An algorithm applicable to the problem of locating supply points
optimally with respect to transportation costs is given.

Although the algorithm may fail to converge to an optimal solution,
repeated application with judicious selections of allernative starting
values will assure a good, if not optimal, solution.

The algorithm has been tested and some sample results are included.

On the location of supply points
to minimize transportation costs

by F. E. Maranzana

The location of factories, warehouses—and supply points in
general, to serve customers distributed over a network of cities—
is often influenced by transportation costs.

If transportation costs are uniform and linear with respect to
distance, the total transportation cost is proportional to the sum
of the distances from the supply points to the cities served, each
weighted by the volume of shipments.

To illustrate notation and terminology, a network is shown in
Figure 1. The cities in a network will be labelled with subscripted Figure 1
p’s and referred to as potnts or nodes. The set of p’s will be denoted
by P. The distance along a path from a node p; to p; not passing
through intervening nodes will be denoted by d,,; and, of course
d;; =d;;andd;; = 0.

The shortest path from one node to another may pass through
one or more intervening nodes—as in Figure 1 where the shortest
path from p, to ps passes through p,.

If a direct path exists between a pair of nodes, it will be assumed
to be unique, but there may be no direct path between nodes, and
in such cases we will put d; ; = « for computational purposes.
However, it will be assumed that some path exists connecting every
pair of nodes in the network.

The demand or volume of shipments to be made to node p.
will be denoted by an associated weight w;. A node at which a
supply point is located will be called a source; a node having a
demand to be satisfied will be referred to as a sink. We may wish
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to consider locating a source at a city having no demand, and
it will be convenient to assign a weight of zero to such cities in
order that they may be treated formally as sinks rather than on
an exception basis.

Thus, in mathematical terms, we have the following problem.
We are given: a set P of n points p,, +++ , p.; a set of associated
weights w,, --+ , w,; a non-negative, n-dimensional, symmetric
distance matrix [d;,;] and we are required to find: m sources,
D2y, ", Pam, a0 associated partition of P into m subsets of sinks,
P,, ---,P,,, served respectively by the m sources so that

m

> > D, w, is minimal (1
i=1 p;EPgy

where D, ; is the minimal path length from p, to p,. Transportation
cost is proportional to the summation (1). Solution by means of di-
rect enumeration is obviously impractical for the typical problem.

In this paper, an iterative procedure is described which can
be applied to an initial selection of m supply points to produce
successively improved selections.

The final solution obtained in this manner is not necessarily
optimal. However, with a computer it is feasible to carry out
the procedure on a number of different initial selections so that
one can be assured of arriving at a good solution even though it
may not be optimal. The determination of the appropriate num-
ber of supply points can be based on a comparison of results ob-
tained by repeating the procedure for different values of m.

The algorithm for the above procedure incorporates two items:

1. An algorithm to find the shortest path between any two points
of a network.

2. A routine for determination of the “center of gravity of a set
of weighted nodes” (this notion is subsequently defined).

Both items 1 and 2 are detailed prior to presentation of the
algorithm. Although the former is the well-known work of Bell-
man,’ it is included for the convenience of the reader.

After statement of the algorithm, its monotonicity is shown
and non-optimal convergence is examined. The paper is concluded
with some sample results obtained by applying the algorithm
with the aid of a digital computer.

Given a point p,, to find D, ,, the minimal path length from
any point p. to p,, we use the recursive relations:

a; = d;, and

2

a; = min {d; , + a;7'},
k

where 1 < j,k<n and 2<:<n—1.

Clearly, a} is the minimal distance of any path joining p, and p.
and passing through at most two nodes including p, and p,, a; is
the minimal length of any path passing through at most three
nodes including p, and p,, and a is the shortest path from p,
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to p, containing at most ¢ + 1 nodes including both p, and p,.
It is also apparent that al > o> > --- > a7"". Thus,

'DT,J = a:‘} (3)

where ¢ is the smallest integer such that either

at — a£+l

r

forallr or t=n—1.

We may use (2) and (3) as the basis of an algorithm for the
computation of D,,. We simply compute the vectors a’ = a;,
ai, -+ , a. (with ascending ) in accordance with (2) until (3) is
satisfied.

Although the order of computation of the components of an
individual vector is arbitrary, we note that the computation of a
particular component of a particular vector, say a’, requires prior
computation of all components of all vectors earlier in the se-
quence (i.e., all components of the vectors a’ for j < 7).

