Computer techniques, now employed by management in the planning,
scheduling and control of projects, generally rely on the formulation
of project “networks” as input to the computer programs.

This paper discusses a computer procedure for improving the input
by obtaining networks with certain mintmal properties.

With this improvement in input, the overall effictency in using
existing programs can be increased.

Computer construction of minimal
project networks

24

by Bernard Dimsdale

PERT'*, LESS®’, CPM*”® and other techniques applied to the
planning, scheduling and control of projects involve the con-
struction of project representations called networks which pic-
torialize the relationships among the component activities of
the particular project under consideration.

For example, in fabricating a structure the activities may
involve: building forms, erecting steel, pouring concrete, pro-
curing materials and equipment, etc. Whether ‘“pouring concrete”
is a single activity which occurs just once, or a single activity
which is repeated as construction proceeds, or a complex of
component activities involving ordering sand, delivery, cement
mixing, ete. depends on the specific nature of the project at hand
and is of no interest here. The point is that project planning
involves specifying the component activities of the project, what-
ever they may be, and specifying the order in which they occur.

Once the list of activities is obtained and the order in which
they are to occur has been specified, an activity network may be
drawn in which the nodes designate activities and the branches
(arrows) connecting nodes indicate that the activity represented
by initial node precedes the activity represented by terminal
node.

To illustrate, assume that a project involves activities A,
B, C and D, and suppose that A must precede both C and D
and that B must precede D. Figure 1 shows the corresponding
activity network and a table containing the same information.

IBM SYSTEMS JOURNAL * MARCH 1963

In the table, A, P and F denote activity, preceding activity and Figure 1 Activity network
following activity, respectively. and its tabular form
Scheduling, on the other hand, involves assigning time for @
the beginning and the end of each component activity. For this
purpose, a different kind of network is useful. Iere the nodes
represent potnis in time and the branches represent activities,
so that an activity starts at the time assigned to its initial node
and ends at the time assigned to its terminal node. This kind of
network is called an event network or a project network. It is to

Z

A P F

this kind of network that the above techniques are usually applied 2~ — ¢ b
for scheduling purposes. B — D
Corresponding to the project introduced in the above example, g ﬁ B _

we may assign {, and ¢, ¢, and &5, &, and ¢;, &; and £ as the beginning
and completion times for activities 4, C, B, D, respectively. Thus
we have:

t <ty by < oyt < l;and &5 < s,
and also

to < t,

since activity 4 precedes activity D. If we insist that each branch
of an event network represent an activity, it will be apparent that
there is no method of drawing an event network which includes
the information, t, < {;. To overcome this difficulty, we permit
the introduction of branches, whose only funection is to represent
the passage of time (possibly zero) and say that such branches
represent. dummy activities. With this agreement, we may draw
the event network shown on the left side of Figure 2 involving
the dummy activity E, thereby including the information,
t, < t;. Although the agreement makes it possible to represent
any project with an event network, this representation is never
unique. For example in the present instance, the event network
shown on the right in Figure 2, involving the dummy activities
F and G, also correctly represents the project. It will be clear
that there are an unlimited number of different sized event net-
work representations for a given project. Of course, it is not
always necessary to introduce dummies, but in the case of projects
of the complexity encountered in practice, dummies are nearly
always required.

On the other hand, we will show by example that given an event
network, it is always possible to find a corresponding unique

Figure 2 Equivalent event networks

O+~ O-C
OO0 O-C

MINIMAL PROJECT NETWORKS 25

content
of paper

conversion
from event to
activity network

26

activity network (free of dummy activities) describing the same
project. Thus we have a semi-duality between activity and event
networks.

It is obvious that the efficiency of techniques based on event
networks will be strongly influenced by the size of the network
employed. Though the problem of finding the smallest network
is transparent in the above example, it is not a trivial problem
for projects of realistic size. In general, the number of nodes
and branches utilized in an event network to represent a given
project will vary widely, depending upon the experience and
ingenuity of those constructing the network.

