
In  1951, Box and Wilson' introduced  a new concept into 
concept experimental design by recognizing that,  in  many  situations, one 
of Box is not so much  interested  in  testing the significance of factors 
and Wilson associated with  the process, as  in simply  determining the best 

operating  conditions for the process. In  other words, they recogn- 
ized problems 1 and 2 above to be independent  and  that  the 
solution of the  latter  might  be  obtained  without first finding f .  
The class of experimental designs introduced has become known as 
response  surface designs and  the associated  analyses yielding the 
opt,imum  operational  conditions is known as response  surface 
analysis. 

The behavior of any reaction is governed by laws which should 
application be representable  in  mathematical  form and  thus  it should be 

possible to determine the  optimum conditions  for the reaction by 
simply  applying  these laws. However, one often finds in  practice 
that  the underlying mechanism of the  system is so complicated 
that  the mathematical  representation using theoretical con- 
siderations is essentially impossible. Or, if the  mathematical 
representation  is achieved, the resulting  mathematical  system  is 
so complex that  its optimization is impractical. It is  under  these 
conditions that  the empirical  approach is necessary. 

When one is faced  with need to use the empirical approach  and 
is  interested in determining the best  operating conditions, say,  for  a 
chemical or industrial process, these response surface designs are 
appropriate.  Thus we find the  approach useful in petroleum 
engineering where, for example, one may be interested in mini- 
mizing the viscosity of a  lube  additive  taking  into  account  the 
several  factors involved in  the process. In  the  study of chemical 
reactions it is  often important  to maximize the yield of a product 
of a  reaction  for  a given amount of one of the initial  materials 
by changing the  time, concentrations,  amounts,  temperatures, 
etc., involved in  the reaction process. I n  fact,  the whole  field of 
process control  centers about  the location of such  optimum 
operating conditions. 

Many research problems also have a strong  optimum response 
orientation.  Medical research provides a good example. Thus,  in 
cancer therapy research, one may inquire as  to  what values, 
associated with a given diagnosis, of the radiation  treatment 
variables  such as  duration,  intensity,  orientation, etc., would 
maximize the effectiveness of the  treatment; or in preoperative 
anesthesia  medication, what values in  the medication  program 
such as  amount, concentration and frequency of administration 
of the  drug would minimize the effect on the maintenance of 
anesthesia  during the  operation, or, in clinical immunology re- 
search, the  amount, number, and spacing of injections  required so 
as  to maximize the resulting  antibody  count. It is  apparent  that 
the general problem is to find the  quantitative level of each of the 
so-called independent  variables which will give an optimum 
response for the process or dependent  variables. 

For the convenience of the reader who may wish to review 

50 c .  F. KOSSACK 



terminology, the following  glossary (of terms used) is inserted: terminology 

Test of signijcance  (statistical  signzficance). A procedure for  determining the 
probability of an observed experimental  result arising under  an assumed 
hypothesis. 

Factor  space. The  set of all possible combinations of controllable conditions 
involved in a process. 

Factorial  experimenl. An experimental design that involves the running of 
the experiment so that each level being considered for  a  factor is paired with 
all possible combinations of levels of all the other  factors. 

Variance ( ~ 2 ) ) .  A  measure of dispersion or variation. The average  squared 
deviation of the individual  observations  from the mean or average of all the 
observations. The square of the  standard deviation. 

Second order terms. The  terms of second degree. The  squared  terms such as 
XI2,  or X I X ~ .  

Unbiased  estimates. Estimates of population  characteristics (parameters) 
made  from the sample or experimental  observations  in  a  manner  such that 
in  the long run  the average of the  estimates so obtained will equal the  para- 
meter  value. 

Mult iple  regression. The fitting of an  equation (usually linear) involving the 
dependent variable ( Y )  as  a  function of several  independent  variables ( X ’ s )  to 
a set of observed points involving these  same variables. 

Analysis  of variance. The process of breaking down the  total  variation (vari- 
ance)  obtained in  an experiment into independent sums attributable  to  the 
various  components of the experiment  including the experimental  error so as 
to be able to make tests of significance of hypotheses associated with  these 
components or factors. 

