
T h e present paper considers the underlying design concepts of
IBSYS/IBJOB, a n integrated programming and operating system.

T h e historical background and over-all structure of the system are
discussed.

Flow of jobs through th,e IBJOB processor, as controlled by the monitor,
i s also described.

Design of an integrated programming
and operating system
Part I: System considerations
and the monitor

by A. S. Noble, Jr.

Since the first stored-program computer was built, the importance
of programming in the total computing system has grown con-
tinuously. The programming interface between user and com-
puter-the system programs-has become a key factor in the
full exploitation of technological advances in hardware design.
The formulation of design principles based on systems program-
ming experience will stimulate further advances in computing
technology. From such experience an effort has been made in
this set of papers to define design concepts that are independent of
a particular hardware environment with the expectation that they
will prove valuable for future systems development.

To facilitate the use of stored-program computers, systems
programming has developed a number of tools: assembly programs
that translate source programs, written in symbolic languages, into
object programs suitable for loading into computer storage; com-
pilers that translate statements written in higher-level languages,
similar to mathematics or English, into equivalent sequences of
machine instructions to be assembled; loaders that load the assem-
bled object programs into storage, some loaders having the capa-
bility of combining several separately-assembled subroutines to

IBM SYSTEMS JOURNAL JUNE 1963

total
systems
approach

programming

tools

153

programming,
operating
systems

Figure 1 lBSYS/lBJOB

system

IESYS

~~

lBMAP

IBCBC

1

1
I

I

154

form a single program, ready for execution; libraries of assembled
and tested subroutines that can be loaded automatically, to
perform previously-defined functions; monitors that schedule and
coordinate the execution of separate programs ; input /output
control systems, that supervise communication with I/O devices;
sorts, report-program generators, and various utility programs that
perform routine tasks.

The term, programming system, generally refers to the com-
bination of a language and its associated translator, or processor.
The processor may also include several of the other tools mentioned
above. Whereas a programming system facilitates the statement
of problems for computer solution, an operating system with its
monitor automates the actual operation of the computer itself.
The computer is used in the one case to assist the programmer,
in the other, the operator.

The IBSYS/IBJOB system

The purpose of the IBSYS operating system is to automate computer
operations efficiently with minimum restrictions on subsystems
and installation practices. The IBJOB processor, an IBSYS com-
ponent subsystem, integrates several language translators within
one generalized programming system.

The IBSYS/IBJOB system consists of the seven components
shown in Figure 1 :

The Basic Monitor (IBSYS) contains: (a) a common, inter-
system communication region that includes tables on equip-
ment configuration and status; (b) a supervisor, directed by
control cards, that changes the configuration tables and
transfers control between subsystems; and (c) an editor that
maintains and adapts the system to the requirements of a
particular installation.
The Monitor (IBJOB) supervises the loading of system com-
ponents and regulates input/output to process a stack of jobs.
Each job, or unit of work, may include any mixture of
FORTRAN IV compilations, COBOL compilations, MAP assemblies,
and the combined execution of binary programs from these
and previous compilations and assemblies.
The Loader (IBLDR) loads separately-assembled program seg-
ments, relocating and combining them to produce one absolute
binary object program, allocates storage for common data
and I/O buffers, generates initialization sequences necessary
for using the input/output control system (IOCS), and provides
a listing of the final storage allocation.
The Library (IBLIB) contains IBMAp-assembled subroutines to
be loaded if required by the object program.
The Macro Assembly Program (IBMAP) processes MAP-

language programs which may have been generated by the
compilers or written by a programmer.

A. S. NOBLE, JR.

The FORTRAN IV Compiler (IBFTC) processes programs writ-
ten in the FORTRAN IV language and produces input to-rslcarP.
The COBOL Compiler (IBCBC) processes programs writLen m
the COBOL language and produces input to IBMAP.

The system was designed to operate on an IBMB 7090/7094,
a binary, 32,768-word computer, with attached printer and tapes.
Eight logical system I/O functions are performed: one library,
one input, two output, and four utility; these may be satisfied
by a minimum of seven tapes, if an off-line 1401 with punch and
printer is available for processing combined output files. Option-
ally, a 1301 disk, or 7320 drum, may be substituted for library
and utility functions.

