
An algorithm  applicable  to  the  problem of locating  supply  points 
optimally  with  respect  to  transportation  costs i s  given. 

Although  the  algorithm  may  fail  to converge to an  optimal  solution, 
repeated  application  with  judicious  selections of alternative  starting 
values  will  assure a good, if not  optimal,  solution. 

The  algorithm  has been tested and some sample  results  are  included. 

On the  location of supply  points 
to  minimize  transportation  costs 

by F. E. Maranzana 

The location of factories, warehouses-and supply  points in 
general, to serve  customers  distributed  over a network of cities- 
is often influenced by  transportation costs. 

If transportation costs are uniform and linear  with  respect to 
distance, the  total  transportation cost is proportional to  the sum 
of the distances  from the supply  points to  the cities  served,  each 
weighted by  the volume of shipments. 

To  illustrate  notation  and terminology, a network is shown in 
Figure 1. The cities  in  a  network will be labelled with  subscripted ~i~~~~ 1 

p’s and referred to  as points or nodes. The  set of p’s will be denoted 
by P.  The distance along a path  from a node p i  to p i  not passing 
through  intervening  nodes will be  denoted  by d i ,  and, of course 
d i . j  = d .  1 . I  . and di . = 0. 

The shortest  path  from one node to  another  may pass through 
one or more intervening nodes-as in Figure 1 where the shortest 
path from p l  to p3 passes through p,. 

If a  direct path exists  between  a  pair of nodes, it will be  assumed 
to be unique, but  there  may be no direct  path between nodes, and 
in such cases we will put d i , i  = m for computational purposes. 
However, it will be a.ssumed that some path exists connecting  every 
pair of nodes in  the network. 

The  demand or volume of shipments  to be  made to node p i  
~ will be denoted  by an associated weight w i .  A node a t  which a 

supply  point  is  located will be called a source; a  node  having a 
demand to be satisfied will be referred to  as a sink.  We  may wish 

.I 

i 
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to consider locating  a  source a t  a  city  having no demand,  and 
it will be  convenient to assign a weight of zero to  such cities  in 
order that  they  may be treated formally as sinks rather  than on 
an exception  basis. 

Thus,  in  mathematical  terms, we have the following problem. 
the problem We are given: a set P of n  points p l ,  . , p,; a set of associated 

weights wl, e - .  , w,; a  non-negative, n-dimensional, symmetric 
distance matrix  and we are required to Jind: m sources, 
p z L ,  - * , p,,, an associated  partition of P into m subsets of sinks, 
Pz,, - * * , P,,, served  respectively  by the m sources so that 

D,;, iwj is minimal 
m 

, - I  D j E P Z i  

where D,.i is the minimal path length  from p i  to pi. Transportation 
cost is  proportional  to the summation (1). Solution by means of di- 
rect  enumeration is obviously  impractical  for the typical  problem. 

In  this paper, an  iterative procedure is described which can 
content of be applied to  an initial selection of m supply  points to produce 

The final solution  obtained in this  manner is not necessarily 
optimal.  However,  with  a  computer it is feasible to  carry  out 
the procedure  on a number of different  initial selections so that 
one  can  be  assured of arriving a t  a good solution  even though  it 
may  not be  optimal.  The  determination of the  appropriate  num- 
ber of supply  points  can  be  based on a comparison of results  ob- 
tained  by  repeating  the procedure  for different values of m. 

The  algorithm  for  the  above procedure  incorporates  two  items: 

1. An algorithm to find the shortest path between any two  points 
of a  network. 

2 .  A routine  for  determination of the “center of gravity of a set 
of weighted nodes’’ (this  notion is subsequently defined). 

Both  items 1 and 2 are detailed  prior to  presentation of the 
algorithm.  Although the former is the well-known work of Bell- 
man,’ it is included  for the convenience of the reader. 

After statement of the algorithm, its monotonicity is shown 
and non-optimal convergence is  examined. The  paper  is concluded 
with some sample  results  obtained by  applying  the  algorithm 
with the aid of a digital  computer. 

Given a  point p,, to find D,,,, the minimal path length  from 

paper successively improved selections. 

Bellman’s any  point p ,  to p,, we  use the recursive relations: 
algorithm = d ,  

1 1 , a  and 

a: = min Idi,, + ai-’] ,  

where 1 _< j ,  IC 5 n and 2 5 i _< n - 1.  