Residual  mean  square. The average square of the discrepancy observed between 
experimental  observations and  the  mathematical model used to fit. such 
observations. 
Standard error of eslimate (of coeficients). A measure of the  variation  (standard 
deviation) associated with the  estimates obtained by  an experiment. Under 
normal conditions one expects about 68% of the  estimates  to be within one 
standard error of their true value and 95y0 within two  standard errors. 
Replicution. The process of taking  an additional  observation  (repeating the 
experiment) using the  same values for the controllable  factors as for the 
original observation. 

I 

The response, Y ,  is supposed dependent upon n variables Xi, I 

which are capable of exact measurement and control. The form 
of the functional relationship Y = f(X,, X,,  . . . , X,) is unknown, 
and  the problem is  to find the combination of values of Xi which 
optimize the response within the region of the n-dimensional 
factor space where experimentation is feasible using as few  ex- 
perimental observations as possible. The number of observations 
required will, of course, depend upon the accuracy and precision 
of estimation desired. Where the problem is one of minimization, 
it can always be converted to one of maximization; for example, 
by considering the improvement as compared with some standard 
instead of the actual level achieved. 

The technique assumes that  the response function can be 
satisfactorily represented by a  quadratic form in the area of 
interest,  i.e., Y = c?so c i i X i X i  + e where Y is  the property 
to be maximized, the Xi are the levels of the n independent 
variables ( X ,  = l), the c i i  are  the unknown parameters to be 

nethod 
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location of 
neighborhood 

Table 1 Experimental points 
for a 23 factorial design 

Factor Level 
Point X, X, X, 
1 f 1  + 1  +1 
2 -1  4-1 +1 
3 fl -1 +l 
4 
5 

-1  - 1  +1 
fl + 1  - 1  

6 -1 +l - 1  
7 +I  -1 - 1  
8 - 1  -1  - 1  

est,imated  from the experiment and e is the residual or experi- 
mental  error.  The  adequacy of the  quadratic surface  representa- 
tion of the  true response surface of the process being investigated 
depends  on the use of a small sub-region of the fact,or space within 
which one  restricts his determinations. In  some experimental 
situations,  such a small neighborhood within which the  optimum 
point  can be assumed to lie is  already known to  the experimenter 
from  previous experience. However, if this  is  not  the case, the 
procedure of locating  optimum  conditions  involves  two  distinct 
phases. The first  phase  involves the location of the neighborhood, 
while the second is t'o determine  within  the neighborhood the 
optimum  point. 

The location of the neighborhood is accomplished by using 
what is called the method of steepest  ascent. In  this procedure, one 
assumes that t,he surface can  be  represented locally by a sloping 
plane. Starting at  any  point, P ,  the experimenter  estimates  t'he 
coefficients or slopes of the plane Y = bo + b,X, + 
b,X, + . . . b,X, by performing a suitably  arranged  set of trials 
in  a  small sub-region about P. From  these observations, the co- 
efficients are  estimated  and one then calculates the direction of 
steepest  ascent or greatest slope up  the plane. He  then proceeds to a 
point, Q, in  this direction, where new observations are  made,  the 
slopes are redetermined, and  the process repeated. In  this way, by a 
step-by-step  procedure,  points of higher and higher response are 
reached. 

This procedurc cannot, however, be used to actually  reach the 
maximum response point since, as one goes farther  up  the surface, 
the slopes become more  gradual  and  thus more difficult to esti- 
mate.  The second-order terms also become relat'ively  more im- 
portant.  The procedure  generally followed is to compare the 
linear effects with the error  variance  and  with  the second-order 
effects, and if the linear model appears  adequate,  the  path of 
steepest  ascent  is  determined.  At  the  point of diminishing returns, 
the new point is located  around which the process is  repeated. 

The experimental design used during the first  phase  where one 
is seeking the  path of steepest  ascent  from  a given point  on the 
surface  is  generally of a two-level factorial  type, where the origin 
for  each  variable  is  taken at   the initial  point  and  the levels used 
are  equidistant  from it in  either direction. Thus,  in a three-variable 
situation,  one would use a 23 factorial  design, and  the eight 
experimental  points would be as shown in  Table 1. Br 

The estimation of the b's from  this  type of design is  straight- 
forward. In  fact, if g2 is the experimental  error  variance we have 
bi = X , Y / c  X: ,  and V(b) = az//cXf (the  variance of b) .  