The purpose of this paper is to describe a procedure which
will permit, for a given project, computer construction of a
corresponding event network with a minimal number of nodes. The
basic theory is developed in another paper® where it is shown that,
in general, minimization of the number of nodes does not simul-
taneously minimize the number of branches. In this same paper, a
necessary and sufficient condition for simultaneous minimization
is stated, and it appears likely that most practical projects would
be consistent with the condition. If the condition is not satisfied,
then event networks can be constructed with fewer dummies
and more nodes, but these nodes will be incident to dummy
branches exelusively. In this case, the networks with the minimum
number of dummies may or may not have unique structure.

The procedure of constructing event networks to be described
in this paper requires as data: project description by means of a
list indicating for each activity all immediately following activities,
and another list indicating for each activity all immediately
preceding activities, with each of the lists ordered by levels and
free of cyeles and redundancy, as explained later. The basic pre-
cedence data required for the formation of the above lists is con-
tained in tables of the type illustrated in Figure 1. It should
be noted that the columns of this type of table are not indepen-
dent—the second can be generated from the first and third, or
the third from the first and second.

Sometimes the problem of finding & minimal event network
to replace a given event network will occur, and on other occasions
part of the data describing the project may be in event network
form.

In the following section a method of converting from event
networks to activity networks is given. The transformation of
the precedence data to the required form (including checks for
redundancy, cycles and other inconsistencies) is detailed in the
next sections. Then, the method of construction of minimal event
networks is given. The final sections are devoted to computer
programming considerations.

The method of conversion will be illustrated by converting
the event network given in Table 1, where I and T denote ¢nitial
and terminal nodes, respectively, and the subscripted D’s denote
dummy activities.

B. DIMSDALE

Table 1 Table 2 Table 3 Table 4
A I T A I T N P F A P F A P F
A 1 2 N 12 13 1 M A BCD; DL EGD; L D, EGM L
B 1 3 P 10 12 2 A DEQ D, C L Dy C L
C 1 4 Q 2 10 3 B H Dy Dy M J D, Dy M J L
D 2 5 D 6 11 4 C FGID, D, F MP Dy, F M P
1A 2 6 D, 4 11 5 D D; Dy Ds B Dy Dy B L
F 4 8 D; 1 6 6 EGD; J D, Dy DD L Dy DB L
G 4 6 D, 8 10 7 HI K D; JK N D: JK N
H 3 7 Dy 3 5 8 F D,
I 4 7 Dy 5 11 9 JK Dy
J 6 9 D; 9 12 10 @ D, MP
K 7 9 11 DD, Dy L
L 11 13 12 P D, N
M o101 13 LN — Table 3
N P F
1 ABC
J L
. - 2 A DEQ
The first step is to form Table 2, which lists the nodes (N) 3 B HL
together with the preceding and following activities for each node. 4 C FGIL
After forming Table 2, the next step is to eliminate its dummy g gg w g I
activities. To accomplish this, a series of tables listing the dummies 7 HI K
together with each of their preceding and following activities is 8 r MPpP
constructed. The first such table, Table 3, is written by consulting 1?) gIF{, ﬁ’[P
Tables 1 and 2 as follows: for the first row, from Table 1, D, has 11 EGM
initial node 6 which from Table 2 is preceded by activities E, G CBD L
and Dj; similarly D, has terminal node 11 which is followed by g 51‘(,1{ I_V_
activity L; ete. The second table in the series, Table 4, is obtained
from Table 3 by replacing the dummy activities appearing in the Table 6
second and third columns (again consulting Tables 1 and 2). Ao p F
This replacement process is continued until a table with no A4 M DEQ
dummies in the second and third columns is obtained (as in g % I{{ (l;f L
Table 4, so that in the present case the process is complete), or 5 4 I I
until a dummy occurs in the second or third column which is £ 4 JL
identical with a dummy in the first column and same row. In the F C M P
. . G C J L
latter case, there is an error in the data and no progress can be H B K
made until it is corrected. Assuming, as here, that this does not I ¢ K
happen, the last table in the series (Table 4) is used in replacing }7{ % IE G %
the dummy activities in Table 2 to obtain Table 5. At this point, 7, 3/ B¢
the required tabular form of the activity network (Table 6) can DEG —
be produced since, for example, the first row of Table 5 says M F@ AJli c
that: “M is followed by A, B, D, J, L”’; “A is preceded by M"; N JKP —
“B is preceded by M’’; ete. P FQ N
Q A MP

Assuming that the input data describing the project is in
activity precedence form, there are four cases:

Case 1. The data may be given as a list of activities, to-
gether with the preceding and following activities for each item
in the list.

