
A criterion  is  formulated  which  will  permit  project  selection corre- 
sponding  to  management’s  statement of objectives and  their  relative 
importance.  

An algori thm  is  developed  to  implement  the  criterion.  The  accom- 
panying  programming  problem  is  examined  and  experience  gained 
in executing  the  algorithm i s  described. 

Appl icat ion of the  algorithm i s  demonstrated  by  detailing  the solu- 
t ion of a  problem. 

Project  evaluation  and  selection 
by B. Dimsdale and H. P. Flatt 

We consider the problem of evaluating several proposals and 
selecting one or more which in some  sense ‘‘best” meet  certain 
objectives. For example, the executive may wish to select from 
among a set of available  projects a combination which will meet 
certain objectives relative to sales, sales staff, profitability, and 
capital  investment over some particular period of time. Generally, 
multiple objectives are  in conflict. For example, sales can  probably 
be increased by increasing sales staff, but this affects profitability 
and  capital  investment.  Thus,  the problem is one of “trade-offs” 
which is not difficult if there  are only a few choices. However, if 
there are many choices available and numerous objectives, simple 
“enumerative”  approaches to  the problem cease to be of utility, 
since the number of possible combinations becomes astronomical 
in size. 

Our purpose is to  describe an algorithm applicable to  the 
problem. First,  further clarification of the problem is given by 
means of a simple example and  the kind of input  data required 
is detailed, followed by an explicit definition of the problem. 
The next sections contain the basic mathematical  results under- 
lying the algorithm and algorithm itself. Next, an extension of 
the method to a  broader class of problems is included. Some 
programming experience in executing the  algorithm on the IBM 7090 
and 1620 computers is described, and  a problem and  its solution 
are exhibited. 

illustration In order to clarify the problem, let us  look at a simple illustra- 
of the problem tion involving a small manufacturer. Suppose a t  present,  products 
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which require the  total  capacity of ten men and machine  tools 
worth $100,000 are being manufactured.  Annual profit  is $10,000. 
However, one year  from now there will be  no longer any require- 
ment for some of the products  and,  as shown in Figure 1, this 
will leave products which require 100 man-hours  per week, utilize 
$25,000 of machine tools, and leave a  profit of only $2,500. 

Also suppose that  the manufacturer is conservative, and wishes 
only to  maintain  stability for two  additional  years. Of course, 
profit  increase would be welcome if the  other objectives could 
be attained,  but he will not consider  investing more capital  in 
order to  increase profits. 

Six new products  have  been proposed in  addition to  the  lLin 
house" products  already  committed.  Each of the products  has 
been described in  terms of its requirement  for  man-hours, the 
amount of machine tools used, and  its contribution to  profit. 
This  data  is shown in  Table 1 where '(IH" denotes the "in house" 
products. The manufacturer  knows that  with six new products  to 
consider, there  are sixty-four possible combinations to examine. He 
tries to  simplify the problem by looking for  combinations  which 
meet  objectives,  first by man-hours, then  by machine  utilization, 
and  then  by profit,  arriving at the  data given in  Table 2. 

Table 1 

Man-hours Capital 
Products required utilized Profit 

IH 100 $25,000 $2,500 

A 200 75,000 6,000 
B 100 50,000  3,000 
C 300 75,000  2,500 
D 100 25,000  5,000 
E 200 25,000 1,500 
F 100 10,000  2,500 

Table 2 

Man-hours Capital 
Products (ZH +) required  utilized  Profit 

A & B  400 $150,000 $11,500 
A & D  400 125,000 13,500 
A & F  400 110,000 1 1,000 
B & D & F  400 110,000 13,000 
C 400 100,000 5,000 
E & F  400 60,000  6,500 
D & E  400 75,000 9,000 
B & E  400 100,000 7,000 
A 300  100,000 
C 

8,500 
400 100,000  5,000 

B & D  300 100,000 10,500 
B & E  400 100,000 7,000 
D & F  300  60,000 10,000 
A & E  500  125,000 10,000 
C & D  500  125,000 10,000 
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From  the  first  part of Table 2, we see that of all the combina- 
tions which meet the manpower  objective,  only  two (C and B & E) 
meet  any of the  other objectives. Even  these combinations  fall 
far  short of meeting the profit  objective. From  the second part 
of the  table, we observe by looking a t  those  combinations which 
meet  the  capital  investment requirement, that there  are  no new 
combinations  meeting  two or more objectives.  Finally,  from the 
latter  part of the  table, we note that  any objectives which meet 
the profit objective  fail to meet any of the  other objectives. 

