A criterion 1s formulated which will permat project selection corre-
sponding to management’s statement of objectives and their relative
tmportance.

An algorithm is developed to implement the criterion. The accom-
panying programming problem 1s examined and experience gained
in executing the algorithm is described.

Application of the algorithm is demonstrated by detailing the solu-
tton of a problem.
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We consider the problem of evaluating several proposals and
selecting one or more which in some sense ‘“best’” meet certain
objectives. For example, the executive may wish to select from
among a set of available projects a combination which will meet
certain objectives relative to sales, sales staff, profitability, and
capital investment over some particular period of time. Generally,
multiple objectives are in conflict. For example, sales can probably
be increased by increasing sales staff, but this affects profitability
and capital investment. Thus, the problem is one of ‘“trade-offs”
which is not difficult if there are only a few choices. However, if
there are many choices available and numerous objectives, simple
“enumerative’’ approaches to the problem cease to be of utility,
since the number of possible combinations becomes astronomical
in size.

Our purpose is to describe an algorithm applicable to the
problem. First, further clarification of the problem is given by
means of a simple example and the kind of input data required
is detailed, followed by an explicit definition of the problem.
The next sections contain the basic mathematical results under-
lying the algorithm and algorithm itself. Next, an extension of
the method to a broader class of problems is included. Some
programming experience in executing the algorithm on the 1BM 7090
and 1620 computers is deseribed, and a problem and its solution
are exhibited.

In order to clarify the problem, let us look at a simple illustra-
tion involving a small manufacturer. Suppose at present, products
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which require the total capacity of ten men and machine tools
worth $100,000 are being manufactured. Annual profit is $10,000.
However, one year from now there will be no longer any require-
ment for some of the products and, as shown in Figure 1, this
will leave products which require 100 man-hours per week, utilize
$25,000 of machine tools, and leave a profit of only $2,500.

Also suppose that the manufacturer is conservative, and wishes
only to maintain stability for two additional years. Of course,
profit increase would be welcome if the other objectives could
be attained, but he will not consider investing more capital in
order to increase profits.

Six new products have been proposed in addition to the “in
house” products already committed. Each of the products has
been deseribed in terms of its requirement for man-hours, the
amount of machine tools used, and its contribution to profit.
This data is shown in Table 1 where “IH” denotes the “in house”
products. The manufacturer knows that with six new products to
consider, there are sixty-four possible combinations to examine. He
tries to simplify the problem by looking for combinations which
meet objectives, first by man-hours, then by machine utilization,
and then by profit, arriving at the data given in Table 2.

Table 1

Capital
utilized

Man-hours

Products required

100 $25,000
200
100
300
100
200
100

75,000
50,000
75,000
25,000
25,000
10,000

Table 2

Caprtal
uttlized

Man-hours

Products (IH +) required Profit

400
400
400
400
400

400
400
400
300
400

$150,000
125,000
110,000
110,000
100,000

60,000
75,000
100,000
100,000
100,000

100,000
100,000

60,000
125,000
125,000

$11,500
13,500
11,000
13,000
5,000

6,500
9,000
7,000
8,500
5,000

10,500

7,000
10,000
10,000
10,000
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From the first part of Table 2, we see that of all the combina-
tions which meet the manpower objective, only two (C and B & E)
meet any of the other objectives. Even these combinations fall
far short of meeting the profit objective. From the second part
of the table, we observe by looking at those combinations which
meet the capital investment requirement, that there are no new
combinations meeting two or more objectives. Finally, from the
latter part of the table, we note that any objectives which meet
the profit objective fail to meet any of the other objectives.

Thus, the manufacturer discovers that there is no combination
of products which will allow meeting all objectives exactly. The
problem, which seemed simple, has become more complex, since
it is necessary to look at every possible combination of products
in order to determine that combination which in some sense
“best” meets all objectives. In particular, since no combination
meets all objectives, he must decide if all objectives are equally
important or, if the objectives are not equally important, decide
the relative importance of the different objectives.