Improvement in the latter procedure is possible. For each
vector a', we may agree to compute the components !, in order
of ascending j, using (2) as before for the computation of the first
component a, but substituting the following rule for the com-
putation of the other components:

t

a,~ - min {dk,i + ai_l}
k

where [ = 0if &k < j, otherwise [ = 1. )

In this recursive rule for the successive computation of the com-
ponents of the vectors, the original procedure has been modified
by using a; in place a; ' in the computation of a’ whenever &k < r.
The amount of computation is precisely as before. The effect of
the modification is that in computing the second component of
the 2nd vector, not only are all paths with at most 3 nodes con-
sidered as before but, in addition, some paths with 4 nodes are
included; in the case of the third component, some paths with
5 nodes; and so forth. The propagation of this effect through the
computation of successive vectors will be apparent.

The physical concept of center of gravity motivates definition
of “the center of gravity of a network.” The center of gravity is
defined as follows: p; is a center of gravity of @ C P, if

> D, < Y Diaw, foralld. (5)

vt €Q vk €Q

Observe that an optimal location of a single source is at the
center of gravity of the set. We will show later that the notion
is not necessarily unique.

The sums appearing in (5) may be evaluated, a minimal one
found by comparative examination which in turn determines j and
hence a center of gravity p,. This is feasible since the Bellman
algorithm for computing D, ; is rapid (often only two or three
a’-vectors need to be evaluated).

The algorithm starts with an arbitrary selection of sources
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and partitions the network into subsets to be served by these
sources. This is accomplished by associating each point with its
“pearest”’ source. Next, the center of gravity of each set in the
partition is determined and the original sources are replaced by
these points. The process is repeated until the source points do
not change. A formal statement of the algorithm follows.

Algorithm.

Step 1. Arbitrarily select m distinct points in P and assign
these points to the variable array, p.., appearing in Step 2.

Step 2. Associated with the array of m points, p.., -, Dem)
determine a corresponding partition of P, P, -+, P.., by
putting

P,, = {p.; D.... < D,,, forallj}.

Step 3. Determine a center of gravity, c.,, for each P,,.

Step 4. If ¢,, = p., for all 4, computation is stopped and
the current values of p,, and P,, constitute the desired solution.
Otherwise, set p,, = ¢,, and return to Step 2.

In Step 2, if a point is equidistant from more than one source
a decision is required relative to placement of the point—we agree,
arbitrarily, to put the point in the set associated with the source
p.. having the smallest 7. In Step 3, if the center of gravity is
non-unique, we will likewise make the arbitrary decision to select
the point with smallest subsecript.

The algorithm is demonstrated to be monotonic by showing
that

m

Z Z Dzi,iwi

i=1 pi€EPy;

is monotonely non-increasing with respect to the successive selec-
tion of P,, according to Step 2 and the successive selection of
values for z; according to Step 4. This is accomplished, respec-
tively, by the following lemmas:

Lemma 1. Given a set of m distinet pointsin P, .., -, Den;
and an arbitrary partition of P into m subsets, Q.., - , Q..,
satisfying the condition z, € @Q.,; if the partition P,,, --- , P
is constructed in accordance with Step 2, then

Tm

m

Z D, w; < Z Z D,, w;.
i=1 pj€EPy; i=1 pi€Qz
Proof of Lemma 1. We introduce A4,;, B;, B} by putting
A;=Q.NP,,B;, = Q., — P,, and B} = P,, — Q.. Thus
wehave Q,, = A;,\UB;and P,, = A, \UB, A, \B,;and A; "\ B},
are null, and \UB; = \UB/. Proceeding with the proof we have:

m

Z Z D, w; — i E D,; jw;

i=1 »;€Qx; i=1 p;EPg;
m m

= Z Z D, w; — Z Z D,, jw;.

i=1 p;E€EB; f=1 p,'EB,"
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We now ‘re-index” each sum by means of k¥ and k' as defined  Figure 2
implicitly, respectively, in the expressions (k = z; if p; € Q.)) @w
and (k' = z, if p; & P,;). The above difference in sums may now

be written as .
1

Z Dy, jw; — Z , Diw; 10 4o 00 4o
pi EUB; p;EUB; 2

and since \UB’ = UDB,; we may write the expression as

Z , w;(Dy,; — Dy ;).
i EUB;
If p; € B/ then k' = z,, k = z; for some [, and p; € P,,. Thus
D,; — D ; = D, ; — D, ; which by the symmetry of D and
Step 2 is non-negative and the inequality stated in the lemma
holds.