Thus,  the  manufacturer discovers that there  is  no  combination 
of products which will allow meeting  all  objectives  exactly. The 
problem, which seemed simple, has become more complex, since 
it is necessary to look a t  every possible combination of products 
in order to determine that combination which in some sense 
“best”  meets  all  objectives. I n  particular, since no  combination 
meets  all  objectives, he must decide if all  objectives are equally 
important or, if the objectives are  not equally important, decide 
the relative  importance of the different objectives. 

This simple example  illustrates  several  features of the more 
realistic and complex long-range planning  problem: 

Objectives must be selected. 
Both old and new products  may  have  to be manufactured 
whether or not it is  optimal  strategy  to  do so. 
The  contribution of each proposed activity  to each  objective 
must  be determined. 
It is in general  unrealistic to expect to meet  all  objectives 
exactly, and hence it is necessary to give relative weights to 
the different objectives. . It is necessary to formulate a criterion for judging which 
combination  “best”  meets  all of the objectives. 

Thus,  there  are  three kinds of input  data required:  objectives, 
input contributions of individual  activities  toward  objectives, and 
data weights which apply  to  the individual  objectives.  Furthermore 
requirements all of this  data  in general  varies  with  time. It is assumed in  the 

following that  the period of time  under  consideration  remains 
fixed for any one calculation; that is, the goal is to meet  all ob- 
jectives over the same period of time. We will  use the  notation 
t for  time,  and To, T ,  for  the lower and  upper bounds of t, re- 
spectively. Thus, To I t I T ,  and To and T ,  remain fixed through- 
out  the problem. 

Objectives are  functions of t .  We assume in general that 
there  are N objectives and  write Ci(t)  to represent the  jth ob- 
jective, where j = 1, 2, * - * , N .  

Activities  make  contributions to fulfillment of objectives  with 
the  contributions also being functions of t .  Thus, assuming that 
there  are M activities, we have M N  functions + i i ( t )  to describe 
the contribution of the  ith  activity  to  the fulfillment of the  jth 
objective, so that i = 1, 2, . . . , M ,  j = 1, 2, . - - , N .  

We note  a basic assumption that if the requirement of activity 
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i for resource j is + i i ( t )  and of activity k for resource j is &(t) ,  
then  the  activities together  require + i i ( t )  + + k i ( t )  of resource j, 
this being true for  all i, j, k .  If this is not  true for any  pair,  then a 
new activity  must be added to  the list consisting of the  pair to- 
gether  and  their  resultant resource requirement.  Naturally,  this 
places a restraint on the freedom of choosing activities. 

Finally, we require a set of functions ai( t ) ,  j = 1, 2, . . , N ,  
as weighting functions.  These  functions  serve  three purposes. 
First,  they provide a means  for  establishing  a common measure 
among the objectives, which may  be given  variously in  terms of 
dollars or man-hours or floor space, etc.,  and therefore need to be 
converted to a common unit of measure. Second, they  may be 
used to establish  relative  importance of objectives. Third,  they 
permit one to modify weight with  time. For instance, if a ten 
year  plan is being considered, it would probably  be  desirable to 
weight the first year heavily as compared to  the  tenth year. 
Moreover, many considerations  might  indicate different time 
weighting for different objectives. If common time weighting is de- 
sired, we can replace ai(t)  by A,w(t)  in which case A i  accounts for 
the first  two  purposes and w(t)  gives the uniform  time weighting. 