This simple example illustrates several features of the more
realistic and complex long-range planning problem:

« Objectives must be selected.

s Both old and new products may have to be manufactured
whether or not it is optimal strategy to do so.
The contribution of each proposed activity to each objective
must be determined.
It is in general unrealistic to expect to meet all objectives
exactly, and hence it is necessary to give relative weights to
the different objectives.
It is necessary to formulate a criterion for judging which
combination “best” meets all of the objectives.

Thus, there are three kinds of input data required: objectives,
contributions of individual activities toward objectives, and
weights which apply to the individual objectives. Furthermore
all of this data in general varies with time. It is assumed in the
following that the period of time under consideration remains
fixed for any one calculation; that is, the goal is to meet all ob-
jectives over the same period of time. We will use the notation
t for time, and T, 7', for the lower and upper bounds of ¢, re-
spectively. Thus, 7, < ¢t < T, and T, and T, remain fixed through-
out the problem.

Objectives are functions of ¢. We assume in general that
there are N objectives and write C;() to represent the jth ob-
jective, where j = 1,2, --- | N.

Activities make contributions to fulfillment of objectives with
the contributions also being functions of {. Thus, assuming that
there are M activities, we have MN functions ¢.;(f) to describe
the contribution of the ¢th activity to the fulfillment of the jth
objective, sothatz = 1,2, --- /M, j=1,2 --- N.

We note a basic assumption that if the requirement of activity
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1 for resource 7 is ¢:;(f) and of activity k for resource j is ¢4;(¢),
then the activities together require ¢;;(t) + ¢.;(¢) of resource j,
this being true for all 7, j, k. If this is not true for any pair, then a
new activity must be added to the list consisting of the pair to-
gether and their resultant resource requirement. Naturally, this
places a restraint on the freedom of choosing activities.

Tinally, we require a set of functions a;(f), j = 1,2, --- , N,
as weighting functions. These functions serve three purposes.
First, they provide a means for establishing a common measure
among the objectives, which may be given variously in terms of
dollars or man-hours or floor space, etc., and therefore need to be
converted to & common unit of measure. Second, they may be
used to establish relative importance of objectives. Third, they
permit one to modify weight with time. For instance, if a ten
year plan is being considered, it would probably be desirable to
weight the first year heavily as compared to the tenth year.
Moreover, many considerations might indicate different time
weighting for different objectives. If common time weighting is de-
sired, we can replace a;(t) by 4;w(t) in which case A; accounts for
the first two purposes and w(t) gives the uniform time weighting.

As observed earlier, it is not reasonable to expect that all
objectives can be precisely met. The most we can hope to do is
to minimize some measure of total deviation from objectives
through time. Should the measure chosen have the property that
its minimum value becomes zero in case the objectives are pre-
cisely met, it would also constitute a measure of the incom-
patibility of objectives. For this reason among others, the measure
that suggests itself is the weighted total of the squared differences
over the time interval in question, a measure which is somewhat
similar to the total (weighted) area between objectives and sum-
med activity resource requirements. The technique of least
squares, aside from being amenable to mathematical treatment,
has the further advantage that large discrepancies tend to be
of short duration and, in many cases, difficulties of this kind can
be overcome by appropriate management action.

Explicitly, the criterion we select is stated as follows: Let
z = (x:, -+, zu) be a vector for which z; = 0 or 1; 0 if activity
7 is to be excluded, 1 if activity 7 is included, and let

T: N M 2
Gla) = f (Z a,-<t)[0,-(t> - X xi¢,-,-(t>] ) dt (1)
The problem is to find vectors  which minimize G(z). We note
that there may well be more than one such vector.

The average discrepancy, D, over time and all resources is
then, for any vector z, given by

M

D’ = Gx) / f: <j=1 a,-(t)> dt.

D, for minimizing z, is then the measure of incompatibility of
objectives.
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Expanding the integrand of Equation (1), we find that we
may write

where (z, Az) and (T, 2) denote scalar products (of M-vectors,
x and Az, and T and z, respectively) and A, T and K are defined
as follows:

N
A = Z Aiy
=
A; = (dl,) where

an‘m = /; 1 a;(Obn;(Dn; (1) di,

o

and we observe parenthetically the symmetry af, =

N
P=2Pi7

i=1

r; = () where

é = [ @080 a.