Case 2. Only preceding activities may be given for each
activity.

Case 3. Only following activities may be given for each
activity.

Case 4. Mixtures of Cases 1, 2 and 3 are provided.

MINIMAL PROJECT NETWORKS

transformation
of precedence

input data

27

—_
[+]
=a
L]
~

Q
S
&
(3]

-
]
g
@®
(-]

Table 9 Table 10

RENRQEYQDR|>
Q| | [=]] ||
Q

Smo

by
i

EEERRIE
Q

[l LR VUNVUN SRV L

| [
)

SIS PN L
M Q
o)
| RS S~ | Do
L |
I
.
&~
l

Re~NTQTEYOR >
=
)
Py

~Q
i

RN~ QAWETAR]
I E LY S
Smy a9

| S~

I TCEECIESE L
<~
ey

NS~ QANE T]

Table 11

[}

[N]

Sule

Table 13

—

Ll

o |

-
Q
-
o
—
N

NRNDQREAWR| >

™~

W mbhm | = ||
- B o RS

- O O

RN]

SISEICEEE
N

N Qwh]e
B R

Table 14

NN Q™A
EREIS

Assuming for the moment that Case 2 applies, it is not difficult
to complete the tabular form of the activity network; for if
activity A is preceded by activity B, then activity B is followed by
activity A. Of course, it is possible that some listed activity is
preceded by an activity which is not listed as such, in which case
the data isin error. It is also possible that an activity is indicated as
preceded by itself, which again is an error. Precisely similar re-
marks apply to Case 3. In Case 1 the same two kinds of errors
may be present. In addition, the list of following activities may not
be consistent with the list of preceding activities, in which case
diserepancies exist.

In Case 4, the data should be placed in a single table (with
each entry designated by Case for later error checking). Assume, for
example, that Table 7 has been formed in this manner. This table
should be inspected for obvious errors—for example, an activity
preceded or followed by itself, presence of an activity in the
second or third column not listed in the first, ete. The next step is
to generate the F column of Table 8 containing the precedence
relations implicit but not explicitly given in Table 7. Thus, from
Table 7: “C is preceded by A” so that the entry “A is followed
by C” is made in Table 8; “E is preceded by B, C”’ gives rise to
“B is followed by E” and “C is followed by E’’ in Table 8, etc. The
P column of Table 8 is similarly formed from the antecedent
relations (F column) of Table 7.

Before combining Tables 7 and 8 into a single table, we are
in a position to check for certain errors and for redundancy. Error
or redundancy is signaled if: for those activities labelled Case 1,
each set of activities occurring in either the second or third column
of Table 8 are not included in the set of activities appearing in the
same position of Table 7; if for Case 2, sets in the second column
of Table 8 are not included in the corresponding positions of Table
7; or if for Case 3, sets in the third column of Table 8 are not
contained by the similar entries of Table 8. Inspection of present
tables reveals, with respect to the entries in the second row and
third column, that the set {E, I} is not contained in the set
{E, G} as required, and further examination indicates that in

B. DIMSDALE

Table 7, the relation, “I is preceded by B,” is redundant in view of
the relations, “B is followed by E’ and ‘I is preceded by E,”
also included in the table. After removing this redundant relation,
Tables 7 and 8 are combined to obtain the desired result, Table 9.
However, error and redundancy may still be present. In later
sections, the location of cycles and the removal of any remaining
redundant relations are considered.

The process of recording the input data according to levels
will now be explained. Consider the data contained in Table 10.
The first step is to select those activities with no preceding ac-
tivities, place them first and label them as ¢nitial level O (see Table
11, IL = 0). The two entries, D and J, are now deleted from the
P column of Table 10 to obtain Table 12 which is to be examined
for activities having no preceding activities to obtain the next
level. Thus, in Table 12, A, B, E, K have no precedents and are
labelled as initial level 1 and appended to Table 11 to form Table
13, and the residual Table 14 is constructed from Table 12 by
deleting A, B, E and K. This process is continued until all activities
are ordered by initial level resulting in Table 15.

