Table 1
Part number list

601

602

606

610
6135X3-64 14
620
6206SKF
6215X1
6220X1
6225X1
6225X2
6254

630
6305RST
6309RST
631

631C

633

634

635

635C
6350X3
6369D5022
637

638

638C
64X113-17 7-16

86

The principal approaches to random-access file organization and
addressing are reviewed in this paper. The review is general, in the
sense that it is relatively independent of specific equipment. In the
case of a number of unsettled questions, the author’s evaluations of
alternatives are included.

The relation between sorting and random-access file addressing is
clarified by viewing both as belonging to a common class of ordering
operations. Basic considerattons of both sequential and random~
access approaches, arithmetical key-to-address transformation methods
with theiwr overflow problems, and table lookup methods are discussed.

Results of an experimental analysis of key transformation techniques
are presented.

File organization and addressing
by Werner Buchholz

The first section of this paper is a general discussion of file storage
and storage devices. Key transformation is the subject of the
next section which is followed by one on the overflow problem.
The use of tables is discussed in the remaining section. An experi-
mental analysis of key transformation techniques appears in an
appendix. Iinally, a fairly comprehensive bibliography is included.
The more extensive treatment of key transformation and over-
flow as compared to that of tables reflects the results of a recent
investigation and not necessarily their relative importance.

Files and their storage

A file consists of a group of related records. Each record, in turn,
is comprised of a number of related data fields and an identifier
field which distinguishes that record from others in the same file.'
Sometimes several fields in a given sequence constitute the identi-
fier. The identifier is the means of selecting and retrieving a desired
record from a file. On ocecasion, an identifier field is unnecessary
when the position of the record in the file alone may identify it.

Typical identifiers are: names, part numbers, or chronologically
assigned serial numbers. Identifiers are frequently chosen according
to some classification scheme that is intended to characterize the
nature of each item, so that similar items have portions of the
identifier in common and will be assigned to a common group of
storage locations. Such classification schemes are also intended to

IBM SYSTEMS JOURNAL °* JUNE 1963

help find unknown items given only some of the common charac-
teristics, as in the familiar example of cataloging library books.
But we will not be concerned here with the difficult problems of
information retrieval: developing useful classification schemes and
agsigning unique identifiers in a meaningful way. We will assume
that each item already carries its identifier and that when an item
is desired its complete identifier is already known.

An item may have primary and secondary identifiers. The
primary identifier, or key, is chosen to be the one by which an
item will be retrieved most often. For inventory parts this is the
part number. Secondary identifiers are needed when items are to
be collected in a different grouping. Thus inventory parts might be
called out by vendor or by assembly in which they are used. The
primary identifiers are usually unique. Secondary identifiers are
usually non-unique; a search by secondary identifier can be ex-
pected to yield more than one answer. A segment of an actual part
number list is shown in Table 1 illustrating the variable nature of
keys found in some key sets.

Retrieval of a record from file storage may be by scanning or
by addressing.” When the exact location of the desired record in
the file storage device is not known, it is necessary to scan part
or all of the file to search for the record. This involves comparing
its key with the key of one record after another until matched.
With N records in random order, an average of (N -+ 1)/2 records
will have to be scanned. However, except in trivial cases, sequen-
tial scanning of a file to find a single record takes much too long.

Scanning can be speeded up by first sorting all file records to
rearrange them into the sequence of their keys. If the location of
any one item is known, the direction of search is determined by
whether the desired key is higher or lower in sequence. It is often
possible to estimate the approximate location of a record from its
key and then to find it by a short sequential search from there.
The binary search technique may be applied: the size of the file
area in which to search for the desired record is successively halved
by comparing the record sought with a record at the mid-point
of the current search area to determine whether the next search
should be in the upper or lower half (Figure 1 shows an instance
of three such comparisons). Binary searching locates a record
within at most log, N tries. Another way of reducing the search
time per item is to collect and sort a batch of items for processing
in one scanning pass through the file (see batch processing). Since
sorting as such is a well-documented procedure, we will not discuss
it further.®*

Insertion of new records into a sorted file usually requires the
relocation of many existing records to maintain the proper se-
quence. Thus records kept physically in sequence cannot occupy
fixed locations. The alternative approach is to assign each record
to a fixed location and to retrieve a record by specifying the address
of its location. This requires that each key be associated with an
address.’

FILE ORGANIZATION AND ADDRESSING

scanning

and addressing

Figure 1

Binary search

88

An address is usually a number compounded of two or more
coordinates that physically select the location. For example, on
a disk file various digit groups of an address might specify position
on a track, track, disk side, and module (group) of disks. Similarly
in a core memory the address might be made up of the z and y
coordinates that determine a core in a plane. For reasons of
economy an addressable location in a high-capacity file storage
unit is made large enough to hold a block of many words, corre-
sponding to one or more records. To select a portion of a block
it is necessary to transfer the block to the lower-capacity internal
memory of a computer whose finer address structure permits the
selection of single words or parts of words. File storage addressing
is generally restricted to handling entire blocks of data.

Although the addressing system of a specific file storage device
is tailored to the needs of that device and not of the data to be
stored there, it is entirely possible to identify each record by its
physical storage address. With this simple direct addressing method,
the key is itself the address. However, the use of direct addressing
is limited to applications where the key set may be freely chosen
to conform to the restrictions of the available set of addresses
(e.g., the storage of relatively small, isolated files or of temporary
data such as arrays of numbers for mathematical computations).
Otherwise, two problems occur: first, addresses are artificial num-
bers that are difficult to remember and transeribe correctly; second,
most files are subject to occasional or frequent reorganization either
to take care of expansion or to maintain a desired sequence. Re-
organization of the file means change in addresses. If the addresses
are also the record identifiers, this means change external to the
machine system: catalogs must be changed, clerks, vendors, and
customers notified, and so on. Frequent changes of this kind are
not feasible in an application of any size. The cost of just a one-
time initial conversion from an existing set of identifiers to one
suited for direct addressing is often prohibitive.

Hence keys much longer than addresses are usually chosen to
provide for mnemonic symbols or a classification scheme indicative
of some physical characteristic. Symbolic keys may survive a file
reorganization when addresses cannot. The number of distinct
keys possible is much larger than the number actually assigned to
file records at any one time. With such a sparsely populated set
one can generally find an unused block of keys to assign to a
new block of data without unduly violating the rules of classifica-
tion. Conversely, such keys are unusable as random-access storage
addresses. It is clearly uneconomical to provide a separate storage
location for each of the possible identifiers made up of, say, 10
alphanumeric characters when the number of different items in
the file is only, say, one million and not likely to grow much.

There is no unique and simple way of transforming a long key
to a shorter address. One can use a cross-reference table (index),
containing every key with the address of its record, and find a
desired address by programming a table lookup. Although table

W. BUCHHOLZ

lookup has advantages, the basic problem, which will be discussed
later in some detail, is merely transferred from the file to its table.
The problem of associating key and address may occasionally be
side-stepped by punching both key and address into transaction
cards that originated as output of the system, such as punched-
card bills being returned with payments. In reality, a cross-
reference table has been incorporated in the transaction cards.
The system still has to be able to deal with exceptions when
transactions arrive without the card or when the address has been
changed while the card was in circulation. Of course, the address
may be looked up manually in catalogs, index card files, or tub
files. But because of the extra clerical labor in an otherwise auto-
matic system and because of the difficulty of keeping manual
cross-indexes up to date, it is clearly more desirable to be able to
mechanize the conversion from key to address.’®

Thus there is a choice of looking in the file or in a table and of
seanning or computing an address from the key. The four possibili-
ties are actually interrelated. If a separate table is not used, the
file serves as its own table, so that any method of access is a form
of table lookup. Computing an address does not avoid all scanning
because, as we shall see, the address obtained is often not that
of the item but of the starting point for a short search.

By sequential storage we mean a one-dimensional medium where
the only record that is immediately accessible for reading or writing
is the next one in the direction of travel of the medium. The
classical example of sequential file storage, and the only important
one, is magnetic tape.