Finally,

N
K = Z K; where

K = [ areor i ®)

and we note that all elements are non-negative.

Let B be identical with A except that the diagonal elements
of B are zero, let b, represent row (or column) » of B and let o
be a vector whose »th component is «,, where

a, = a,, — 2¢, + 2(b,, 2). (6)
Also, let
=z 9, where )
=(0,0,--+,¢,0, - ,0) 8)

e = +1, if 2, =0
= -1, if z, =1.

9)

It then follows by substitution that
G@') = Gx) + ea,
and also that

alz’) = alzx) + 2¢,b,.
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From Equation (10), we see that a necessary condition for = to
minimize G(x) is that:

when z, = 1(e, = —1), a, < 0; (12)

when z, = 0(, = +1), a, > 0. (13)

Thus, given any x, it is either true that each of the components
of « satisfy the above conditions, or there exists one » such that
either

(14)

a, < 0. (15)

We now consider three sets of vectors z, to be called S,
S, and S;. S, contains all those vectors which minimize G(z).
S, contains all those vectors x such that if z, = 1, then «, < 0;
and if z, = 0 then «, > 0. S; contains all vectors x such that
if v, = 1, then @, £ 0. Now S, C 8, C 8, for if there were a
vector z in 8, not in 8,, then G(x) could be reduced and would
not be minimal and, clearly, S, C S; by definition. Thus, in
scanning the z’s for a minimum of G(z) it is sufficient to scan
members of the set S;.

Next, consider any z # 0 in S;, and suppose z’ is obtained
from z by changing a component of x which is 1 to 0, say «z,.
By definition of S; it follows that @, < 0 and that ¢, = —1.
Hence G(z') > G(x). Since every ecomponent of b, is non-negative
it is also true that «.(2’) < a:(x) for every 7; that is, z’ is also
in 8;. By repeating the process, a sequence

z, 2,27, - ,0
of vectors in S, is obtained for which
Gx) < G@') <G < -+ < g(0).

By reversing the sequence it will be observed that every
vector in S; is a member of a sequence starting with x = 0, each
vector is followed by a vector obtained by changing a zero com-
ponent into a one in such a way that G is not increased, and every
member of the sequence is in S;. These changes are made only
at components z; for which a; < 0. Thus every member of S
is produced at least once by generating every possible sequence
of this kind. Essentially, the algorithm consists of generating
sequences of this type. It will be noted particularly that the cor-
responding sequence of « vectors are monotone non-decreasing,
component by component.

Now consider x = 0 and its corresponding «, where «; =
a;; — 2¢;. If attention is fixed on some specific component «,
it may be that o, > 0, in which case z, must be 0 in all generated
sequences. Or it may be that «, is so large and negative that z,
must be 1 in all generated sequences. Or, finally, it may be that
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a, < 0 but not large enough negatively to exclude z, = 0 as a
possibility in the generated sequences. In this case two new
vectors are to be considered, one of which is the null vector, the
other the null vector with z, = 0 replaced by x, = 1. In each
instance the »th component is considered as subject to no further
change.

The set (of one or two vectors) generated above is processed
again in similar manner, that is, by applying the same process
to a component of each vector which has not yet been fixed.
Continuing in this fashion, a set of vectors will ultimately be
reached each of which has all its components fixed, and this set
is the set Ss. It is to be noted that whenever a vector is generated
by replacing z, = 0 by an 2, = 1 there is the prospect for any
z; = 1 (for which a; < 0) that o/ > 0. In this case the vector
may be discarded.

We note that two processes are required, one for calculation
of the numbers o/, ¢/, K’ in Equations (3), (4), and (5) and the
other for the remaining processes. Of course, the first of these
depends on the form in which the input data is given and hence
cannot be described here, except to observe that a general pro-
gram can be written for accumulating the integrals, which can
be computed by appropriate subroutines.