Basically, the same over-all system design is being implemented
for the IBM 7040/7044 system, although a number of differences
exist. These will be examined in a later paper. In general, the
ensuing discussion of the 7090/7094 system will be applicable to
other versions of IBSYS/IBJOB.

To better understand the motivation behind IBSYS/IBJOB, a
review of programming developments that influenced the system
design should prove helpful.

m y

Historical background of the system

Experience in the design of programming and operating systems
for 704, 709, and 7090 computers dates from 1956.

FORTRAN, the first programming system to receive wide ac-
ceptance, was released in 1957 for the 704. A science-oriented
programming system, it consisted of the FORTRAN I language and
the compiler/assembler necessary to translate source programs
written in this language. Machine-language object programs were
punched in binary cards for loading and executing on the computer
as a separate manual operation.

The practicality of this programming system was increased
significantly by the addition of new features in 1958. With this
version (FORTRAN 11 for the 704 and 709) one could write sub-
programs, which could be translated separately into relocatable
binary format. The loader could then combine these separately-
translated subprograms into a single absolute program for execu-
tion. This facility encouraged installations to maintain libraries
of frequently-used subprograms in the form of relocatable binary
decks. Eventually, the loader was modified to obtain library sub-
programs automatically from a library tape file, as required at
load time.

The most extensively used operating system today, the
FORTRAN 11 monitor system, was developed by North American
Aviation Inc., a major FORTRAN user, and introduced in 1959.
It was designed to automate the operation of the 709 FORTRAN 11

programming system.
It accepted as input on tape a stack of jobs, each of which

SYSTEM CONSIDERATIONS A N D THE M O N I T O R

configuration
requirements

FORTRAN I, II m

FORTRAN II

monitor

155

Figure 2 FORTRAN II

monitor

AND LOADER

FORTRAN II

ASSEMBLER
COMPILER/

-1 FORTRAN I1
LIBRARY

__c_ ASSEMBLER

FORTRAN IV

COMMERCIAL

TRANSLATOR

156

could require the system to translate source programs into re-
locatable binary, then combine these with previously-translated
subprograms together with any required library programs, and
finally execute the absolute program-all in one continuous
operation. Optionally, data could follow each job on the input
tape. Also, i t was possible to chain together several memory loads
for execution.

A symbolic machine-language programming system, Fz4P,

with FORTRAN 11-type relocatable subprogram features, was de-
veloped in 1960 at the Western Data Processing Center, UCLA,
and added to the system.

The FORTRAN 11 monitor system, as shown in Figure 2, evolved
from the accumulated practical experience of many SHARE installa-
tions. It was not planned as an integrated system; it grew as the
everyday production needs of users dictated.

Planning for a completely-redesigned system, 7090 FORTRAN IV,

was underway by 1960. In addition to supporting further ex-
tensions and changes in the language, i t would employ modular
technology in both the system organization, as well as within the
components: monitor, loader, library, assembler, and compiler.
Some of the design goals for ROwrRAN IV !vere:

Increased throughput in the compiler.
Greater adaptability to environmental changes.
Ease of system modification.
Extended capabilities in the monitor.
An overlay feature in the loader.
More flexible buffering for the object program.

These goals were to be achieved within a system that would
be equivalent in function to the FORTRAN 11 monitor system. The
same goals were also consistent with the objectives later formulated
for the IBJOB processor.

Concurrently with (but independently of) FORTRAN IV planning,
COMMERCIAL TRANSLATOR, a business-oriented programming sys-
tem, was being developed for the 7090. Many advanced techniques
were created for this system, such as: control section concepts,
direct cross-referencing, an I/O control system (IOCS), and internal
text processing. In addition to its language and translator, COM-

MERCIAL TRAXSLATOR included its own monitor, loader, and
library. The relocation scheme, deck formats and operational
conventions differed considerably from those of FORTRAN 11.

It became apparent in t.he later stages of COMMERCIAL TRANS-

LATOR development and FORTEAN IV planning that they could
share a common operational environment, particularly with respect
to I/O, and system configuration requirements. Accordingly, it was
decided that the IOCS developed for COMMERCIAL 1mmsLAToIt
would also be used in FORTRAN IV and that a basic intersystem
monitor (IBSYS) would be designed to define the common environ-
men t .

