This paper, motivated by the classical work of Bush, discusses the
posstbilities of designing an information processing system based on
intrinsic addressing techniques.

The primary design objective is to develop a system with increased
capability for non-numerical information processing.

Suggestions for the physical and programming system logic are out-
lined from a macroscopic point of view and some applications of
the system are tndicated.

An intrinsically addressed processing system

types of
addresses

by J. BE. Griffith

In 1945, Vannevar Bush published a famous article' discussing his
“memex”’ machine in which information would be selected by
methods of association, rather than indexing. This paper® will
describe in general outline an information processing system which
is based on methods of association, and which is designed as
an extension of the von Neumann® general purpose computer
organization.

In particular, we will comment on addressing and computer
design, consider organization of a machine employing an intrinsic
address memory, discuss the associated programming, mention
some applications, and conclude by noting certain problems re-
lated to implementation.

Addressing and computer design

Briefly, there are two ways of ordering information. One way,
called exirinsic, is basically enumeration. For instance, if we can
enumerate the words in a memory, we assign a value to each word
to denote its place in the order. This is called an address in modern
computers. The correspondence between the contents of any word
and its memory address is usually specified by an indexing algo-
rithm which is programmed to effect the retrieval of the desired
information.

The other method of ordering information, called inirinsic,
18 to specify some attribute of the data itself. This method has the
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advantage that a class of data may be specified by any of its
intrinsic attributes. The first method allows data to be retrieved
only by discovering its place in the order. The second method
allows data to be retrieved by specifying the characteristics of
the class to which it belongs. We will arbitrarily define an extrinsic
address as one which is not contained in the memory storage fields,
and an intrinsic address as one that is contained in the memory
storage fields. This implies that additional bits of storage may be
supplied to contain the usual extrinsic address, which makes it in-
trinsic, or that any of the data fields may be used as an address, or
both. This arbitrary definition is made to separate the two address
types in terms of currently envisioned hardware, and to serve
the purpose of this paper. A more complete definition will probably
be necessary when further progress has been made in this field.

It can be seen that extrinsic addresses are unique and intrinsic
addresses are not necessarily unique. This property of intrinsic
addresses can be very useful, as Bush realized. One can thus use
a defining attribute whenever uniqueness is not important, which
is true in many information processing problems. A discussion of
this point occurs in Reference 4. Reference 5 defines these types
of addresses in greater detail. Slightly different definitions are
given in Reference 6.

The actual hardware implementation of intrinsic addresses
may conceivably be accomplished either by a selection or a
scanning process. In this paper, we will assume that the scanning
process is used, and that its speed is commensurate with the
technology used to fabricate the memory. However, such techno-
logical considerations are outside the scope of this paper. Two
types of scanning processes will be assumed; serial scanning by
bit or character will be denoted as serial intrinsic addressing, and
serial or parallel scanning by word will be called parallel intrinsic
addressing. These definitions do not agree in detail with those
given by Falkoff®.

The actual process of scanning and comparing fields to be
retrieved may be reviewed as nothing more than a table lookup
operation. There are two ways of implementing such operations.
One method is exemplified by the coNVERT command of the
IBM 7090. In this case, the table is ordered and indexing procedures
are used to select the correct table entry. The other method, used
on the 1BM 650, searches the table, comparing the value of the
argument in each entry until the correct entry is found. This
. form of table lookup must be used whenever the table cannot be
ordered. Many information retrieval applications require this form
of table lookup. Thus, the scanning and comparing operation,
which we can call a table lookup operation, gives us the “selection
by association” that Bush desired. We may, therefore, consider
one form of Bush’s “memex’ machine to be an information proc-
essing system designed around the table lookup operation, and
this will be our approach.

It is not surprising that the table lookup operation can be
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used as the basis for an information processing system, for it is
a very general operation. Any logical or arithmetic operation may
be duplicated by means of table lookup procedures. If one searches
the table, one is actually performing the table lookup operation
by intrinsic addressing methods.

A philosophical point or two is in order. The von Neumann
computer organization is one in which the arithmetic-logical unit
is used as a focal point of the machine design. In such an organiza-
tion, the memory is used in a passive manner, meaning that it is
not generally given any logical power of its own. Like memory,
1/0 equipment is also commonly used as an adjunct to the arith-
metic-logical unit, and is usually used in a passive manner. We
may consider this phase of modern computer design as Phase I.