In order to describe the computing algorithm for the second
process in detail, two sets of indices, £ and E are assigned, asso-
ciated with a vector z. The set E contains those indices corre-
sponding to components of x whose values have been fixed; the
set I/ contains all the remaining indices. Evidently, if » € E
then z, = 0. Let 8 be a vector whose »th component 1s 3,, where

:Bv = 2 E bz‘vy (16)

i€l
b., being the 7th component of b,. It will be seen that if &, + 8, <0

then z, = 1 in all vectors generated from z. The principal part
of the algorithm can now be stated:

Step 1. Initially set

n

a? = a,, — 207: /33 = 2 Z biv: X, = 0

i=1
forv=1,---,n G2 = K,and E = 0.

Step 2. For any z such that F # 0 select some » € E and proceed
as follows:

o Ifa, >—f,generater’ =z,0 =a,8 = — 2b,, G&') = G(z),
move » from E to E.
If @, < 0 generate 2’ by changing z, = Ointo 2z, = 1, &' =
a + 2b,. If &’ € 8, that is, z; = 1 implies o} < 0 for all 7,
generate also §/ = g8 — 2b,, G(&') = G(z) + «,, move v from

Eto E.If ' & S, discard z'.
Step 3. Tterate until no generated vector has E 5 0.
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While it is clear that the above algorithm generates S; it is
also true that interest is centered in S,. For this purpose a further
restriction can be made. For if, during the course of the iterations,
a particular vector z has been generated, it will be seen, for any
vector z’’ obtained from z by the above process, that

Q") 2 G@) + X' a, a7)

where the summation Y.’ is extended over those indices in the
set E (associated with z) for which o, < 0. If G represents the
smallest G(x) obtained at any given point of the process, then
any vector z such that

Go)+ D a,> G (18)

cannot possibly lead to a member of S; and thus may be dropped
from consideration.

Finally, the problem of choosing » & E exists. Since G(z') =
G(z) + a, it seems reasonable to choose that » € E which mini-
mizes a,. For if min «, is negative this choice makes the maximum
reduction in G, and if min «, > 0 no reduction of G is possible.

One further function can be incorporated in the process.
Specifically, it may be desired to force some components of z
to be 1 regardless of other considerations. That is, certain of the
projects are to be forced into the final solution. There are two
ways in which this can be done. One is to modify the functions
C;(t). Another way is to make use of the fact that up to now only
the pairs (0, 0), (1, 0), (1, 1) have been used for (E;, x;). If the
pair (0, 1) is used in this last case the algorithm is easily modified
to accomodate this situation.

For illustrative purposes consider the problem formulated by
the following values for 4, T and K:

,

15

N = O

—_
[y

S =N =N W D
S = = N W o W W
W QO N RO WY O
=R s NN = NN

ORI RN CRRN SN

2
T = (7,12, 10, 13, 11, 23, 13, 11), and

K = 60.

Then Table 3 follows where E; = 0 implies that ¢ € E, E; = 1
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 —20 —-12 —-17 —15 —17 —15 —17
10 18 26 28 26 28 20 16
60

implies 7 € E. It is apparent that components 1, 2, 8 can be
assigned immediately. This leads to Table 4.

In Table 4 the unassigned component with most negative «
is the sixth. This leads to the two cases displayed in Table 5
and 6, respectively. Continuing according to the rules laid down,
the following results are rapidly obtained:

min G(z) = 7, and

Tmia values are:
110110 1,
@10 0110 1) and
© 101001 1)

It will be noted that 8 finally is null, which serves as a check on
the process.

We have been looking at one type of problem in which we are
forced to select any combination of activities which ‘“‘best’’ meets
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our objectives. Other problems exist, however, in which we either
do not have or do not desire this much freedom of choice.

For example, if we attempt to schedule a group of machines
for preventive maintenance, we want to find an optimum schedule,
but subject to the restriction that each machine receive pre-
ventive maintenance. Or, we may have decided to carry out six
programs, and we are now concerned with the funding levels
for each program. We wish to optimize this schedule, but subject
to the restriction that we choose only one funding level per
program.

