput processor
and the computational processor. They may be connected together
in one or both of two ways:

A shared bulk (disk or drum) file.
A direct data path between core memories.

When so connected, the resulting complex may be operated
in a bewildering variety of ways. The result may or may not
satisfy our definition of a multiprocessing system. The two pro-
cessors may or may not work on the same problem simultaneously.
Indeed, it may be that any given problem is submitted to only
one of the two processors, and their connection is only in the
sense that they both have access to the same bulk file of static
reference information. Since this operating mode does not patently
address itself to the problems of turnaround and throughput in a
manner different from the duplication of equipment, we shall dis-
regard it and consider only operating modes which may apply
both computers to each problem.

At the other extreme, one can consider an operating mode in
which both processors simultaneously work on the object program
calculation. For example, one might be evaluating transcendental
functions for the use of the other in integrating a differential
equation. This may be considered as one of the “purest” forms of
multiprocessing. With the present state of the art, however, its
accomplishment requires great amounts of human analytical
effort to suitably divide the over-all computational algorithm into
parts for parallel performance. Most of our experience is in
analyzing serial rather than parallel processes. Automatic pro-
cedures for logical algorithmic division into parallel parts remain
to be developed and form today a fruitful subject for research.

How, then, can we apply both the 7040 and 7090 to the same
function problems in a profitable manner? Since we choose not to divide
allocation the computational (arithmetic) functions between the processors,

we shall let one of them (the 7090) perform all of these. The
remaining problem handling and system overhead functions may
be shared by the 7040, the 7090 and other system components
(transmission lines, mail clerks, etc.). Since these functions have
nothing whatsoever to do with t’he arithmetic algorithm involved,

220 E. C. SMITH, JR.

they are brought into existence by the system and, hopefully,
are subject to control by the system designer. These overhead
functions include such diverse things as problem transmission
from one location to another, collection of problem parts (sub-
programs) into a single file, scheduling, printing, accounting,
conversion between binary and BCD and Hollerith codes, servicing
physical input/output units, etc.

Again, we have a problem of organization. One must determine
where in the complex each overhead function is to be performed
and how much control over its functions each processor is to have.
The choice of the processors themselves and the allocation of
functions between them should be made on a criterion of best
service per dollar. Unfortunately, this is greatly complicated by
questions of existing legacies of programs, costs of converting
programming systems, etc. In this paper we can only discuss
functional allocation without full evaluation of attendant costs.

One philsosphy of system organization proposes that each
processor be virtually independent of the other and have its own
set of functions to perform when and as it alone chooses. The
7040 accepts system input and places it on the bulk file in a
common (BCD) code. The 7090 selects its work from the file and
returns results to the file. The 7040 then distributes (prints) final
output from the file. More specifically, the computational processor
may operate under a file oriented version of the standard IBSYS

OPERATING SYSTEM. The I/O processor then serves merely the
now very common peripheral functions of placing each job into
a form and position accessible by the 7090 and communicating
computed results back to the human world in printed and/or
punched form. This, then, is the shared file system concept,
sometimes referred to as the indirectly coupled system. An ex-
panded form of this concept is discussed in Reference 7.

Since both processors in the shared file system do not simul-
taneously work on the same job, the system does not satisfy our
definition of a multiprocessing system. Indeed, fundamentally the
system simply attaches directly to the 7090 (via the file) some of
the overall problem and result transmission functions of the
global computer center system. This is not to deprecate the system,
but to point out a philosophical distinction. Perhaps the term
multicomputer is a suitable generic for this case.

Another philosophy of system organization is that every over-
head function that can possibly be taken from the 7090 and put
into the 7040 be so placed. This implies, among other things, that
the 7040 handles all (system and object program) input/output
and that the 7090 operates as an arithmetic “slave” under the
complete control of the 7040. This gives rise to the purest form of
the directly coupled system concept. Clearly, a continuum of
variants between these philosophies may exist and one’s specific
choice is based upon profitability. We shall describe a directly
coupled system which places many but not all of the system over-
head functions into the 7040.