A similar process is carried out to obtain the terminal levels—
again starting with Table 10, but this time using the F entries—
so that finally Table 16 may be constructed.

It is possible for the above process to fail, in that a point may
be reached at which no further deletions can be made. In this
case there are cycles in the input data, and the procedure can be
used to locate all of them. A ¢ycle is a series of precedence state-
ments such as “B follows A,” “C follows B,” “A follows C.”

The next example involves data which contains cycles, and
illustrates how they are located. It should be noted that the
ordering pass either accomplishes the ordering or locates and
specifies all the cycles in the project description.

To illustrate the location of cycles, consider the data dis-
played in Table 17. We proceed exactly as above in attempting to
order the data by level and obtain Tables 18 and 19 successively.
Examination of Table 18 indicates the process cannot be con-
tinued because of the absence of activities without precedent

ordering

by levels

location
of cycles

Table 15 Table 16
IL TL
0

ot
t

~QmatuRED RSP

Table 17

>
>

>
SETPYS

e - TN
™~

~
o]
= L

|| Q] Qo~==xnls
=~ AN

SR ES VAR I R L
| 1 Q] Qa~33Qwmew
o
NN OW R
WATEQUWEY | (T
—y

~NQmOoOtaxEESY(E
IS B N
™~

TEWEENBOOSNY | ||
e N el N W N O R

Wb WWNN MEaOO
R N O N N S =)

X

MINIMAL PROJECT NETWORKS

Table 18

SN QERU QD e

29

TQwaAabw

oW~

<~

Table 19

SN mEUQN e
b 2 b (S B b | 0

=

b~y
.

separation
into
subprojects

Table 20

SO QX >
BT M |
b~y
<

Table 21

A P

C E

D —

E DIJ

I C

J —_
Table 22
A P
C E
E I
I C

activities. Thus, Table 18 must contain cyclic data and further
examination involving only the first entry of the P column reveals
the cycle: B preceding F, F preceding ¢, and G preceding B.
We replace each of activities B, F, and G in Table 18 by X,
obtaining Table 19 where the P set for X contains the union of
the P sets of B, F' and G and naturally contains X. Again a cycle,
X before H, and H before X, is present and by replacing H by X,
Table 20 results. Since the P set of X includes only X, we may
delete X from the latter table to obtain Table 21 from which
Table 22 results by the deletion of D and J, and a second cycle— C
before E, E before I, I before C— is evident and all of the cycles
have been identified.

The next step is separation of the tables into the smallest sub-
tables, such that each has no precedence relation with any other.
Of course, it may be that no separation exists. Consider the data
of Table 23 from which Table 24 has been derived by procedures
already explained.

The process of completing Table 24 begins by writing an f
(forward scan) in the first column of analysis opposite some
activity of initial level 0, G here. The F set for G says that G is
followed by A, B. These are marked with an f, and the f associated
with G is starred, to indicate that it has been scanned. The next
activity with an f in column 1 (A in this case) is now scanned,
leading to an f for activity @, and a star for the f associated with A.
The process is iterated to termination. Certain activities of
terminal level O are selected by this process, here ¢ and X. These

Table 23 Table 24 Analysis
A P N IL TL A P F 1 2 3
A GPN Q 0 4 G — AB ||/ b

B F@ CKW 0 4 N — A b* |
¢ BQ — 0 4 P — AF b* | f*
D J - 0 3 T — J

E Y LR 0 2 U — 18

F P BQ 0 3 Yy — EJ

G — AB 1 3 A GPN Q@ bt

H LR — 1 2 E Y LR

1 U VM 1 3 F P BQ b* | f*
J TY DR 1 1 1 U VM

K B X 1 2 J TY DR

L E H 1 1 S U M !