Random-access storage devices are all those not restricted to
sequential operation. Current examples are magnetic drums,
magnetic or optical disks, magnetic sheets or cards, and photo-
graphic strips for document storage.

Random-access storage ideally means that access to any loca-
tion in storage takes the same (presumably short) time regardless
of when and where the last location was selected. This ideal is
approached only by relatively low-capacity devices such as core
memory. In practice, random access means that the longest time
for switching between any pair of locations is very much shorter
than the time to go sequentially through all intervening locations
at normal reading or writing speeds. Random access usually takes
significantly more time than access to a location near the last one;
with a constantly rotating device the time also depends on where
the device happens to be when the access is initiated.

Random-access storage devices are designed with modes of
access in more than one dimension. One access may be to one of
a number of tracks on a given recording surface (start-stop motion
A in Figure 2), another access may be the selection of one of several
surfaces (here electronic switching of recording heads, B), and a
third may be to a desired point along a track of the physically
moving medium (time selection, C).

Magnetic tape has one very important characteristic; it is

FILE ORGANIZATION AND ADDRESSING

sequential and
random storage

Figure 2 Three-dimensional
access in a disk storage unit

Figure 3 Batch processing

BATCH OF
TRANSACTIONS

PROCESSED
TRANSACTIONS

PROCESSED
TRANSACTIONS

batch and
random
processing

essentially continuous along its recording dimension. Except at
the end of a reel, there are as a rule no physically predetermined
starting and stopping points. Consequently there are no pre-
determined locations for writing data and there are no restrictions
on the length of a block of data being written. The end of a block
may simply be marked by a gap. The next time the tape is written
the gaps may be somewhere else. On reading tape one can only
ask for the next block. Except for the limited technique of counting
gaps as they pass by, there is no way to select a specific record
without inspecting each record in sequence.

A second and less obviously fundamental characteristic of tape
is that it is not practical to change selectively a single block in the
middle of a tape already written. To change anything on a tape,
every block must be read, whether changed or not, and rewritten
on another tape. This is an engineering limitation that follows
from the continuous nature of tape and the great length of tape
on a reel, which make reliable selective alteration impractical.

Random-access storage necessarily differs on both of these
points. If we want to have direct access to a block of data any-
where, the data must have a definite, specifiable location to which
we can return precisely. Selective alteration of the contents of
any location is permitted, so that writing blocks in random se-
quence becomes possible.

These properties, so important to random processing, also have
disadvantages. Discontinuity generally implies gaps and gaps
waste space if the records are short.” As soon as a record is altered
in place, the old information is gone, whereas with tape one is
forced to generate a new tape so that the old information remains
as a back-up in case of mishap. Hence restart procedures present
special problems with random processing. The time spent with
tape in rewriting unchanged records may be used to advantage
for a complete review of the entire file. This takes extra time and
effort with random storage. Random storage thus removes some
restrictions of sequential storage by introducing others.

The quite different characteristics of sequential and random-
access storage give rise to quite different modes of processing.
With a sequential file storage medium the only efficient method
is batch processing. A substantial batch of transactions is accumu-
lated before processing can begin. The transactions are then sorted
in the sequence in which the records are stored in the file and
processed in a single pass through the file. If transactions are to
be processed against more than one set of file records, the batch
must be sorted again before each pass through a different file
(Figure 3).

Random (or in-line) processing, made possible by random-
access storage, permits each transaction to be processed without

~ delay as soon as it arrives. Even if small batches are allowed to

accumulate, they may be processed in any order without prior
sorting. Smaller batches mean shorter processing cycles and, ac-
cordingly, more current information in the file. Input transcription

W. BUCHHOLZ

(keypunching), processing, and output printing may be over-
lapped as long as the sequence remains the same; so output may
begin before input ends. If all pertinent files are contained in the
random-access storage, all records affected by a transaction can
be updated in a single pass. This cuts down delays and possibly
manual intervention, and it simplifies the correlation of data con-
tained in different files (Figure 4).

There are reasons for wanting a random-access storage device
that also has good sequential properties. For example, it may be
advantageous to batch-process transactions even with a random-
access file storage device. The transactions are sorted in the
sequence in which the corresponding file records are stored, which
may be the sequence of the keys (sorted file) or of addresses
computed from the keys (key transformation). The access mecha-
nism then needs to move in only one direction for the entire
pass, which clearly takes much less time than random back-and-
forth motion over the whole range of addresses. This speed
advantage is offset to some extent by the time taken to sort
the transactions once for each file. Only urgent transactions
and exception cases, usually few in number, need to be processed
in random sequence. The real advantage of random-access storage
is that it can be operated economically in random sequence when
desired. It does not follow that it should always be used this way.

If we simply stored records in a file in some arbitrary sequence
such as the sequence of their arrival, without regard to the re-
trieval problem, we would be forced to make a long, exhaustive
search to retrieve a specific record. To avoid this we must plan
ahead and arrange the file in an order that aids retrieval, whether
in the sequence of the keys (sorted) or of addresses derived from
a key transformation formula. Also, order is especially important
in finding that a record is absent or duplicated. Absence of a
record is revealed by merely looking at the place where it would
have gone, instead of having to search every item in storage.
Duplicate items, whose presence may not otherwise have been
suspected, are brought together by ordering. Order helps one to
find related items or items that almost but not quite fit the request
as given, perhaps because of differences in spelling or other errors.

It is sometimes suggested that random-access storage files
have made ordering—specifically sorting—unnecessary, meaning
that input transactions need not be sorted, each item being posted
on the master record as it comes. However, this posting is just
a type of sorting by distribution, except that the processing may
take place on the same pass. Moreover, sorting is still necessary
to prepare output records. Thus we may vary the approach to
take advantage of new equipment and procedures, but sort we
must.

Key transformation

The process of transforming a record key, or external address,
to the corresponding internal address, giving the location in the

FILE ORGANIZATION AND ADDRESSING

Figure 4 Random processing

NEXT
TRANSACTION
A,

PROCESS
FILEA

PROCESS
FILEB

U
ACCUMULATE

PROCESSED
TRANSACTIONS

IREPORTI

order and
the speed
of retrieval

key
distribution

92

file where the record should be found, generally consists of two
parts.

First, the key is changed to a format best suited to the arith-
metical capability of a specific computer. An alphanumeric key
may have to be converted to an octal number by splitting each
6-bit character code into two 6-bit codes each containing 3 of
the original 6 bits, so that decimal arithmetic can be performed
on the result. The length of the key may have to be reduced to
fit the registers of a fixed-word-length computer, perhaps by
folding and adding one portion of the key to another.

Second, the digits or bits of the (modified) key are reduced
to the length and range of numbers which can be used as file
addresses. A simple and, as we shall see, good way is to divide
the key by a suitable number and add the remainder to the starting
address of the file.

No method of transforming keys to addresses is known that
completely avoids the problem of overflow caused by too many
keys transforming to the same addresses. The management of
time-consuming overflow (to be discussed later) must be con-
sidered together with the choice of a transformation formula.

In the external set all keys are distinet, but the distribution
of keys over the entire range is usually far from uniform. Clusters
and gaps occur from the way in which keys are assigned and modi-
fied over a period of time. As a rule, gaps arise because only a small
fraction of the character combinations possible in a key set are
ever assigned as actual keys, leaving most of the set empty. When
new keys are assigned, they are often eutered as a group. For
example, the parts belonging to a newly designed assembly may
be coded as a block carrying consecutive numbers with common
prefixes or suffixes or both. Similarly, deletions may remove groups
of keys. Classification schemes, suffixes, or prefixes all create a
nonuniform distribution. The most common type of cluster is a
short, uniform sequence of keys wherein successive keys differ
by 1 in some position, which need not be the low-order (rightmost)
one.
The ideal distribution of keys throughout the range of keys
is a completely uniform one. Considering decimal keys, for
instance, uniform distribution means that the difference between
any pair of successive keys, taken in ascending order, is constant.
Some digit positions will vary and others may never change.
Extracting the varying digits from the key and using them for
the address may produce a uniform set of decimal addresses with
no duplication. Thus 5000, 5001, 5002, 5003, --- , 5019 is a uni-
form set of 20 keys, as is 5000, 5100, 5200, 5300, --- , 6900. A
similar argument applies to non-decimal keys and addresses
except that the radix must be changed appropriately. Picking
out the wrong two digits in these examples would produce 20
addresses that are all the same. This represents the other extreme
of the key transformation problem. The uniformity existing in a
key set is, therefore, an important consideration.