Phase II of modern computer design is the phase that is
presently beginning. This phase has been evolving around the
difficulties of processing non-numerical data on von Neumann
organizations. In this phase, the focal point of the design phi-
losophy may be the memory, not the arithmetic-logical unit.
If so, memory will become an active element of the machine design
and will contain internal logical ability of its own. An alternative
viewpoint is that the memory and the arithmetic-logical unit,
inasmuch as they are both active, will merge and become one
element of the machine. This combination would be a processor
with internal memory functions. It does not seem important to
worry about whether such an element will be considered as a
memory with an internal processing capability or a processing
device with an internal memory. It seems possible that com-
puters designed during this phase may have superior non-numerical
processing capability when compared to current von Neumann
organizations. Phase II computer designs would be built as an
extension of the von Neumann organization, and thus will retain
all of the present advantages of the latter. The system described
in this paper may be considered as an early example of Phase IT
computer system design.

It remains to be seen what the next phase of computer design
will be; possibly 1/0 equipment will become a more dominant
feature of the design.

We will next discuss the influence of active memories on the
organization of an information processing system.

An intrinsically addressed processor

Although the system discussed in this paper uses intrinsic address
techniques as the basic mode of operation, it is assumed that an
actual operational system would have both extrinsic and intrinsic
addresses in the memory. Many numerical problems will not be
aided significantly with intrinsic addresses. However, this paper
is confined to a discussion of intrinsic addresses in order to suggest
their potential.

The example of Phase II design outlined in this section will
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be based primarily on three principles. These are as follows:

Memory as the focal point of the system design.
Use of active memory rather than static memory.
Table lookup operations executed in the memory.

We will now discuss the general organization of the processor.

Memory. The memory used in this system will have the following
features:

s Fixed word length.

s Intrinsic addressing—no extrinsic addresses.

s All store and retrieval operations via table lookup.
s No word format.

Since the retrieval is associative, and not indexed, powers of two
are no longer magic for word lengths. The word length, therefore,
can be any that is convenient or economically desirable. We will
assume a word length of 100 bits.

Arithmetic-logical unit (ALU). The ALv will be assumed to be
similar to that of a typical modern computer (the 1BmM 7090, for
instance). We will assume that it will execute the usual comple-
ment of operations.

Bulk storage. In this system, all memories will be addressed in
the intrinsic mode only. Disk storage will use serial intrinsic
addressing, drum storages will have both serial and parallel
intrinsic addressing, and tapes will have serial intrinsic addressing
only, as at present.

Input/output. The 1/0 equipment will consist of printers, card
readers and punches, displays, etc., as at present.

Figure 1 gives a diagram of the system organization. This
system is based on memory designs which have only intrinsic
addressing. Extrinsic addressing schemes may be programmed as
at present, and a technique for doing so will be discussed later.
The standard mode of retrieval from the memories is by table
lookup instructions. In order to implement these instructions, two

Figure 1 Machine organization
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pairs of “mask” and “comparison’” registers are included. The
mask register of the first pair holds a bit mask which defines the
field in which the argument of the table lookup operation is
located. Any binary pattern may be placed in this register, and
the pattern may be contiguous or non-contiguous. Its com-
panion comparison register contains the value of the argument,
if any, to be used in the table lookup operation.

The alternative pair of mask and comparison registers are
used to supplement the first pair in some types of table lookup
operations which require more information to be specified than
can be contained in one pair of mask and comparison registers.
Other pairs of these registers would probably be required for
more complex forms of table lookup operations.

Once the appropriate registers are loaded, various table lookup
operations may be used to retrieve information from the memories.
The retrieved information may be sent to the ALU for processing,
or to the 1/0 gear, or to another memory. The reader may assume
any such units that he pleases. They will not be discussed here.

Many varieties of table lookup operations are possible, but
this paper will deal with a rudimentary set in order to suggest
how they may be used. The set included here is arbitrarily chosen
and almost certainly does not represent the best choice. We will
assume that our memories will respond to the following set of
table lookup operations. Notice that these imply parallel intrinsic
addressing wherein all bits of one word are compared at once.
Depending on the hardware, many or all of the words in such a
memory may be simultaneously scanned and compared. The
specific operations are now described.