A. S. NOBLE, JR.

The IBSYS processor operating system

The IBSYS processor operating system denotes the basic monitor
(IBSYS) together with any component subsystems operating under
IBSYS. The initial version of IBSYS was released in conjunction
with the COMMERCIAL TRANSLATOR processor for the 7090 in
November 1961. Since then, previously available independent
systems such as SORT, WAC and FORTRAN 11, have been modified
for operation within the IBSYS processor operating system, as
shown in Figure 3. This facilitated system adaptation to new I/O

devices while providing added convenience of operation.
As mentioned earlier, one of the fundamental design criteria

for the basic monitor (IBSYS) was that it should impose the fewest
restrictions on subsystems operating under it. Stated simply, it
was to be a framework, concerned only with environment and
control between subsystems. It would maintain tables defining
configuration and system assignments, and would call upon sub-
systems as required to perform tasks indicated by control cards
in the input stream.

Some of the design goals for IBSYS were:

Operational standards for unit assignment, system editing, and

Minimum operator intervention for system setup.
Assignment of system I/O functions to any suitable device

Maximum flexibility for job definition and scheduling.
Increased efficiency for peripheral operations.
Sufficient modularity to facilitate modification of the dis-

maintenance, etc.

available.

tributed system to satisfy particular installation needs.

It was evident that all of these objectives need not be achieved
at once. Minimum requirements included the intersystem com-
munication region, or “nucleus” (IBNUC) ; the supervisory control
program (IBSUP) to maintain configuration changes and operational
continuity between subsystems; and the editor (IBEDT) to write
and update the system library.

While IBSYS achieved a minimum degree of integration for
~ previously independent subsystems, it also allowed a maximum
1 degree of flexibility for subsystems with highly dissimilar tasks

to perform. Each IBSYS subsystem contained its own intrasystem
control monitor, tailored to the job processing needs peculiar to it.
The possibility of further integration within programming sub-
systems with similar tasks became evident. Similarities of job
requirements among two of the subsystems were apparent;
FORTRAN 11 and COMMERCIAL TRANSLATOR automated the process
of translating, loading, and executing programs written in par-
ticular languages. Both had similar facilities for library search,
subprogram cross-referencing, and centralized I/O control.

Many design and implementation techniques developed for
COMMERCIAL TRANSLATOR were intended for use in a COBOL trans-

SYSTEM C O N S I D E R A T I O N S A N D T H E M O N I T O R

Figure 3 IBSYS processor
operating system

P IBSYS

MONITOR
BASIC

P
r“

FORTRAN II

I

further
integration

COBOL

157

lator which had been planned to be implemented as soon as
COMMERCIAL TRANSLATOR was completed. Also, the functional
similarities between the COMMERCIAL TRANSLATOR and FORTRAN 11

systems applied as well to the proposed COBOL and FORTRAN IV

systems.
While it was not practical to rewrite COMMERCIAL TRANSLATOR

and FORTRAN 11, the above considerations led to redesign of
FORTRAN IV and COBOL, with the idea of integrating both trans-
lators into a single job-processing subsystem within the IBSYS

processor operating system.

The IBJOB processor

Just as the IBSYS basic monitor was designed to integrate several
programming systems into a common operating environment, the
IBJOB processor provides a common operating environment for
several language translators within a single, highly-integrated
programming system.

The compilers share a common monitor, assembler, loader,
modular and library. This makes available to the programmer, writing
components in the FORTRAN IV, COBOL or MAP languages, all of the features

provided by these components. Improvements made to one com-
ponent, such as the addition of overlay capabilities to the loader,
benefit all components that depend on it. The system can be simply
adapted to new hardware devices, peripheral formats, and operat-
ing procedures, with minimum disruption to installation practice.
The extent of re-education required within the installation is
lessened.

In its use of core storage, the IBJOB processor conforms to over-
use of core lay structure; in fact, it was designed with the possibility in mind
storage of processing the system itself as a up-relocatable object program

using the overlay feature of the loader. This structure, as well as
the hierarchy of control through system phases, is illustrated by
the core storage chart, Figure 4. The origin of IBSYS subsystems,
SYSORG, is shown on the chart below the I/O executor (IOEX).

