
This  paper,  motivated  by  the  classical  work of Bush,  discusses the 
possibilities  of  designing an  information processing  system based on 
intrinsic  addressing  techniques. 

The  primary  design objective i s  to develop a system  with  increased 
capability for non-numerical  information  processing. 

Suggestions  for the physical  and  programming  system logic  are out- 
lined  from  a  macroscopic  point of view  and some applications of 
the  system  are  indicated. 

An intrinsically  addressed  processing  system 
by J. E. Griffith 

In 1945, Vannevar  Bush  published a famous  article‘ discussing his 
memex”  machine in which  information would be selected by 

methods of association, rather  than indexing. This paper’ will 
describe in general  outline an information processing system  which 
is  based  on  methods of association, and which is designed as 
an extension of the von  Neumann3  general  purpose  computer 
organization. 

In  particular, we will comment on addressing and computer 
design, consider  organization of a machine  employing an intrinsic 
address  memory, discuss the associated  programming,  mention 
some applications, and conclude by noting  certain  problems re- 
lated  to implementation. 
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Addressing and computer design 
Briefly, there  are  two  ways of ordering  information. One way, 
called extrinsic, is  basically  enumeration. For instance, if we can 
enumerate  the words in a  memory, we assign a value to  each  word 
to  denote  its place in  the  order.  This is called an address in modern 
computers. The correspondence  between the  contents of any word 
and  its memory  address  is  usually specified by  an indexing algo- 
rithm which is programmed to  effect the retrieval of the desired 
information. 

The other  method of ordering  information, called intrinsic, 
is to specify some attribute of the  data itself. This  method  has  the 
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advantage that a class of data may be  specified by  any of its 
intrinsic  attributes.  The first method allows data  to be retrieved 
only by discovering its place in  the order. The second method 
allows data  to be retrieved  by specifying the characteristics of 
the class to which it belongs.  We  will arbitrarily define an extrinsic 
address as one  which is not contained in  the memory storage fields, 
and  an intrinsic address as one that is contained in  the memory 
storage fields. This implies that additional bits of storage  may be 
supplied to contain the usual extrinsic address, which makes it in- 
trinsic, or that any of the  data fields may be  used as  an address, or 
both.  This arbitrary definition is made to separate  the two address 
types  in  terms of currently envisioned hardware, and  to serve 
the purpose of this  paper. A more complete definition will probably 
be necessary when further progress has been made in  this field. 

It can be  seen that extrinsic addresses are unique and intrinsic 
addresses are  not necessarily unique. This  property of intrinsic 
addresses can be very useful, as Bush realized. One can thus use 
a defining attribute whenever uniqueness is not  important, which 
is true in many information processing problems. A discussion of 
this  point occurs in Reference 4. Reference 5 defines these types 
of addresses in  greater  detail. Slightly different definitions are 
given in Reference 6. 

The  actual  hardware  implementation of intrinsic addresses 
may conceivably be accomplished either  by a selection or a 
scanning process. In  this  paper, we  will assume that the scanning 
process is used, and  that  its speed is commensurate with the 
technology used to fabricate the memory. However, such techno- 
logical considerations are outside the scope of this paper.  Two 
types of scanning processes  will be assumed; serial scanning by 
bit or character will  be denoted as serial intrinsic addressing, and 
serial or parallel scanning by word will  be called parallel intrinsic 
addressing. These definitions do not agree in detail  with those 
given by Falkoff‘. 

The  actual process of scanning and comparing fields to be 
retrieved may be  reviewed as nothing more than a  table lookup 
operation. There are two ways of implementing such operations. 
One method is exemplified by  the CONVERT command of the 
IBM 7090. In this case, the table is ordered and indexing procedures 
are used to select the correct table  entry.  The other  method, used 
on the IBM 650, searches the  table, comparing the value of the 
argument  in each entry until the correct entry is found. This 
form of table lookup must be  used whenever the table  cannot be 
ordered. Many information retrieval applications require this form 
of table lookup. Thus,  the scanning and comparing operation, 
which we can call a  table lookup operation, gives us the “selection 
by association” that Bush desired. We may, therefore, consider 
one form of Bush’s  “memex” machine to be an information proc- 
essing system designed around  the  table lookup operation, and 
this will  be our approach. 

It is not surprising that the  table lookup operation can be 
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used as  the basis for an information processing system, for it is 
a very general operation. Any logical or arithmetic  operation  may 
be duplicated  by means of table lookup procedures. If one searches 
the  table, one is actually performing the  table lookup operation 
by intrinsic addressing methods. 

