
A programming technique i s presented which permits switching
from central to stand-by computer in case of failure. Switchover i s
accomplished automatically and without loss of data or interruption
in service.

The technique i s applicable to a large class of commercial real-time
systems which must function in an uninterrupted manner.

During the normal periods when both computers are operable, the
programming system permits the s e c d computer to be utilized
independently for other data processing.

Recovery for computer switchover
in a real-time system

by Harry Nagler

In real-time systems which demand uninterrupted servicing of
incoming messages, it is customary to employ duplexed central
computers, so that one may take the place of the other when
needed. Questions arise concerning:

1. The economic justification of the second computer.
2. Keeping the operating personnel constantly alert and pre-

3. Loss of information and reduction in service when such switch-
pared for sudden switchover.

over occurs.

It is highly desirable to keep the second computer free for
independent work while in stand-by status, to make switchover
fully automatic, and to maintain full continuity of system per-
formance across the switchover period. A procedure is proposed
to achieve these objectives.

This paper is concerned only with the sudden failure of the
central computer with attendant complete loss of the contents
of its core memory. It is assumed that at the time of failure all
other devices of the real-time complex, and in particular the
stand-by computer, continue in working order.

The real-time system for which this recovery procedure is
system designed is first described functionally. Essentially, it is a file
description maintenance system responsive to messages which may come a t

any time and from any one of many different places. A message
will cause file references, sometimes also file updating, and finally

76 IBM SYSTEMS JOURNAL * MARCH 1963

the sending of a response to the originating location within stated
time limits. In order to simplify the discussion of the programming
techniques used, it will be assumed that no message may be
originated at any place where a response to a previous message
is still outstanding; but in a later paragraph this restriction is
lifted.

The equipment configuration is illustrated in Figure 1. Since
the identity of the interchangeable central computers is largely
immaterial, they are designated simply as “7000’s.” They are
connected by a signal transmission line. Communication between
the 7000 and the remote terminals at which messages originate is
coordinated by a message exchange. Since it is assumed to have
capability equivalent to that of, say, the IBMB 7750 Programmed
Transmission Control, the exchange will be denoted as the “7750.”
The 7750 need not be duplexed, though if it is, the subsequent
program description must be modified. The files may likewise be
duplexed or not; if they are not, certain items of information
must still be recorded in duplicate. The Tele-Processing@ equip-
ment is shown a t the top of the diagram, while the equipment
shown at the bottom is used by the stand-by 7000 for batch-
type processing. Switches permit either 7000 but not both of
them together, to be connected to either equipment.

We begin by outlining the conditions to be met by the control
program in the stand-by computer. When both running and
stand-by 7000’s are in working order, they will be in communi-
cation at regular intervals. This may take the form of a signal
sent by the running to the stand-by 7000 each time the interval
timer causes a trap.When such a signal fails to be received in the
stand-by 7000 during a certain interval of time, it immediately
prepares for takeover by discarding any processing it may be
engaged in, and reading in appropriate parts of the control pro-
gram needed for the recovery procedure. It is assumed that work
in progress in the stand-by 7000 is protected by conventional
checkpoint and restart procedures. If failure to receive a signal is
repeated, the stand-by 7000 will take charge by connecting
itself to all input-output devices, thereby disconnecting the
presumably failing 7000, and issuing emergency orders to the
7750.

We must now turn to special conventions about control pro-
gram action in the 7750 and 7000. A typical message processing
path is shown in Figure 2. As each message entering the 7750
from a remote terminal is logged in it will receive a serial number,
N . This serial number, together with an origin code, T, will be
entered in a 7750 table, referred to as the “7750 message table,”
from which it will not be purged until the response to this message
has left the 7750 again on its way to the terminal. Thus the table
reflects at all times the messages which have been received in the
central computing complex, but not yet processed to completion.
Similarly, when a message enters the 7000, which it does pre-
fixed with its serial number, the serial number will be placed into

RECOVERY FOR COMPUTER SWITCHOVER

Figure 1 System
configuration

control program
in stand-by
computer

scheduling
file references

77

Figure 2 Typical path
of message processing

I

i

I
I

MESSAGE IS
ASSIGNED SERIAL

NUMBER N

ENTERED IN 7750
TAND N ARE

MESSAGETABLE

N IS ENTERED
IN 7000

MESSAGETABLE

a table in the 7000, which reflects all messages at some stage of
processing within the 7000. This table will be called the "7000
message table." Not until all file updating action caused by this
message has been successfully completed and the response success-
fully transmitted to the 7750, will the corresponding entry be
purged from the 7000 message table.