1. Write in first blank—this is a table lookup operation which

locates the ‘“‘first” blank word (first is known only to the
machine) and writes the word to be stored into the blank word.
Notice that successive words to be written in memory will
not, in general, be stored in adjacent locations.

. Read out exact match—in which all words that exactly match a
magsked field in a comparison register are read out. One memory
cycle may be required for each word read out.

. Read out highest (lowest)—in which the words containing the
numerically highest (lowest) field as specified by a mask in
a register are read out. One memory cycle may be required
for each word read out.

. Read out next highest (lowest)—in which the words containing
the numerically next highest (lowest) valued field relative to
that specified by a masked comparison register will be read
out in one memory cycle per word. Only one number will
be the highest, though it may oceur more than once.

. Read out highest (lowest) in a range—in which the words con-
taining the highest (lowest) values are read out as in Number 3,
but the value of the field is limited to the range between two
values specified by two pairs of masked comparison registers.
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6. Read out next highest (lowest) in a range—in which the words
containing the next highest (lowest) values are read out as
in operation Number 4 except that the value of the field is
limited to a range specified by two pairs of masked comparison
registers.

. Read out nearest logical match—in which the words containing
fields for which the greatest total number of bits match the
contents of a masked comparison register are read out. This
is the logical equivalent of operation Number 4. Many bit
arrangements may give the same number of logical matches.

. Store in field—in which the contents of one masked comparison
register are stored in all words which match another masked
comparison register. If two other masked comparison registers
are used, the contents of the first pair may be stored in all
words bounded by the two values of the masked comparison
registers. Note that the location of the bits to be stored may
coincide with, overlap, or be disparate with the location of
the bits defining the words to be modified. This is a generalized
store address operation. This operation will take one or two
memory cycles total for any number of words changed.

. Read out in order—in which the words specified by a masked
register field or limited to a range specified by two masked
register fields are read out in order from high to low or low to
high. This is a “‘sort’’ operation which allows the words selected
to read out in sorted order. This operation will require one
memory cyele per word read out.

. Chained lookups——in which a masked portion of the word
read out as a result of any of the above read-out operations
is taken as the argument for another lookup. This operation
can proceed automatically until no read out occurs, or it may
stop after each read out awaiting a signal to proceed from the
program or ALU.

If the bulk storage files (disks) in a system can operate in the
serial by character mode as well as the parallel by word mode,
we need to define one more table lookup operation for use only with
memory devices that operate in the serial mode. Table lookup
operations Numbers 1-10 hold for serial intrinsic devices as well
as parallel intrinsic devices.

11. Read out longest match—in which the longest sequence of bits
or characters that match the value of a masked comparison
register are read out. The sequence may start from either end
of the value field to be matched, depending on the mode of
operation specified.

Table lookup operations Numbers 10 and 11 are related to
operations contained in the AN/GSQ-16 Air Force Automatic
Language Translator’.

Generally speaking, it is preferable to have readout from all
memories operate in both destructive and mon-destructive modes.

INTRINSICALLY ADDRESSED PROCESSING SYSTEM




symbolic
addressing

This will facilitate certain storage allocation problems since the
normal mode of storing is to write in “first”’ blank words.

The programming system

In a computer with a memory using parallel intrinsic addressing
over the entire word length, the use of table lookup operations
allows some interesting programming techniques. For example,
suppose that a programmer should arbitrarily reserve the first
three or four character positions (the memory is binary; therefore
an equivalent number of bits would be reserved, 24 bits for four
characters in this case) of each word as an address field. This
particular formulation requires that each instruction have its
own name whether or not it is used by the programmer. The
addressing data obviously requires an inordinate amount of space
but will serve here for tutorial purposes.

The address field would be defined by a pair of masks and
comparison registers as in Figure 1, and the definition is thus
entirely under control of the programmer. He may consider and
use this field both as an extrinsic or an intrinsic address thus
affording complete generality. In the extrinsic mode, he would
fill the field with a sequence of numbers or characters. In the
intrinsic mode, he would fill the field with symbols or characters
of his own choosing, not necessarily sequential. A tag or name
which distinguishes instructions from data may also be required
in some cases.