A philosophical point or two is in  order. The von Neumann 
computer design computer  organization is one in which the arithmetic-logical unit 
philosophy is  used as a focal point of the machine design. In such an organiza- 

tion, the memory is used in  a passive manner, meaning that  it is 
not generally given any logical power of its own. Like memory, 
I/O equipment is also commonly used as an  adjunct  to the  arith- 
metic-logical unit,  and is usually used in  a passive manner. We 
may consider this phase of modern  computer design as  Phase I. 

Phase I1 of modern computer design is the  phase that is 
presently beginning. This phase has been evolving around  the 
difficulties of processing non-numerical data on von  Neumann 
organizations. In this phase, the focal point of the design phi- 
losophy may be the memory, not  the arithmetic-logical unit. 
If so, memory will  become an active element of the machine design 
and will contain  internal logical ability of its own. An alternative 
viewpoint is that the memory and  the arithmetic-logical unit, 
inasmuch  as  they are  both active, will merge and become  one 
element of the machine. This combination would be a processor 
with  internal memory functions. It does not seem important  to 
worry about whether such an element will be considered as a 
memory with an internal processing capability or a processing 
device with  an  internal  memory. It seems possible that com- 
puters designed during  this  phase  may  have superior non-numerical 
processing capability when compared to current von Neumann 
organizations. Phase I1 computer designs would be built as  an 
extension of the von  Neumann organization, and  thus will retain 
all of the present  advantages of the  latter.  The system described 
in  this  paper  may be considered as  an early example of Phase I1 
computer  system design. 

It remains to be seen what  the next phase of computer design 
will be; possibly I/O equipment will  become a more dominant 
feature of the design. 

We will next discuss the influence of active memories on the 
organization of an information processing system. 

An intrinsically addressed processor 
design Although the system discussed in this  paper uses intrinsic  address 
principles techniques as  the basic mode of operation, it is assumed that  an 

actual  operational  system would have  both extrinsic and intrinsic 
addresses in the memory. Many numerical problems will not be 
aided significantly with  intrinsic addresses. However, this  paper 
is  confined to a discussion of intrinsic addresses in order to suggest 
their  potential. 

The example of Phase I1 design outlined  in  this section will 
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be based  primarily on three principles.  These are  as follows: 
Memory  as  the focal point of the  system design. 
Use of active  memory  rather  than  static  memory. 
Table lookup  operations  executed  in  the  memory. 

We will now discuss the general  organization of the processor. 

Memory .  The  memory used in  this  system will have  the fallowing 
features: 

Fixed  word  length. 
Intrinsic addressing-no extrinsic  addresses. 
All store  and  retrieval  operations  via  table lookup. 
No word format. 

Since the retrieval  is  associative, and  not indexed, powers of two 
are  no longer magic for  word  lengths. The word  length,  therefore, 
can  be any  that is convenient or economically desirable.  We will 
assume a word  length of 100 bits. 

Arithmetic-logical  unit (ALU). The ALU will be assumed to  be 
similar to  that  of a  typical  modern  computer  (the IBM 7090, for 
instance).  We will assume that it will execute the usual comple- 
ment of operations. 

Bulk storage. In  this  system,  all memories will be addressed in 
the  intrinsic mode only.  Disk  storage will use serial  intrinsic 
addressing, drum storages will have  both serial and parallel 
intrinsic  addressing, and  tapes will have  serial  intrinsic  addressing 
only, as at present. 

I n p u t l o u t p u t .  The I/O equipment will consist of printers,  card 
readers and punches,  displays,  etc., as   a t  present. 

Figure 1 gives a diagram of the system  organization.  This 
system is based  on  memory designs which have only intrinsic 
addressing.  Extrinsic  addressing  schemes may be  programmed as 
at present, and a  technique for doing so will be discussed later. 
The  standard mode of retrieval  from the memories  is by  table 
lookup  instructions. In  order to  implement  these  instructions,  two 

Figure 1 Machine organization 
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pairs of LLmask”  and ‘Lcomparison”  registers are included. The 
mask register of the first pair holds a  bit mask which defines the 
field in which the  argument of the  table lookup operation is 
located. Any binary  pattern  may be placed in  this register, and 
the  pattern  may be contiguous or non-contiguous. Its com- 
panion comparison register contains the value of the  argument, 
if any,  to be used in  the  table lookup operation. 

The  alternative pair of mask  and comparison registers are 
used to supplement the first pair  in some types of table lookup 
operations which require more information to be  specified than 
can  be  contained in one pair of mask and comparison registers. 
Other  pairs of these registers would probably  be  required for 
more complex forms of table lookup operations. 