As observed earlier, it is not reasonable to expect that all 
objectives  can be precisely met.  The most we can hope to do  is 
to minimize some measure of total deviation  from  objectives 
through  time. Should the measure chosen have  the  property  that 
its minimum  value becomes zero in case the objectives are pre- 
cisely met,  it would also constitute a measure of the incom- 
patibility of objectives. For  this reason among  others,  the measure 
that suggests itself is the weighted total of the  squared differences 
over the  time  interval  in question, a measure which is  somewhat 
similar to  the  total (weighted)  area  between  objectives and sum- 
med activity resource requirements.  The technique of least 
squares,  aside  from being amenable to mathematical  treatment, 
has the  further  advantage  that large discrepancies tend  to be 
of short  duration  and,  in  many cases, difficulties of this  kind  can 
be overcome by  appropriate  management  action. 

Explicitly, the criterion we select is stated  as follows: Let 
x = (x1, . . . , xM) be a vector  for which xi = 0 or 1; 0 if activity 
i is to be excluded, 1 if activity i is  included, and  let 

The problem is to find vectors x which minimize G(x) .  We note 
that  there  may well be more than one such  vector. 

The average  discrepancy, D l  over time  and  all resources is 
then, for any vector x, given by 

D l  for minimizing x, is then  the measure of incompatibility of 
objectives. 
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Expanding the integrand of Equation (l), we find that we 
may  write 

G(z) = (x, Ax) - 2(r, x) + K ,  (2) 

where (x, Ax) and (I', x) denote  scalar  products (of "vectors, 
x and Ax, and r and x, respectively) and A ,  r and K are defined 
as follows: 

N 

A = Ai ,  
i = l  

Ai = (.Am) where 

and we observe  parenthetically  the  symmetry a:,,, = a:,,. I 

j - 1  

ri = (el) where 
c T I  

Finally, 

and we note that all  elements  are non-negative. 
Let B be ident.ica1 with A except that  the diagonal  elements 

of B are zero, let b ,  represent row (or  column) v of B and  let CY 

be  a  vector whose vth component is CY,, where 

CY, = - 2 ~ ,  + 2 ( b , ,  X). (6) 

Also, let 

x' = x + 6, where 

6. = (0, 0, * * *  , E . ,  0, . .  . , 0) 

and 

E ,  = +l ,  if x, = 0 

= -1, if x, = 1. 

It then follows by  substitution  that 

G(x') = G(x) + QY, (10) 

and also that 
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From  Equation (lo), we see that a necessary  condition  for x to  
minimize G(x) is that: 

when x, = l ( E ”  = -1) 1 a, i 0; (12) 

when x, = O(E, = +1),  a, 2 0. (13) 

Thus, given any x, i t  is  either  true  that each of the components 
of a satisfy the above  conditions, or there  exists one v such that 
either 

x. = +1,  a” > 0 

or 

x, = 0, a, < 0. (15) I 
We now consider three  sets of vectors x, to  be called X,, 

S,  and S,. S,  contains  all those  vectors which minimize G(x). 
S ,  contains  all  those  vectors x such that if xy = 1, then a ,  5 0; 
and if x, = 0 then a,  2 0. X, contains  all  vectors x such that 
if x, = 1, then a ,  5 0. Now X, C S,  C X,, for if there were a 
vector x in X, not  in X,, then G(x) could be  reduced and would 
not be  minimal  and, clearly, X, C X, by definition. Thus,  in 
scanning the x’s for a minimum of G(x) it is sufficient to  scan 
members of the  set X,. 

Next,  consider any x # 0 in S,, and suppose x’ is obtained 
from x by changing a component of x which is 1 to  0, say x,. 
By definition of X3 it follows that a,  5 0 and  that E, = - 1. 
Hence G(x’) 2 G(x). Since every  component of b,  is  non-negative 
i t  is also true  that ai(x’) 5 ai(x) for  every i; that is, x’ is  also 
in S,. By repeating  the process, a sequence 

x, x’, XI’, * * 10 

of vectors  in X, is  obtained for which 

G(x) 5 G(x’) 5 G(x”) 5 . . . 5 g(0). 