In the intrinsic mode, any three or four symbols may serve
as an address, and it is not necessary to compute or index one’s
way to an address. The programmer may ask for data or instruc-
tions in terms of these fields exclusively, if he pleases. Notice that:

¢ He does not have to know the extrinsic location of the data
or instructions (table lookup operation Number 2).
He may proceed by table lookup to the next highest or lowest
address (table lookup operation Number 4) if the addresses
are sequential.
He may change the contents of any number of words si-
multaneously in one memory cyecle (table lookup operation
Number 8).

Therefore, it may be possible to write a program in symbolic
notation of the programmer’s own choosing and have the program
executed in this notation. Since the program is always in symbolic
notation, all debugging and modification will be performed in
programmer’s language.

List structures and push-down storage techniques are not
hampered in any manner. If their use is desired, they may be
implemented with ease. Since there are no absolute addresses
in the memory, assembly routines may not be very useful. The
function usually performed by heading cards in modern compilers
is performed in this system by table lookup operation Number 8.
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An interesting feature of intrinsic addressing is that an indica-
tion must be given whenever a table lookup operation fails to
cause a word to be read out of the memory. This may be used to
advantage when there is insufficient room in the memory for all
subroutines to be used in the execution of a program. When one
asks for the first instruction of a subroutine (transfers to its entry),
and fails to retrieve it, an assumption may be made that it is
not in the memory.

An 1/0 supervisory routine may then be instructed to write
the subroutine into the memory. A single instruction (table lookup
operation Number 8) may then be used to erase enough memory
to make room for the subroutine. There are many ways in which
this may be done; one way would be to indicate the priority of
information by the first character of the symbolic address field. An
AXXX address would be high priority information that cannot be
erased, and would indicate erasable storage or information of the
lowest priority. Addresses beginning with letters B through E
would indicate an intermediate priority scaled according to the
relative position of the letter in the alphabetical sequence.

When a subroutine, for instance, is to be read into memory,
and there is insufficient blank storage to contain it, table lookup
operation Number 8 may be used to erase enough low priority
information to provide the necessary space. If one does not have
individual addresses coded to indicate the exact table entries to
be erased, there is danger that some information will be erased
that should be retained. An address like FAXX or FBXX could
be used to indicate individual blocks of FXXX storage. However,
another approach is possible and will be discussed later.

A frequent problem in the control of 1/0 units is that of main-

Figure 2 Input/output control
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taining priority control over several units operating simulta-
neously. Usually, this requires that the highest priority units be
serviced first and lower priority units be serviced in order of their
priority. When several 1/0 units need servicing simultaneously,
the solution to this problem becomes very complex to program.

With table lookup procedures, this problem is somewhat easier.
Suppose that (for simplicity) we have a control word memory
with a capacity of one control word per 1/0 unit. Each location
in the control word memory will be assigned to a particular 1/0
unit, although this is not a necessary feature (see Figure 2). The
high order three bits of each control word will be reserved for
priority indication. The priority will be assigned by a supervisory
routine and may be changed at any time under program control.
Another bit of each word will be reserved for control indication.
This bit will then be turned on whenever the unit requires ser-
vicing. An 1/0 servicing trigger X in the machine will be turned
on when any 1/0 unit needs servicing and will be turned off only
when no 1/0 units need servicing.

When the 1/0 service trigger is turned on, this will cause the
program control to be transferred to the 1/0 supervisory routine.
This routine will then perform a table lookup operation on the
control bit plus the three-bit priority indicator field. Table lookup
operation Number 3 (highest value) will thus cause the retrieval
of the control word of the highest priority 1/0 unit that needs
servicing. When servicing is complete, the control indicator bit
is turned off. If the 1/0 service trigger X is still on, another table
lookup operation Number 3 will retrieve the next highest priority
control word. This operation, repeated as long as the 1/0 service
trigger X is on, will cause the highest priority 1/0 unit at any given
instant to be serviced first. When the 1/0 service trigger X is
no longer on, control will be returned to the main program. Notice
that no scanning routines are necessary; they are eliminated and
replaced by a single table lookup operation that performs simul-
taneously the function of scanning and highest priority selection.
Thus, 1/0 supervisory routines may be aided by the availability
of memories that allow table lookup operations to be performed.

