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In 1951, Box and Wilson® introduced a new concept into
experimental design by recognizing that, in many situations, one
is not so much interested in testing the significance of factors
associated with the process, as in simply determining the best
operating conditions for the process. In other words, they recogn-
ized problems 1 and 2 above to be independent and that the
solution of the latter might be obtained without first finding f.
The class of experimental designs introduced has become known as
response surface designs and the associated analyses yielding the
optimum operational conditions is known as response surface
analysts.

The behavior of any reaction is governed by laws which should
be representable in mathematical form and thus it should be
possible to determine the optimum conditions for the reaction by
simply applying these laws. However, one often finds in practice
that the underlying mechanism of the system is so complicated
that the mathematical representation using theoretical con-
siderations is essentially impossible. Or, if the mathematical
representation is achieved, the resulting mathematical system is
so complex that its optimization is impractical. It is under these
conditions that the empirical approach is necessary.

When one is faced with need to use the empirical approach and
is interested in determining the best operating conditions, say, for a
chemical or industrial process, these response surface designs are
appropriate. Thus we find the approach useful in petroleum
engineering where, for example, one may be interested in mini-
mizing the viscosity of a lube additive taking into account the
several factors involved in the process. In the study of chemical
reactions it is often important to maximize the yield of a product
of a reaction for a given amount of one of the initial materials
by changing the time, concentrations, amounts, temperatures,
ete., involved in the reaction process. In fact, the whole field of
process control centers about the location of such optimum
operating conditions.

Many research problems also have a strong optimum response
orientation. Medical research provides a good example. Thus, in
cancer therapy research, one may inquire as to what values,
associated with a given diagnosis, of the radiation treatment
variables such as duration, intensity, orientation, ete., would
maximize the effectiveness of the treatment; or in preoperative
anesthesia medication, what values in the medication program
such as amount, concentration and frequency of administration
of the drug would minimize the effect on the maintenance of
anesthesia during the operation, or, in clinical immunology re-
search, the amount, number, and spacing of injections required so
as to maximize the resulting antibody count. It is apparent that
the general problem is to find the quantitative level of each of the
so-called independent variables which will give an optimum
response for the process or dependent variables.

For the convenience of the reader who may wish to review
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terminology, the following glossary (of terms used) is inserted:

Test of significance (statistical significance). A procedure for determining the
probability of an observed experimental result arising under an assumed
hypothesis.

Factor space. The set of all possible combinations of controllable conditions
involved in a process.

Factorial experiment. An experimental design that involves the running of
the experiment so that each level being considered for a factor is paired with
all possible combinations of levels of all the other factors.

Variance (o). A measure of dispersion or variation. The average squared
deviation of the individual observations from the mean or average of all the
observations. The square of the standard deviation.

Second order terms. The terms of second degree. The squared terms such as
X2, or X, X,.

Unbiased estimates. Estimates of population characteristics (parameters)
made from the sample or experimental observations in a manner such that
in the long run the average of the estimates so obtained will equal the para-
meter value.

Multiple regression. The fitting of an equation (usually linear) involving the
dependent variable (Y) as a function of several independent variables (X’s) to
a set of observed points involving these same variables.

Analysis of variance. The process of breaking down the total variation (vari-
ance) obtained in an experiment into independent sums attributable to the
various components of the experiment including the experimental error so as
to be able to make tests of significance of hypotheses associated with these
components or factors.

Restidual mean square. The average square of the discrepancy observed between
experimental observations and the mathematical model used to fit such
observations.

Standard error of estimate (of coefficients). A measure of the variation (standard
deviation) associated with the estimates obtained by an experiment. Under
normal conditions one expects about 689, of the estimates to be within one
standard error of their true value and 959, within two standard errors.

Replication. The process of taking an additional observation (repeating the
experiment) using the same values for the controllable factors as for the
original observation.

The response, Y, is supposed dependent upon 7 variables X,
which are capable of exact measurement and control. The form
of the functional relationship ¥ = (X, X,, ---, X,) is unknown,
and the problem is to find the combination of values of X; which
optimize the response within the region of the n-dimensional
factor space where experimentation is feasible using as few ex-
perimental observations as possible. The number of observations
required will, of course, depend upon the accuracy and precision
of estimation desired. Where the problem is one of minimization,
it can always be converted to one of maximization; for example,
by considering the improvement as compared with some standard
instead of the actual level achieved.

