
described above does not appear to be easy. Still further com-
plications are being investigated by Helmut Maak, IBM Muhl-
heim, Germany.

Still other variants, both of problem and technique, are pos-
sible. Reith has studied the very interesting inverse problem; i.e.,
given a demand for paper, what width paper machine; i.e., what
standard roll is best? Also, in Europe, M. Genuys of IBM Paris
has done work on a column-generating technique that uses integer
programming at the point where dynamic programming was
used in the method described above. Here in the United States,
C. E. Berry of IBM Portland has a 1620 program which gives an
approximate solution to the problem and proceeds by quite dif-
ferent methods-no linear programming is employed. A technical
description of this work will be available soon.

It seems likely that various forms of the Trim Problem will
be with us for some time to come.

On modifying the 1620 ADD table
by G. Gerson

The fact that arithmetic is performed on the IBMB 1620 Data
Processing System by means of TABLE LOOKUP provides an
opportunity for introducing special operations which may be
executed by suitable table modification.

It is the purpose of this note to suggest, by means of an ex-
ample, that many practical problems may be resolved by this
technique. The problem faced was as follows.

A 40-digit field was to be tested. Each of the digits of this
field arose as the result of a physical test, and was independent
of each of the other digits in the field. The physical tests were
associated with a production process, and the accompanying
computations had to be performed in real time. The field was to
be compared with two other 40-digit fields called the upper limit
jield and the lower limit jield. The requirement was that each
digit of the original field had to be less than or equal to the corre-
sponding digit of the upper limit field and greater than or equal
to the corresponding digit of the lower limit field. Furthermore,
there were 96 sets of these upper and lower limit fields. In the
worst possible case, the original field had to be compared to all
96 sets, and the real time requirements were such that all com-
parisons had to be performed on the 1620 in one second. A careful
timing estimate using the COMPARE operation (which required
that the digits be stripped away and tested one by one) indicated

8% I B M Systems Journal September I962

that a minimum of 5 seconds would be required to perform all
the necessary tests.

To solve the problem, in the case of the upper limit comparison,
a noncommutative operation, denoted by 0, with the property,
alaz . . a, @ b,b, b, = clcz . - - c, where the a’s and b’s are
digits and ci = 0 if ai 2 bi and ci = 1 if ai < bi, was introduced.
Thus, for example, 5 @ 6 = 1 whereas 6 @ 5 = 0.

The manner in which the 1620 ADD table is consulted had
been noted (e.g., for the computations 5 + 6 and 6 + 5 memory
locations 00356 and 00365, respectively, are utilized). Therefore,
to execute 0 the 1620 ADD table was modified by placing zero in
each cell on the diagonal and below, and me in each cell above the
diagonal, as shown below. With this table modification, the
1620 will execute @ in place of +.

0 1 2 3 4 5 6 7 8 9

30
31
32
33
34
35
36
37
38
39

0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

To illustrate the use of @ we have in the case of the upper
limit and test fields, 356727 and 247616 respectively, 356727 @
247616 = 001000, with the appearance of a 1 in the third position
of the answer indicating the third digit of the test field failing
to meet requirements. Thus an ADD operation followed by a
BRANCH ON ZERO served to take the place of 40 COMPARE opera-
tions. Comparison with the lower limit field was accomplished
similarly by using the test and lower limit fields, respectively, as
the first and second operands of 0.

However, with the ADD table changed it is not possible to do
normal address arithmetic. So the sequence followed was to change
the ADD table, perform all the necessary tests without utilizing
address arithmetic, and then to change the table back to normal
form for tallying, sorting, etc. Enough memory was available to
allow the 96 sets of comparisons to be written out in “straight
line” fashion.

Upon timing, it turned out that all the comparisons could be
done in approximately 0.5 seconds, well within the real time
requirements of the problem.

I B M Systems Journal Septembrr 1968 88

