
Computer  techniques,  now  employed by management in the  planning, 
scheduling  and  control of projects,  generally  rely  on  the  formulation 
of project  “networks”  as  input to the  computer  programs. 

This  paper  discusses  a  computer  procedure  for  ilnproving  the  input 
by  obtaining  networks with certain  minimal  properties. 

With this  improvement in i n p u t ,  the  overall ef iciency in using 
existing  programs  can be increased. 

Computer construction of minimal 
project  networks 

by Bernard Dimsdale 

PERT”’, LESS3, CPM4’5 and  other techniques  applied to  the 
planning, scheduling and  control of projects involve the con- 
struction of project  representations called networks which pic- 
torialize the relationships among the component activities of 
the  particular project  under consideration. 

For example, in  fabricating a structure  the activities  may 
involve: building forms, erecting  steel, pouring concrete, pro- 
curing materials and equipment,  etc.  Whether  “pouring concrete” 
is a single activity which occurs just once, or a single activity 
which  is repeated as construction proceeds, or a complex of 
component activities involving ordering sand, delivery, cement 
mixing, etc. depends on the specific nature of the project at hand 
and is of no interest here. The point is that project  planning 
involves specifying the component activities of the project,  what- 
ever they  may be, and specifying the order  in which they occur. 

Once the list of activities is obtained and  the order  in which 
they  are  to occur has been specified, an activity network  may be 
drawn in which the nodes designate activities and  the branches 
(arrows) connecting nodes indicate that  the activity represented 
by  initial node precedes the activity represented by  terminal 
node. 

To illustrate, assume that a  project involves activities A ,  
B, C and D, and suppose that A must precede both C and D 
and  that B must precede D. Figure 1 shows the corresponding 
activity network and a  table  containing the same information. 
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activity network (free of dummy activities) describing the same 
project. Thus we have a semi-duality between activity and event 
networks. 

It is obvious that the efficiency of techniques based on event 
networks will be strongly influenced by the size of the network 
employed. Though the problem of finding the smallest network 
is transparent in the above example, it is not a trivial problem 
for projects of realistic size. In  general, the number of nodes 
and branches utilized in an event network to represent a given 
project will vary widely, depending upon the experience and 
ingenuity of those constructing the network. 

The purpose of this paper is to describe a procedure which 
will permit, for a given project, computer construction of a 
corresponding event network with a minimal number of nodes. The 
basic theory is developed in another paper‘ where it is shown that, 
in general, minimization of the number of nodes does not simul- 
taneously minimize the number of branches. In  this same paper, a 
necessary and sufficient condition for simultaneous minimization 
is stated, and it appears likely that most practical projects would 
be consistent with the condition. If the condition is not satisfied, 
then event networks can be constructed with fewer dummies 
and more nodes, but these nodes will be incident to dummy 
branches exclusively. In  this case, the networks with the minimum 
number of dummies may or may not have unique structure. 

The procedure of constructing event networks to be described 
in this paper requires as data: project description by means of a 
list indicating for each activity all immediately following activities, 
and another list indicating for each activity all immediately 
preceding activities, with each of the lists ordered by levels and 
free of cycles and redundancy, as explained later. The basic pre- 
cedence data required for the formation of the above lists is con- 
tained in tables of the type illustrated in Figure 1. It should 
be noted that the columns of this type of table are not indepen- 
dent-the second can be generated from the first and third, or 
the third from the first and second. 

Sometimes the problem of finding a minimal event network 
to replace a given event network will occur, and on other occasions 
part of the data describing the project may be in event network 
form. 

In  the following section a method of converting from event 
networks to activity networks is given. The transformation of 
the precedence data to the required form (including checks for 
redundancy, cycles and other inconsistencies) is detailed in the 
next sections. Then, the method of construction of minimal event 
networks is given. The final sections are devoted to  computer 
programming considerations. 

The method of conversion will be illustrated by converting 
the event network given in Table 1, where I and T denote initial 
and terminal nodes, respectively, and the subscripted D’s denote 

content 
of paper 

conversion 
from event to 
activity network dummy activities. 
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1 Table 1 Table 2 Table 3 Table 4 

A I T  A I T  N P  F A P  F A P  
A 1 2 11 N 12  13 1 M  A B C D s  Dl E G Ds L Dl E G M  
B 1 3  P 1 0 1 2  2 A  D E &  D2 C L DI C 
C 1 4  Q 2 1 0  3 B  H De D3 M J DI Da M 
b 2 5 01 6 1 1  4 c  F G I D z  Da F M P  Da F 
E 2 6 Dz 4 1 1  5 D Ds  Ds  Ds B Ds  Ds B 
F 4 8  D s 1 6  6 E G D s   J D I  De D Dg L DB D B  
G 4 6 Da 8 1 0  7 H I  K DT J K  N DI J K  
H 3 7   D g 3 5   8 F  D4 
I 4 7 D6 5 1 1  9 J K  Dl 
J 6 9 D . r 9 1 2  10 Q Da M P 
K 7 9  11  Dl DzDs L 

M I 1  10 l3 1 II 12 P D T  N 
13 L N  - Table 5 

N D  P *. * L 

1 M   A B C  

The first step is to form Table 2, which lists the nodes (N) 
~ together  with the preceding and following activities for each node. 