Once the  appropriate registers are loaded, various  table lookup 
operations  may be used to retrieve  information from the memories. 
The retrieved  information  may be sent to  the ALU for processing, 
or to  the I/O gear, or to another memory. The reader  may assume 
any such  units that he pleases. They will not be discussed here. 

Many varieties of table lookup operations  are possible, but 
table lookup this  paper will deal with  a  rudimentary  set  in  order to suggest 
operations how they  may be used. The  set included here is arbitrarily chosen 

and almost  certainly does not  represent the best choice. We  will 
assume that our memories will respond to  the following set of 
table lookup operations. Notice that these  imply  parallel  intrinsic 
addressing wherein all  bits of one word are compared a t  once. 
Depending on the hardware,  many or all of the words in such a 
memory may be simultaneously scanned and compared. The 
specific operations  are now described. 

1. Write in Jirst blank-this is a table lookup operation which 
locates the “first”  blank word (first is known only to  the 
machine) and writes the word to be stored into  the blank  word. 
Notice that successive words to be written  in  memory will 
not,  in general, be stored  in  adjacent locations. 

2 .  Read  out  exact match-in which all words that exactly  match  a 
masked field in  a comparison register are read  out. One memory 
cycle may be required for each word read out. 

3. Read  out  highest  (lowest)-in which the words containing the 
numerically highest (lowest) field as specified by a mask in 
a register are read out. One memory cycle may be required 
for  each word read out. 

4. Read  out  next  highest  (lowest)-in which the words containing 
the numerically next  highest (lowest) valued field relative to 
that specified by a masked comparison register will be  read 
out  in one memory cycle per word. Only one number will 
be the highest, though it may occur more than once. 

5. Read  out  highest  (lowest) in a range-in which the words con- 
taining  the highest (lowest) values are read out  as  in Number 3, 
but  the value of the field is limited to  the range between two 
values specified by two pairs of masked comparison registers. 
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6. Read out  next  highest  (lowest) in a range-in which the words 
containing the next  highest (lowest) values  are  read  out  as 
in operation  Number 4 except that  the value of the field is 
limited to a range specified by  two  pairs of masked  comparison 
registers. 

7. Read out nearest logical match-in which the words  containing 
fields for which the  greatest  total  number of bits  match  the 
contents of a masked  comparison  register are  read  out.  This 
is the logical equivalent of operation  Number 4. Many  bit 
arrangements  may give the same number of logical matches. 

8. Store inJield-in which the  contents of one masked  comparison 
register are  stored  in  all words  which match  another masked 
comparison  register. If two  other masked  comparison  registers 
are used, the  contents of the first pair  may be  stored in all 
words  bounded by  the two  values of the masked  comparison 
registers.  Note that  the location of the bits to  be stored  may 
coincide with,  overlap, or be  disparate  with  the location of 
the  bits defining the words to  be modified. This is a generalized 
store  address  operation.  This  operation will take one or two 
memory cycles total for any number of words  changed. 

9. Read out in  order-in which the words specified by a masked 
register field or limited to  a range specified by two  masked 
register fields are  read  out  in order  from  high to  low or low to 
high.  This  is a “sort”  operation which allows the words  selected 
to read out  in  sorted order. This  operation will require one 
memory cycle per word read  out. 

10. Chained lookups-in which a masked  portion of the word 
read  out  as a result of any of the above  read-out  operations 
is  taken as the  argument  for  another lookup. This  operation 
can proceed automatically  until  no  read  out occurs, or it may 
stop  after each  read out awaiting  a  signal to  proceed from the 
program or ALU. 

If the bulk  storage files (disks) in  a  system  can  operate in the 
serial  by  character  mode  as well as  the parallel  by word  mode, 
we need to  define one more table lookup  operation  for use only with 
memory devices that operate  in  the serial  mode. Table lookup 
operations  Numbers 1-10 hold for serial  intrinsic devices as well 
as parallel  intrinsic devices. 

11. Read out longest  match-in which the longest  sequence of bits 
or characters that  match  the value of a masked  comparison 
register are read out.  The sequence may  start from  either  end 
of the value field to  be matched, depending  on the mode of 
operation specified. 

Table lookup  operations  Numbers  10 and 11 are  related to  
operations  contained  in  the AN/GSQ-16 Air Force  Automatic 
Language  Translator’. 