As a final example, in considering advertising programs, it
may be desired to choose some combination subject to the re-
striction that the combination include one or more choices among
the media of television, radio, newspapers, or magazines.

Such problems may be handled as a simple extension to the
basic method outlined above. For each subset from which one or
more activities are required, an “‘artificial”’ objective is stated.
This objective may be some non-negative constant P over the
entire time-interval of interest, with a weight function «;(f) = 1
(Figure 2). If any activity does not belong to the subset under
consideration, then its contribution to the fulfillment of the
objective is zero; if M, activities are to be sclected from the subset,
then the contribution of each member of the subset is P/M,.

We begin by dealing with only one subset of activities which
may, without loss of generality, be numbered 1, 2, --- , M,,
and suppose that our interest is in selecting exactly M, of these.
That is, the constraint,

M,
in = Mm (19)
i=1

is established under which G(z) is to be minimized. Let & represent
a minimizing vector for G(x) under this constraint, and consider

66 =6 + [ [P = 5P/, | e = 66 +rw), C0

where

— E(Tl - To)
My

9(x) = (Mo — i xi>2.

i=1

A
(1)

For any A we can find ' which minimizes G,(z) (noting that z’
is a function of A), by use of the preceding algorithm. Now

Qi) < G@), (22)

for if the converse were true, that is, if G(&) < G(z’), then G(£) +
A (E) < G(2") + Ag(2') since g(£) = 0. That is to say, we should
have G,(£) < G,(z') contrary to our hypothesis that ' minimizes

G, (2).
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Now we show that there exists a value of A such that G(&) =
G(z'). We have

G@’) + M) = Gi(@") < G.(@) = G@)

and either g(z’) = 0 or g(z’) > 1. If, for all A, g(z’) 5 0 then
G(z') + Mg(z’) can be made indefinitely large by choosing A
sufficiently large. On the other hand, G(£) does not change with X.
Hence the assumption that g(z’) 5% 0 for all \ leads to a contra-
diction. That is to say, for some A sufficiently large, ¢g(z') = 0
and hence z’ minimizes G(x) under the constraint g(z) = 0.
Since this is a property of £ it follows that G(z') = G(&), that is,
the vectors 2’ solve the constrained problem.

There are two further points of interest. One, the above deriva-
tion is easily extended to more than one subset. Two, if activities
are forced into the solution in such a manner that the constraint
is violated, the derivation obviously collapses, since £ does not
exist. In practice there should be no difficulty on this latter point.

To provide additional insight as to nature of the results that
may be obtained with the algorithm we detail the solution of a more
elaborate example. The problem to be considered involves three
objectives: sales, profits, and engineering man-hours. Twelve time
periods are to be considered, and the activity data is shown in
Tables 7, 8, and 9.

Two of these projects, Numbers 5 and 8, are presently in house
and required in the final solutions.

The objectives are as follows: sales, presently (¢ = 0) set at
$10,000,000 to increase uniformly to $22,000,000 by the end of
the twelfth period; profits, presently set at $1,000,000 to increase
to $1,600,000; engineering man-hours to remain fixed at 100,000.

In Figures 3, 4, 5 the results of using four different sets of
weights are shown. The results are labeled A, B, C, D and corre-
spond to the weights given in Table 10 where w,(t) = 1, and
w,(0) = 1, w,(12) = .40 and is linear between these values. The
mix of projects selected in each case is given in Table 11.

The effect on sales of increasing the weight associated with
sales (solution B) is quite noticeable. Solution C is even better
at the beginning of the range, but performs poorly toward the
end. On the other hand solution C gives the best answer for
profits, which is to be expected. The results in man-hours seem
relatively independent of weighting. Here the rapid ‘“drop off” is
the most noticeable feature. A glance at input data quickly reveals
the reason for this, and may well indicate a need for quickly
broadening the set of projects available.