That IOEX would remain in core storage a t all times was an
arbitrary decision based on the assumption that all subsystems,
including object programs, would make use of IOEX to preserve
device independence and common error recovery procedures.

The actual minimum storage requirement for full IBSYS opera-
tion is approximately 500 locations for the communication region
(IBNUC). The design of the system would permit modification to
allow object programs (or subsystems) which do not require
IOEX to load just below IBNUC; thus eliminating the job control
portion of the monitor a t object time. The chart also shows the
component version of IOCS, an optional part of the object program,
in its present absolute form. It would be possible to have IOCS

available in the form of relocatable subroutines in the library
(IBLIB).

The separate and independent functions of the supervisory

158 A. s. NOBLE, JR.

portions of IBSYS and IBJOB will be clear from the chart; IBSUP

and IBJOB have the same origin. The design is also consistent with
extensions to IBSYS to expand the concept of a job to include
multiple subsystem and execution phases. Just as a job, or unit
of work, for the IBJOB monitor can involve a sequence of phases
requiring any or all of its components (IBFTC, IBCBC, IBMAP, and
IBLDR); so a job, or unit of work, for the IBSYS basic monitor
(really IBSUP) could involve an analogous sequence of phases
between its component subsystems (IBJOB processor, SORT, etc.).
From this point of view, IBJOB can be regarded as a particular

Figure 4 lBSYS/lBJOB use of core storage

MACHINE ORIENTED LOCATIONS

IBSYS
IBNUC-COMMUNICATION REGION, OR NUCLEUS

""""""""_"""""""""""""""""""""
IO=--INPUT/OUTPUT EXECUTOR. OR TRAP SUPERVISOR

- - - - - - -

SUPERVISOR
IBSUP-

IBEDT -
EDITOR

M O B
JOB CONTROL PORTION OF MONITOR

"""""""_""_"""""""""""
COMPONENT VERSION OF IOCS IN MONITOR

(OPTIONAL)
- - - - - - -

PROCESS CONTI

- - - - - - -

INITIALIZATION

"""

CHECKING
ERROR

"""

CC SCAN

"

2OL PORTION OF MONITOR
NUCLEUS

I/O EDITOR I I I
FORTRAN IV

IBFrC-

COMPILER

IBCBC- IBMAP-
COBOL

COMPILER
ASSEMBLY
PROGRAM

IBLOR-
LOADER

\

PACE AVAILABLE FOR INSTALLATION ACCOUNTING ROUTINES. ETC

PROGRAM
OBJECT

EXECUTION

DURING WRING DURING
IESYS IWDE FORTRAN

DURING DURING DURING
COBOL MAP

DURING

CONTROL CONTROL COMPILATION COMPILATION ASSEMBLY LOADING EXECUTION
OBJECT PROG OBJECT PROG

oLOCATION

p(LOCATW)N
SYSORG

PRESENT)
2000 AT

-FORM AT
(IN ABSOLUTE

PRESENT)

I INSTRUCTIONS
,REMAIN AT

END OF
LOADING)

LOCATION
'32767

SYSTEM CONSIDERATIONS AND THE MONITOR 15!1

subset of one monitor, IBSYS/IBJOB. Of course, if all control func-
tions were to be actually combined into one monitor, that monitor
would have to include the monitor functions of SORT, SPAC,

FORTRAN 11, and COMMERCIAL TRANSLATOR; but, a single installa-
tion would seldom require all of these. The present IBSYS concept,
which allows for additions, substitutions, or deletions of com-
ponents to satisfy particular installation requirements, seems most
satisfactory-that is, if sufficient alternatives are present.

The IBJOB monitor

A job in the sense of a unit of work for this monitor, as for the
FORTRAN 11 monitor, may consist of one or more compilations and
assemblies, in addition to a single load-and-execution. The flow
of jobs through the IBJOB processor is illustrated in Figure 5.