DIRECTLY COUPLED MULTIPROCESSING SYSTEM

Figure 1 Directly coupled multiprocessing system
r""""""""-~""""""""""""""- 1

7090/94

I
I

MULTIPLEXOR I
I
I
I
I

L""""""-""""" """""""_""""~ 1
r"""""""""""- 1

PRINTER

TYPEWRITER

:_ti SYNCH

n SYNCH

CHANNEL -
CONTROL

FILE

CHANNEL

FILE

I 1

CHANNEL -
CONTROL

FILE

CHANNEL

FILE

I 1 v SYNCH

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

I
I

I
I

I I
L"""""""""_""""""""""""""~

Consider now an equipment configuration for the directly
coupled system which consists of a 7040 with one disk channel,
one tape channel, two printers, a card reader and a card punch
together on one channel, and an independent connection to the
core memory of a 7090. The 7090 has no other input or output
facility. Both processors have 32,768-word magnetic core memo-
ries. The configuration is shown schematically in Figure 1. In
order to effect the interconnection, both processors need to be
modified. Each needs the ability to trap the other. That is, each
needs to be able to interrupt the other and cause it to start exe-
cuting a predetermined program a t a specific location. The 7040
should also be trapped whenever the 7090 halts processing. This
would normally occur only upon an error in a 7090 program, and
would allow the 7040 to automatically insitute recovery pro-
cedures. A modification of the TRANSMIT instruction in the 7040

can effect the movement of a block of data between the two core
memories without the use of what is now considered as common

222 E. C. SMITH, JR.

channel logic. This gives the 7040 complete ability to load, start
and monitor the processing function of the 7090. As we shall see,
it also gives the 7040 the ability to perform all input or output
operations required by the 7090. Consequently, it is appropriate
to also call the 7040 the monitor processor.

The job input source to the system is the single card reader.
The input processing for a job is handled by one of several sub-
programs called into the 7040 memory by the main supervisory
program.

These programs effect the actual reading of each card and
may do some pre-editing and packing by elimination of multiple
blanks, etc. The input information is then accumulated into 460
word buffers, each of which is written onto one disk track by
other subprograms called into action by the main supervisory
program.

Most likely the subprograms activated by the supervisory
program in order to perform functions such as those above would
reside permanently on the 1301 disk unit and be called into action
a t the appropriate time. Each remains in core until replaced by
an active program for some other function. Consequently, a sub-
program with high usage would maintain almost permanent
residency in core.

An important subprogram would be that which actually serves
the disk file. In addition to effecting data transfer between the
file and core memory, it should schedule the order in which disk
accesses are made in order to reduce lost time.

As each job is stored on the disk file, notice of this may be
made on the 7040 console typewriter. At this time the 7040 super-
visory program may examine the queue of jobs awaiting processing
by the 7090 and insert the new job into that queue at an appropriate
place according to its priority and tape mounting requirements.
This effects dynamic scheduling of jobs for the 7090 in order to
give express service to high priority work and to minimize time
the 7090 might be idle because required special data tapes are not
ready. A wide variety of scheduling algorithms is feasible. The
one chosen would probably depend upon individual installation
requirements. The important point is that tape mounting messages
are supplied to the machine operator by the 7040 sufficiently in
advance of each tape’s usage in order to allow it to be mounted
and ready when called upon. Note that tape mounting messages
need not be printed at the same time each job is actually scheduled
for the 7090, but more likely at a later time according to mounting
requirements.

The 7090 processes one job at a time, as it normally does today.
This, of course, consists of program assembly or compilation or
the running of an object program. In the latter case a system
program loader (such as IBLDR in the IBJOB processor under
IBSYS) is called into a ~ t i o n . ~ The assembler, compiler or loader
is called by the 7040 into the 7090. The 7904 data channel on the
7040 may be modified so that the 7040 can issue the necessary

DIRECTLY COUPLED MULTIPROCESSING SYSTEM 223

commands and orders to initiate reading from the file and have
the data flow from the file via the multiplexors of both processors
directly into the 7302 core memory of the 7090. A better scheme
might be to have the 7040 supervisory program look ahead suf-
ficiently to read each required segment of systems program from
the file into its core memory before it is required by the 7090.
When required, it may be sent to the core memory of thc 7090
by use of the 7040 T R ~ N S M I T instruction a t a rate of 16 micro-
seconds per word. This is considerably fastcr than the rate a t
which information may be read directly from the disk file.