Message serial numbers enter into both ordinary file processing
and the recovery procedure. Each record, or field, which may be
changed as a result of processing a message contains, besides the
field to be updated or consulted, room for the serial number of the
message causing the particular file entry to be written. When a
message bearing serial number N causes updating of the file, the
serial number N*, associated with the message which caused the
last previous updating of the field, will be found recorded along-
side that field, and the updating action will include the replace-
ment of N* by N . However, the entire updating action is de-
pendent on whether N* is still in the 7000 message table or not;
ifiit is still there, the message with serial number N* has not yet
been processed out of the 7000, and the updating action requested
by the message with serial number N must be deferred. What

TABLE?

UPDATING CAUSED BY
MESSAGENHASBEEN

RESPONSE IS READY
EFFECTEDAND

WITHIN 7000

RESPONSE

TO 7750

N IS PURGED

MESSAGETABLE
FROM 7000

RESPONSE

Figure 3 Processing of re-submitted messages during recovery

0 MESSAGE
RE-SUBMITTED

FROM TERMINAL T
RE-ENTERS 7750

WITH T TO FIND
N. ORIGINAL

MESSAGE

ARE PURGED
TAND N

FROM 7750

78 H. NAGLER

happens is that the current operational program, which is seeking
to update the file on behalf of the message with serial number N ,
will be suspended for the time being and pushed back into the
queue of operational programs maintained by the control pro-
gram. In other words, the file updating called for by that message
may not take place until the message which had caused the last
previous file updating has been fully processed in the 7000. Of
course, if N* is no longer in the 7000 message table, file updating
in response to message N may proceed without delay. This rule
makes certain that if a field may be updated by several messages,
which can be in the 7000 at the same time, the serial number
associated with the field identifies the one and only message
which can have caused the updating. This assurance is of use in
the recovery procedure.

Under this rule for file updating, an operational program
may be suspended not only when it waits for file records to be
brought into the 7000 memory, but also when a particular record
has been updated too recently. The action of examining the serial
number part of a record and deciding whether to proceed with the
operational program or not should be standardized so as to be
amenable to description by a macro. Better still, it may be possible
to incorporate it in the 7000 control program.

Having described the design features which are to be used
for recovery after unscheduled switchover, we next outline the
action taken by the control programs in the 7750 and 7000 by
which such recovery is effected. When the stand-by computer
takes over it will instruct the 7750 to inhibit the acceptance of
any further messages from the remote terminals, but will permit
it to continue sending completed responses. After all these have
been sent, the 7750 message table will be read into the 7000, and
the 7000 message table reconstructed from its entries. The two
message tables, in the 7750 and 7000, now reflect all messages
for which responses are outstanding; and any of these which
are no longer recoverable from 7750 memory must be requested
again from the associated terminals. It is at this point that use is
made of the assumption that no terminal will send a message until
response to the last message has been received.

As re-submitted messages come in, they are identified by
origin and given the serial number of their originals, which are
found by entering the 7750 message tabIe with origin T as the
argument. The messages are then transmitted to the 7000, to-
gether with any messages recoverable from within 7750 memory.
As these messages cause file references in the 7000, the message
number associated with the particular file record is examined,
and action taken accordingly (Figure 3). If the record bears a
serial number not in the 7000 message table, the record may be
referenced or updated in the ordinary way. If the serial number is
in the 7000 message table, action depends on whether the message
causing the updating bears an identical serial number or not.
If the serial numbers agree, the file updating in respect to this

RECOVERY FOR COMPUTER SWITCHOVER

message had already been effected during the processing of this
message’s original; only the response message had never reached
the 7750. Hence the message is processed in the ordinary way,
except that no record is updated if its serial number agrees with
that of the referencing message. If, on the other hand, the serial
numbers differ, the last updating of this file record was caused
by a message whose processing was curtailed by the switchover,
and which may or may not yet have been re-submitted; in either
event, the normal rule is followed, and the message is queued
behind other pending messages which await processing. Because
of this procedure, delays in re-submission of messages may delay
the processing of other messages more than ordinarily; but this
inconvenience is part of the price paid for recovery.