The monitor will call upon system components, as required,
to translate any source-language programs encountered in the
job deck into relocatable binary format suitable for input to the
loader. A single job deck may contain several programs, each of
which may be written in any one of the three languages, FORTRAN

IV, COBOL, or MAP. The system I/O editor, in the monitor, will
insure that the output from the compilers is fed to the assembler.
All system components are serviced by the I/O editor which will
provide a record of input or will accept punch or listing output,

Figure 5 Job flow through the IBJOB processor

JOB INPUT LOA0
FILE SYSlNl - -

I I , I I

! IBJOB
CONTROL

CARDS
IBJOB (MAY BE

MONITOR SYSlNl

CONTAINS
IF JOB

NO SOURCE
LANGUAGE)

LANGUAGE

CONSISTS
OF:

CONTROL
CARDS

DICTIONARIES
CONTROL

CONTROL
IELDR

CARDS

RELOCATABLE
RELOCATABLE BINARY TEXT
DECKS FROM

PREVIOUS
IBMAP

LIBRARY
IBLlB

OF MAP-
ASSEMBLED

SUBROUTINES
RELOCATABLE

I
IBLOR

LOADER

PROGRAM
OBJECT EXECUTABLE

SINGLE

OBJECT
PROGRAM 1 DATA

160 A. S. NOBLE, JR.

upon request. This method of handling peripheral I/O relieves the
processors of any concern with blocking, compression, or altera-
tion of decks; with peripheral formats; or with the actual source
of input or the final destination of output.

When a job requires loading, and the job deck has been com-
pletely translated into one or more relocatable binary decks,
along with all necessary control cards, the monitor will call upon
the loader to process this “load file” into an absolute program
in memory, suitable for execution. Object program execution is
terminated by return of control to the monitor, which will then
proceed to process the next job.

As long as the next job falls within its scope, the IBJOB monitor
retains control; in this way, system searching is held to a mini-
mum. If the next job falls outside the scope of the IBJOB processor,
control is returned to the basic monitor.

In summary, the IBSYS/IBJOB concept was intended to satisfy
the diverse and changing needs of a wide variety of computer
installations with an integrated programming and operating system
that is, despite its generality, flexible and non-restrictive enough to
adapt to particular requirements without undue loss of efficiency.

BIBLIOGRAPHY

IBM 7090/7094 Operating Systems: Basic Monitor (IBSYS), Reference
Manual C28-6248, International Business Machine Corporation, 1962.
Programming Systems Analysis Guide, 7090/7094 IBSYS-IOEX, Pro-
gramming Systems Analysis Guide C28-6299, International Business
Machines Corporation, 1963.
IBM 7090/7094 Programming Systems: IBJOB Processor, Systems Refer-
ence Library C28-6275, International Business Machines Corporation,
1963.
IBM 709/7090 Input/Output Control System, Systems Reference Library
C28-6100, International Business Machines Corporation, 1961.
IBM 7090/7094 Programming Systems: IBJOB Processor: Overlay Feature
of IBLDR, Systems Reference Library C28-6331, International Businesa
Machines Corporation, 1963.
IBM 7090/7094 Programming Systems: MAP (Macro Assembly Program)
Language, Systems Reference Library C28-6311, International Business
Machines Corporation, 1963.
IBM ,7090/7094 Programming Systems: FORTRAN IV Language, Systems
Reference Library C28-6274, International Business Machines Corpora-
tion, 1963.
IBM 7090/7094 Programming Systems: IBJOB Processor: Part 5: COBOL
Compiler (IBCBC), Systems Reference Library 528-6260, International
Business Machines Corporation, 1962.
IBM 7090 Data Processing System, Reference Manual A22-6528, Inter-
national Business Machines Corporation, 1959.
IBM 7090/7094 Systems Reference Library Bibliography, A28-6306,
International Business Machines Corporation, 1963.
IBM 7040/7044 Systems Reference Library Bibliography, A28-6288,
International Business Machines Corporation, 1962.
IBM 7040/7044 Systems Reference Library Systems Summary, A28-6289,
International Business Machines Corporation, 1963.
IBM 7040/7044 Student Text, C22-6732, International Business Machines
Corporation, 1963.

SYSTEM CONSIDERATIONS AND THE MONITOR 161