Generally  speaking, it is  preferable to have  readout  from  all 
memories operate  in  both destructive and non-destructive modes. 
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An  interesting  feature of intrinsic  addressing is that   an indica- 
tion  must be  given  whenever a table lookup  operation  fails to  
cause a word to be  read  out of the memory.  This  may be used to  
advantage when there is insufficient room in  the memory  for  all 
subroutines to  be used in the execution of a program.  When one 
asks for the first  instruction of a subroutine  (transfers to  its  entry), 
and fails to retrieve it, an assumption  may be made that  it  is 
not  in  the memory. 

An I/O supervisory  routine may  then be instructed  to  write 
the  subroutine  into  the  memory. A single instruction  (table lookup 
operation  Number 8) may  then be used to  erase  enough  memory 
to  make  room  for the subroutine.  There  are  many ways  in which 
this  may be  done; one way would be to indicate the priority of 
information  by  the first  character of the symbolic address field. An 
AXXX address would be  high  priority  information that  cannot be 
erased, and would indicate  erasable  storage or information of the 
lowest priority. Addresses beginning  with letters B through E 
would indicate an intermediate  priority  scaled  according to  the 
relative  position of the  letter  in  the  alphabetical sequence. 

When a subroutine,  for  instance,  is to be  read  into  memory, 
and  there is insufficient blank  storage to contain it,  table lookup 
operation  Number 8 may be used to  erase  enough low priority 
information to  provide the necessary  space. If one does not  have 
individual  addresses coded to indicate  the  exact  table  entries to  
be  erased,  there  is  danger that some information will be  erased 
that should  be  retained. An address like FAXX or FBXX could 
be used to  indicate  individual blocks of FXXX storage.  However, 
another  approach  is possible and will be discussed later. 

A  frequent  problem  in  the  control of I/O units is that of main- 

Figure 2 Input/output control 
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taining  priority  control over several  units  operating  simulta- 
neously. Usually, this requires that  the highest  priority  units be 
serviced first and lower priority  units be serviced in order of their 
priority.  When  several I/O units need servicing simultaneously, 
the solution to  this problem becomes very complex to program. 

With  table lookup procedures, this problem  is  somewhat  easier. 
Suppose that (for simplicity) we have a control  word  memory 
with a capacity of one control word per I/O unit.  Each location 
in  the  control word  memory will be assigned to a particular I/O 
unit,  although  this  is  not a necessary feature (see Figure 2). The 
high  order three  bits of each  control  word will be reserved  for 
priority  indication. The  priority will be assigned by a supervisory 
routine and  may be changed at   any time  under  program  control. 
Another bit of each word will be reserved for  control  indication. 
This  bit will then be turned on whenever the  unit requires ser- 
vicing. An I/O servicing trigger X in  the machine will be turned 
on when any I/O unit needs servicing and will be turned off only 
when no I/O units need servicing. 

When the I/O service trigger  is turned on, this will cause the 
program  control to be transferred to the I/O supervisory  routine. 
This  routine will then perform a table lookup  operation on the 
control  bit plus the  three-bit  priority  indicator field. Table lookup 
operation  Number 3 (highest value) will thus cause the  retrieval 
of the  control word of the highest  priority I/O unit  that needs 
servicing. When servicing is  complete, the control  indicator  bit 
is turned off. If the I/O service trigger X is  still on, another  table 
lookup  operation  Number 3 will retrieve the  next highest  priority 
control  word.  This  operation,  repeated as long as  the I/O service 
trigger X is on, will cause the highest  priority I/O unit at  any given 
instant  to be serviced first.  When the I/O service trigger X is 
no longer on,  control will be returned to  the  main program.  Notice 
that no scanning  routines are necessary; they  are  eliminated  and 
replaced by a single table  lookup  operation that performs simul- 
taneously the  function of scanning and highest  priority selection. 
Thus, I/O supervisory  routines may be aided by  the  availability 
of memories that allow table  lookup  operations to be performed. 

In  this paper  the  term “multiplexed  computers” refers to  an 
programming installation of several  computers, not necessarily all  alike, which 
multiplexed can  operate  concurrently on the same or different problems. For 
computers the simple case that will be described, all of these  machines will 

use the same  memory.  Figure 3 shows a sample  system using three 
computers. In  order  for  each  machine to separate its data  and 
instructions  from that of the  other two machines, each  machine 
will use a different initial  letter  in  the symbolic addresses of its 
data  and instructions.  A different range of letters would be used 
for  each  machine in  an  actual case, and  the reader  can develop 
more sophisticated schemes for himself. Thus, one machine will 
use symbolic addresses beginning with A, such as AXXX; another 
machine will use symbolic addresses like BXXX; another  machine 
will use CXXX No confusion will result since each machine will 
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determine its own addresses  within the  set of symbols  assigned 
to  it. If certain  letters  are  not used, gaps  in  the  natural sequence 
will occur. If indexing procedures are used, and if one accidentally 
indexes his  way  beyond  his assigned set of symbols, no  instructions 
or data will occur with the address  produced, thus no table  entries 
will be  read out-a warning of potential  trouble. 