W. BUCHHOLZ

Intermediate between these extremes is the case of a random
distribution. A random distribution would result if, each time a
key must be assigned to a new record, that key is chosen at random
from the entire set of as yet unassigned keys; successive assign-
ments would be completely independent of each other. When
such keys are converted to addresses, by any of the usual tech-
niques such as extracting selected digits, the resulting address set
will tend to have a random distribution over the range of addresses.
Unlike the keys, which by the nature of their selection are unique,
some of the addresses will occur more than once and some may
remain unused. Thus a random distribution is considerably worse
than the ideal case considered above but very much better than
the other extreme case. There is a distinct advantage of the random
key distribution—it is less sensitive to the method used for
conversion.

From another point of view, the worst key distribution is a
random one. There is no way to transform random keys to ad-
dresses with better than random distribution, whereas one can
take advantage of any uniformity in a key set to obtain fewer
duplicates among the addresses. In practice, purely random key
sets and completely uniform ones are both rare. A key set is likely
to contain a series of clusters of irregular length and separation.
Clusters introduce a degree of uniformity and their irregular
length and separation imply a degree of randommess. A well-
chosen conversion technique will produce an address set that
reflects both elements and has a distribution intermediate between
random and uniform.

We shall first discuss the division technique assuming that the
keys are in a form suitable for arithmetic; later we shall return
to the question of modifying keys that are not already in this form.

If the number of available addresses is A and the first address
is FF, then a key K may be transformed to an address by computing
K/A and adding the remainder to F. (All numbers are treated
as integers.) This produces 4 possible consecutive addresses from
FtoF +4 — 1.

The radix must be considered. If both keys and addresses are
decimal, the division should be decimal; if the computer to be used
has no decimal arithmetic, radix conversion is needed before and
after division. Alphanumeric (that is, non-decimal) keys may be
treated as binary numbers; if the addresses desired are also binary,
the division should be binary, and computers without binary
arithmetic are then required to do radix conversion. Changing
non-decimal keys to decimal addresses (or decimal keys to binary
addresses) requires some form of conversion in any case. We shall
return to this problem later on.

Besides compressing the addresses to any desired range A,
division has another important property. Consecutive keys pro-
duce consecutive remainders after division by any integer A,
considering zero to follow A — 1. As long as there are fewer than 4
consecutive keys in a run, this means that all remainders resulting

FILE ORGANIZATION AND ADDRESSING

division

Table 2

Division by 17 (prime)

Dividend Remainder

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

3000
3100
3200
3300
3400
3500
3600
3700
3800
3900

14
15
16
00
01

other

conversion
techniques

94

from such a run are different.® The same is true for a run of keys
where successive keys are separated by a constant d (larger than 1)
provided d and A are relatively prime (i.e., have no common
factors greater than 1). Table 2 illustrates this property by showing
remainders after dividing some 4-digit numbers by 17.

There is still the problem of two or more runs giving the same
addresses. If the starting points of two runs differ by a constant D,
their starting addresses will not coincide as long as D has no
factor common to divisor A. Thus there will be at most a partial
overlap between the addresses obtained from two runs of keys.
Since overlap cannot be completely avoided, there will be some
irregularly distributed duplicate addresses, but this can be further
minimized by permitting each addressable location to hold several
records and thus averaging out the irregularities in the now
deliberate overlaps from different runs (see later section on buckets).

It follows from this reasoning that, normally, a prime number
should be chosen for the divisor A. Then d and D can have no
factor common to A unless it be 4 itself. In practice, it would be
unlikely for a key set to have systematic separations between
keys that are multiples of large prime numbers. Classification
schemes, prefixes, and suffixes produce separations that are small
multiples of some power of 10 or 2, and hence not multiples of
any large prime. A logical choice is a prime number slightly less
than the range of available addresses. If 10000 addresses are
available, the divisor might be chosen to be the prime 9973. This
divisor leaves 27 addresses unused.

It does not follow that a prime divisor is always the best choice
for a given set of keys nor that all primes produce equally good
results.” Primes do, however, avoid serious maldistribution and
may be safely used without detailed analysis.

Truncating a decimal key and retaining the n lowest digits is
equivalent to dividing by 10" and keeping the remainder. If keys
are mostly consecutive integers with only few gaps, truncation
may be superior to real division because it is faster and simpler.
The address ranges are, of course, limited to 100, 1000, 10000,
etc. However, with a more irregular key set the divisor 10" be-
comes a very poor choice for reasons already mentioned. Some
key sets may be successfully treated by extracting a different set
of n digits if it is known which digits change and which remain
constant; since extraction differs from truncation only in that the
digits are first rearranged, similar comments apply. Other arith-
metical methods that have been proposed are shifting-and-adding
techniques or multiplication by an arbitrary constant. These
operations are usually followed by truncation or division to com-
press the range, so that one might as well divide by a prime number
directly."

A commonly stated objective for address conversion formulas
is to randomize the key set. The usual meaning of this term is
that the conversion technique is intended to disperse the clusters
in the original key set and to achieve a nearly random distribution

'W. BUCHHOLZ

of addresses over the address range. As we have seen, this is the
wrong objective. The ideal key set is a uniform one and dispersing
clusters destroys whatever uniformity already exists. To the extent
that “randomizing” techniques really randomize, they are making
things worse.

One such technique is radiz transformation followed by trunca-
tion." As applied to purely numerical keys, each decimal digit is
interpreted as if it were a radix-11 digit which ean assume any
of the ten values 0 to 9 but never the value 10,;. The number so
interpreted is converted back to radix 10 if decimal addresses are
desired (or to radix 2 for binary addresses) by the usual methods.
Finally the excess high-order digits are discarded to form an address
of the desired length. A similar procedure may be used for non-
numerical keys by treating them as binary numbers and choosing
appropriate radices.

The 6-digit key 400083, for example, would be converted to a
3-digit address by computing 4 X 11° + 8 X 11' + 3 = 644295
and leaving 295 as the truncated address.

Radix conversion is superior to truncation alone because
troublesome runs of keys differing by some power of 10, say 10*,
are converted so that successive keys now differ by 11*, which
is a number that is prime relative to the divisor 10" implied by
truncating to n final digits. The radix conversion technique is
primarily aimed at a simple implementation of file addressing
with special-purpose equipment. Since 11 = 10 + 1, the conversion
from radix 11 to radix 10 may be reduced to a series of decimal
additions and shifts so that multiplication is avoided. Truncation
avoids division. For programming on a computer that has adequate
division facilities, division by a prime is superior to radix con-
version. Division is simpler to program, it is not limited to powers
of 10 as address ranges, and it preserves runs of consecutive keys
whereas this radix conversion method introduces gaps correspond-
ing to the missing digit value 10,,. The gaps tend to disperse
addresses more widely and produce appreciably more overflow
for key sets containing many such runs.'®

Another randomizing scheme that is sometimes suggested is
to multiply the key by itself (presumably stemming from an
erroneous analogy to the center-squaring method of generating
random numbers). Squaring keys can produce an excessive number
of zeros and has no merit. Other techniques intended to randomize
the addresses use coding methods originally developed for error
correction™''* or statistical work.

On some computers division can be applied directly to nu-
merical keys of virtually any length. Other computers limit the
size of the dividend to the length of the arithmetical registers,
so that multiple-precision division would have to be programmed
for longer keys. In either case, division of longer numbers takes
considerably more time.

Truncation may be used to limit the dividend. Only a portion
of the key is used, the rest being discarded. A better technique is

FILE ORGANIZATION AND ADDRESSING

folding

Table 3 Folding

748 629 — 377
758 629 — 387
7568 729 — 487
759 728 — 487

alphanumeric
keys

96

to split the key into two or more parts which are then added to-
gether; this process is referred to as folding. Examples of 6-digit
keys folded to form 3-digit numbers are shown in Table 3. Folding
has the advantage that variability in any portion of the key is
reflected in the result. Specifically a sequence in any position is
retained through both the processes of folding and dividing by a
prime. It should be noted, however, that folding is not as good as
multiple-precision division. The previous discussion of division
assumed that all the keys in a key set are unique. Clearly the
folded keys cannot be expected to remain unique.