By reversing the sequence i t  will be observed that every 
vector  in X, is  a  member of a sequence starting  with x = 0, each 
vector  is followed by a vector  obtained  by  changing  a zero com- 
ponent  into a one in  such a way that G is not increased, and every 
member of the sequence  is  in X,. These  changes are  made only 
at components xi for which ai 5 0. Thus  every  member of X, 
is  produced at least once by  generating  every possible sequence 
of this  kind. Essentially, the algorithm  consists of generating 
sequences of this  type. It will be  noted  particularly that  the cor- 
responding  sequence of a vectors  are monotone non-decreasing, 
component  by  component. 

Now consider x = 0 and  its corresponding a, where ai = 
a,i - 2ci. If attention is fixed on some specific component a,  
it  may be that a,  > 0, in which case x, must be 0 in  all  generated 
sequences. Or it  may be that a. is so large and negative that x, 
must be 1 in  all  generated  sequences. Or, finally, it  may be that 



av < 0 but  not large  enough  negatively to  exclude x ,  = 0 as a 
possibility in  the  generated sequences. In  this case two new 
vectors  are to  be considered, one of which  is the  null  vector,  the 
other  the  null  vector  with x ,  = 0 replaced by x ,  = 1. I n  each 
instance the vth component  is considered as  subject  to no further 
change. 

The  set (of one or two  vectors)  generated  above  is processed 
again  in similar  manner, that is, by applying the same process 
to  a component of each  vector which has  not  yet been fixed. 
Continuing in  this fashion, a set of vectors will ultimately be 
reached  each of which has  all  its  components fixed, and  this  set 
is the  set X,. It is to  be noted  that whenever  a  vector is generated 
by replacing x y  = 0 by an xi  = 1 there  is  the  prospect  for  any 
xi  = 1 (for which ai I 0) that a: > 0. In  this case the  vector 
may  be discarded. 

We  note that two processes are  required, one for  calculation 
algorithm of the numbers a:,,, cd, K’ in  Equations (3), (4), and (5) and  the 

other  for  the remaining processes. Of course, the first of these 
depends on the  form  in which the  input  data is given and hence 
cannot be  described  here,  except to  observe that a general pro- 
gram  can be written for accumulating the integrals, which can 
be  computed  by  appropriate  subroutines. 

In  order to  describe the computing  algorithm  for the second 
process in  detail,  two  sets of indices, E and E are assigned, asso- 
ciated  with a vector x.  The  set E contains  those  indices corre- 
sponding to  components of x whose values  have  been fixed; the 
set E contains  all the remaining indices. Evidently, if v E E 
then x ,  = 0. Let P be  a  vector whose vth component  is by, where 

bi,  being the  ith component of b,. It will be seen that if a,  + by < 0 
then x ,  = 1 in  all  vectors  generated  from x.  The principal part 
of the algorithm  can now be stated: 

S t e p  1. Initially  set 

for v = 1, . . . , n, G(xo) = K ,  and E = 0. 

S t e p  2 .  For any x such that E # 0 select some v E E and proceed 
as follows: . If a,  2 - P ,  generate x‘ = x,  a’ = a, P‘ = P - 2b,, G(x’) = G(x) ,  

move v from E to  E. 
If a, 5 0 generate x’ by changing x. = 0 into x: = 1, a’ = 
a + 2b,. If x’ E X,, that is, xi  = 1 implies a: I 0 for  all i, 
generate  also P’ = p - 2b,, G(x’) = G ( z )  + a,, move v from 
E to E. If x‘ X,, discard X I .  

S t e p  3. Iterate  until no  generated  vector  has E # 0. 
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While i t  is clear that  the above  algorithm  generates X, it is 
also true  that interest  is  centered  in X,. For  this purpose a further 
restriction  can  be  made. For if, during  the course of the iterations, 
a particular  vector x has been generated, i t  will be seen, for any 
vector x“ obtained  from x by  the  above process, that 

G(x”) 2 G(x) + x’ a,, (17) 

where the  summation x‘ is  extended  over  those  indices  in the 
set E (associated  with x) for which a,  < 0. If G represents the 
smallest G(x)  obtained at   any given  point of the process, then 
any vector x such that 

G(x) + x’ a, > (18) 

cannot possibly lead to  a  member of S,  and  thus  may be dropped 
from  consideration. 