During processing, the 7090 intermittently interrupts the 7040

central processing unit with requests for data input or output. It is
assumed that a modified form of the present day INPUT OUTPUT

CONTROL SYSTEM (IOCS) resides in the 7040 for service to jobs
being processed on the 7090. Linkage to this IOCS and other
general supervisory routines in the 7040 is made by a minimal
supervisory code which permanently resides in the 7090 core.
A job being processed by the 7090 may call upon any tape or disk
I/O unit attached to the 7040. Such calls have the highest priority
of all system I/O calls but may still have to wait for service be-
cause of competing I/O activity.

When the 7090 computation of a job has been completed, its
results then reside upon either the bulk file or magnetic tapes or
possibly both. The 7040 console typewriter writes a line of in-
formation to log out each job. Final printing or punching of
results may not have started, but the system maintains requests
for such service and the 7040 performs them when possible. The
7040 supervisory program also schedules job output to the two
printers and the card punch. The scheduling algorithm would
consider both job priority and paper conditions in each printer.
The supervisor must remember what kind of paper is in each
printer and alert the machine operator by a typed message if a
forms change is required.

Clearly, the 7040 is multiprogrammed but the 7090 is not.
Assemblers, compilers and object programs do not have to operate
in a multiprogrammed fashion. The only programs that do are
system programs such as card-to-disk or disk-to-printer data
transfer routines, input/output control, etc. Maximum system
control resides in the 7040 since the comput,ational processor works
on the jobs only when and as directed by the monitor processor.
Furthermore, since the monitor processor performs I/O, it thereby
controls all of the input and output operations of the entire system.

It is the method of handling the input/output for the 7090
input that makes the directly coupled system concept unique. Actually,
and it is but another step in the apparent progression of making the
output physical input/output control units more and more self sufficient.

Here, the 7040 acts as an I/O control unit for the 7090 (as well
as serving other functions). Like the 7909 data channel it in-
terprets its own stored program, but unlike the 7909 it has its
own memory for its program and for data buffering.

224 E. c. SMITH, JR.

Fundamentally, when the 7090 makes an I/O call, it merely
wishes to send a block of data to the other processor or receive
a block from it. Parameters associated with this call must be
transmitted to the 7040. It is possible for the 7090 to trap the 7040
and then sit idle while the 7040 obtains the calling sequence and
effects the desired action. Upon completion of the call the 7040
traps the 7090, which allows it to resume computation. This can
be done with a very small permanent program in the 7090.

One restriction imposed by this scheme becomes apparent.
Since all buffers and buffer pools’ are maintained in the 7040
memory, each compiler, object program, etc., which operates in
the 7090 must allocate working storage into which data is moved
from the buffers in the 7040 upon each call for input. That is,
such data cannot be examined and processed while it still resides
in system (IOCS) buffer locations. Even this could be avoided if
one were willing to create a double buffer system with large
buffers in the 7040 and fewer, smaller ones in the 7090. Then
a good portion of an IOCS program would have to reside in the
7090, but all I/O select and trap supervision would remain in the
7040. This alternative is also attractive because the 7090 can
interpret the calling sequence faster than the 7040 can. The
disadvantage is that the core storage in the 7090 required for
its IOCS program is now not available to be used by the object
program, compiler program, etc.

If, as is assumed, one is further constrained to use a version
of the IBJOB PROCESSOR, it is probably expedient to retain in the
7090 considerably more monitor code than indicated above. Even
if as many as 2000 memory cells are retained for monitor program,
there is a positive gain in memory space available to the object
program in the 7090, when compared with a 7090 operating under
IBSYS today. Furthermore, there is the possibility of larger buffers
and buffer pools since these reside in another core memory. This
alone implies fewer idle periods forced by incomplete physical
I/O actions because i t allows a more effective “look ahead” for
data input and the temporary storage of more information in
process of being written out.