After forming Table 2, the next step is to eliminate its dummy 
activities. To accomplish this, a series of tables listing the dummies 
together with each of their preceding and following activities is 
constructed.  The first such table,  Table 3, is written  by consulting 
Tables 1 and 2 as follows: for the first row, from Table 1, D,  has 
initial node 6 which from Table 2 is preceded by  activities E,  G 
and D,; similarly Dl has  terminal node 11 which is followed by 
activity L; etc. The second table  in the series, Table 4, is obtained 
from Table 3 by replacing the dummy  activities  appearing  in the 
second and  third columns (again consulting Tables 1 and 2). 
This replacement process is continued until a table  with no 
dummies in the second and  third columns is obtained (as in 
Table 4, so that in the present case the process is complete), or 
until a dummy occurs in the second or  third column which is 
identical with a  dummy  in the first column and same row. In the 
latter case, there is an error  in the  data  and no progress can be 
made until it is corrected. Assuming, as here, that  this does not 
happen, the last  table  in the series (Table 4) is used in replacing 

~ the  dummy  activities  in  Table 2 to obtain  Table 5.  At  this point, 
~ the required tabular form of the  activity network (Table 6) can 

~ be produced since, for example, the first row of Table 5 says 

~ 

~ 

~ 

~ that: “ M  is followed by A ,  B,  D ,  J, L”; “ A  is preceded by M”; 
“B is preceded by M”; etc. 

activity precedence form, there  are four cases: 
Assuming that  the  input  data describing the project is in 

2 A  D E &  
3 B  H L  
4 C  F G I L  
5 D B  L 
6 E G M  J L  
7 H I  K 
8 F  M P  
9 J K  N 
10 Q F   M P  
11 E G M  

C B D  L 
12 P J K  N 
13 L N  - 

Table 6 

A P  F 
A M  D E &  
B M   H L  
C M  F G I L  
D A  L 
E A   J L  
F C   M P  
G C  J L  
H B  K 
I C  K 
J M E G  N 
K H I  N 
L M B C  

M F Q   A B C  
D E G  - 

J L  
N J K P  - 
P F Q  N 
& A  M P  

Case 1. The  data may be given as a list of activities, to- transformation 
gether with the preceding and following activities for each item of precedence 
in the list. input  data 

Case 2. Only preceding activities  may be given for each 

Case 3. Only  following activities  may be given for each 

Case 4. Mixtures of Cases 1, 2 and 3 are provided. 

activity. 

activity. 

F 
L 
L 
J L  
M P  
L 
L 
N 

- 
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Table 7, the relation, “I  is preceded by B,” is redundant in view of 
the relations, “B is followed by E” and “I is preceded by E,” 
also included in the table. After removing this  redundant relation, 
Tables 7 and 8 are combined to obtain  the desired result,  Table 9. 
However, error and redundancy may  still be present. In later 
sections, the location of cycles and  the removal of any remaining 
redundant relations are considered. 

The process of recording the  input  data according to levels ordering 
will  now  be explained. Consider the  data contained in  Table 10. by levels 
The first step is to select those activities with no  preceding  ac- 
tivities, place them first and label them as initial leoe2 0 (see Table 
11, IL = 0). The two entries, D and J ,  are now deleted from the 
P column of Table 10 to obtain  Table 12 which is to be examined 
for  activities having no preceding activities to obtain the next 
level. Thus, in  Table 12, A ,  B,  E ,  K have no precedents and  are 
labelled as initial level 1 and appended to Table 11 to form Table 
13, and  the residual Table 14 is constructed from Table 12 by 
deleting A ,  B, E and K. This process is continued until all activities 
are ordered by initial level resulting in  Table 15. 

A similar process is carried out  to obtain the terminal levels- 
again starting with Table 10, but  this time using the F entries- 
so that finally Table 16 may be constructed. 

be reached at  which  no further deletions can be made. In  this of cycles 
case there  are cycles in the  input  data,  and  the procedure can be 
used to locate all of them. A cycle is a series of precedence state- 
ments such as “B follows A,” “C follows B,” “ A  follows C.” 