During the preceding discussion of the role of message serial
duplicate numbers during the recovery period, it was tacitly assumed that a
file file reference would always bring to light a valid file entry. How-
entries ever, since 7000 failure may interfere with the act of writing such

a file entry, further safeguards are necessary. If relevant file
entries are kept in duplicate versions, written at non-overlapping
times, at most one of the two versions can be affected by 7000
failure, and therefore at least one of them will be valid. Let N
denote the message serial number, f the field, and let subscripts 1
and 2 refer to the two versions of a file entry. Furthermore, in
each file entry, let N be written before f. Then the 7000 writes
file entries in the order: N , , f,, N,, f,. Four cases may be dis-
tinguished:

Case 1: N , = N z , f l = f,. The two versions agree, and the
ordinary rules for updating apply, based on whether N 1 is in
the 7000 message table or not.

Case 2: N , # N , , f l = f,. File writing was interrupted after
beginning to write N 1 but before writing fl. N , , if its writing was
completed, will be in the 7000 message table. In any event N ,
will not be there. Therefore f, = f2 may be taken as the un-
updated field, which may now be updated without further delay.

Case 3: N , # N,, f l # f,. File writing was interrupted some
time after beginning to write f l but before the writing of N , was
complete. N , will be in the 7000 message table, and f, is the valid
field. Therefore, as in Case 2, f, may be taken as the un-updated
field, which may now be updated without further delay.

Case 4: N1 = N,, f l # fz. File writing was interrupted some
time after writing N z but before the writing of fz was complete. f l
is the valid, updated field. The information contained in the file
entries themselves and the 7000 message table does not suffice to
determine which of the two discrepant versions of the field is f l .

The determination of f l in the case N , = N,, f l # fz, which
format will round out the description of the file recovery procedure, in-
of file volves either the imposition of further constraints upon the system,
entries or the recording of additional information in the file entries. Let

us note here that the procedure does not explicitly demand the

80 H. NAGLER

duplexing of files, so long as N , , f,, N, , and f z are written in any
convenient place in that order and a t non-overlapping times.
Thus, they might all be written on the same track of a file, so
that f l could be determined simply by its position in the track.
However, in most real-time systems the files are duplexed for
reasons other than protection against possible 7000 failure, and
it is not normally practicable to write duplicate file entries in an
order determined solely by the two physical file units involved.
Thus a knowledge of the physical file unit from which a given
field is read is not enough to establish whether it, or its duplicate
counterpart, was written first when the field was last updated.
Four methods are outlined to settle the matter, all of which affect
either the nature or the format of file entries.

Method 1. This applies only if the updated form of a field
does not depend on its previous forms; so that updating amounts
to replacement, not modification, of the previous contents of
the field. This will often be the case with non-numeric information.
Let N be the serial number of the message which causes a file
reference during the recovery period. If N = N , , the field f l may
be taken from the updating message, and the discrepancy re-
solved. If N # N , , the message cannot be acted upon further at
this time, and must be queued behind other messages. In other
words, this message cannot be processed until the message with
serial number N = N , has been re-submitted and processed.

Method 2. The format of file entries provides for an indicator,
say i, which is advanced each time the file entry is updated. N , f ,
and i are written in that order. In its simplest form, i would be a
digit which cycles through the three values 0, 1, and 2. Under the
assumptions of Case 4 above, i, and i, are both intact, but differ-
ent. Reference to their values will establish which of the two
versions of the field, f l or fz, is the updated one.

Method 3. This method is based on the requirement that
the writing of duplicate versions must not overlap in time. This
entails that the control program always knows which version will
be written first, and that therefore it can record this priority in
the file entry itself. Let j be an indicator which, in its simplest
form, will assume the values 0 and 1 for the first and second
version respectively. Let j, N , and f be written in that order.
Under the assumptions of Case 4 above, j , and j , are both intact,
but different. As in the second method above, reference to their
values will establish whether f, or f z is the updated version of the
field.

Method 4. The format of file entries provides for the double
recording of the message serial number, such that N , f , and N
are written in that order. If, in either file entry, the first and
second values of N agree, this entry was not interrupted by
7000 failure and so is valid.