One thus  has  the essential  ingredients needed to  complete the 
first  phase of the investigation. 

In  considering the second phase, we assume that we have 
location identified a  point P that is  in  the neighborhood of the optimum 
within point. The experimental  designs used a t  this  stage of the problem 
neighborhood are known as composite designs. There  are  two  types of composite 
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designs, central and non-central. The central composite  designs 
consider the 2" factorial designs and adds additional points with 
high and low levels  for  each variable as well as additional points 
at  the center of the design. 

The central composite  design for n = 2 is shown in Figure 1. 
The 2' factorial points are given as solid points while the added 
points are open  circles. 

For the purpose of estimating the parameters of the quadratic 
form, the central composite  design can be  shown to be  more 
efficient than  the 3" factorial design. As one might expect, this 
means that a savings in experimental points can be  realized, 
since interest has been  narrowed to estimating the optimum 
response point rather than  to generally studying the nature of the 
mathematical model that explains the process under study. 

As can be  seen  from Figure 1, one of the problems  needing 
solution is to select the value of a to use  when adding points to  the 
factorial design. It is apparent that care is required in selecting a, 
since large values of a will tend to reduce the adequacy of the 
representation of the surface by the quadratic, while  small values 
may fail to encompass the optimum point. One solution to  the 
problem is to  select a = 2"14, where the scale is determined by the 
levels  used in  the factorial. It should  be noted that when  several 
variables are involved in the system, it may be  possible to choose 
a suitable fraction of the factorial points and still obtain unbiased 
estimates of the parameters. 

The location of an optimum point usually requires a series of 
coordinated experiments, especially  when  one must first find the 
neighborhood of the optimum. If the process  being studied has 
little or no time effect, so that one can combine results that are 
obtained at  different time intervals, the series of experiments can 
often be  developed into an organized sequential program. The 
non-central composite  designs are useful if one  uses  such a se- 
quential approach to his experimentation. The factorial portion 
and the central point are  run first and, if the optimum is found 
to be  close to  the center being  used in the factorial design, the 
additional points required for the central composite  design are 
then used. If, however, the optimum response is nearer one of the 
other points the factorial portion is augmented to form a non- 
central composite  design. Of course, if it is indicated that a new 
location  should  be sought through the use of the  path of steepest 
ascent, then the sequence  is as follows. The fitting of the quadratic 
surface, Y = c i j X i X i  + e, to  the observations real- 
ized  from the composite  design can be obtained by standard 
multiple regression techniques. Following the estimation of the 
coefficients,  one  can  perform an analysis of variance on the results 
to establish the significance of the several  coefficients as well as  the 
significance of the regression itself. If one has some  prior informa- 
tion as  to  the value of g', the experimental error,  this informa- 
tion can be  used  in a comparison with the residual mean square 
associated with the regression analysis to provide a test of good- 

Figure 1 A two-dimensional 
central composite  design 

Replicated 

"d "1 +I + a  
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ness of fit of the second-degree equation. If the fit is not 
satisfactory, one may change his neighborhood if this seems 
required, or increase the order of the regression equation. 

When such a test  has indicated that an  adequate fit has been 
obtained the  fact that  an individual coefficient is or is  not  sta- 
tistically significant is of no practical significance. What  this 
means is that one might just  as well retain the small  coefficient in 
his future analyses since there appears to be  no real good reason for 
making the hypothesis that one of the coefficients is actually zero 
in  the population model. 

When the second  degree equation has been fitted, it is neces- 
sary to  interpret it to  see if one can, in fact, determine the co- 
ordinates of the optimum response point. Since the coefficients in 
general quadratic do not readily convey to the observer the 
nature of the surface  being represented, one usually resorts to a 
canonical reduction of the equation so as  to obtain the canonical 
form, Y = Bo + B,,Xt + B,,Xi + - BnnXf. 