To the extent that folding produces duplicate dividends, the
remainders after subsequent division will also be duplicated. It
is unlikely, however, for keys that will produce duplication to be
related to each other by ordinary classification schemes. Thus
folding introduces a little more randomness and correspondingly
increases the chance for overflow, but it is not likely to cause a
maldistribution. The same cannot be said of truncation.

Many key sets are made up in whole or in part of characters
other than decimal digits. Names consist of alphabetic characters,
blanks and some punctuation marks. Part numbers frequently
contain a mixture of numerical and non-numerical characters.
The treatment of such keys depends on their coding and on the
nature of the equipment used.

When alphanumeric characters are expressed in a binary code
(such as the 6-bit code used in most IBMg computers), the keys
may be treated as binary numbers for the purpose of key trans-
formation. In a computer with binary arithmetie, division of such
a key (after folding by binary addition, if necessary) by a prime
divisor (in binary) is a simple matter. Another simple case is
presented by computers (such as the IBM 7070) where two decimal
digits are used to encode each alphanumeric character, since
division can be carried out in decimal form as for numerical keys.

Many computers employ binary coding for alphanumeric
characters but have no facilities for binary arithmetic. For 6-bit
character coding, an effective technique is to split each 6-bit group
(byte) into two smaller bytes of 3 bits and to convert each 3-bit
byte to the 6-bit code for one of the digits 0 to 7. Thus code 111 001
(letter I in the IBM code) becomes decimal 71 and 001 001 (digit 9)
becomes decimal 11. In effect, each character is replaced by two
octal digits. The resultant octal number is treated as if it were a
decimal number. Any folding is done by decimal addition, and
division is, of course, decimal. Any other conversion of a 6-bit
code to a unique pair of decimal digits, such as the previously
mentioned 7070 code, would be equally effective.

A commonly used but inferior technique is to convert each
6-bit code to a single decimal digit. This technique makes use of
the fact that in the IBM code the alphabetic characters differ
from valid numerical digits in only two bit positions, the zone
bits. All zone bits (11, 10, or 01) are converted to the numerical
form (00), usually as a by-product of passing the key through

W. BUCHHOLZ

the adder. Thus 111 001 (I), 101 001 (R), and 011 001 (Z) all
convert to 001 001 (9). The trouble with this simple zone sup-
pression method is that it is not a unique conversion; it necessarily
creates much duplication among the keys, which may far out-
weigh the duplication introduced by subsequently converting the
modified keys to addresses. Zone suppression cannot be recom-
mended when a substantial fraction of the characters in a key are
non-numerical.

Because the character codes that may occur in a key set are
often considerably fewer than the maximum number of com-
binations allowed by the code (64 with 6 bits), the key set viewed
as a set of binary numbers has gaps introduced by the code itself
independently of the key assignment. These gaps tend to break
up sequences in the key set and to produce a distribution of re-
mainders close to that of a random set. Hence keys that are known
to be purely numerical, even though encoded in 6-bit form, should
not be converted to the double-digit format (octal or decimal).
If a key set is largely numerical with only very few non-numerical
characters scattered through it, the zone suppression technique
should be considered because the extra address duplication thus
introduced may be offset by the fact that decimal sequences are
preserved in the single-digit format. But, when in doubt, the safe
approach is the double-digit format; division by a prime number
will then give a distribution no worse than random.

In summary, the following points should be kept in mind when
selecting a key transformation scheme:

1. Division by a prime number is (in the author’s judgment) the
best general method known for transforming unique numerical
keys to addresses of a smaller range.

. Any information thrown away when preparing keys for division
will probably destroy the uniqueness of the key set and thus
worsen the distribution.

. As far as practical, decimal or near-decimal keys should be
treated as decimal numbers and keys containing a substantial
fraction of non-numerical characters should be treated as binary
numbers.

Overflow handling

Because the transformation of long keys to shorter addresses by
any of the formulas discussed above will not give a completely
uniform distribution, a procedure must be provided for storing
elsewhere those overflow records whose keys convert to an address
that is already fully occupied.’® An addressable location, or bucket,
may have a capacity for one or several records. Whenever that
capacity is exceeded and overflow occurs, an empty slot must be
found for the overflow record. Assuming that the entire storage
area is not 1009 loaded, there will be other buckets that are not
yet filled and the overflow record may be stored in one of them.
The alternative is to set aside a separate overflow storage area.

FILE ORGANIZATION AND ADDRESSING

key
transformation
summary

buckets

Figure 5 Multiple-record buckets
g ~—OVERFLOW

AL fo[[fel Lol i

SIZE 1

SIZE 10
_2 LALEACIDIEI 111 1J i3

98

The problem in any case is, first to find an empty slot, and second
to find it again later on with minimal searching. (The analogous
problem of overflow with a sorted file will be discussed briefly
later on.)

Before discussing ways of handling overflow we will discuss
how to minimize it further by the use of multiple-record buckets.'®

Consider a disk file with 10,000 tracks, each track capable of
storing ten records. We may number each record location from
00000 to 99999 and devise a key transformation formula giving
5-digit addresses. The bucket size is one record. Overflow occurs
whenever more than one key converts to the same address. There
is a probability of 219, that this will happen for a random distri-
bution in a file that is half full. This is illustrated in the upper part
of Figure 5 where one of 5 records 4 to E in a file half full is
typically an overflow record.

Now assume we number only the tracks, from 0000 to 9999,
and we rearrange the conversion formula to produce a 4-digit
address from each key. The ten record locations in a track are all
considered to have the same 4-digit address as the track. Each
track is now a bucket of size ten. Overflow will occur only if more
than ten keys convert to one address, for which the probability
is merely 0.49,, again with the file half full and random dis-
tribution, a reduction of 50 : 1. (The advantage goes down as the
file fills up, but it is still a significant 3 : 1 with the file almost full.)
As illustrated in the lower part of Figure 5, where the same key
transformation formula is assumed except for truncation of the
low-order digit, all records are stored in the order of arrival
starting at one end of the bucket until it is full; in this case over-
flow is quite unlikely.

The reason for the advantage of a multiple-record bucket
arrangement is that adjacent minor overflows and underflows
tend to cancel out. When each address can hold only one record,
there will usually be one or more empty addresses next to addresses
that have overflows. With a bucket size of 10, we group ten such
locations together under one address and assume that a given
record with that address can be at any available one of the ten
locations. Thus, overflow records of the previous example that
now fall into one bucket will first occupy the previously empty
locations in that bucket, and the whole bucket must contain ten
records before it could overflow. This greatly reduces the proba-
bility of any record overflowing a bucket address.

We must note, however, that it may be necessary to search
the entire bucket to find an empty slot for a new record or to find
a record previously stored. Buckets, therefore, provide an ad-
vantage in search time only if the access time to successive records
within a bucket is much shorter than the access time to the bucket
itself. This situation is typical of rotary storage devices such as
disks, where access to a track is much longer than the sequential
access to records within a track. A disk track, therefore, makes
a good bucket, especially when there are facilities for rapidly

‘W. BUCHHOLZ

scanning the keys of every record on a track (the IBM 1301 disk
storage unit offers a limited facility of this type)."” When the
access time to a record is independent of its location, as in core
storage, a bucket size greater than one record would ordinarily
be a hindrance; a search through several records in a bucket
would usually take much longer than a search through one or
more randomly located overflow locations. A rotating storage
device with multiple, electronically switchable heads presents an
intermediate situation where access to one of a group (“‘cylinder’)
of tracks takes less time than access to a different group of tracks.