The technique assumes that the response function can be
satisfactorily represented by a quadratic form in the area of
interest, i.e., ¥ = X 7. 2% ¢:;: X:X; + e where Y is the property
to be maximized, the X, are the levels of the n independent
variables (X, = 1), the ¢,;; are the unknown parameters to be
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estimated from the experiment and e is the residual or experi-
mental error. The adequacy of the quadratic surface representa-
tion of the true response surface of the process being investigated
depends on the use of a small sub-region of the factor space within
which one restricts his determinations. In some experimental
situations, such a small neighborhood within which the optimum
point can be assumed to lie is already known to the experimenter
from previous experience. However, if this is not the case, the
procedure of locating optimum conditions involves two distinet
phases. The first phase involves the location of the neighborhood,
while the second is to determine within the neighborhood the
optimum point.

The location of the neighborhood is accomplished by using
location of what is called the method of steepest ascent. In this procedure, one
neighborhood assumes that the surface can be represented locally by a sloping

plane. Starting at any point, P, the experimenter estimates the
coefficients or slopes of the plane ¥ = b, + b, X, +
b, X; + --- b,X, by performing a suitably arranged set of trials
in a small sub-region about P. From these observations, the co-
efficients are estimated and one then calculates the direction of
steepest ascent or greatest slope up the plane. He then proceeds to a
point, @, in this direction, where new observations are made, the
slopes are redetermined, and the process repeated. In this way, by a
step-by-step procedure, points of higher and higher response are
reached.

This procedure cannot, however, be used to actually reach the
maximum response point since, as one goes farther up the surface,
the slopes become more gradual and thus more difficult to esti-
mate. The second-order terms also become relatively more im-
portant. The procedure generally followed is to compare the
linear effects with the error variance and with the second-order

:"b'ez‘afE"Pef"l“;"'?' points  offects, and if the linear model appears adequate, the path of
or @ 2% factorial design steepest ascent is determined. At the point of diminishing returns,
o _faclor Lever the new point is located around which the process is repeated.
Point Xi X» X The experimental design used during the first phase where one
J_ri i; Ii is seeking the path of steepest ascent from a given point on the
4+1 —~1 +1 surface is generally of a two-level factorial type, where the origin
-1 -1 +1 for each variable is taken at the initial point and the levels used
i‘i i} :i are equidistant from it in either direction. Thus, in a three-variable
4+1 -1 -1 situation, one would use a 2° factorial design, and the eight
-1 -1 =1 experimental points would be as shown in Table 1.
The estimation of the b's from this type of design is straight-
forward. In fact, if ¢° is the experimental error variance we have
b, = > X.Y/Y X2 and V(b) = ¢°/Q_X? (the variance of b).

One thus has the essential ingredients needed to complete the

first phase of the investigation.

In considering the second phase, we assume that we have
tocation identified a point P that is in the neighborhood of the optimum
within point. The experimental designs used at this stage of the problem
neighborhood  gre known as composite designs. There are two types of composite

Factor Level
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designs, central and non-central. The central composite designs
consider the 2" factorial designs and adds additional points with
high and low levels for each variable as well as additional points
at the center of the design.

The central composite design for n = 2 is shown in Figure 1.
The 2° factorial points are given as solid points while the added
points are open circles.

For the purpose of estimating the parameters of the quadratic
form, the central composite design can be shown to be more
efficient than the 3" factorial design. As one might expect, this
means that a savings in experimental points can be realized,
since interest has been narrowed to estimating the optimum
response point rather than to generally studying the nature of the
mathematical model that explains the process under study.

As can be seen from Figure 1, one of the problems needing
solution is to select the value of a to use when adding points to the
factorial design. It is apparent that care is required in selecting a,
since large values of a will tend to reduce the adequacy of the
representation of the surface by the quadratic, while small values
may fail to encompass the optimum point. One solution to the
problem is to select a = 2%, where the scale is determined by the
levels used in the factorial. It should be noted that when several
variables are involved in the system, it may be possible to choose
a suitable fraction of the factorial points and still obtain unbiased
estimates of the parameters.

The location of an optimum point usually requires a series of
coordinated experiments, especially when one must first find the
neighborhood of the optimum. If the process being studied has
little or no time effect, so that one can combine results that are
obtained at different time intervals, the series of experiments can
often be developed into an organized sequential program. The
non-central composite designs are useful if one uses such a se-
quential approach to his experimentation. The factorial portion
and the central point are run first and, if the optimum is found
to be close to the center being used in the factorial design, the
additional points required for the central composite design are
then used. If, however, the optimum response is nearer one of the
other points the factorial portion is augmented to form a non-
central composite design. Of course, if it is indicated that a new
location should be sought through the use of the path of steepest
ascent, then the sequence is as follows. The fitting of the quadratic
surface, ¥ = ZLO Z;‘z; ¢;;.X:X; + e, to the observations real-
ized from the composite design can be obtained by standard
multiple regression techniques. Following the estimation of the
coefficients, one can perform an analysis of variance on the results
to establish the significance of the several coefficients as well as the
significance of the regression itself. If one has some prior informa-
tion as to the value of ¢°, the experimental error, this informa-
tion can be used in a comparison with the residual mean square
associated with the regression analysis to provide a test of good-
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ness of fit of the second-degree equation. If the fit is not
satisfactory, one may change his neighborhood if this seems
required, or increase the order of the regression equation.