Finally,  the problem of choosing v E E exists. Since G(x’) = 
G(x)  + a, i t  seems reasonable to  choose that v E i7 which mini- 
mizes a”. For if min a,  is  negative this choice makes the maximum 
reduction  in G, and if min a, 2 0 no  reduction of G is possible. 

One further  function  can  be  incorporated  in  the process. 
Specifically, it may be  desired to  force some components of x 
to be 1 regardless of other considerations. That is, certain of the 
projects  are to  be forced into  the final  solution.  There  are  two 
ways  in which this  can be  done. One is to  modify the functions 
Ci(t) .  Another  way  is to  make use of the  fact  that  up  to now only 
the pairs (0, 0), (1, 0), (1, 1) have been used for (Ei, xi). If the 
pair (0, 1) is used in  this  last case the  algorithm  is easily modified 
to  accomodate this  situation. 

For  illustrative  purposes consider the problem  formulated by illustration of 
the following values  for A ,  r and K :  the algorithm 

1 5 0 3 0 0 2  0 0  

0 4 3 2 1 2   1 0  

3 3 8 3 2 1   1 0  

0 2 3 9 4 2   0 3  

0 1 2 4 7 2   2 2  

2 2 1 2 2 7   4 1  

0 1 1 0 2 4 1 1 2  

~ 0 0 0 3 2 1   2 5 ,  

I? = (7, 12,  10, 13, 11, 23,  13, ll), and 

A =  1 

K = 60. 
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Table 3 

E O O O O O O O O  
z o o o o o o o o  
01 1 -20 -12 -17 -15 -17 -15 -17 
j3 10 18 26 28 26 28 20 16 
G 60 

Table 4 

E l l O O O O O l  
z 0 1 0 0 0 0 0 1  
01 1 “12 -6 -7 -9 -11 -9 -17 
j3 10 18 14 18 20 18 14 16 
G 23 

Table 5 

E 1 1 0 0 0   1 0  1 
z 0 1 0 0  0 0 0  1 
01 1 -12 -6 -7 -9 -11 -9 -17 
j3 6 14 12 14 16 18 6 14 
G 23 

Table 6 

E 1 1 0 0 0   1 0  I 
z o 1 0 0 0   1 0  I 
01 5 -8 -4  -3 -5 -11 -1 -15 
,9 6 14 12 14 16 18 6 14 
G 12 

implies i E E .  It is apparent that components 1, 2,  8 can be 
assigned immediately. This leads to  Table 4. 

In Table 4 the unassigned component with  most negative a 
is the sixth.  This leads to the  two cases displayed in  Table 5 
and 6,  respectively. Continuing according to  the rules laid down, 
the following results are rapidly obtained: 

min G(z) = 7, and 

zmi0 values are: 

( 0 1 1 0 1 1 0 1 ) ,  

(0 1 0 0 1 1 0 1) and 

( 0 1 0 1 0 0 1 1 ) .  

It will  be noted that finally is null, which serves as a check on 
the process. 

We have been looking at one type of problem in which we are 
constraints forced to select any combination of activities which “best” meets 
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our objectives.  Other  problems  exist,  however, in which we either Figure * 
do  not  have  or do not desire this  much freedom of choice. 

for preventive  maintenance, we want  to find an  optimum schedule, I I 

but  subject  to  the restriction that each  machine receive pre- TO TI 

ventive  maintenance.  Or, we may  have decided to  carry  out six 
programs, and we are now concerned  with the funding levels 
for  each  program. We wish to optimize this schedule, but  subject 
to  the restriction that we choose only one funding level per 
program. 

As a final example, in considering advertising  programs, it 
may be desired to  choose some combination subject  to  the re- 
striction that  the combination  include one or  more choices among 
the media of television, radio,  newspapers,  or  magazines. 

Such  problems may be  handled as a  simple  extension to  the 
basic method  outlined  above. For each subset  from which one or 
more activities  are required, an “artificial”  objective  is stated. 
This objective may be some non-negative constant P over the 
entire  time-interval of interest,  with  a weight function q ( t )  = 1 
(Figure 2). If any  activity does not belong to  the subset  under 
consideration, then  its  contribution  to  the fulfillment of the 
objective  is zero; if M ,  activities  are to  be selected  from the subset, 
then  the  contribution of each  member of the subset  is P,”n. 