M IS — 2 2 B F@ CKWI(r*|b*]

N — A 2 0 Db J —

P — AF 2 1 L E H

Q AF cCw 2 0 M IS —

R EJ H 2 2 Q AF cCwW * b

S U M 2 1 R EJ H

T — J 2 0 vV I —

U — IS8 3 0 C BQ — | e

v I — 3 0 H LR —

W BQ X 3 1 K B X bl

X KW — 3 1 W BQ X x| b

Yy — EJ 4 0 X KW — VAl

B. DIMSDALE

Table 25 Table 26

Analysis
IL TL A P F IL A F 1 2 3 4
0 4 G — AB 0 A CDG
0 4 N — A 0 B DEG 1
0 4 P — AF 1 C Fd
1 3 A GNP @ 1 D D 1 1
1 3 F P BQ 1 E GHI 1
2 2 B FG@G CKW 2 F I 1 2
2 2 Q AF cw 2 @ I 1 111,2]1,2
3 0 C BQ — 2 H I 1
3 1 K B X 3 I — 1,2
3 1 W BQ X
4 0 X KW —

are marked with b (backward scan) and the above process re-
peated “in reverse,” leading to the second column of analysis in
Table 24. Any elements of initial level 0 not already marked with
f*, are now marked for forward scan (here N, P), and the forward
scan begun. Note that the activities which have already had a
forward scan need not be scanned again, and likewise on subse-
quent backward scans. Here the only new activity subjected to a
forward scan by N, P is F. But F is followed by B and @ which
have already been scanned. Hence the process is complete, and
the scanned set has no connection with the unscanned. Thus, we
have {G,N,P,A,F,B,Q,C, K, W, X} as a separate project (Table
25). Similarly it can be shown that {7, Y, E, J, D, L, R, H} and
{U, I, 8, M} are also separate projects.

The process of eliminating redundancy will be illustrated by
its application to the data contained in the first three columns of
Table 26 giving rise successively to the last four columns of the
same table. The process is started with the last activity having
more than one element in its F set (E), by placing for each element
inits F set, {G, H, I}, a one in the first column of the analysis. Then
for each activity in the F set of an activity which now has a one in
the first column, a fwo is placed in the same column (in this case,
I is the only such aectivity). This column is now examined for the
simultaneous occurrence of ones and fwos and each such activity
(only I in this case) is deleted from the F set of the originating
activity (E). As the next step, moving upward in the activity
column from E and passing D, since clearly an activity with only
one member in its F set need not be considered, we repeat the
procedure on C to obtain the entries in the second column. Similar
steps applied to activities B and A give rise to the third and fourth
columns, respectively. From these columns we see, respectively,
that G may be deleted from the F sets of B and A. Finally, for
each F set deletion a corresponding P set deletion is required,
thus deletion of E from the P set of I, B from the P set of @, and
A from the P set of G is necessary.

We may now assume initial and terminal level tables free of
inconsistencies and redundancy and proceed with the construction

MINIMAL PROJECT NETWORKS

elimination of
redundancy

event network
construction

31

Table 27
IL A P
0 A —
0 B —
0o C —
1 E A
1 F A
1 G AB
1 R BC
1 K ABC
1 S BC
2 L GRS
2 M F
3 N FKL
Table 28
TL A F
0 E —
0 M —
0 N —
1 F MN
1 K N
1 I/ N
2 G L
2 R L
2 S L
3 A EFGK
3 B GKRS
3 C KRS
Table 29
A P
ABC —
EF A
RS BC
(&) AB
K ABC
L GRS
M F
N FKL
Table 30
A F
EMN —
F M N
KL N
GRS L
A EFGK
B GKRS
C KRS

32

of the event network. Consider the data contained in Tables 27
and 28. The first step is to group the activities in the latter tables,
respectively, according to identical P and F sets, thus obtaining
Tables 29 and 30.

It is particularly important to note that only elements be-
longing to the same level may have identical P sets or F sets, as the
case may be, which reduces the search problem very substantially.
Next it is necessary to locate sets of activities having the same P
and F sets. Thus, A, B, C have the same P set, but the F's are
all different; E, F have the same P but different F's; R, S, have
the same P set and the same F set. For the time being the set
{R, S} will be replaced by a single activity H, having P set
{B, C} and F set {L}. No other sets of activities here have the
same P set and the same F set. The above replacement generates
the P and F columns in Tables 31 and 32, respectively.