The next example involves data which contains cycles, and 
illustrates how they  are located. It should be noted that  the 
ordering pass either accomplishes the ordering or locates and 
specifies all the cycles in the project description. 

To illustrate the location of cycles, consider the  data dis- 
played in  Table 17. We proceed exactly as above in  attempting to 
order the  data by level and  obtain  Tables 18 and 19 successively. 
Examination of Table 18 indicates the process cannot be  con- 
tinued because of the absence of activities  without precedent 

It is possible for the above process to fail, in that a point may location 

Table 15 Table 16 

IL A P F IL TL A P F 
0 D -   A E K  O 4 D - S E K  . - 

Table 17 
Tnhln l a  

P 
TALI- 10 

O J -  H R  0 4  J -  R K  A P  
.“I._ .” 

1 A D  c 1 1  A D  C A -  
1 B J  F H  1 3  B J  F H  B F  B F  
1 E D  F L  1 . 3  E D  F L  C E  C E  A P  
1 K D J  I 1 1  K D J  I D B   D B  X X H  
2 F B E   C H  2 2 F B E   C H  E D I J  E D I J  C E  
2 L E  C 2 1  L E  C F G  F G  D X  

A 
.““IS I T  

3 C A F L  - 3 0 C A F L  - G A B H  G B H  E D I J  
3 H R F  G I  3 1 H B F  G I  H B  H B  H X  
4 G H  - 4 0  G H  - I C  I C  I C  
4 I H K  - 4 0  I H K  - J B  J B  J X  
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Table 25 Table 26 

IL TL A 
0 4  G 
0 4  N 
0 4  P 
1 3  A 
1 3  F 
2 2  B 
2 2  Q 
3 0  c 
3 1  K 
3 1  w 
4 0  x 

P 
- 
- 
- 
G N P  
P 
F G  
A F  
B Q  
B 
B Q  
K W  

F IL A 
A B  O A  
A O B  
A F  1 c  
Q 1 D  
B Q  1 E  
C K W  2 F 
C W  2 G  
- 2 H  
X 3 1  
X - 

F 1 
C D G  
D E G  
F G  
D 
G H I  
Z 
I 1 
I 1 

” 

- 172 

Analusis 
2 i  

1 
1 

1 
1 1, 2 

4 - 
1 

1 

2 
1,:2 

are marked with b (backward scan) and  the above process  re- 
peated  “in reverse,’’ leading to  the second column of analysis in 
Table 24. Any elements of initial level 0 not already marked with 
f*, are now marked for forward scan (here N ,  P ) ,  and  the forward 
scan begun. Note that  the activities which have  already  had a 
forward scan need not be scanned again, and likewise on subse- 
quent backward scans. Here the only new activity subjected to a 
forward scan by N ,  P is F.  But F is followed by B and Q which 
have already been scanned. Hence the process is complete, and 
the scanned set  has no connection with the unscanned. Thus, we 
have { G, N ,  P ,  A ,  F ,  B ,  Q ,  C, K ,  W ,  X ] as a  separate project (Table 
25). Similarly it can be  shown that ( T ,  Y ,  E ,  J ,  D, L, R,  H }  and 
{ U ,  I ,  S, M }  are also separate projects. 

The process of eliminating redundancy will  be illustrated  by 
its application to  the  data contained in the first three columns of 
Table 26 giving rise  successively to  the last four columns of the 
same table.  The process is started with the  last  activity having 
more than one element in its F set (E) ,  by placing for each element 
in  its F set, { G, H ,  I )  , a one in the first column of the analysis. Then 
for each activity  in  the F set of an  activity which now has  a one in 
the first column, a two is placed in the same column (in this case, 
I is  the only such activity).  This column is now  examined for the 
simultaneous occurrence of ones and twos and each such activity 
(only I in this case) is deleted from the F set of the originating 
activity (E) .  As the next step, moving upward in the  activity 
column from E and passing D, since clearly an activity with only 
one member in its F set need not be considered, we repeat the 
procedure on C to obtain the entries  in the second  column. Similar 
steps applied to activities B and A give  rise to  the  third  and  fourth 
columns, respectively. From these columns we see, respectively, 
that G may be deleted from the F sets of B and A.  Finally, for 
each F set deletion a corresponding P set deletion is required, 
thus deletion of E from the P set of I ,  B from the P set of G, and 
A from the P set of G is necessary. 