Note that, despite appearances, this does not make a single
channel machine out of the 7090. Several physical I/O channels
may operate simultaneously on the 7040. Data transfer between
the two memories functions logically like a move of a block of
information between an IOCS buffer and working storage. Such
a move in the 7090 is normally performed by a small program loop
which requires 13.08 microseconds to move each word. The direct
coupling moves a word between the core memories in 16 micro-
seconds.

With this mode of handling I/O calls from the 7090, it is con-
ceivable that the 7090 object program could make a second I/O

call before the 7040 had finished resetting buffer pointers, etc.,
for the first call. It becomes important, therefore, to study the
burst patterns of computation time for processing performed

DIRECTLY COUPLED MULTIPROCESSING SYSTEM

Figure 2 Frequency distribution of inner-call times

Y

CPU TIME BETWEEN CALLS IN MILLISECONDS

between consecutive calls for I/O action for various types of com-
puting jobs. One study of a very limited number of FORTRAN
jobs produced the frequency distribution shown in Figure 2 . It
appears that this phenomenon will not degrade the performance
of the entire system. Perhaps the importance of this particular
work is to emphasize that very little is known about the I/O

activity within the “typical” computing job, and much more needs
to be known as more complex systems are developed.

System balance is a critical factor in the design of a multi-
system processing system. The 7040 appears to be fast enough to serve
variation well the individual I/O calls made by the 7090. It would not be

fast enough to serve a 7094 11. In that case the smaller processor
should be replaced by a 7044. However, when balanced to respond
quickly enough to the I/O calls of the computational processor,
it appears that the I/O processor may be busy less than half of
the time. One now has the opportunity to remove more work from
the 7090 to increase its throughput even more. Furthermore, one
has a system design with many of the features required in order
to attach remotely located terminals.

In order to automatically service remotely located terminals
for job submittal and presentation of computed results, the system
must be capable of handling many interruptions, asynchronously
received. It must also have the time and memory required to
sort and merge the various information segments to be transmitted
from and to various terminals. The 7040, when programmed to
operate much as described above, satisfies these basic require-
ments. Terminals may, therefore, be attached to the 7040 by
means of a suitable data exchange without requiring further
modification of the system’s compilers, etc.

When a program in a source language is submitted to the
system, the I/O processor might pre-edit the program to catch
most of the bothersome clerical errors. This should significantly
reduce the number of attempted compilations per job, and thus
reduce the amount of work the 7090 must perform to service the

226 E. c. SMITH, JR.

same over-all workload. However, since this diagnostic function
is performed by present day assemblers and compilers, it would
be duplicated on the 7090 when each job did reach it. Consequently,
pre-editing on the 7040 should probably not be done unless an
assembler or compiler which assumes such pre-processing is written
especially for the system.

In the general system flow as described above, the 7090 still
performs much work on each job prior to actual compilation or
computation. This preparation consists of such things as the
separation of comments from instructions to be compiled, con-
solidation of the various subjobs and subroutines which comprise
the job, deletion or replacement of sections of code, conversion
from relocatable to absolute binary format, and other functions
of the general system loader. One might consider doing much
of this work in the 7040 well in advance of the time of processing
on the 7090.

Conceivably, one could rework the 7040 loader program, 7040
IBLDR, to perform some of this job preparation. In the directly
coupled system, however, the 7040 operates in a highly multi-
programmed fashion. This has profound implications upon usage
of memory space, program interruptability, etc. As a consequence,
the 7040 IBLDR program would have to undergo major revision.
The advantage of doing this would be to save 7090 machine time
which is normally required for loading, because these functions
would already have been accomplished well in advance by the
7040. The disadvantage of a major reprogramming effort can be
avoided by maintaining a slightly modified version of the 7090
IBLDR, using it much as it is today, and omitting the preparatory
step in the 7040 as suggested above.