An alternative  method would be to  place a specially coded 
word at the  end of each block of data addresses.  An extra  pair 
of mask and comparison  registers would automatically  scan  each 
memory  word  read out  and cause  machine interruptions or trans- 
fers of control if the  appropriate  match were obtained. 

During  the solution of a  problem  occupying the capacities of 
the  three machines, one machine may desire to pass data  to 
another machine. If so, all  that is necessary is to  convert the first 
letter of the  data words to  be passed to  the  letter used by  the 
other  machine.  Converting an AXXX, say,  in  certain data-word- 
addresses to  a BXXX will have  the effect of passing data from 
machine A to  machine B. Such  conversion will take only one 
memory cycle for any  number of data words. The speed of this 
operation is due to  the  fact  that it is  nothing  more than  another 
table lookup  instruction,  except  in  reverse.  Table  lookup  operation 
Number 8 is the one  referred to  here. 

There  may be situations  in which protection is desired against 
access to one machine’s data or instructions by  another machine. 
If so, the address  bits  may be  randomly  spread  throughout  the 
data word format  by insertion of the  appropriate mask. This 
pattern will be difficult for  another machine to  recover but  the 
technique will not  protect  the  data  from being written over by 
the  other machine.  Generally, the  latter  type of protection  is  best 
built  into  the machine  hardware. 

Since the address field of each symbolic instruction is symbolic 
and  may  not be sequential  with respect to  an order of execution 
of program  steps,  there  is a question as  to how the order of execu- 
tion  may  be specified. In  this  system, we will use table lookup 
operation  Number 10 (chained TLU). A  sequence of instructions 
may  be listed as  in  Table 1. 

The right-hand table shows the chained TLU formation.  This 
is akin  to a  technique used in  computers like the IBM 650, wherein 
each  instruction specifies the location of the  next  instruction. The 
difference here is that  the location of the next  instruction  may  be 
in symbolic  notation.  The  left-hand part of each  pair  is  the  present 
instruction to  be  executed, and  the right-hand part is the next 
instruction to  be  executed. The A+4 entry shows two possible 
next  instructions, A+5 and B+1. In  other  words, A+4 is a con- 
ditional  branch and A + 6  is the  return  to  the  start of the loop. 
If the address  symbols were as shown  here, the order  is  evident, 
and could be  indexed.  However, the symbolic notation could also 
be as shown in  Table 2. 

It will be  noted  that  the chained table lookup  form does not 
require  sequential  (extrinsic)  addresses and will operate  correctly 
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with  either  intrinsic or extrinsic  addresses. Since this  method of 
specifying order  is  independent of the  actual address,  some re- 
strictions  inherent  in indexing schemes are no longer present. 
In  the above  example, any  entry  may be modified without con- 
cern  for the  effect on  other  addresses in  the  chain. Also, modifica- 
tions to  the logical structure of the chain may be accomplished by 
modifying or adding  entries to  the table. 

The chaining of table lookup  operations  may thus be seen as 
a technique  for specifying structure  that is independent of the 
arguments  (address fields) of the  individual  table lookup  opera- 
tions.  Thus, it is an address  invariant scheme which includes in- 
dexing as a special case. Each  table  entry will generally  denote 
the  two  end  points of one segment of the mesh  represented  by the 
table, but several  segments  joined to  a common end  point (a 
branch)  may also  be  denoted by a single table  entry.  This example 
illustrates how list structures  may be implemented using intrinsic 
addressing  techniques.  The use of intrinsic  addresses  is not neces- 
sary; extrinsic  addressing  methods  with indexing will sometimes 
be  more  suitable than fully symbolic intrinsic  addressing  tech- 
niques. If the use of extrinsic  addresses is desired, they  may be 
simulated  as discussed above, or they  may be built  into  the com- 
puter  hardware  as a t  present. 