We begin by dealing with  only one subset of activities which 
may,  without loss of generality,  be  numbered 1, 2, . . . , M , ,  
and suppose that our interest  is  in selecting exactly Mn of these. 
That is, the  constraint, 

For example, if we attempt  to schedule a group of machines j 

is  established  under which G(x)  is to be minimized.  Let 3 represent 
a minimizing vector  for G(x)  under  this  constraint,  and consider 

G,(z) = G(x) + IT:’ [ P  - Pz i /M,  ax = G(x) + x&), (20) 
M I  

, = 1  I’ 
where 

g(x) = (AIo - x : )  . 
‘ll,  2 

, = 1  

For any X we can find x‘ which minimizes G,(z) (noting that x’ 
is  a  function of h ) ,  by use of the preceding  algorithm. ‘v‘ i ow 

Gb’)  I G(Z), (22) 

for if the converse were true,  that is, if G(3) < G(x’), then G(3) + 
Xg(3) < G(x’) + hg(x’) since g(3) = 0. That is to  say, we should 
have G, (3) < G, (x’) contrary  to our  hypothesis that z’ minimizes 
GI (x>. 
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Now we show that there  exists  a  value of X such that G(5) = 
G(x‘). We  have 

G ( d )  + X&’) = Gl(x’) 2 Gl(Z) = G(5) 

and  either g(x’) = 0 or g(z’) 2 1. If, for  all X, g(x’) + 0 then 
G(z’) + Xg(x’) can be  made  indefinitely  large by choosing X 
sufficiently large.  On the  other  hand, G(3) does not change  with X. 
Hence the assumption that  g(x’) # 0 for all X leads to  a  contra- 
diction. That is to  say,  for some X sufficiently large, g(z’) = 0 
and hence x’ minimizes G(x) under the  constraint g(x)  = 0. 
Since this is a property of 5 it follows that G(x’) = G(z), that is, 
the vectors x’ solve the constrained  problem. 

There  are  two  further  points of interest. One, the above  deriva- 
tion is easily  extended to more than one subset.  Two, if activities 
are forced into  the solution in such  a  manner that  the  constraint 
is  violated, the derivation  obviously collapses, since 3 does not 
exist. I n  practice  there should  be no difficulty on this  latter  point. 

To provide  additional  insight as  to  nature of the results that 
application of may be obtained  with  the  algorithm we detail  the solution of a  more 
the algorithm elaborate  example. The problem to be considered involves three 

objectives: sales, profits, and engineering man-hours.  Twelve  time 
periods are  to be  considered, and  the  activity  data  is shown in 
Tables 7, 8, and 9. 

Two of these  projects, Numbers 5 and 8, are  presently  in house 
and required  in the final solutions. 

The objectives are  as follows: sales,  presently ( t  = 0)  set at 
$10,000,000 to  increase  uniformly to $22,000,000 by  the  end of 
the twelfth  period;  profits,  presently  set a t  $1,000,000 to  increase 
to $1,600,000; engineering  man-hours to  remain fixed a t  100,000. 

I n  Figures 3, 4, 5 the results of using four different sets of 
weights are shown. The  results  are labeled A, B, C, D and corre- 
spond to  the weights  given in  Table 10  where wl(t)  = 1, and 
w,(O) = 1, w,(12) = .40 and is  linear  between  these  values. The 
mix of projects  selected in  each case is  given  in  Table 11. 

The effect on sales of increasing the weight  associated with 
sales  (solution B) is  quite noticeable.  Solution C is  even  better 
at   the beginning of the range, but performs  poorly toward  the 
end.  On  the  other  hand solution C gives the  best answer  for 
profits, which is to  be expected. The results  in man-hours seem 
relatively  independent of weighting.  Here the  rapid  “drop  off”  is 
the  most noticeable feature. A glance at   input  data quickly  reveals 
the reason  for  this, and  may well indicate  a need for  quickly 
broadening the  set of projects  available. 