One system feature that would be most desirable would be
the capability to process current 7090 programs in the directly
coupled system. Strictly speaking this is not a variant of the
system described, but clearly would be a most important addition
during a system conversion period. It is possible to modify the
7090 so that an attempt to execute an instruction that would
normally refer to its data channels would effect a trap of the
7040. By suitable programming the 7040 could simulate the
action of the data channels on the 7090 and, thus, allow most
historical programs to run on the new system.

When compared with a single processor mode of operation,
the directly coupled multiprocessing system concept attacks the
following:

Reduction of lost time due to operator errors and inefficient
handling of physical queues for problem setup and breakdown
by integrating the card-to-tape, compute, and tape-to-printer
functions. This is often referred to as automating the machine
room.

0 Reduction of inter-job computational processor idle time by
dynamic scheduling of jobs for the main processor in order to

DIRECTLY COUPLED MULTIPROCESSING SYSTEM

overlap tape mounting and demounting with processing of
other jobs.
Reduction of job breakdown time by dynamic scheduling of
output printers and punch according to priority, printer paper
conditions, etc.
Reduction in the processing time of individual jobs by sharing
the functions of an input output control system between the
two processors in parallel and by more buffering on both input
and output.
Expansion of usable program storage space in the computa-
tional processor by removing from it much of the IBJOB

NONITOR and INPUT OUTPUT CONTROL SYSTEM.
Reduction of computational processor idle time due to the
printing on line of accounting information and operator in-
structions by transferral to the monitor processor.
Reduction of computational processor idle time due to er-
roneous or undesired halts by positive control by the monitor
processor to initiate dump and restart procedures.
Reduction in excess file access time due to random addressing
by control and scheduling of all file references by the monitor
processor.

Furthermore, variations of the directly coupled system de-
scribed may attack:

Extension of system applicability by the relatively easy ac-
commodation of remotely located terminals by the monitor
processor.
Reduction of fruitless attempts by the computational processor
to assemble or compile programs which result in detection of
rather trivial program errors by a degree of pre-editing by
the monitor processor.
Reduction of computational processor initial job loading time
by the execution of some preparatory functions by the monitor
processor in advance of load time.

The cost of the basic system is in the same area as, and possibly
cheaper than, a 7090 supported by two off-line 1401’s. It is clear
that the system is practical and offers many advantages over
today’s mode of operation. Required reprogramming, however,
is far from trivial.

The day is long past when computers can be rated in terms
of arithmetic processing speed. They must be rated only in terms
of how they are used. Multiprocessing concepts promise complex
but advantageous use of equipment to better serve the ultimate
user.

ACKNOWLEDGEMENT

The author is indebted to Barbara Broome, D. E. Freeman
and R. E. Moore, of the IBM DSTA PROCESSING DIVISION for much

228 E. c. SMITH, JR.

analytical and simulation work. Considerable contribution has
also been made by the IBM DATA SYSTEMS DIVISION, particularly
by M. E. Drummond and J. F. Dillon and their staffs.

FOOTNOTES S N D CITED REFERENCES

1. These and other specific programming systems mentioned within the
paper are described in References 2 through 6.

2. A. S. Noble, Jr., “Design of an Integrated Programming and Operating
System-Part I: System Considerations and the Monitor,” IBM Systems
Journal, 2, 163, June 1963.

3. R. B. Talmadge, “Design of an Integrated Programming and Operating
System-Part 11: The Assembly Program and Its Language,” IBM
Systems Journal, 2, 162, June 1963.

4. R. Hedburg, “Design of an Integrated Programming and Operating System
“Part 111: The Expanded Function of the Loader,” IBM Systems Journal,
2, 298, this issue.

5. R. Lamer, “Design of an Integrated Programming and Operating System
-Part IV: The System’s FORTRAN Compiler,” IBM Systems Journal, 2,
311, this issue.

6. R. T. Dorrance, “Design of an Integrated Programming and Operating
System-Part V: The System’s COBOL Compiler,” IBM Systems Journal,
2, 322, this issue.

7. F. R. Baldwin, W. B. Gibson and C. €3. Poland, “A Multiprocessing
Approach to a Large Computer System,” I B M Systems Journal, 1, 64,
September, 1962.

DIRECTLY COUPLED MULTIPROCESSING SYSTEM 229