In this paper the term ‘“‘multiplexed computers’” refers to an
installation of several computers, not necessarily all alike, which
can operate concurrently on the same or different problems. For
the simple case that will be described, all of these machines will
use the same memory. Figure 3 shows a sample system using three
computers. In order for each machine to separate its data and
instructions from that of the other two machines, each machine
will use a different initial letter in the symbolic addresses of its
data and instructions. A different range of letters would be used
for each machine in an actual case, and the reader can develop
more sophisticated schemes for himself. Thus, one machine will
use symbolic addresses beginning with A, such as AXXX; another
machine will use symbolic addresses like BXXX; another machine
will use CXXX. No confusion will result since each machine will
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determine its own addresses within the set of symbols assigned
to it. If certain letters are not used, gaps in the natural sequence
will oceur. If indexing procedures are used, and if one accidentally
indexes his way beyond his assigned set of symbols, no instructions
or data will occur with the address produced, thus no table entries
will be read out—a warning of potential trouble.

An alternative method would be to place a specially coded
word at the end of each block of data addresses. An extra pair
of mask and comparison registers would automatically scan each
memory word read out and cause machine interruptions or trans-
fers of control if the appropriate match were obtained.

During the solution of a problem occupying the capacities of
the three machines, one machine may desire to pass data to
another machine. If so, all that is necessary is to convert the first
letter of the data words to be passed to the letter used by the
other machine. Converting an AXXX, say, in certain data-word-
addresses to a BXXX will have the effect of passing data from
machine 4 to machine B. Such conversion will take only one
memory cycle for any number of data words. The speed of this
operation is due to the fact that it is nothing more than another
table lookup instruction, except in reverse. Table lookup operation
Number 8 is the one referred to here.

There may be situations in which protection is desired against
access to one machine’s data or instructions by another machine.
If so, the address bits may be randomly spread throughout the
data word format by insertion of the appropriate mask. This
pattern will be difficult for another machine to recover but the
technique will not protect the data from being written over by
the other machine. Generally, the latter type of protection is best
built into the machine hardware.

Since the address field of each symbolic instruction is symbolic
and may not be sequential with respect to an order of execution
of program steps, there is a question as to how the order of execu-
tion may be specified. In this system, we will use table lookup
operation Number 10 (chained TLU). A sequence of instructions
may be listed as in Table 1.

The right-hand table shows the chained TLU formation. This
is akin to a technique used in computers like the 1BM 650, wherein
each instruction specifies the location of the next instruction. The
difference here is that the location of the next instruction may be
in symbolic notation. The left-hand part of each pair is the present
instruction to be executed, and the right-hand part is the next
instruction to be executed. The A+4 entry shows two possible
next instructions, A+5 and B+1. In other words, A+4 is a con-
ditional branch and A+6 is the return to the start of the loop.
If the address symbols were as shown here, the order is evident,
and could be indexed. However, the symbolic notation could also
be as shown in Table 2.

It will be noted that the chained table lookup form does not
require sequential (extrinsic) addresses and will operate correctly
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Figure 3 Multiplexed computers
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with either intrinsic or extrinsic addresses. Since this method of
specifying order is independent of the actual address, some re-
strictions inherent in indexing schemes are no longer present.
In the above example, any entry may be modified without con-
cern for the effect on other addresses in the chain. Also, modifica-
tions to the logical structure of the chain may be accomplished by
modifying or adding entries to the table.

The chaining of table lookup operations may thus be seen as
a technique for specifying structure that is independent of the
arguments (address fields) of the individual table lookup opera-
tions. Thus, it is an address invariant scheme which includes in-
dexing as a special case. Each table entry will generally denote
the two end points of one segment of the mesh represented by the
table, but several segments joined to a common end point (a
branch) may also be denoted by a single table entry. This example
illustrates how list structures may be implemented using intrinsic
addressing techniques. The use of intrinsic addresses is not neces-
sary; extrinsic addressing methods with indexing will sometimes
be more suitable than fully symbolic intrinsic addressing tech-
niques. If the use of extrinsic addresses is desired, they may be
simulated as discussed above, or they may be built into the com-
puter hardware as at present.

Application of table lookup chains to problems in information
retrieval may also be possible. For instance, a chain may be used
to represent the mesh of bibliographic references on a given subject.
The structure of the bibliography would be denoted by the chain
structure, possibly allowing conclusions to be drawn about the
degree of relation between two different items in the bibliography.
For instance, suppose that it is desired to order a bibliography
by date. Use of table lookup operation Number 4 (next highest
value) will allow the chain of bibliographic items to be retrieved
in chronological order. Each item retrieved would then have its
symbolic address (or other distinguishing attribute) added to a
new table lookup chain. The new chain thus built up gives the
structure of the bibliography in chronological order. This particular
solution could also be obtained by sorting, using table lookup
operation Number 9 (read out in order).