Application of table lookup  chains to problems  in  information 
retrieval  may also  be possible. For instance, a chain  may be used 
to  represent the mesh of bibliographic references on a given  subject. 
The  structure of the bibliography would be  denoted  by  the  chain 
structure, possibly allowing conclusions to  be  drawn  about  the 
degree of relation  between  two different items  in  the bibliography. 
For instance,  suppose that  it  is desired to  order  a  bibliography 
by  date. Use of table lookup  operation  Number 4 (next  highest 
value) will allow the chain of bibliographic items  to be  retrieved 
in chronological order.  Each  item  retrieved would then  have its 
symbolic address (or other  distinguishing attribute)  added  to a 
new table lookup  chain. The new chain  thus  built  up gives the 
structure of the bibliography in chronological order. This  particular 
solution could also  be  obtained by  sorting, using table lookup 
operation  Number 9 (read out  in  order). 

If the bibliography were to  be  arranged  in  a  structure such 
as  that given by Roget’s Thesaurus,  sorting  may  not  work. In  
this case, each  Roget classification would be  made  up  into a 
chain. The main classification, or beginning, of each  chain would 
be used to make  another chain. The words in  the  titles of each 
bibliographic entry could then be  compared  with  each entry  in 
each  chain and  type of relevance  indicated by  the  main classifi- 
cation of each  sub-chain that correlated with  the words of the titles. 

This  technique  might possibly be  extended to provide a scheme 
for  analyzing  articles  for  subjective  content. For instance,  political 
concepts are sometimes  indicated  by  conjunctions of words that 
often  appear  in  other  contexts. A chain of words may be set  up 
to indicate  a possible format of context and word order. 
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Editing  may be an easier problem  in this  system.  The usual 
case of rearranging  several  items into a line print  format  may be 
solved by  attaching symbolic addresses to each field. The  order 
of the symbols  should be the  order  in  the  print  format.  Then,  the 
use of table lookup  operation  Number 9 (read  out  in  order) will 
cause the fields to be  read out in the desired  order. Alternate 
formats of the same set of fields may be  represented  by  alternate 
tags. 

The operation of expansion and contraction of the  print  format 
may be  accomplished by using multiple  symbol  tags to  denote the 
level in  the  format  that  alteration  is  to  take place. 

Many new techniques  for  debugging  are  made  available  by 
table  lookup procedures. For  instance,  table lookup  operation 
Number 2 (read out  exact  match)  may be used as a trap for 
spurious  addresses. The suspected or known  spurious  address 
can  be specified as  an  argument  and  all words with  that  address 
will be retrieved. Since i t  is  not necessary to  know where they  are, 
this  operation eases the problem of locating  spurious  addresses. 
Alternatively,  this  operation  may  also  be used to  locate  all in- 
structions that refer to a  given  location or subroutine. 

Table lookup  operation  Number 8 (store in field) is very con- 
venient  for  changing  addresses of instructions.  One  pair of masked 
comparison  registers may specify the value of the address that is 
desired. This  operation will convert  all addresses of the given 
value to  the new specified value without specifying their location 
in  memory, or specifying how many such  addresses  exist in  the 
memory. This suggests the elegance of intrinsic  addressing 
techniques. 

Table lookup operation  Number 9 (read out in  order) may be 
used to read  out  all  instructions  in order by  address  value.  This 
may  be used to examine  chains and other  routines  for  consistency 
of addressing.  Reading out symbolic locations in order may help 
to establish  a  measure of correspondence between the addresses 
used and  the location specified. For cases where the symbolic 
address  is modified in  manner analogous to  indexing, this tech- 
nique may  not be useful. 

Applications  to  information processing 
When  Bush proposed his “memex” machine,  he sensed that re- 
trieval by association would be better  than  retrieval  by indexing. 
Having  roughly  outlined the  features of a  computer  system  based 
on  intrinsic  addressing  methods, or retrieval  by association, it is 
now appropriate  to examine in more detail the implications of 
Bush’s  suggestion. In  order to  do  this, several  application  areas 
will be discussed with suggested  directions of solution  indicated. 

Suppose that a simple closed contour lies on  a  two-dimensional 
mesh as shown  in  Figure 4. The mesh may  have  irregular or random 
spacing. Starting at any point  on the contour,  nearest  neighbors 
are  found  by using table lookup operation  Number 6 (read  out 
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next highest, lowest in a range) and one is selected that lies nearest 
to  or on the contour.  “Next highest” and “next  lowest”  here 
refer to  the coordinates of the  point on the mesh. With a given 
point whose x and y coordinates  are known, it is desired to  find 
the nearest  neighboring  contour  points by asking  for the contour 
point  with  next highest and next lowest x and y coordinates. 
Squaring the differences in coordinates and comparing the values 
may  be necessary in some cases. 

Repeating  this  action  until closure is  obtained defines the con- 
tour. Doing the same  for another  unknown  contour defines it also. 