When such a test has indicated that an adequate fit has been
obtained the fact that an individual coeflicient is or is not sta-
tistically significant is of no practical significance. What this
means is that one might just as well retain the small coefficient in
his future analyses since there appears to be no real good reason for
making the hypothesis that one of the coefficients is actually zero
in the population model.

When the second degree equation has been fitted, it is neces-
sary to interpret it to see if one can, in fact, determine the co-
ordinates of the optimum response point. Since the coefficients in
general quadratic do not readily convey to the observer the
nature of the surface being represented, one usually resorts to a
canonical reduction of the equation so as to obtain the canonical
form, Y = B, + B, X? -+ B,,X2 + ... B, X’

There are many types of surfaces that can be obtained through
the use of the quadratic function. Under certain conditions,
including those where all the B’s are negative, there will be a
point maximum in all the variables. Another situation, however,
that may be encountered is where the maximum is in fact remote
from the region of the design, but the surface is elongated along
an axis which passes close to the design. This indicates that the
previous experimentation has brought the experimenter not to a
maximum but close to a rising ridge of the surface. No conclusion
as to optimum conditions can be drawn in this latter case, but
one can, from observation of the nature of the rising ridge, de-
termine where additional experimentation should be carried out in
attempting to locate the optimum point. In the case that the
optimum point falls within the region of the experiment, its
position can be obtained by differentiating the original quadratic
with respect to the variables X,, X,, - -+ X, in turn and equating
the results to zero. This will yield a set of linear equations which,
when solved simultaneously, give the coordinates of the optimum
point. It should be emphasized, however, that the nature of the
surface should be critically examined through the use of the
canonical transformations approach before one seeks these co-
ordinates. In fact, as the dimension of the problem increases,
making a careful examination becomes most important.

The mechanics of analyzing the data obtained from the se-
quence of observations made in following the approach outlined
above can be readily adapted to digital computer programs. In
fact, many of the procedures make use of techniques for which
standard computer programs are already generally available. Thus
in the initial phase, where one is interested in following the path
of steepest ascent using a linear fit to the experimental data,
multiple regression computer programs are applicable. These
programs give not only the best estimates for the regression co-
efficients but also their standard errors as well as the standard
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error of estimate for the response variable. Through the use of
transformations the significance of the quadratic terms in the
surface can also be readily tested using the same computer pro-
gram. This enables one to determine when to abandon the steepest
ascent phase of the investigation.

In the calculation of the actual path of steepest ascent, the
successive differentiation of the fitted linear relationship yields
simultaneous linear equations whose solution can be obtained
from standard programs for solving systems of simultaneous
equations. In fact, even the determination of the possible steps
up the path through the computation of coordinates of the points
on the path can easily be programmed.

When one reaches the point of fitting the quadratic surface to
the data obtained from a composite design, the determination of
the coefficients of the surface, their standard errors and the
standard error of estimate is also a multiple regression program
application. The quadratic terms are simply treated as new linear
variables in this case. The determination of the optimum point
is again the solution of a set of simultaneous linear equations.

The other major computational task encountered in using the
response surface analysis concept involves the transformation of
the general quadratic equation to one in canonical form, that is,
an equation involving only pure quadratic terms. To determine
the coefficients of the canonical form one must solve the character-
istic equation of the determinant of the coefficients of the original
quadratic. Such solutions have been programmed for computers,
and since the roots of the equation are the necessary coeflicients,
the computational activity has been essentially mechanized
through the use of these standard computer programs.

It is suggested that the reader intending to apply the Box-
Wilson method consult the appended list of selected papers on
specific applications in order to gain additional detailed insight
on various aspects of the technique.

One should note that the techniques associated with response
surface analysis center around the use of sequential experimenta-
tion. Generally, each set of experiments in the sequence is per-
formed within a given sub-region, and one must decide from the
results obtained what to do next. Several alternatives present
themselves:

1. There is insufficient reliability in the results obtained to draw
any conclusions. In this case, replication of the experimental
points may be used or improvement sought in the overall
experimental design.

. The first order effects are dominant in the region being studied.
In this case, one may use the method of steepest ascent in
order to determine the new center about which to perform the
next set of experiments.

. The first and second order effects are important in the surface.
In this case, the original set of observational points should be
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augmented so as to yield a composite design from which an
optimum response analysis can be performed.
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1. With relatively modest assumptions about the particular nature of f.

2. Box, G. E. P. and Wilson, K. B., On the Experimental Attainment of Opti-
mum Conditions, J. Royal Statistical Society, Ser. B, v. 13 (1951), pp. 1-45.
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