It may be of interest  to  investigate  the case in which the policy 
is to accept as much sales and profits as possible, consistent  with 
the above  objective  in engineering man-hours. For this problem 
the  variation  in solution would be  expected  with the variation  in 
weight  assigned to  the manpower  objective. The solutions of 
interest here are given in  Table 12. The objective now will be 



Table 7 Sales (millions of dollars) 

Project T i m e  
Number 0 1 2  3 4  5  6  7 8 9 1 0 1 1 1 2  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0.8 6.8 7.0  9.2  7.3  4.5  2.1 1.0 
0.5 4.8 6.2 3.5 2.1 0.5 

5.0 5.6 2.1 0.9 

3.4 4.9 3.5 1.4 
0.5 3.5 4.0 8.5 8.4 6.3 5.1  0.6 

2.3  8.6 4.4 6.9 2.3 0.9 
1.3 3.2 5.5 7.6 3.8 6.0 4.5  2.1 

0.3 6.6  12.4 
2.1 6.8 7.5 8.0 7.4 5.0  3.2 

1.1 3.7 5.2  7.1 7.1  5.0 
1.3 2.4 4.7  5.5 2.0 1.0 

0.6  5.4 3.8 4.9  2.7 

4.2 3.2 1.1 

1.2 2.0 3.1 1.6 0.3 

1.6 2.2 1.4 0.5 0.3 

Table 8 Profits (millions of dollars) 

Project 
Number 0 1 2  3 4  5  6  7 8 9 1 0 1 1 1 2  

~ ~~~ 

T i m e  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

.01 .32 
.28 .47  .66  .49 

.02 
.21  .24  .27  .24 

.03 

.12  .16 .33 .24 

.30  .35  .42  .62 

.41 .32 .I1 .02 

.08 .51 .72 

.48 .23  .17 

.43  .13 

.08 .I1 .56 

.21 

.30  .44  .39 
.06 .15 

.05 

.42  .14  .02 

.75 .54 

.06 .03 

.54 .50 

.31 .23 

.38 .52 

.10  .31 

.04  .12 
.IO 

.31 .04 

.14 

.05 

.48 .37  .16 .03 

.01 .20  .60 
.50  .54  .48  .23 

.34 .40 .20 .14 

.39 .58 .73 .60 

.12  .44  .60  .51 

Table 9 Engineering man-hours (thousands) 
~~ ~~~ 

Project 
Number 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2  

T i m e  

1 5 37 42  52  41 17  12 6 
2  5 22 38 54 21 9 
3 32 38 35 
4 10 26 35 40  29 8 
5 45 29 14 
6 3 18 20 33 32 15 
7 
8 
9 

10 
11 

13 
14 

5 13 23 18 17  16 

15 2 12 14 16 15 7 

14 23 33 32 25 14  5 
32  21  7 

11 17 29 21 5 
2 8 16 41 19 14 8 4 

23 28 30  30 14 
12 14 39 38 31 22 13 8 

8 16  20 3 
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Figure 3 Sales 
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Figure 5 Profits 
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Table 10 

J 
1 2 3 4 5 6 7 8 9 10 11 12 

TIME 

Weights 
Sdution At A P  A, w( t )  

A 1 10 . 1  w d t )  
B 10 10 . 1  W d t )  
C 1 100 . 1  w d t )  
D 1 10 . 1  w d t )  

_ ~ _ _ _ _ -  " 

Table 11 

Solution  Projects selected 

A 
B 1 , 2 , 4 , 5 , 8 , 9 , 1 1 , 1 2 , 1 3 , 1 5  
C 1, 5, 6, 7, 8, 9, 11,  12, 13, 14, 15 
D 1 , 2 , 5 , 6 , 7 , 8 , 9 , 1 2 , 1 3 , 1 4 , 1 5  

- 
2 , 4 , 5 , 6 , 7 , 8 , 9 , 1 1 , 1 2 , 1 3 , 1 5  
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Figure 6 Sales 
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Table 12 