Method 1 requires no additional space in file entries, but is of
limited application. Methods 2 and 3 require at most one extra

RECOVERY FOR COMPUTER SWITCHOVER 81

inquiry
without
file updating

return to
normal
operation

extensions to
more general
messages

character per file entry, but demand special action on the part of
operational and control programs respectively. Method 4 de-
mands the most extra space, but is easiest to program. In a given
application a mixture of methods, not including the third, is
theoretically possible, but not recommended in practice, since
the uniformity of the recovery procedure would be lost.

The preceding discussion has dealt with file references which
result in file updating, that is, in changes in the information
content of the file. In most real-time systems however, there is a
notable volume of inquiries concerned only with eliciting infor-
mation about the current state of the file, without paying heed
to the possibility that subsequent file updating action may render
the information out of date, in some cases almost immediately.
A large class of inquiries may be processed with fewer constraints
than messages involving file updating. Among them are all those
which require the extraction of only a single file entry. However,
inquiries involving several file references should be treated as
though file updating were involved if the correct response de-
pends on the internal consistency of the several references. If
file updating were proceeding concurrently, internal consistency
of the references might be affected. During normal running of the
7000, the former simpler type of inquiry may be processed with-
out concern for any message serial numbers. During the recovery
period, it is only necessary to establish the valid version of the
field f, by following the rules stated in previous paragraphs under
which, when N , = N,, the updated version of f is to be supplied
in response to the inquiry; otherwise the un-updated version is
to be supplied.

During the recovery period, the program should keep a check
on the response of remote terminals to the request for re-sub-
mission of messages; but no way is seen of avoiding erroneous
inventories if the request is not complied with. When all messages
have been re-submitted, acceptance of further messages from
remote terminals may be resumed, and the control programs in
both the 7750 and 7000 revert to their normal mode of operation,
except for the temporary unavailability of the stand-by 7000.

Where messages may be initiated at remote terminals before
a response to previous messages has been delivered, it no longer
suffices to use an internal system of serial numbering. The re-
covery procedure must be able to demand from a given terminal
the re-submission, not just of the last message originated, but of
any one of several messages on which action had not yet been
completed. It is therefore necessary to identify all messages
externally, either by requiring the originator to affix an identifi-
cation, or by letting the 7750 report back to him the assigned
serial number immediately after this has been created. With these
provisions the recovery procedure works as before.

The scheme outlined above will deal with all messages origi-
nating outside the computer complex; however, it will be
useful to provide also for the recovery of time-initiated messages,

82 H. NAGLER

that is, those which are internally generated a t predetermined
times. Let us consider the intervals between successive signals
sent by the running 7000 to its stand-by counterpart. At the
beginning of any interval during which time-initiated messages
are to be generated, the 7000 will allocate serial numbers to
them and record these numbers in the 7750. If time-initiated file
references do not interact with file references caused by external
messages, it will suffice to allocate numbers from a separate series.
As time-initiated outgoing messages leave the 7750, the corre-
sponding entries are purged from the 7750 table for time-initiated
messages, in the same way as ordinary ones. In case of switchover,
the 7000 will read the 7750 table back into memory, just as it
would for ordinary messages, and proceed in the same fashion.
However, since there is no way of requesting the re-submission
of time-initiated messages, the 7000 must be able to determine
what action to take. If this cannot be done from inspecting the
serial numbers and the time interval alone, some action code
should be appended to the serial numbers in the 7750 message
table from which the required action could be determined. There-
after, updating action is subject to the same rules and constraints
as for ordinary messages.

It will be observed that the areas of systems design affected
by the present procedure include: action of personnel manning the
remote terminals, control program in the 7750, control program in
the 7000, record format in files, and record processing by opera-
tional programs.

It is therefore seen that precautions against information loss
in the case of unscheduled switchover are not confined merely to
the control program in the central computer, or to the provision
of duplexed equipment, but touch all phases of systems design.
This is an important reminder that assuring the reliability of a
real-time system is an integral part of overall systems design, and
cannot be relegated to an isolated design function.

ACKNOWLEDGMENT

This paper is the outgrowth of work done while the author
attended the Advanced Systems Course at the IBM Systems
Research Institute in the summer of 1962. Particular thanks are
due to J. C. McPherson, director of the institute, for stimulating
and constructive comments. In addition, R. V. Head, D. L.
Mordy, and W. Selden (all members of IBM) have also con-
tributed many helpful suggestions.

RECOVERY FOR COMPUTER SWITCHOVER