We digress to note an interesting implication of a more general
nature in the kind of property that has just been discussed. Suppose
there is some subset of activities such that: at most one of the
P sets consists only of activities not belonging to the subset, at
most one of the F sets consists only of activities not belonging
to the subset, and all other P and F sets for activities in the subset
consist only of activities belonging to the subset. Such subsets
can be determined automatically without much difficulty, and
rather naturally define subprojects of the original project. They
may, in fact, be treated as single activities, thus simplifying the
task of event assignment. Of much more interest, however, is the
consideration that there will, in general, be hierarchies of sub-
projects. Thus, the prospect exists of describing projects by nested
subprojects, in a series of networks proceeding from least detail
to fine detail.

Resuming the computation, for each non-null P set an associ-
ated set, denoted as a U set, is formed from the intersection of all
F sets belonging to an activity in the P set. For example, G has
the P set {A, B}. The F sets arve: {E, F, G, K} for A, {G, K, H}
for B. The intersection of {E, F, G, K} and {G, K, H} is
{G, K}, which is thus the U set for G. If the P set is empty then
the U set is the set of all activities. This yields the U column of
Table 31.

The next step is to determine which U’s are identical with
F sets. Using the row numbers designated in the R column as
subscripts, U, = F;, U; = F,, Uy, = F,, U, = F,, Uy = F;. The
magnitude of the search is also reduced by the general principle
that a U set is identical with at most one F set of an activity
belonging to the P set with which U is associated. Thus U, can at
most be identical with the F set for A, that is, F;. U; can at most
be identical with one of the F sets for B or C, ete.

The assignment of events can now take place in Tables 31
and 32. Since U, = F;, the event ¢, ; is assigned adjacent to U,
and to F; in the initial and terminal event (IE, TE) columns of
Tables 31 and 32.

B. DIMSDALE

Table 31 Table 32

R A P U 1E R A F TE
1 ABC — Set @ 1 EMN — by
2 EF A EFGK e 2 F MN €12
3 H B C K H Cs.7 3 K L N €3,3
4 G .4 B G K ag 4 GH I Cg .4
5 K ABC K as 5 4 EFGK e
6 L GH L Con 6 B GHEK b
7 M F MN C12 T C KH 3,1
8 N FKL N €33

Similarly U, = F, leads to event ¢;,; in both tables, etc. When
this process is completed, unfilled event locations are filled with
distinet notations: subscripted a’s and &'s in Tables 31 and 32,
respectively, with value of the subsecript indicating the row. The
result is that activities A, B and C have initial event a,; F and F
have ¢, 5, ete.; E, M and N have terminal event b,, F has terminal
event ¢; », ete. All activities have now been assigned initial and
terminal events and it is now time to assign dummy activities
to maintain precedence relations. Now 4, B, and C have initial
event a,, and no preceding activities, hence no dummies are re-
quired. K, F have initial event ¢, s, and are preceded by 4, which
has terminal event ¢, 5. Again no dummy is required. H has initial
event ¢; 7, C has terminal event ¢; ;, but B has terminal event b.
Thus a dummy activity with bs and 6;,; as initial and terminal
events is required. (b, ¢; ;) will be used as notation for this dummy
activity. Continuing in this manner the list of dummy activities is:
(Do, €3,7), (De, As), (€5, @a), (€25, @5), (e, @5), (63,7, @5), (€72, Cs5.3).
All necessary dummies are included in this list, but there may be
unnecessary ones. To check this point, the events involved in the
notation for these dummies are treated as activities, the pairings
indicated by the notation are treated as precedence relations, that
is bs precedes ¢;,7, ete., and Table 33 results.

When this table is reordered (there will be no eycles), separated,
and redundancies located as before, it will be found that bs pre-
ceding a; is the only redundant precedence, hence the dummy
activity (bs, as) may be deleted. It should be noted that once the
ordering, separation, and redundancy routines have been written,
this is only a question of using them once more. The event network,
then, is specified by Table 34.