Clearly, at is the minimal  distance of any  path joining p ,  and p ,  
and passing through a t  most  two nodes including p ,  and p a ,  a: is 
the minimal length of any  path passing through at most three 
nodes including p ,  and p,, and a: is the shortest path  from p ,  

k 
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to p ,  containing a t  most i + 1 nodes including both p ,  and p,. 
It is also apparent  that a: 2. a: 2 . 2 a:-'. Thus, 

= a:, (3) 

where t is the smallest  integer  such that either 

a: = a:+' for  all r or t = n - 1. 

We may use ( 2 )  and (3) as  the basis of an algorithm  for the 
computation of D p , s .  We simply  compute the vectors ai = af, 

satisfied. 
Although the order of computation of the components of an 

individual  vector is arbitrary, we note  that  the computation of a 
particular  component of a  particular  vector,  say  ai,  requires  prior 
computation of all  components of all  vectors  earlier  in the se- 
quence (i.e., all  components of the vectors a' for j < i). 

Improvement  in the  latter procedure is possible. For each 
vector a', we may  agree to  compute  the components a:, in  order 
of ascending j ,  using (2) as before for the computation of the first 
component ai, but  substituting  the following rule  for the com- 
putation of the  other components: 

a: = min { d k , ;  + ai-') 

a;, . * * , ut (with  ascending i) in accordance with ( 2 )  until (3) is 

k 

where 1 = 0 if IC < j ,  otherwise 1 = 1. (4) 

I n  this recursive  rule  for the successive computation of the com- 
ponents of the vectors, the original  procedure has been modified 
by using a: in place a;-' in the computation of at whenever 16 < r. 
The  amount of computation is precisely as before. The effect of 
the modification is that in  computing the second component of 
the 2nd  vector,  not  only  are  all  paths  with at most 3 nodes con- 
sidered as before but,  in  addition, some paths  with 4 nodes are 
included; in  the case of the  third component, some paths  with 
5 nodes; and so forth.  The propagation of this effect through the 
computation of successive vectors will be apparent. 

of "the  center of gravity of a network." The center of gravity is gravity 
defined as follows: pi is a  center of gravity of Q C P,  if 

The physical  concept of center of gravity  motivates definition center of 

D i . k W k  5 D i , k w k  for all i. (5) 
Ok € 0  Dk € 0  

Observe that  an optimal location of a single source is at the 
center of gravity of the set.  We will show later  that  the notion 
is  not necessarily unique. 

The  sums  appearing  in ( 5 )  may be  evaluated, a minimal  one 
found by comparative  examination which in  turn determines j and 
hence a  center of gravity pi. This  is feasible since the Bellman 
algorithm  for  computing Di , i  is  rapid  (often  only  two or three 
a'-vectors need to be evaluated). 

The  algorithm  starts  with  an  arbitrary selection of sources the  algorithm 
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We now ‘ire-index'' each  sum by  means of k and k‘ as defined 
implicitly,  respectively, in the expressions ( k  = zi if pi E QZi) 
and (IC’ = xi if pi E P,J. The  above difference in  sums  may now 
be  written as 

Dk,iWj - Dk‘.iwi 
P i € U B i  p i  € W E ;  

and since WS: = US, we may write the expression as 

wj(D,,i - Dk‘,?). 
p ,  EUB: 

If pi E B: then IC’ = xi, k = x1 for some I, and pi E P Z d .  Thus 
D k I i  - D k r , i  = Dz,,i  - D z i , i  which by the symmetry of D and 
Step 2 is non-negative and  the inequality  stated  in  the lemma 
holds. 

Lemma 6. Given a set of m points  in P, p,,, . . , pzm; a 
partition of P into m subsets, P,,, . . , P,, with p,; E Pz<; if the 
points, pz:, * . , pz,;, are  the respective  centers of gravity of 
the  sets  in  the  partition,  then 

m 5 c ~ z : , , w i  I c c Dz,?jwi 
i = l  p j € P z i  2 = 1  U i € P Z i  

Proof of Lemnza 6. Since p~~ is the center of gravity of PZi 
we have  immediately  from ( 5 ) ,  the definition of the  latter concept, 
that 

Dz:.iwi 5 D z t i w j  
P i t P z ;  U i € P Z <  

and  the lemma follows. 
Certain  conditions  under which the algorithm will fail  to con- 

verge to  an optimal  solution  can  be  readily  identified. 
The example shown in Figure 2 has been constructed so that 

the  optimal two-source solution, p z  and p5, is self-evident. Now 
if pl, p ,  are chosen as  the initial  values, the algorithm will produce 
the sequence of computations shown in  Table 1 and converge to  the 
non-optimal  solution p s ,  p7. The difficulty is that  the initial selec- 
tion of sources generates  a  non-optimal partition { pl, pz, pa, p4, p5 1, 
( p 6 ,  p7, p s ,  p , )  which is “stable”  with  respect to  the algorithm. 
However, p5, and p ,  are optimal sources with  respect to the 
partition. 