Weights Table 13 

Solution A ,  A )  A ,  w(t)  Solution, Projects selected 

A 1 10 0 . 1  Wl( t )  A 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 2 , 1 3 , 1 4 , 1 5  
B 1 10 1 . 0  w1(t) B 1, 4, 5, 6, 9, 10, 11, 12,  13,  14, 15 
C 1 100 1 . 0  w,(t) C 2, 4, 5, 6, 7, 8, 9: 10,  11,  12,  13,  15 
D 10 10 0 . 1  W l ( t )  D all fifteen 
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Figure 7 Profits 

Figure 8 Man-hours 
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These numbers have been  chosen to exceed the  totals  available 
a t  any given point  in time. The product mixes are given in  Table 13 
and  the results  are shown in Figures 6, 7, 8. Solution D, which 
selects all fifteen projects, is the  natural result of emphasizing 
sales (or profits, or both) in these circumstances. Finally, it is 
interesting to note that  the set of weights 1, 10, 10, wl(t) gives a 
solution identical  with solution A of the preceding set.  The general 
result seems to be that,  the more weight attached  to matching 
manpower objectives, the less sales and profits. 

A 7090 was  used for the above computations and running 
time was about fifteen seconds per case. The number of vectors 
examined varied from 12 to 41, the maximum number  in  storage 
varied from 1 to 6. 

Two  important  and  related questions connected with the use 
computer of the above algorithm require an answer. The first question has 
programs to do with running time, the second with  storage  capacity re- 

quired. The first question has two parts essentially, the length 
of time required to form the  input needed for the above  algorithm 
from original data,  and  the  total number of vectors examined. 
The second question requires a knowledge of the maximum number 
of vectors  in  storage at  any given moment. 

Integration  and  summation processes can be estimated for 
running time, once the decision has been made as to  the form of 
the  input functions. The number of vectors examined and number 
in  storage a t  any moment,  can only  be computed  in general. 

In passing, it may be noted that for an M activity problem 
there  are a maximum of 2M combinations and  that it is not 
difficult to construct an example in which every one of these 
is optimum in  the above sense.  Specifically, if A is diagonal, that is, 
aij = 0 when i # j and if moreover aii = 2ci, then (x, Ax) = 

2(r, x) for every admissible x. That is to say G(x)  = K for all 
admissible x. To create such an A and I?, let To = 0, T I  = M ,  
&,i(t) = 1 for m - 1 5 t 5 m, &i(t) = 0 elsewhere.  Also let 
Ci(t)  = 1/2, a,(t) = 1 everywhere. Then aii = N ,  ci = N / 2 .  
Thus, no upper bound less than 2M for either  number of vectors 
exists. It appears therefore that only experience can provide an 
indication as  to  the bounds that actually occur in  practice. 

For this reason, experimental programs  have been written 
for the 7090 first, and  later  the 1620. In  these programs all  input 
functions  are assumed to be continuous and piecewise linear. 
Furthermore, it is assumed that changes of slope occur only at 
integral values of time, t = 0, 1, . , T ,  so that  in fact the func- 
tions can be completely described by tables. The integrations  in 
the programs are precise, under these assumptions. As for weights, 
the form ai(t)  = A,w(t) is used. The mechanism for forcing 
activities into  the final solution is incorporated. 

Another  feature  built into  the program, which has  not been 
mentioned before, is a device for locating solutions “close” to 
the optimum.  This is accomplished by finding min G(x)  and 
then,  on a second pass, retaining those vectors x in X, such that 
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Although  several  small  problems were run,  the  most significant 
single result to  date  has  to  do  with a  problem  having 32 activities 
and 3 objectives  over 20 time periods, with 3 activities being forced 
into  the solution. In  this problem, 21 different cases corresponding 
to  differing choices of weights were run.  Total  running  time on 
the 7090 was 20 minutes,  the  integrations being performed for 
each case, although  a  more  sophisticated  program would have 
made  this unnecessary in  this  particular  instance.  The  other 
operating  statistics, which were printed  out  as  part of the program, 
were as follows. The  total  number of combinations tested  ranged 
from 100 to 1300. The maximum  number of vectors  in  storage 
a t   any  one time was 7. 

It is not possible to  make  significant statements  about so few 
statistics.  However, the limited experience to  date indicates that  
the results  in the above case were fairly  typical. 
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