To  compare the  two contours, select any  point on one contour 
and calculate a few vectors to  other points  on  the  same  contour, 
to  every tenth  point on the contour,  for  instance.  Repeat  this 
procedure  with  each point  as  the  starting  point.  On  the  other 
contour,  do the same  for  a  point chosen a t  random. If this  set of 
vectors  is  not  nearly alike any of the  sets  calculated  for  the first 
contour,  repeat  the procedure starting  with  the  next  point on the 
second contour.  Table lookup  operations  Numbers 5, 6, and 9 
should aid  in  the comparison. If there is a sufficiently good corre- 
spondence,  more refined calculations will determine how alike 
the  two  contours  are. 

Notice that only data on or near the contour  is  examined. All 
other data is  unnecessary. This procedure will not  determine  the 
shape of a contour, only the degree of likeness with  another. 

More  sophisticated  methods  may  be used to  compare the 
contours, and  there  are  probably  better  ways of picking the  start- 
ing  points of the calculation. More complex contours will require 
more  elaborate  tables  for  solution, but  the basic table lookup 
method  should  remain  unchanged. 

An alternative version of the preceding  problem is found  in 
maze the recovery of multiple  branched  trees  from  unknown  data. In  
solving this problem, closure is of secondary interest. One  form of this 

problem  is  often termed maze solving; the object is to  find a path 
from X to  Y through a maze or labyrinth of data. It is  interesting 
to  note that a favored  technique of solving such  problems  on von 
Neumann  type machines  is that of table lookup.  List structures 
are  often used in order to  provide an approximate degree of 
intrinsic  addressing not  actually  found  in  the machine  hardware. 

We will now outline  a  method of attacking these  problems with 
an intrinsically  addressed  computer. The particular  technique used 
is  much like those now programmed  on  extrinsically  addressed 
computers, but  adapted for  purposes of exposition.  Figure 5 
shows a typical  branched  tree.  The coordinates of each  end of 
each  branch  is  given. The question  arises  as to whether or not 
there is a path from  point X to point Y and  its  identity. Reference 
8 discusses a better  method  in more  detail. 

To  start, we will assume that we have a list of all possible 
segments with  coordinates of both  ends  given. Label all segments 
via  table lookup  operation  Number 8 (store in field) with  a “ u” 
in the symbolic address to  indicate that each  segment is “un- 
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Figure 5 Maze solving 
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examined”. Now examine the list of segments  for any * I  u” labeled 
segment. Test  to see if it joins another segment at both  ends or not. 
Table  lookup  operation  Number 2 (read out exact  match) would 
suffice here. If the coordinates of the  far  end of the segment 
do  not  match  the  coordinates of any other  segment  end  point, 
we may  say  that  the segment comes to a dead  end. Label the 
segment “D” (for dead  end)  in the symbolic address field. If it 
connects  with one or more other segments,  label it “E” for 
“examined”. At  any time, the list of segments may be  operated 
upon by  table lookup  operation  Number 2 to  see if any ‘ rU”  
labels  remain in  the  list.  When  all u” labels are gone, each seg- 
ment will have  either an “E” or a ‘ID” label. 

Starting at X ,  retrieve the segment or segments  with the co- 
ordinates of X at one end. If any of the  segments  have a “D” 
label, ignore them. Label any  branch  point “B” (an  additional 
label) if it has  two or more “E” segments.  Picking an “E” seg- 
ment at random,  from the coordinates of the  far  end,  retrieve  the 
connecting  segments. If more than one “E” segment is found, 
label the  point  with a “B” as before. Proceed until  point Y is 
found or until a  point is reached  where  only “D” segments occur. 
If a branch  point  is  reached that  has only “D” segments as suc- 
cessors, label the  branch itself “D” instead of “E” and  return  to 
the preceding  branch  point,  converting all “E” labels to “D” 
for any intervening  segments. At  the preceding  branch point, 
label the examined “E” leg “D” and pick a new “E” leg. Doing 
this will label long legs that eventually  end  up  in a  dead  end. 

If by chance,  a closed loop is discovered where the  path  returns 
to  itself, it  may be  labeled “Dl’ by  the preceding  routine if no 
other “E” exits  are connected to  it.  The preceding  routine will 
discover these if they exist. 

When  point Y is  reached, the list of “E” branches  must be 
examined to  make  sure that all long dead  end  branches  have been 
eliminated.  When  this  has been done, one may  start  at X and, 
picking “E” branches  only, end  up a t  Y .  Other calculations 
may be  performed to  find the  shortest  path  from X to Y or any 
other selection that is desired among the possible paths from 
x to Y .  