Table 4 gives a good idea of the effect of both bucket size and
the degree of file loading on the amount of overflow to be expected.
The initial overflow tabulated is the number of records that over-
flow their assigned buckets on initial loading (before the overflow
is stored) as a percentage of the actual number of records. It is
given as a function of bucket size (maximum number of records
per address) and load factor (actual number of records divided
by maximum record capacity of storage area) assuming a random
(Poisson) distribution of transformed keys.'® A load factor greater
than 1.0 means that the overflow must be stored in a separate
area, the main area being too small to hold all the records. The
initial overflow figures shown are to be taken only as figures of
merit because the actual overflow depends also on the method of

Table 4 Percent initial overflow for random distribution

Bucket Load Factor
Size . . 0.3 0.4 0.5 0.6 0.7 0.8

0.9

1.

0

1.1

1.2

13.61 .58 .31 24.80 28.08 31.17
4.49 .27 10.36 13.65 17.03 20.43
1.80 .61 .99 .82 11.99 15.37
0.79 96 .76 .15 .05 12.32
0.37 12 .48 .49 .11 10.26
0.18 .67 .69 .38 .75

0.09 .60 .74
0.05 .03 97
0.02 61 .36
0.01 .29 .88
0.01 04 .48
0.00 .85 .15

.00 57
.00 39
.00 28
.00 20

00
.00
00
.00

00
00
.00
00
.00
00

1
2
3
4
5
6
7
8
9

—
N =O

=
SRS

[]
(=

[Vl)
O O

o

(923

SO0 000 oo =
S88 88

'S
=]
COOOOOO OO0 OO0 SO0

0 ~I D
cCoOoC

©
(=

—
oo

SOOI

34.06
23.79
18.87
15.86
13.78
12.24

11.04
10.07
9.27
8.59

COHHMFMFHN NNWHE ot

.CADNXP%UIO\ OO WO

.79
.07
.40
.54
.55
.06

39.35
30.24
25.91
23.25
21.

77
.30
.33
.93
.30
1

.19
.46
.86
.36
.94
.58

.99
.53
.16
.86

31
.93
17.66
17.47

17.20
17.03
16.93
16.86
16.80
16.77

FILE ORGANIZATION AND ADDRESSING

separate
overflow
storage

chaining

100

insertion, deletion, and overflow storage.” The table shows that
increased bucket size is very effective in cutting down on overflow
compared to the rather expensive method of reducing the load
factor by allocating more storage area.

Overflow records may be stored at addresses that are not
part of the main file and are excluded from the range of addresses
permitted by the key conversion formula. How big should the
overflow area be? One might calculate the overflow for a random
distribution and add a margin of safety, or one might determine the
overflow experimentally. If there are several overflow areas, one
would provide a common secondary overflow area in case one of
the others filled up.

It seems wise to anticipate even the highly unlikely though
generally not impossible case of extreme maldistribution where
most record keys happen to convert to the same address. To avoid
a sudden and completely unexpected collapse of the application,
the overflow areas should be monitored continuously. If a pre-
determined overflow level is exceeded, there would then be time
to study and adjust the conversion scheme while allowing the
operation to continue.

Since a separate overflow area duplicates the corresponding
record locations left vacant in the main storage area, it is desirable
to be able to use empty main storage locations for overflow storage
whenever storage space is a limiting factor. We will assume no
separate overflow area and proceed to the question of where to
put and later find an overflow record.

Chaining may be used to specify a sequence of records other
than the sequence of consecutively numbered record locations.
Space is left in each record for a chain address which gives the
address of the next record in the logical sequence, and that record
may in turn specify its successor. Thus each record forms a link
in a chain, which may be as long as desired. The last link in a
chain must be determined by counting or marked by a suitable
end-of-chain code. A blank chain address may be this end code,
or it may indicate that the successor is the record at the next
address. A second chain address in each record has occasionally
been used to link it directly back to its predecessor.

A record may take part in several chains, each serving a
different purpose and requiring a separate chain address. Of the
many applications for chaining, the present discussion is concerned
only with the linking of any number of overflow records to their
home location, whose address is that computed from their keys
by the specified key transformation formula.** %"

For single-record buckets a new record is stored at its com-
puted home location if that is free; the record is marked with the
end-of-chain code, thus forming a single-record chain. If the home
location is already full (overflow), a search is made along any
existing overflow chain to find its end. The end-of-chain code is
removed from that location, the address of a not-yet-filled location
is inserted to add another link to the chain, and the record is

W. BUCHHOLZ

stored at the new location which is then marked as the end of the
chain. This requires finding an empty space somewhere in storage.
As long as the storage area is not too full, a sequential search of
locations will soon find a slot. The search becomes very long,
however, when the storage area is nearly full. It may be better
then to search the entire area once and make a table of all available
space. Henceforth this availability table will be consulted when-
ever a new record is to be stored, either to find an overflow loca-
tion or to remove a newly filled home location from the table.
(An availability table may be too long to be practical if used when
the area is not very full.)

To find an already existing record one computes the address
of its home location from the incoming key and compares that
key with the key of the record stored at that location. If they do
not match, one proceeds to the next address in the chain until
one of the keys matches (that is, the desired record is found) or
the end of the chain is reached (that is, the desired record is
not in storage).

When a new record arrives for insertion, it is possible that its
home location is already occupied by a record which overflowed
from a different home location and may have still other records
chained to it. The simplest thing is to let the new record go to
the end of the existing chain, thus allowing two independent
chains to merge. To save subsequent retrieval time, however, it
is better to keep the chains separate by placing the new record
in its proper home location, and moving the intruder to another
empty location while relinking its chain appropriately. Keeping
the chains separate also helps in the deletion of obsolete records.

Multiple-record buckets may also be chained by providing a
chain address in each bucket. Whenever a bucket is filled, it is
chained to another bucket that is not yet full and additional
records are stored there together with home records for that
bucket. Eventually that bucket may also fill up and overflows
from either bucket are chained to yet another bucket. It is clear
that the above-mentioned merging of chains cannot be avoided
with multiple-record buckets. Whenever that bucket overflow be-
comes significant, it is quite likely that no bucket is available for
overflow from one chain that does not already contain some records
from another chain.

When the equipment requires that records be moved to memory
for examination of keys, blocking of individually chained records
may be used to reduce accesses to the file. Blocking provides an
effect similar to multiple-record buckets, without having to scan
the records in a bucket, but at the expense of space for a chain
address in each record. Each record is given a separate address
to be computed from its key. A record is stored at its own home
location when possible. Overflow records are stored within the
same block as long as space is available. Once the block is full,
overflow must go to some other location. Different records in the
same block may be chained to separate blocks. The search time

FILE ORGANIZATION AND ADDRESSING

progressive
overflow

frequency
loading

102

is reduced since most of the overflow searching will be restricted
to one block and thus can be done in memory at high speed.
Moreover, the block size for a given file need not remain fixed.

Basically individual record chaining provides direct linkage
of overflow records whereas bucket chaining merely provides a
path along which to scan for the overflow records. When the file
area is nearly full, bucket chaining requires more bucket searches
on the average, but most of the time a file area will not be so full
that the difference would be significant.

Chaining requires a search for an empty slot whenever a new
record produces an overflow. One way to search is to start at the
point where the overflow occurred and continue through con-
secutive addresses. As noted before, an empty slot will probably
soon be found as long as the storage area is not too full. By making
the same short search every time that a record is referred to, one
can dispense with the chain address.”"**'** We shall call this simple
technique progressive overflow rather than ‘“open addressing,” a
less descriptive term found in the literature

With progressive overflow a search for an already stored record
starts at its home location and proceeds through consecutive ad-
dresses until it is found or until an empty position occurs (record
absent). Normally these repeated searches do not consume much
time, especially with a rotating storage device designed to permit
continuous scanning from track to track with little or no lost
time for track switching. The scheme also avoids the space and
the bookkeeping required for chain addresses. Only when the
number of records stored approaches the capacity of the storage
area will the search time rapidly increase. The last record requires
on the average the searching of half the records stored. Even the
average search time for records chosen at random goes up rather
sharply toward the end. Thus chaining may take significantly
less time when the storage area is nearly full.

Progressive overflow is really a form of chaining where the
links of the chain are made up of consecutive addresses. The end
of a chain is marked by the first empty space encountered; a
search for a non-existent record may be stopped at the first empty
space because that is where it would be stored if it were entered
as the next new record.