This event network can be shown to have the minimum number
of vertices and dummies, and to have unique structure. T'wo points
remain to be discussed. First, H represents a pair of activities, B
and 8. Depending on the subsequent use of the network, it may
suffice to leave the pair as the single activity H, or it may not. If
not, one further dummy must be introduced to maintain the
difference. Thus, we may, for example, replace H | (¢s.7, ¢5.4) by

R | (63,7, Cs,0)

S (e, ¢s.4) and add a dummy (¢; -, €).

MINIMAL PROJECT NETWORKS

Table 33

A P F
ba - C3.1 0y A5
c3.r b as
(47} b Ca,5 i
C2,5 g A
as C2,5 bs (& —
€12 T €83
Cg3 Cip2 —
Table 34

A IE TE

A a Ca2,5

B ay bs

C ap C3,7

E c25 by

F Ca,5 Crp2

G [¢7% Cg,4

H C3,7 Ce,s

K as €83

L Cs,4 C83

M c1e b

N Cg,3 b

Dl bs 3,7

Dg b(; ay

D, Ca,5 Gy

D, Ce,5 s

D; €31 Qs

D €12 €83

programming
considerations

sort and
dictionary
formation

34

In general, this treatment introduces » — 1 new dummies and
events whenever there are n parallel activities.

The second point has to do with the identification which has
been made of the initial events of the starting activities 4, B, C,
and the terminal events of the terminal activities £, M, N. This
identification is made for convenience of processing, and can now
be separated in any fashion desired. The diagram for the event
network is given in Figure 3 (with H not replaced).

It is assumed in the following that the project activity network
can be contained entirely in core storage, which will certainly
be true for a 32K IBMe 7090 and for 4000 activities (based on
an average of three following activities—which is probably higher
than normal), provided efficient names are used. This in general
calls for the replacement of input activity names with names for
internal use, and thus for establishment of a dictionary for trans-
lation between the two names. It is also assumed that the entire
dictionary can be contained in core, which again is true for 4000
activities, if not more than six characters are required for its
input name. The discussion below is concerned with the major
aspects of the programming system contemplated.

Suppose that the original input is on magnetic tape, and that
each record on tape contains three things: activity name, name of
activities in the preceding set, and names of activities in the follow-
ing set. There will also need to be some sort of marker to dis-
tinguish the set of preceding activities from the set of following
activities.

The first operation to be performed is a sort of these records
according to activity name. The second operation is the establish-
ment of the dictionary which relates input activity name to a
convenient code name. The code name is established as follows.
Let some core memory cell be assigned as initial storage cell for
the data presently on tape. Read in the first record, assign the

Figure 3 The event network

L
- &
-~
t

i
7 \
/
/

B. DIMSDALE

initial storage cell address as the ecode name for its activity. The
code name for the activity name of the second record will be the
same address plus a number sufficiently large so that enough
storage is left for the associated activities of the first record. That
is to say, the coded activity name will be the address of the first
cell in memory associated with its record; the record itself will
consist of coded names of preceding and following activities.
For example, suppose the first two records are as shown in Table
35. Suppose that cell 1000 is assigned as starting location. Then
the dictionary has the form given in Table 36, assuming say, that
a half word is assigned for activity name. Core storage ultimately
will have the following appearance indicated in Table 37 where
C (A,) represents the coded name of 4, ete. The fact that C (d)
represents the start of a new record could be indicated by using
a minus sign on that word. M of course is the marker to separate
sets. A half word might be left free at the beginning of each record,
for storage of temporary data in processing these records.

Once the dictionary is established, the input tape can be
passed, a record at a time, through core and coded records pro-
dueced and stored on an auxiliary tape. Any activity name which
appears can be located quite rapidly in the dictionary by successive
halving, inasmuch as the dictionary has been sorted by input
activity name. Of course, if some activity name is not to be found
in the dictionary then there is an error, and the fact should be
reported by the printer. It is also easy, at this time, to determine
whether an activity precedes or follows itself.

The next operation is a sort of the dictionary, the key being
the coded name. The set of coded records can then be brought
into core, ready for further processing.”