If the bibliography were to be arranged in a structure such
as that given by Roget’s Thesaurus, sorting may not work. In
this case, each Roget classification would be made up into a
chain. The main classification, or beginning, of each chain would
be used to make another chain. The words in the titles of each
bibliographic entry could then be compared with each entry in
each chain and type of relevance indicated by the main classifi-
cation of each sub-chain that correlated with the words of the titles.

This technique might possibly be extended to provide a scheme
for analyzing articles for subjective content. ¥or instance, political
concepts are sometimes indicated by conjunctions of words that
often appear in other contexts. A chain of words may be set up
to indicate a possible format of context and word order.
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Editing may be an easier problem in this system. The usual
case of rearranging several items into a line print format may be
solved by attaching symbolic addresses to each field. The order
of the symbols should be the order in the print format. Then, the
use of table lookup operation Number 9 (read out in order) will
cause the fields to be read out in the desired order. Alternate
formats of the same set of fields may be represented by alternate
tags.

The operation of expansion and contraction of the print format
may be accomplished by using multiple symbol tags to denote the
level in the format that alteration is to take place.

Many new techniques for debugging are made available by
table lookup procedures. For instance, table lookup operation
Number 2 (read out exact match) may be used as a trap for
spurious addresses. The suspected or known spurious address
can be specified as an argument and all words with that address
will be retrieved. Since it is not necessary to know where they are,
this operation eases the problem of locating spurious addresses.
Alternatively, this operation may also be used to locate all in-
structions that refer to a given location or subroutine.

Table lookup operation Number 8 (store in field) is very con-
venient for changing addresses of instructions. One pair of masked
comparison registers may specify the value of the address that is
desired. This operation will convert all addresses of the given
value to the new specified value without specifying their location
in memory, or specifying how many such addresses exist in the
memory. This suggests the elegance of intrinsic addressing
techniques.

Table lookup operation Number 9 (read out in order) may be
used to read out all instructions in order by address value. This

may be used to examine chains and other routines for consistency
of addressing. Reading out symbolic locations in order may help
to establish a measure of correspondence between the addresses
used and the location specified. For cases where the symbolie
address is modified in manner analogous to indexing, this tech-
nique may not be useful.

Applications to information processing

When Bush proposed his “memex” machine, he sensed that re-

trieval by association would be better than retrieval by indexing.
Having roughly outlined the features of a computer system based
on intrinsic addressing methods, or retrieval by association, it is
now appropriate to examine in more detail the implications of
Bush’s suggestion. In order to do this, several application areas
will be discussed with suggested directions of solution indicated.

Suppose that a simple closed contour lies on a two-dimensional
mesh as shown in Figure 4. The mesh may have irregular or random
spacing. Starting at any point on the contour, nearest neighbors
are found by using table lookup operation Number 6 (read out
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next highest, lowest in a range) and one is selected that lies nearest
to or on the contour. “Next highest’”” and ‘“‘next lowest” here
refer to the coordinates of the point on the mesh. With a given
point whose « and y coordinates are known, it is desired to find
the nearest neighboring contour points by asking for the contour
point with next highest and next lowest z and y coordinates.
Squaring the differences in coordinates and comparing the values
may be necessary in some cases.

Repeating this action until closure is obtained defines the con-
tour. Doing the same for another unknown contour defines it also.

To compare the two contours, select any point on one contour
and calculate a few vectors to other points on the same contour,
to every tenth point on the contour, for instance. Repeat this
procedure with each point as the starting point. On the other
contour, do the same for a point chosen at random. If this set of
vectors 1s not nearly alike any of the sets calculated for the first
contour, repeat the procedure starting with the next point on the
second contour. Table lookup operations Numbers 5, 6, and 9
should aid in the comparison. If there is a sufficiently good corre-
spondence, more refined calculations will determine how alike
the two contours are.

Notice that only data on or near the contour is examined. All
other data is unnecessary. This procedure will not determine the
shape of a contour, only the degree of likeness with another.