Progressive overflow tends to produce local overflow clusters
because the overflow propagates from one location to the next.
To put it another way, as soon as one location overflows, the
probability is doubled that a new randomly chosen address will
fall into the next location and perhaps cause it also to overflow.
Hence the average search time is somewhat longer than with a
purely random distribution. The same thing could happen with
chaining unless some care is taken to pick out empty slots at
random.

If the file storage area is full enough so that there is an ap-
preciable amount of overflow, access time may be improved con-
siderably by giving preference to records that are referred to most

W. BUCHHOLZ

frequently. If the frequency statistics, such as the number of
references per month, are known for each record, the records
may be sorted in the order of decreasing frequency; otherwise the
records may be classified merely as relatively active or inactive
according to general experience. During initial loading, or any
subsequent reloading, the most active records are loaded first
and the least active ones last.

Thus the most active records are most likely to go to their
home locations and require only one access time. Most of the
extra accesses to overflow locations will be incurred by the less
active records arriving later.

With chaining (but not with progressive overflow) a speed
advantage may be gained by loading first only those records that
can go into home locations. Records that would overflow are
retained for a second pass so that all home locations are occupied
before overflows are distributed. If a count of records in each
bucket is kept during the first pass, further overflows during the
second pass can be minimized by a procedure of chaining each over-
flowing bucket, as far as possible, to a complementary ‘‘under-
flowing’’ bucket, that is, a bucket which has space left for exactly
the number of overflow records from the other bucket.”* Not all
buckets ecan be thus paired off because overflows and underflows
are not symmetrical, so that some secondary overflow may still
occur. This procedure may be expected to be most effective when
the file storage area is nearly full.

So far we have discussed initial loading of a file and insertion
of new records. Deletion of an obsolete record is no problem when
it is an isolated record stored at its home location without overflow
chaining. With individual record chaining, deletion of a record
in a chain requires relinking of the chain to remove this address
from the chain. The now vacant space is marked as available.

With bucket chaining, however, the possible merging of chains
makes their relinking rather difficult. Instead it is simpler to tag
a record as obsolete but not remove it until the next periodic file
dump. The space and time possibly wasted by leaving obsolete
records in the file is often trivial, and it may be a more desirable
procedure to keep them in the file for a definite period of time.
The greater difficulty of deleting records from chained buckets is,
therefore, not necessarily a handicap.

Primary key sets, as already noted, should not contain any
duplicates. It is still possible, however, to have two different records
with the same keys in the same file through some procedural or
other error. Different items may inadvertently have been coded
the same, or a master record for the same item may accidentally
be entered twice into the system at different times. Unless pre-
cautions are taken to detect the remote possibility of duplicate
addresses, one might happen to read and modify one record but
write it on top of the other record.

Duplication may also occur when keys are abbreviated. The
built-in scanning procedure for single-record operation of the IBM

FILE ORGANIZATION AND ADDRESSING

two-pass
loading

deletions

duplicate
keys

104

1301 disk files, to save comparison circuits and space, uses 6-
character “record addresses’” instead of the full record keys. The
record address is assigned to each record by programming. A
record is selected for reading or writing by giving the bucket
address (track number) and the 6-character record address. The
intent is to select 6 characters out of every record key for the
record address in such a way that duplication on any one track is
extremely unlikely. Again, so long as duplication is not known
to be impossible, its occurrence, though improbable, should be
anticipated. This may be done by checking the entire track for
duplicate record addresses while loading or inserting new records.
Should a duplicate occur, it is placed on an overflow track even
though there is space available on the home track. Overflow
tracks must likewise be checked, of course.

Errors such as the accidental assighment of duplicate keys can
be reduced by proper controls but they can never be completely
prevented. Occasional errors could well be lumped together with
record losses through catastrophic failures, for which back-up
procedures are needed in any case. It might be reasonable then to
conclude that these measures will also be sufficient to take care
of the above problems without checking each new record sepa-
rately, but this conclusion should be reached only after considering,
not ignoring, the problem.

Tables

A desired record may be located in the random-access file either
by searching among the records in the file or by looking up the
address in a table. Such tables are really abbreviated files; each

table record contains an identifier (key) and the corresponding
address in the main file. The problem of looking up an entry in a
table is basically the same as finding a record in a file.

For both tables and files a fundamental distinction is whether
or not the entries are sorted in the order of the keys. Thus we may
have the following six cases:

1 2 3 4 5 6

Table Sorted Sorted Unsorted Unsorted None None
File Sorted Unsorted Sorted Unsorted Sorted Unsorted

There are also intermediate cases of partial sorting. ‘“Un-
sorted file” here means: not sorted according to the key set of
current interest; the file may actually be sorted according to a
different key set.

Keeping the records in a file sorted has the advantages, already
referred to, of permitting the average access time to be reduced by
accumulating and sorting a batch of transactions. Periodic proc-
essing of the entire file in sequence becomes practical without
having to sort the file every time, which would often be prohibitive.
Duplicate and absent records are easily found in a sorted file.

The obvious difficulty is that a new record can seldom be in-

W. BUCHHOLZ

serted into its proper sequential location without moving many
records lying between that location and the nearest available
one. Since some space will have to be left empty for future ex-
pansion, this space may be utilized as overflow areas to hold new
records until the next reorganization of the file for the purpose
of audit, review, and dumping for backup storage; at that time
the new records are sorted and merged with the records in the
main file while obsolete records are deleted. The inserted records
in the overflow area may be chained to the main file records in
their logical sequence, in a manner similar to the previously dis-
cussed overflow chaining for key transformation.”’ The insertion
problem may be avoided, however, in applications where the
setting up of new records in the file can be deferred until a subse-
quent reorganization period.

If the distribution of keys is sufficiently uniform, the location
of a record in a sorted file can be predicted fairly accurately from
one or more of the high-order characters of its key. Usually, how-
ever, large sorted files require lookup of auxiliary tables fo reduce
the search time.

Tables are themselves files with short, fixed-length records
that are less subject to change than the file records and hence more
easily managed. They permit constraints on the main file organiza-
tion to be removed: main file records may vary in length and be
stored in any desired sequence without adversely affecting the
access time or storage efficiency. The price for this flexibility is the
overhead cost of storage space, access time, and maintenance of
the table. Sorted files permit the use of partial tables, but other-
wise the cost of the storage space for complete tables is substantial.

With sorted tables some form of scanning is used to find an
entry or to determine its absence. Scanning may be speeded up
by the binary search technique or by any other method of esti-
mating the approximate location of the key to shorten the scan.
Alternatively a hierarchy of tables may be used (see below).

The key tramsformation techniques previously discussed for
direct access to files may also be employed to gain access to a
complete table, thus reducing the problem of table maintenance
as compared with sorted tables. The table entries must be ar-
ranged accordingly. The short item length of tables permits large
bucket sizes, and the relatively small size of tables makes it
practical to leave a fair amount of extra space, both factors com-
bining to reduce the inherent address overflow to a negligible part
of the overall access time.

Table lookup may or may not be used to find a record by its
primary key, but tables are essential for efficient access to a file
according to an identifier other than the primary key. The basic
techniques are no different for these secondary tables.”

The addresses in the secondary tables may refer to the file
or to the appropriate entry in the primary table, if any. Reference
via the primary table is desirable if the file is reorganized fre-
quently so that changes in the address of a record need not be

FILE ORGANIZATION AND ADDRESSING

multiple
tables

table
hierarchy

106

reflected in all the tables. Insertion of a record still requires modi-
fication of all the tables.

It is important to note that primary identifiers are normally
chosen to be unique, but secondary identifiers may not be. Barring
an error, one might expect no duplication in the primary table.
All transactions with the same primary identifier presumably
belong to the same record. It would be coincidental, however, if
another independent method of classifying the same items would
be entirely unique. In an employee file, for instance, all employee
numbers should be unique, but names and education are not.
Hence a lookup by secondary identifier must allow for multiple
matches.