Since now the name of an activity is also the location of its
record in core, the reordering processing previously defined requires
no search whatever. That is to say, if an activity 4 is preceded
by no activity, it is to be eliminated from all other preceding sets.
But the following set for A gives the location of all records con-
taining A in the preceding set. Moreover, if a count has been
established of the number of preceding activities and of the number
of following activities in each record, then this number can be
updated for every deletion, thus locating as part of the process null
sets which have been produced by deletion.

For separation into subtables and elimination of redundancy,
it is necessary only to redefine the dictionary in terms of the new
record locations, which will be those determined by initial level
order. Also, computing will be much expedited if the P and F
sets are also ordered by initial level.

Once this is done, separation into subtables and elimination
of redundancy proceed very efficiently, and thus the data is
ready for event network construction. The first step requires, on the
one hand, a grouping of activities that have common P sets, and on
the other hand, a grouping of activities that have common F sets.
It has been observed already that groups of the first kind can only

MINIMAL PROJECT NETWORKS

Table 35

A P F

Ay A3 Ay Agds Ay Ap
As As As Ag Ay

Table 36
A Cell
4, 1000
A. 1004
A; 1007

Table 37

Cell Content

1000 C (A4;) C (Ay)
1001 C (A4g) C (Ag)
1002 M C (Aw)
1003 C (A) —
1004 C(4e) M

coding of
project tables

reordering

computation
of event
network

35

Table 38
A P F I A P F
A p fs G Ps fa
B p1 fe K Ps f3
C oo fi|lL ps fs
E p: il M pi S
F p: fof| N ps N1
H P3 fa

Table 39

Core Rec Core Rec

¥4 - N —_

P2 A fo M N

pa B C fa N

D4 AB fu L

Ps ABC f; EFG@K

Ps GH Je GKH

P1 F I KH

Ds FKL — —

36

contain certain activities having the same initial level, groups of
the second kind can only contain activities having the same termi-
nal level. The first set of groups can be obtained from the project
table already at hand. The location of groups of the second kind
requires only that part of the reordering process which separates
out activities of common terminal level, together with their F sets.
An expedient way to store all this information for the example
previously given in the section on event network construction
(see Tables 29, 30) is illustrated in Tables 38 and 39, where p,, {.
represent core location of the pertinent records. It is quite clear
how the remainder of this processing is to be performed.

No discussion of the case of event network reduction, or the
treatment of mixed input is undertaken here. These would appear
to be readily managed by variations of methods discussed above. In
passing, it should be observed that the ordering process, if applied
to the nodes of the event network, will achieve the result other-
wise known as “‘node numbering.”

CITED REFERENCES AND FOOTNOTES

1. PERT Summary Report Phase I, Special Projects Office, Bureau of Naval
Weapons, Washington, D.C. (July 1958).

2. Project PERT, Phase 11, Special Projects Office, Bureau of Naval Weapons,
Washington, D. C. (Nov. 1958).

3. Fey, C. F., Application of Least Cost Estimating and Scheduling, Manage-
ment Science Report MS-1, IBM, Bethesda, Maryland (1962),

4. Fulkerson, D. R., A Network Flow Computation for Project Cost Curves,
Journal of the Institute for Management Science, 7 (1961), pp. 167-178.

5. Kelley, J. E., Jr., Critical Path Planning and Scheduling: Mathematical
Basis, Journal of Ops. Res. Soc. Am. 9 (1961) pp. 296-320.

6. Dimsdale, B., On Project Networks, Western Data Processing Center,
UCLA (1962).

7. If the original data is in some other form, it is clear that appropriate modi-
fications of these procedures can be made.

BIBLIOGRAPHY

Berge, Theorie des Graphes el ses Applications, Paris, (1958).

Harary, F., On the Consistency of Precedence Mairices, Journal Assn. for
Comp. Mach., 7 (1960), pp. 255-259.

Jornagin, M. P., Automatic Machine Methods of Testing Pert Networks for
Consistency, U. 8. Naval Weapons Lab T. M. No. K-24-60.

Ore, O., Theory of Graphs, Am. Math. Soc. Coll. Pub. 38 (1962).

Prostick, Joel M., Loop Tracing tn PEP-PERT Networks. Paper presented
at sixteenth National Conference of the Assn. Comp. Mach., Los Angeles,
Calif., (1961).

B. DIMSDALE