There are many types of surfaces that can be obtained through 
the use of the quadratic function. Under certain conditions, 
including those where  all the B's are negative, there will  be a 
point maximum in all the variables. Another situation, however, 
that may be encountered is  where the maximum is in fact remote 
from the region of the design, but  the surface is elongated along 
an axis which  passes  close to  the design. This indicates that  the 
previous experimentation has brought the experimenter not to a 
maximum but close to a rising  ridge of the surface. No conclusion 
as  to optimum conditions can be drawn in this  latter case, but 
one can, from observation of the nature of the rising ridge, de- 
termine where additional experimentation should  be carried out in 
attempting to locate the optimum point. In the case that  the 
optimum point falls within the region of the experiment, its 
position can be obtained by differentiating the original quadratic 
with respect to  the variables X, ,  Xz, - - X ,  in  turn  and equating 
the results to zero. This will  yield a  set of linear equations which, 
when  solved simultaneously, give the coordinates of the optimum 
point. It should  be emphasized, however, that  the  nature of the 
surface  should  be critically examined through the use of the 
canonical transformations approach before  one  seeks these co- 
ordinates. In fact,  as  the dimension of the problem increases, 
making a careful examination becomes  most important. 

The mechanics of analyzing the  data obtained from the se- 
programming quence of observations made in following the approach outlined 
considerations above can be readily adapted to digital computer programs. In 

fact, many of the procedures  make  use of techniques for  which 
standard computer programs are already generally available. Thus 
in the initial phase, where  one is interested in following the  path 
of steepest ascent using a linear fit to  the experimental data, 
multiple regression computer programs are applicable. These 
programs give not only the best estimates for the regression co- 
efficients but also their standard errors as well as the  standard 
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error of estimate for the response  variabIe. Through the use of 
transformations the significance of the quadratic  terms  in the 
surface can also  be readily tested using the same computer pro- 
gram. This enables one to determine when to abandon the steepest 
ascent phase of the investigation. 

In the calculation of the actual  path of steepest ascent, the 
successive differentiation of the fitted linear relationship yields 
simultaneous linear equations whose solution can be obtained 
from standard programs for solving systems of simultaneous 
equations. In fact, even the determination of the possible steps 
up the  path through the computation of coordinates of the points 
on  the  path can easily  be programmed. 

When  one  reaches the point of fitting the quadratic surface to 
the  data obtained from a composite  design, the determination of 
the coefficients of the surface, their  standard errors and the 
standard error of estimate is also a multiple regression program 
application. The  quadratic  terms  are simply treated  as new linear 
variables in this case. The determination of the optimum point 
is again the solution of a set of simultaneous linear equations. 

The other major computational task encountered in using the 
I response  surface analysis concept  involves the transformation of 

the general quadratic equation to  one in canonical form, that is, 
an equation involving only pure quadratic terms. To determine 
the coefficients of the canonical  form  one must solve the character- 
istic equation of the determinant of the coefficients of the original 
quadratic. Such solutions have been  programmed for computers, 
and since the roots of the equation are the necessary  coefficients, 
the computational activity  has been essentially mechanized 
through the use of these standard computer programs. 

Wilson method consult the appended list of selected papers on papers 
specific applications in order to gain additional detailed insight 
on various aspects of the technique. 

surface analysis center around the use of sequential experimenta- remarks 
tion. Generally, each set of experiments in the sequence is per- 
formed within a given  sub-region, and one must decide  from the 
results obtained what to do next. Several alternatives present 
themselves: 

1. There is insufficient reliability in the results obtained to draw 
any conclusions. In this case, replication of the experimental 
points may be  used or improvement sought in  the overall 
experimental design. 

2. The first order  effects are dominant in the region  being studied. 
In  this case, one may use the method of steepest ascent in 
order to determine the new center about which to perform the 
next set of experiments. 

3. The first and second  order  effects are  important in the surface. 
In this case, the original set of observational points should  be 

It is suggested that the reader intending to apply the Box- selected 

One should note that  the techniques associated with response concluding 
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augmented so as to yield a composite design from which an 
optimum response analysis can be performed. 
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