It may be of interest to investigate the case in which the policy
is to accept as much sales and profits as possible, consistent with
the above objective in engineering man-hours. For this problem
the variation in solution would be expected with the variation in
weight assigned to the manpower objective. The solutions of
interest here are given in Table 12. The objective now will be
$50,000,000 in sales (constant), $5,000,000 in profits (constant).
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Table 7 Sales (millions of dollars)

Project
Number

Table 8 Profits (millions of dollars)

Project
Number

Table 9 Engineering man-hours (thousands)

Project
Number

1

3
4
5
6
7
8
9
10
11
12
13
14
15
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Figure 5 Profits
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Figure 6 Sales
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Figure 7 Profits
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These numbers have been chosen to exceed the totals available
at any given point in time. The product mixes are given in Table 13
and the results are shown in Figures 6, 7, 8. Solution D, which
selects all fifteen projects, is the natural result of emphasizing
sales (or profits, or both) in these circumstances. Finally, it is
interesting to note that the set of weights 1, 10, 10, w,(f) gives a
solution identical with solution A of the preceding set. The general
result seems to be that, the more weight attached to matching
manpower objectives, the less sales and profits.

A 709 was used for the above computations and running
time was about fifteen seconds per case. The number of vectors
examined varied from 12 to 41, the maximum number in storage
varied from 1 to 6.

Two important and related questions connected with the use
of the above algorithm require an answer. The first question has
to do with running time, the second with storage capacity re-
quired. The first question has two parts essentially, the length
of time required to form the input needed for the above algorithm
from original data, and the total number of vectors examined.
The second question requires a knowledge of the maximum number
of vectors in storage at any given moment.

Integration and summation processes can be estimated for
running time, once the decision has been made as to the form of
the input functions. The number of vectors examined and number
in storage at any moment, can only be computed in general.

In passing, it may be noted that for an M activity problem
there are a maximum of 2 combinations and that it is not
difficult to construct an example in which every one of these
is optimum in the above sense. Specifically, if 4 is diagonal, that is,
a;; = 0 when 7 # j and if moreover a;; = 2¢,, then (z, Azx) =
2(T, z) for every admissible z. That is to say G(z) = K for all
admissible z. To create such an 4 and T, let Ty = 0, ', = M,
On;(H) = 1lform — 1 < ¢t < m, ¢,;(t) = 0 elsewhere. Also let
C,(t) = 1/2, a;() = 1 everywhere. Then a;; = N, ¢; = N/2.
Thus, no upper bound less than 2" for either number of vectors
exists. It appears therefore that only experience can provide an
indication as to the bounds that actually occur in practice.

For this reason, experimental programs have been written
for the 7090 first, and later the 1620. In these programs all input
functions are assumed to be continuous and piecewise linear.
Furthermore, it is assumed that changes of slope occur only at
integral values of time, £ = 0,1, --- , T, so that in fact the func-
tions can be completely described by tables. The integrations in
the programs are precise, under these assumptions. As for weights,
the form a;(t) = A,w(t) is used. The mechanism for forcing
activities into the final solution is incorporated.

Another feature built into the program, which has not been
mentioned before, is a device for locating solutions “close” to
the optimum. This is accomplished by finding min G(z) and
then, on a second pass, retaining those vectors « in S; such that
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G(z) < min G + k[G(0) — min @], that is, vectors z such that G(x)
is within a certain percentage (described by k) of the minimum.

Although several small problems were run, the most significant
single result to date has to do with a problem having 32 activities
and 3 objectives over 20 time periods, with 3 activities being forced
into the solution. In this problem, 21 different cases corresponding
to differing choices of weights were run. Total running time on
the 7090 was 20 minutes, the integrations being performed for
each case, although a more sophisticated program would have
made this unnecessary in this particular instance. The other
operating statistics, which were printed out as part of the program,
were as follows. The total number of combinations tested ranged
from 100 to 1300. The maximum number of vectors in storage
at any one time was 7.

It is not possible to make significant statements about so few
statistics. However, the limited experience to date indicates that
the results in the above case were fairly typical.
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