We may now assume initial and terminal level tables free of 
inconsistencies and  redundancy and proceed with the construction 

elimination of 
redundancy 

event network 
construction 
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Table 27 

IL A P 
0 A -  
0 B -  
o C -  
1 E A  
1 F A  
1 G A B  
1 R B C  
1 K A B C  
1 S B C  
2 L G R S  
2 M F  
3 N F K L  

Table 28 

TL A F 
0 E -  
O M -  
0 N -  
1 F M N  
1 K N  

2 G L  
2 R L  
2 s I, 
3 A E F G K  
3 B G K R S  
3 C K R S  

1 L N 

Table 29 

A P 
A B C  - 
E F  A 
R S  B C  
G A B  
K A B C  
L G R S  
M F 
N F K L  

Table 30 

A F 
E M N  - 
F M N  
K L  N 
G R S  L 
A E F G K  
B G K R S  
c K R S  

of the event network. Consider the  data contained in  Tables 27 
and 28. The first step is to group  the  activities  in the  latter tables, 
respectively, according to identical P and F sets, thus obtaining 
Tables 29 and 30. 

It is  particularly  important to note that only elements be- 
longing to  the same level may  have identical P sets or F sets,  as the 
case may be, which reduces the search problem very  substantially. 
Next it is necessary to locate  sets of activities having the same P 
and F sets.  Thus, A ,  B, C have the same P set,  but  the F’s are 
all different; E ,  F have the same P but different F’s; R, S, have 
the same P set  and  the same F set. For the time being the set 
{R,  S )  will be replaced by  a single activity H ,  having P set 
( B ,  C) and F set { L )  . No other  sets of activities here have the 
same P set  and the same F set.  The above replacement generates 
the P and F columns in Tables 31 and 32, respectively. 

We digress to note an interesting implication of a more general 
nature in the kind of property that has  just been discussed. Suppose 
there is some subset of activities such that:  at most one of the 
P sets consists only of activities  not belonging to  the subset, a t  
most one of the F sets consists only of activities  not belonging 
to  the subset,  and all other P and F sets  for  activities  in the subset 
consist only of activities belonging to  the subset. Such subsets 
can be determined automatically  without much difficulty, and 
rather  naturally define subprojects of the original project. They 
may,  in fact, be treated  as single activities, thus simplifying the 
task of event assignment. Of much more interest, however, is the 
consideration that there will, in general, be hierarchies of sub- 
projects.  Thus, the prospect exists of describing projects by nested 
subprojects, in a series of networks proceeding from least  detail 
to fine detail. 

Resuming the  computation, for each non-null P set an associ- 
ated  set, denoted  as  a U set, is formed from the intersection of all 
F sets belonging to  an  activity  in  the P set.  For example, G has 
the P set ( A ,  B } .  The F sets  are: { E ,  F ,  G, K )  for A ,  (G,  K ,  H }  
for B. The intersection of { E ,  F ,  G, K }  and { G, K ,  H )  is 
{ G, K )  , which is thus  the U set for G. If the P set is empty  then 
the U set is the  set of all activities. This yields the U column of 
Table 31. 

The next step is to determine which U’s are identical with 
F sets. Using the row numbers designated in  the R column as 
subscripts, U, = F,, U, = F,, U, = F4, U, = F,, U, = F,. The 
magnitude of the search is also reduced by  the general principle 
that a U set is identical with at most one F set of an activity 
belonging to  the P set  with which U is associated. Thus U, can a t  
most be identical with the F set  for A ,  that is, F,. U, can at most 
be identical with one of the F sets for B or C, etc. 

The assignment of events  can now take place in  Tables 31 
and 32. Since Uz = F,, the  event c Z , ,  is assigned adjacent to U, 
and  to F, in  the initial  and  terminal  event (IE, TE) columns of 
Tables 31 and 32. 





In general, this  treatment introduces n - 1 new dummies and 
events whenever there  are n parallel activities. 

The second point has to do with the identification which has 
been made of the initial events of the  starting  activities A ,  B, C ,  
and  the terminal events of the terminal activities E, M ,  N .  This 
identification is made for convenience of processing, and  can now 
be separated in any fashion desired. The diagram for the event 
network is given in Figure 3 (with H not replaced). 

It is assumed in the following that  the project activity network 
Programming can be contained entirely in core storage, which  will certainly 
considerations be true for a 32K IBMs 7090 and for 4000 activities (based on 

an average of three following  activities-which is probably higher 
than normal), provided efficient names are used. This  in general 
calls for the replacement of input  activity names with names for 
internal use, and  thus for establishment of a dictionary for trans- 
lation between the two names. It is also assumed that  the entire 
dictionary can be contained in core,  which again is true for 4000 
activities, if not more than six characters are required for its 
input name. The discussion  below is concerned with the major 
aspects of the programming system  contemplated. 