Tables may be useful for output processing as well as for input.
Thus, instead of sorting the file in the order desired for output
reports or summaries, it is possible to maintain a table in the out-
put sequence. This is advantageous if the output uses only a
small extract from the file and there are few changes in its make-up.

When a storage device possesses a natural hierarchy of storage
buckets, with two or more levels of increasing capacity and access
time, multi-level tables are appropriate to find a record in a sorted
file. Scanning starts with the top table in the hierarchy to find the
proper table at the next lower level; this scanning proceeds down-
ward from level to level until the file bucket is reached that con-
tains the desired record.

Consider a two-level disk file, such as the IBM 1301, consisting
of a number of major buckets (cylinders) each containing a num-
ber of minor buckets (tracks). The file records are first sorted in
the ascending sequence of their keys. They are then stored in
that sequence. Each time a track is filled, the key of the last
record and the track address are entered in the track table for
that cylinder. The track table itself may be the first track of the
cylinder. When a cylinder is filled, the key of the highest record
just stored, which is also the last entry of the track table, is en-
tered in the common cylinder table and a new cylinder is begun.
The cylinder table remains in core memory.

To find or to alter a single record previously stored, the cylinder
table in memory is scanned first. The desired key may be compared
successively with each table entry until the comparison changes
from high to low or equal. The track address at that point is the
address in the disk unit of the track table to be searched next
in a similar manner. Again, the track table entry where the com-
parison changes gives the track where the record is stored. This
track is finally scanned for an equal comparison, which locates the
record if it exists. The track table search increases the basic
random-access time by the relatively short time to read one extra
track in the same cylinder.

For a large file the cylinder table may be too large to fit into
available core memory and may take up several tracks if stored on
the disk unit. This adds another level to the search, starting with
a master table in core memory to index the cylinder table tracks.

W. BUCHHOLZ

In applications where it is not possible to defer record in-
sertions and deletions until the next periodic file dumping and
reloading time, an overflow procedure may be devised that pre-
serves the basic table scanning method of retrieval. In one method,
the new record is inserted at the proper point in the sequence and
all subsequent records on that track are moved. The last record is
moved to an overflow track. The track table entry is updated to
show the new highest record on this track and an overflow entry
is inserted behind it in the table.

Conclusion

Random-access file storage adds a new degree of freedom over
sequential storage on tape, but sequential accessibility may still
be an important measure of performance of a random-access
storage device. High sequential speed improves file loading and
dumping, periodic file review, and the scanning involved in many
file addressing methods.

When records are always referred to at random, key trans-
formation using division by a prime number is an efficient method
of gaining access to files. The storage space and maintenance of
cross-reference tables are avoided, and new records may easily
be inserted in the file. Since the record sequence in such a file is
not related to any natural processing sequence, routine record
processing cannot take advantage of sequential access which is
usually much faster than random.

Sorted files with table lookup should be considered in applica-
tions where random processing can be the exception rather than
the rule and where record insertions are not too frequent. They
greatly speed up sequential processing that may be needed peri-
odically. For primary access to sorted files, scanning of partial
tables reduces the cost of table storage and maintenance. When
complete tables are needed, such as for reference by secondary
identifiers, key transformation for addressing the tables is again
an efficient technique.

The extra freedom of random-access storage should not be
abused. Its real advantage over tape in most file processing ap-
plications is that the unusual and urgent transactions can be proc-
essed out of turn with little penalty in time and cost if the ex-
ceptions are few in number.

Appendix: Some results of an experimental

address conversion analysis

Table Al shows some selected results of an analysis, run on an
IBM 7090, of different conversion techniques applied to artifically
generated sets of numerical and alphabetic keys. The inztial
overflow, found by counting duplicate addresses generated from
each key set by the methods indicated, is used as a figure of merit.
All figures are for a bucket size of 10 records and an average of
10 records per address (load factor of 1.0). They correspond to a

FILE ORGANIZATION AND ADDRESSING

108

Poisson overflow of 12.59% reproduced here from Table 4 for
comparison. Finally, for comparison with the results from artificial
key sets, two figures are shown for numerical keys taken from an
actual insurance policy file. It should be remembered that all
overflow figures will be reduced significantly if the loading is
less than 1009, (see Table 4).

These figures were selected as representative of the trends ob-
served; they vary considerably as parameters are changed and
should not be used in quantitative estimates. Some of these trends
are:

1. Numerical (binary-coded decimal) keys should be divided
decimally (or be converted to true binary numbers). Dividing
such keys in binary (without radix conversion) produces more
overflow.

. Prime numbers such as 3001 (of the form kR™ & 1 for small k)
may give trouble. The case quoted was extreme among those
observed; but since it can happen, such divisors should be
avoided.

. Radix conversion for ‘‘randomizing’” purposes generally pro-
duces more overflow than division by a prime, except when
the distribution is close to random to begin with.

. Truncation of long keys by discarding excess digits can lead
to trouble as shown here. Folding by adding one set of digits
to another part of the key is much less likely to do so.

. Zone suppression for largely consecutive alphabetic keys
significantly increases the overflow.

. For alphabetic keys it makes little difference whether division
is binary or decimal, or whether the code is binary (as in the
IBM 1401, 7080, 7090) or decimal (as in the IBM 7070).

Table A1 Experimental results of address conversion analysis

Percent Initial Overflow

Consecutive Numerical Keys

Decimal division by 997 (prime)

Binary division by 997

Radix conversion using radix 11
Consecutive Alphabetic Keys

Binary division by 997

Decimal division with zone suppression
Irregular Numerical Keys

Decimal division by 997

Decimal division by 3001 (prime)

Folding and decimal division by 997

Truncation and decimal division by 997
Irregular Alphabetic Keys

Binary division by 997

Decimal division by 997 with zone suppression

Decimal (7070) code, decimal division by 997
Random (Poisson) Distribution, for Comparison
100,000 Insurance Policy Numbers

Decimal division by 9973 (prime)

Radix conversion using radix 11

W. BUCHHOLZ

ACKNOWLEDGMENT

Credit for techniques reviewed here belongs to authors cited below
as well as the many authors of unpublished or anonymous papers
and manuals.

CITED REFERENCES AND FOOTNOTES

1.
2.

3.
4.

10.

11.

12.

13.

14.

15.
16.

W. Buchholz (ed.), “Planning a Computer System,” McGraw-Hill Book
Co., New York, 1962, p. 39.

K. E. Iverson, “A Programming Language,” John Wiley & Sons, New
York, 1962, chapter 4.

Iverson, op. cit., chapter 6.

C. C. Gotlieb, “Sorting on Computers,” Communs. ACM, vol. 6, no. 5,
pp. 194-201, May, 1963. See also in that issue several other papers on
sorting and a bibliography (p. 280).

. An intermediate approach is to keep the physical location of existing

records fixed but indicate the logical sequence of records by specifying
in each record the address of the next record in sequence when it is other
than the physically adjacent one. Such a file remains logically but not
physically sorted after the insertion of new records. (See also Refer-
ence 21.) This method trades speed of random retrieval for ease of record
insertion.

. Using the key and a conversion formula for retrieval, when the address

of a desired record cannot be uniquely derived from the key, has been
called indirect addressing. Unique conversion formulas that change n keys
to n different addresses such as multiplying a serial number by a con-
stant and adding this to a base address, are included in direct addressing.

. Even so the inter-record gaps required on a continuously moving medium

such as magnetic disks may be much smaller than the mechanical start-
stop gaps required on magnetic tape. Thus the IBM 1301 disk unit uses
gaps of 38 characters (including addresses) as compared to the IBM 729
tape gaps of about 600 characters (at 800 bits per inch density). Gaps may
not, be apparent at all if the density is low enough to permit addressing
and switching at any bit position, as on word-addressed drums.

W. P. Heising, “Note on random addressing techniques,” this issue.

. Prime divisors of the form kR» 4 1 should be avoided for keys that are

numbers in radix R, where % is a small integer. As may be seen from the
binomial expansion of (R* 4 1)~1, the remainder after division is essentially
a superposition of successive n-digit groups of the dividend, and this
systematic superposition tendency is retained for small ¥ > 1. Hence
for decimal keys and in the range of 10% to 105, such primes as 101, 199,
401, 499, 599, 601, 701, 1999, 2999, 3001, 4001, 4999, 7001, 8999, 9001,
49 999, 59 999, 70 001, 79 999, 90 001 had better be avoided.
Multiplication by the reciprocal of a prime number (corrected for round-
off error) may be considered as an alternative to division on computers
not equipped with fast division.