INTRINSICALLY ADDRESSED PROCESSING SYSTEM 1 195 





However, if the  data changes  from  time to time,  the degree 
of success obtained  by  any given  subroutine will also likely change. 
In  this case, the symbolic  address will also  change. This change 
would normally be executed  with table lookup  operation  Number 8. 

At  any time, when one desires to  apply  the most successful 
subroutines to  the  data first, then  the  next  most successful, etc., 
table  lookup  operations  Numbers 3 and 4 will allow this selection 
to  be made  with  ease. The symbolic addresses  are, as in maze 
solving, nothing more than a table of functions whose appropriate- 
ness varies  with  the  data  presented.  The  data  presented  can  be 
viewed as a set of arguments  for which the  best  function  that 
occurs in the table is desired. It can now be seen that  the  table of 
functions will adjust itself to  the  data (or arguments)  presented. 
This is not learning, but  the  table of functions  may  adapt itself 
to  situations never before experienced or foreseen. 

If the  set of available  subroutines  also  changes  in  time, the 
use of table  lookup  operation Number 8 will allow the FXXX 
routines to be  erased so as to make room for new, untried  routines 
in  the  table.  At  any  time  the unsuccessful entries  may  thus be 
purged  from the  table  to make  room  for new ones. 

The reader  can see that  the  table need not represent  a set of 
subroutines. It could represent  various paths  through a maze, 
and  the question occurs as to  whether  self-adapting maze solving 
routines  can be developed. 

A previous  section referred to  the storage  allocation  problem 
wherein there was insufficient storage  space  for  subroutines. The 
symbolic address of each  subroutine could be changed (e.g., from 
FXXX to EXXX) to  indicate the frequency of use. When it be- 
comes necessary to erase storage to  make  room  for another sub- 
routine, the FXXX subroutine will be  erased first, then EXXX, 
etc.,  until enough  storage  has  been  vacated to make room for the 
new subroutine. In  this manner, the least used subroutines will 
be erased  first. 

This technique may also  have  application  in  multiprogram- 
ming, where it is desired to delay low priority  programs  in  favor 
of high priority  programs. 

If an intrinsic  address  memory is used as a  storage  for  tables 
of indicators, it may be  operated  as a filtering mechanism  for data. 
For example,  suppose that  it is desired to  extract all sentences 
from text  that  have cert'ain  words  in  them. Let us suppose that 
it is  desired to  extract  from a large source of text, such as a library, 
all  sentences that  have  any of the following words  included:  rain, 
precipitation, clouds, cloud cover,  rainfall, temperature. If we 
were to  store  this list of words in  an intrinsic  address  memory 
and  then pass the  running  text  through a  register  system which 
performed table lookup  operation  Number 2 (read out exact 
match) on every  word of the  running  text, a read  out would occur 
only when a word in the running  text  matched one of the words 
in  the  stored list. The  read  out  indication could be used to  cause 
a copy of the  sentence to  be  prepared on a separate  tape  unit. 
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In some  message switching centers, it might be desired to 
switch selected messages to other addresses. This  arrangement 
thus becomes a  dynamic message switching center  in which the 
message heading as well as  the  text would be examined and mes- 
sages switched in real time. The analogy to a filter is clear in that 
the intrinsic  address memory allows only that  data which meets 
the stored  criteria to pass over the selected lines. 

Comments on implementation 
A remaining consideration is that of the hardware  implementation. 
There  are several questions  related to this  point which require 
thorough study  and discussion. One question is: can  the major 
technological and engineering problems be solved in  order to 
build intrinsic  address memories with  features  such  as  those 
described? Will the improved  capability be worth  the difference 
in  cost  relative to  the cost of extrinsic address memories? Will 
the  future availability of very large economical storages and more 
sophisticated programming techniques weaken the  advantages of 
intrinsic  address memories? 

Questions such as these will have to be considered in  detail 
before we can  balance the cost of producing intrinsic  address 
processors against the gains to be expected from their use. 

This paper  has briefly described an information processing 
system based on intrinsic addressing techniques. The system 
illustrates some of the concepts which may be used if intrinsic 
address memories become available as production devices. Some 
of the implications of Bush’s paper are pointed  out. It is felt that 
intrinsic addressing techniques will permit  computers to be de- 
signed that have increased non-numerical processing capability, 
and  that once such machines are  built, computer designers may 
be  in  a better  pwition  to tackle  “intelligent” machine design. The 
characteristics of advanced  information processing systems should 
be  improved  by  the  availability of intrinsic  address processors. 
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