Suppose that  the original input is on magnetic tape,  and  that 
sort and each record on tape contains three things: activity name, name of 
dictionary activities  in the preceding set,  and names of activities  in the follow- 
formation ing set. There will also need to be  some sort of marker to dis- 

tinguish the set of preceding activities from the set of following 
activities. 

The first operation to be  performed is a  sort of these records 
according to  activity name. The second operation is the establish- 
ment of the dictionary which relates input  activity name to a 
convenient code name. The code name is established as follows. 
Let some  core memory cell be assigned as initial storage cell for 
the  data presently on tape.  Read in the first record, assign the 

Figure 3 The event  network 
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initial storage cell address as the code name for its activity. The 
code name for the  activity name of the second record will  be the 
same address plus a number sufficiently large so that enough 
storage is left for the associated activities of the first record. That 
is to say, the coded activity name will  be the address of the first 
cell in memory associated with its record; the record itself  will 
consist of coded names of preceding and following activities. 
For example, suppose the first two records are as shown in Table 
35. Suppose that cell 1000 is assigned as  starting location. Then 
the dictionary has  the form given in  Table 36, assuming say, that 
a half  word is assigned for activity name. Core storage ultimately 
will have the following appearance indicated in  Table 37 where 
C (A3)  represents the coded name of A,, etc. The  fact that C (A6)  
represents the  start of a new record could  be indicated by using 
a minus sign on that word. M of course is the marker to separate 
sets. A half  word might be left free at the beginning of each record, 
for storage of temporary data in processing these records. 

Once the dictionary is established, the  input  tape can be 
passed, a record at a  time,  through core and coded records pro- 
duced and stored on an auxiliary tape. Any activity name which 
appears can be located quite rapidly in the dictionary by successive 
halving, inasmuch as  the dictionary has been sorted by input 
activity name. Of course, if some activity name is not to be found 
in  the dictionary then  there is an error,  and the fact should be 
reported by  the printer. It is also easy, at  this time, to determine 
whether an activity precedes or follows itself. 

The next operation is a sort of the dictionary, the key being 
the coded name. The set of coded records can then be brought 
into core, ready for further processing.? 

Since  now the name of an activity is also the location of its 
record in core, the reordering processing previously defined requires 
no search whatever. That is to  say, if an  activity A is preceded 
by no activity, it is to be eliminated from all other preceding sets. 
But  the following set for A gives the location of all records con- 
taining A in the preceding set. Moreover, if a count has been 
established of the number of preceding activities and of the number 
of  following activities in each record, then  this  number can be 
updat,ed for every deletion, thus locating as  part of the process null 
sets which have been produced by deletion. 

For  separation  into  subtables and elimination of redundancy, 
it is  necessary only to redefine the dictionary in  terms of the new 
record locations, which  will  be those determined by initial Ievel 
order. Also, computing will be much expedited if the P and F 
sets  are also ordered by  initial level. 

Once this is done, separation  into  subtables and elimination 
of redundancy proceed very efficiently, and  thus  the  data is 
ready for event network construction. The first step requires, on the 
one hand, a grouping of activities that have common P seis, and on 
the other  hand, a grouping of activities that have common F sets. 
It has been observed already that groups of the first kind can only 

MINIMAL PROJECT NETWORKS 



Table 38 

A P F I i A  P F 

Table 39 

Core Rec Core Rec 
PI - f1 - 
pz A fz 11 N 
pa B C fa N 
p4 A B f, L 
p6 A B C  $5 E F G K  
P ,  G H  j c  G K H  
PT F f 7  K H 
ps F K L  - - 

contain certain activities having the same initial level, groups of 
the second kind can only contain activities having the same termi- 
nal level. The first set of groups can be obtained from the project 
table already at hand. The location of groups of the second kind 
requires only that  part of the reordering  process  which separates 
out activities of common terminal level, together with their F sets. 
An expedient  way to store all this information for the example 
previously  given in the section on event network construction 
(see Tables 29, 30) is illustrated in Tables 38 and 39, where pi, f i  
represent core location of the pertinent records. It is quite clear 
how the remainder of this processing is to be  performed. 

No discussion of the case of event network reduction, or the 
treatment of mixed input  is undertaken here. These would appear 
to  be readily managed by variations of methods discussed  above. In 
passing, it should  be  observed that  the ordering process, if applied 
to  the nodes of the event network, will  achieve the result other- 
wise  known as “node numbering.” 
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