More sophisticated methods may be used to compare the
contours, and there are probably better ways of picking the start-
ing points of the calculation. More complex contours will require
more elaborate tables for solution, but the basic table lookup
method should remain unchanged.

An alternative version of the preceding problem is found in
the recovery of multiple branched trees from unknown data. In
this problem, closure is of secondary interest. One form of this
problem is often termed maze solving; the object is to find a path
from X to Y through a maze or labyrinth of data. It is interesting
to note that a favored technique of solving such problems on von
Neumann type machines is that of table lookup. List structures
are often used in order to provide an approximate degree of
intrinsic addressing not actually found in the machine hardware.

We will now outline a method of attacking these problems with
an intrinsically addressed computer. The particular technique used
is much like those now programmed on extrinsically addressed
computers, but adapted for purposes of exposition. Figure 5
shows a typical branched tree. The coordinates of each end of
each branch is given. The question arises as to whether or not
there is a path from point X to point ¥ and its identity. Reference
8 discusses a better method in more detail.

To start, we will assume that we have a list of all possible
segments with coordinates of both ends given. Label all segments
via table lookup operation Number 8 (store in field) with a «“U”
in the symbolic address to indicate that each segment is ‘“un-
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Figure 5 Maze solving

examined’”’. Now examine the list of segments for any “ U’ labeled
segment. Test to see if it joins another segment at both ends or not.
Table lookup operation Number 2 (read out exact match) would
suffice here. If the coordinates of the far end of the segment
do not matech the coordinates of any other segment end point,
we may say that the segment comes to a dead end. Label the
segment “D”’ (for dead end) in the symbolic address field. If it
connects with one or more other segments, label it “E’’ for
“examined”. At any time, the list of segments may be operated
upon by table lookup operation Number 2 to see if any «“U”
labels remain in the list. When all “ U’ labels are gone, each seg-
ment will have either an “E” or a “D”’ label.

Starting at X, retrieve the segment or segments with the co-
ordinates of X at one end. If any of the segments have a “D”
label, ignore them. Label any branch point “B’’ (an additional
label) if it has two or more “E’’ segments. Picking an “E” seg-
ment at random, from the coordinates of the far end, retrieve the
connecting segments. If more than one “E” segment is found,
label the point with a “B” as before. Proceed until point ¥ is
found or until a point is reached where only “D’’ segments occur.
If a branch point is reached that has only “D’” segments as suc-
cessors, label the branch itself “D’’ instead of “E’’ and return to
the preceding branch point, converting all “E” labels to “D”
for any intervening segments. At the preceding branch point,
label the examined “E’ leg “D’’ and pick a new “E” leg. Doing
this will label long legs that eventually end up in a dead end.

If by chance, a closed loop is discovered where the path returns
to itself, it may be labeled “D’’ by the preceding routine if no
other “E” exits are connected to it. The preceding routine will
discover these if they exist.

When point Y is reached, the list of “E” branches must be
examined to make sure that all long dead end branches have been
eliminated. When this has been done, one may start at X and,
picking “E’” branches only, end up at Y. Other calculations
may be performed to find the shortest path from X to ¥ or any
other selection that is desired among the possible paths from
XtoY.
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Figure 6 Double maze

A practical version of this problem is represented by Figure 6.
Suppose that Figure 6 represents the known information about a
railroad network. Is there a path from A to B? If not, the eastern-
most dead ends of the 4 network may be compared with the
western-most dead ends of network B. The nearest dead ends
give one clues as to possible connections that are missing from the
data. Special efforts may then be guided to obtain the missing
data. There are many versions of this problem in intelligence work.
Sometimes the most important information in a file is the “‘missing
link” type of data that is not actually there.

In the solution of this problem, note that the bookkeeping
is accomplished by manipulating the symbolic addresses. This
illustrates an advantage of table lookup procedures. In actual
fact, the symbolic address fields constitute a set of table entries.
These entries are then manipulated by table lookup operations.
Bookkeeping is thus accomplished in & natural manner during
the solution of a problem. Extrinsic addressing techniques some-
times require more superstructure in list techniques, push-down
storages, etc.

When one considers the solutions of maze problems that are
much more complex than those described here, he will often note
that it is desirable at times to construct routines which are some-
what self-adjusting. One situation in which this is desirable is
denoted by a maze whose structure changes in time. It is then
necessary to find a new path through the maze each time the
structure is changed. We will now outline a procedure for aiding
this type of routine.