Table 1 

Sources 
Partition 

PI, PS 

Partition 
Centers of gravity pt,, p7 

Centers of gravity pt,, p7 (convergence) 

{Pl, P2, P3) p4, PSI, (PSI P7, PS, P9) 

{pl, P2) p31 P41 P511 (PG, P77 P& P9) 

To avoid the difficulty arising  in the previous  paragraph, we 
might  apply the algorithm  to  initial selection of both  initial sources 
from one or another of the clusters.  Suppose pl, p ,  are selected. 
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Figure 3 Action of the algorithm is displayed in  Table 2 and  this  time is con- 
vergent to  the optimal  solution, p z  and p s  as sources serving, respec- 
tively, for  the  sets of sinks { p l ,  p z ,  p 3 ,  p4] and { p s ,  p6, p,, p s ,  psj. 

Table 2 

Sources PI, Pz 

Centers of gravity pl, p5 
Partit.ion 
Centers of gravity p2, p 5  
Partition {PI, PZt P3, P41~  (P5, P6, p7, PS, PSI 
Centers of gravity p2, p5 (convergence) 

(PI] ,  P31 P4t p5r p69 p71 PSI PSI 

{PI, PZt "3, P411 (P5r P67 P71 PS, PSI 

Another difficulty arises  in cases where the center of gravity 
is non-unique. The choice made  in  such  instances  may influence 
the solution attained  by  the  algorithm.  For  the  network shown in 
Figure 3 (weights assumed  equal), Table 3 details the  path traced 
by the algorithm  with the decision rule as previously  indicated. 

Table 3 Table 4 

If this rule were modified to select the center of gravity with 
highest  index, the algorithm would follow the  path shown in 
Table 4. The former  computation converges to pp, p4, an optimal 
solution, but  the  latter  terminates  with ps ,  p4 which is not  optimal. 

The work reported  in  this  paper was  undertaken  in connection 
an example with a 2-source problem  arising  in Italy involving a network of 

158 cities. The  algorithm was  programmed  in  Fortran  and  an 
I B M s  704 used for  computation. Processing time  for  each 158- 
sink, 2-source computation was 80 minutes, which may seem 
excessive to  the reader.  However, this  may reflect the minimal 
effort expended  in coding rather  than inefficiency of the algorithm. 

We conclude by displaying  in  Figure 4 the results of a computer 
run involving a 40-sink, 3-source problem used for  program check- 
out.  The  map suggests the relative  distances used in the problem. 
The weights, w-hich are  hypothetical,  are listed. The solution  ob- 
tained, source points  and  partition,  are  indicated  on  the  map.  The 
evaluation of the objective  function  (the  function to be minimized) 
in  terms of the solution  obtained, is listed. Processing time  for  the 
run  was  approximately 1 minute. 

Other recent work on  the problem discussed in  this  paper,  as 
well as  related problems, is reported  by Cooper in Refs.  2 and 3 .  
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Figure 4 Example of 
40-node 3-source problem 

cat y Index  Weight 

Milano 1 50,000 
Roma 2  50,000 
Torino 3  30,000 
Genova 4 25,000 
Parma 5 10,000 

Bologna 6 15,000 
Firenza 7 15,000 
Venezia 8 10,000 
Napoli 9 15,000 
Trieste 10 10,000 
Bari 11 5,000 
I’alermo 12 5,000 
Verona 13 8,000 
Trento 14 3,000 
Padova 15 7,000 
Pavia 16 500 
Sondrio 17 300 
Novara 18 500 
Biella 19 200 
La Spezia 20  200 
Pisa 21 100 
Lucca 22 IO0 
Fano 23 30 
Savona 24 50 
Pesaro 25 300 

Perugia 26 300 
Foggia 27 25 
Avellino 28 2 
Cagliari 29 5,000 
Sassari 30 15 
Catania 31 8 
Siracusa 32 4 
Ferrara 33 40 
Piacenza 34 6 
Alessandria 35 6 
Siena 36 30 
Grosseto 37 15 
Ancona 38 4,000 
Viterbo 39 2 
Rieti 40 2 
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