Lemma 2. Given a set of m points in P, p., **+ , Dzn; 8
partition of P into m subsets, P,,, --- , P,, with p,, € P,,; if the
points, p.;, **+ , D.;, are the respective centers of gravity of
the sets in the partition, then

Z Z D, w; < Z Z D, w;
i=1 pjEPy; i=1 piE€EP,;

Proof of Lemma 2. Since py, is the center of gravity of P,
we have immediately from (5), the definition of the latter concept,
that

Z Dz,",iwi S Z Dz,iwi

;i EPy; pi€ Py

and the lemma follows.
Certain conditions under which the algorithm will fail to con-
verge to an optimal solution can be readily identified.
The example shown in Figure 2 has been constructed so that
the optimal two-source solution, p, and p;, is self-evident. Now
if py, ps are chosen as the initial values, the algorithm will produce
the sequence of computations shown in Table 1 and converge to the
non-optimal solution p;, ps. The difficulty is that the initial selec- non-optimal
tion of sources generates a non-optimal partition {p., p., s, Ps, Ds},  convergence
{Ds, D7, Ds, Do} which is “stable” with respect to the algorithm.
However, ps, and p,; are optimal sources with respect to the
partition.

Table 1

Sources P1, Ps

Partition {P1, P2, P2, D1, D5}, {Pe, P1, D3, Do}
Centers of gravity s, P1

Partition {py, Py U3, Po D5}, {Pe Pr, P8 Do}
Centers of gravity s, P1 (convergence)

To avoid the difficulty arising in the previous paragraph, we
might apply the algorithm to initial selection of both initial sources

from one or another of the clusters. Suppose p,, p. are selected.
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Action of the algorithm is displayed in Table 2 and this time is con-
vergent to the optimal solution, p, and ps as sources serving, respec-
tively, for the sets of sinks {py, s, Ps, Ps} and {ps, De, D7, Ds, Do} -

Table 2

Sources P1, P2

Partition ) {o}, (P2 p3, Dsy D5 P D1, Psy Po)
Centers of gravity D1, Ps

Partition ) {py, P2, Do, Da}, (D5, Do, Puy D Do)
Centers of gravity P2, Ps

Partition 3 {plv P2 Ps, pé}: {pl’n Pe; P1, Psy p9}
Centers of gravity D2, Ps (convergence)

Another difficulty arises in cases where the center of gravity
is non-unique. The choice made in such instances may influence
the solution attained by the algorithm. For the network shown in
Figure 3 (weights assumed equal), Table 3 details the path traced
by the algorithm with the decision rule as previously indicated.

Table 3 Table 4

Sourpqs P4y, Ps P4 Ps
Partition ) {pe}, (D1, D2, D3, D5} {pd}, {01, D2 Py D5}
Centers of gravity D4, P2 Py Ps

Partition . {IM; p-‘i}’ {pl; D2y p3} ip‘i}y {plx P2y D3y pﬁ}
Centers of gravity Pps, P2 (convergence) Py, ps (convergence)

If this rule were modified to select the center of gravity with
highest index, the algorithm would follow the path shown in
Table 4. The former computation converges to p,, ps, an optimal
solution, but the latter terminates with ps, p, which is not optimal.

The work reported in this paper was undertaken in connection
with a 2-source problem arising in Italy involving a network of
158 cities. The algorithm was programmed in Fortran and an
IBM® 704 used for computation. Processing time for each 158-
sink, 2-source computation was 80 minutes, which may seem
excessive to the reader. However, this may reflect the minimal
effort expended in coding rather than inefficiency of the algorithm.

We conclude by displaying in Figure 4 the results of a computer
run involving a 40-sink, 3-source problem used for program check-
out. The map suggests the relative distances used in the problem.
The weights, which are hypothetical, are listed. The solution ob-
tained, source points and partition, are indicated on the map. The
evaluation of the objective function (the function to be minimized)
in terms of the solution obtained, is listed. Processing time for the
run was approximately 1 minute.

Other recent work on the problem discussed in this paper, as
well as related problems, is reported by Cooper in Refs. 2 and 3.
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Figure 4 Example of
40-node 3-source problem

City Index  Weight

Milano
Roma
Torino
Genova
Parma

50,000
50,000
30,000
25,000
10,000

15,000
15,000

Bologna,
Firenza
Venezia 10,000
Napoli 15,000
Trieste 10,000

Bari 5,000
Palermo 5,000
Verona : 8,000
Trento 3,000
Padova

OO~ Ut W~

Pavia
Sondrio
Novara
Biella

La Spezia
Pisa
Lucea
Fano
Savona
Pesaro

Perugia
Foggia
Avellino
Cagliari
Sassari

Catania
Siracusa
Ferrara
Piacenza
Alessandria

Siena
Grosseto
Ancona

Viterbo
INITIAL SOLUTION 23 6 12 o
ieti
FINAL SOLUTION 12 12 Riet
OBJECTIVE FUNCTION 0.4738E08
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