Suppose that we have a set of subroutines each of which can
be applied to some data representing a problem. Some of the
subroutines will produce a more desirable output from the data
than others. By trial, we may determine the success of each sub-
routine. We would then label the symbolic address of each sub-
routine with a letter that indicates its degree of success. An address
AXXX would be a very successful subroutine and an address
FXXX would be a very unsuccessful subroutine. If we wished to
produce the most desirable output from a set of data, we would
tend to use the most successful subroutines.
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However, if the data changes from time to time, the degree
of success obtained by any given subroutine will also likely change.
In this case, the symbolic address will also change. This change
would normally be executed with table lookup operation Number 8.

At any time, when one desires to apply the most successful
subroutines to the data first, then the next most successful, ete.,
table lookup operations Numbers 3 and 4 will allow this selection
to be made with ease. The symbolic addresses are, as in maze
solving, nothing more than a table of functions whose appropriate-
ness varies with the data presented. The data presented can be
viewed as a set of arguments for which the best function that
occurs in the table is desired. It can now be seen that the table of
functions will adjust itself to the data (or arguments) presented.
This is not learning, but the table of functions may adapt itself
to situations never before experienced or foreseen.

If the set of available subroutines also changes in time, the
use of table lookup operation Number 8 will allow the FXXX
routines to be erased so as to make room for new, untried routines
in the table. At any time the unsuccessful entries may thus be
purged from the table to make room for new ones.

The reader can see that the table need not represent a set of
subroutines. It could represent various paths through a maze,
and the question occurs as to whether self-adapting maze solving
routines can be developed.

A previous section referred to the storage allocation problem
wherein there was insufficient storage space for subroutines. The
symbolic address of each subroutine could be changed (e.g., from
FXXX to EXXX) to indicate the frequency of use. When it be-
comes necessary to erase storage to make room for another sub-
routine, the FXXX subroutine will be erased first, then EXXX,
ete., until enough storage has been vacated to make room for the
new subroutine. In this manner, the least used subroutines will
be erased first.

This technique may also have application in multiprogram-
ming, where it is desired to delay low priority programs in favor
of high priority programs.

If an intrinsic address memory is used as a storage for tables
of indicators, it may be operated as a filtering mechanism for data.
For example, suppose that it is desired to extract all sentences
from text that have certain words in them. Let us suppose that
it is desired to extract from a large source of text, such as a library,
all sentences that have any of the following words included: rain,
precipitation, clouds, cloud cover, rainfall, temperature. If we
were to store this list of words in an intrinsic address memory
and then pass the running text through a register system which
performed table lookup operation Number 2 (read out exact
match) on every word of the running text, a read out would occur
only when a word in the running text matched one of the words
in the stored list. The read out indication could be used to cause
a copy of the sentence to be prepared on a separate tape unit.
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In some message switching centers, it might be desired to
switch selected messages to other addresses. This arrangement
thus becomes a dynamic message switching center in which the
message heading as well as the text would be examined and mes-
sages switched in real time. The analogy to a filter is clear in that
the intrinsic address memory allows only that data which meets
the stored criteria to pass over the selected lines.

Comments on implementation

A remaining consideration is that of the hardware implementation.
There are several questions related to this point which require
thorough study and discussion. One question is: can the major
technological and engineering problems be solved in order to
build intrinsic address memories with features such as those
described? Will the improved capability be worth the difference
in cost relative to the cost of extrinsic address memories? Will
the future availability of very large economical storages and more
sophisticated programming techniques weaken the advantages of
intrinsic address memories?

Questions such as these will have to be considered in detail
before we can balance the cost of producing intrinsic address
processors against the gains to be expected from their use.

This paper has briefly described an information processing
system based on intrinsic addressing techniques. The system
illustrates some of the concepts which may be used if intrinsie
address memories become available as production devices. Some
of the implications of Bush’s paper are pointed out. It is felt that
intrinsic addressing techniques will permit computers to be de-

signed that have increased non-numerical processing capability,
and that once such machines are built, computer designers may
be in a better pgsition to tackle “intelligent’” machine design. The
characteristics of advanced information processing systems should
be improved by the availability of intrinsic address processors.
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