A. D. Lin, “Key Addressing of Random Access Memories by Radix
Transformation,”” AFIPS Conf. Proceedings Vol. 23, 1963 Spring Joint
Comp. Conf., pp. 355-366.

The argument is due to W. P, Heising. Since there have been attempts
to combine radix conversion with division rather than truncation, a
word of warning may be in order. If the divisor happens to be divisible
by 11 (or whatever radix is used to interpret the key), a very bad distribu-
tion of addresses may result. Even if the divisor is a prime, the additional
radix conversion step generally worsens rather than improves the dis-
tribution of addresses.

G. Schay and N. Raver, “A Method for Key-to-Address Transformation,”
IBM Journal Res. and Dev., vol. 7, no. 2, pp. 121-126, April, 1963.

M. Hanan and F. P. Palermo, “An Application of Coding Theory to a
File Addressing Problem,” IBM Journal Res. and Dev., vol. 7, no. 2,
pp. 127-129, April, 1963.

Records whose keys convert to the same address are often called synonyms.
The earliest papers known to the author, where the overflow problem
resulting from key transformation including the concept of multiple-

FILE ORGANIZATION AND ADDRESSING

109

record buckets are described, are unpublished reports by H. P. Luhn
and A. D. Lin dated January—March 1953.

. Without rapid key scanning facilities the whole bucket may be trans-
ferred to memory and scanned there. In that case a better choice of bucket
size may be half a track, because this may leave enough time after reading
the bucket for scanning and processing the record before rewriting the
bucket during the next revolution. If memory space for several records
is not available, a table of the keys in a bucket may be placed at the begin-
ning of the bucket to be scanned in memory instead of the records them-
selves. This organization has been called an ‘“‘indexed file,”’” a term which
is too easily confused with the more general use of cross-reference tables.
Ref.: “Loading and Maintaining an Indexed File for the IBM 305,”
RAMAC 305 Bulletin, IBM Form J28-2042, July, 1959.

. The initial overflow » shown in Table 4 for bucket size b and load factor
f was computed by the following iterative procedure:

Let u =fb, Ty = -1, Vo = My Py = e

Tro1 + Pra

V),_1+T), fOI‘k=1,2,"‘,b

= (u/k) Pi

Then v = Vy/u.
(The function Pr = u* e~ #/k! is the Poisson probability, which gives
the fraction of the addresses to which exactly k& keys will be transformed
for a random distribution with an average of u keys per address.)

. Another figure of merit often used is the seek faclor, or the average number
of reference cycles needed to retrieve any record. Overflow and seek
factor are obviously related although not in any simple manner, and
neither can be directly translated into actual performance figures. Clearly
the smaller the overflow, the more closely the seek factor approaches 1.0.

. “Disk File Organization Routines for the IBM Ramac 1401,”” IBM Form
J24-1451, 1961. This manual refers to the IBM 1405 Disk Storage Unit.

. “Disk File Organization Routines for IBM 1401/1311,” IBM Form
(24-1483, 1963. Ditto for IBM 1440/1311, IBM Form (C24-3003.

. W. W. Peterson, ‘“Addressing for Random-Access Storage,” IBM Journal
Res. and Dev., vol. 1, no. 2, pp. 130-146, April, 1957.

. G. Schay, Jr., and W. G. Spruth, “Analysis of a File Addressing Method,”
Communs. ACM, vol. 5, no. 8, pp. 459-462, August, 1962. Although it is
claimed (p. 460) that a modification of the progressive overflow technique
reduces the average number of accesses, any rearrangement of records
should leave the average random-access time the same.

. H. S. Samuels and T. L. Tarson, forthcoming issue.

. L. R. Johnson has proposed an interesting technique for combining both
primary and secondary tables with the file record. Key transformation
and a chain address for overflow are used in lieu of the primary table.
Two more addresses are used for each secondary table. The first of these
gives the home location for the secondary reference (since it would only
be by coincidence that the transformation for both the primary and the
secondary identifiers of the same record would yield the same address,
8o that the start of the secondary chain would have to be somewhere else).
The second of these addresses is the secondary chain address. Considering
the awkwardness of maintaining such a file, it is not clear that telescoping
several tables and the file presents any practical advantages. Ref.: L. R.
Johnson, “An Indirect Chaining Method for Addressing on Secondary
Keys,” Communs. ACM, vol. 4, no. 5, May, 1961, pp. 218-222.

BIBLIOGRAPHY

References of greatest interest have already been cited and are not
repeated in the following chronological list.

e G. Eisler, “Requirements for a Rapid Access Data File,” Proc. 1956
Western Joint Comp. Conf., pp. 39-42.

e M. L. Lesser and J. W. Haanstra, “The RAMAC Data-Processing
Machine: System Organization of the IBM 305, Proc. 1956 Eastern
Joint Comp. Conf., pp. 139-146.

e A. 1. Dumey, “Indexing for Rapid Access Memory Systems,” Computers
and Automation, vol. 5, no. 12, pp. 6-9, December, 1956.

110 W. BUCHHOLZ

e J. A, Postley, “Contrasts in Large File Memories for Large-Scale Com-
puters,”” Proc. 1958 Western Joint Comp. Conf., pp. 193-194.

o W. P. Heising, “Methods of File Organization for Efficient Use of IBM
RAMAC Files,” Proc. 1958 Western Joint Comp. Conf., pp. 194-196.

o “RAMAC 305 Programmer’s Guide,” General Information Manual, IBM
Form F26-2018, 1958, pp. 7-21.
R. de la Briandais, “File Searching Using Variable Length Keys,”” Proc.
1959 Western Joint Comp. Conf., pp. 295-298.
“Loading and Maintaining a Chained File for the RAMAC 305,”” RAMAC
305 Bulletin, IBM Form J28-2041, May, 1959. Also Addenda to this
bulletin, IBM Form J28-2043, July, 1959.
J. Jeenel, “Programming for Digital Computers,” McGraw-Hill Book Co.,
New York, 1959, p. 280.
E. Fredkin, “Trie Memory,” Communs. ACM, vol. 3, no. 9, pp. 490-499,
September, 1960.
D. E. Ferguson, “Fibonaccian Search,” Communs. ACM, vol. 3, no. 12,
p. 648, December, 1960.
“RAMAC 650 Programs: Utility-Scheduling-Chaining,”” Reference Man-
ual, IBM Form C28-4046, 1960.
“RAMAC 305,” Reference Manual, IBM Form A26-3502-4, 1961, pp.
49-62.
M. C. Yovits (editor), “Large-Capacity Memory Techniques for Com-
puting Systems,”’ Proceedings of ONR Symposium, May 1961. The
Macmillan Co., New York, 1962.
“IBM 1301 Disk Storage with IBM 7000 Series Data Processing System,”
General Information Manual, IBM Form D22-6576, 1962.
“IBM 1410 Data Processing System—IBM 1301 Disk Storage,” Refer-
ence Manual, IBM Form A22-6670, March, 1962.
H. Hellerman, “Addressing Multidimensional Arrays,”’” Communs. ACM,
vol. 5, no. 4, pp. 105-207, April, 1962.
“A General Approach to Automatic Programmed Address Conversion,”
1400 Series Systems Bulletin, IBM Form J20-0235, 1962.
M. D. Mecllroy, “A Variant Method of File Searching,” Communs.
ACM, vol. 6, no. 3, p. 101, March, 1963.
D. C. Johnson, “Dynamic Random Computer Processing,” Data Proc.
for Mgmt., vol. 5, no. 3, p. 11, March, 1963.
Price Waterhouse & Co., ‘“In-line Electronic Accounting, Internal Control
and Audit Trail,” General Information Manual, IBM Form F20-2019,
undated.

FILE ORGANIZATION AND ADDRESSING

111

