
The trim prolem 
by R. E. Gomory 

The  Trim Problem has  many forms, and  most of this paper will 
be devoted to a discussion of the simplest one, the so-called  one- 
dimensional Trim Problem. Some  other-and more difficult 
forms-will be mentioned at  the  end,  but even the simplest case has 
both applications significance and technical difficulties that make it 
interesting. To gain some idea of the problem, consider this case. 

A paper company owns paper machines which produce wide 
rolls of paper. Sometimes, in practice, these rolls may be twelve 
feet in width. The paper company’s customers, however, cannot 
use rolls of this form but need, let  us  say, 50-inch-wide  rolls. 
The paper company, then, is faced with customer demand for 
rolls of various width and in  various  quantities of each width. 
The  demand  is to be met  by  cutting  up  the wide rolls into narrow 
rolls. In this process, due to the  fact  that  the smaller rolls do not 
add  up perfectly to make a large one, a certain  amount of paper 
at the end of the rolls goes to waste. A  typical  Trim  Problem, 
then, is to  cut  up a given supply of large rolls into smaller ones 
in such a  manner that  the demands for each smaller width  are 
met  and so that  the paper loss is minimized. 

That one approach to  this problem is by way of linear pro- 
gramming has been known for some time. In particular, one can 
cite an article  by A. E. Paull  in the Pulp and Paper Magazine 
of Canada, January, 1956; an  abstract in Eoonometrica in July, 
1955, by A. E. Paull and  John R. Walter; and  an article  in Manage- 
ment ’Science in April, 1957, by Kurt Eisemann. To  formulate 
the  Trim Problem as a  system of linear inequalities, one can 
proceed as iollows. 

Each way of cutting  up a roll of paper is associated with a 
variable. The jth pattern of cutting is associated with the variable 
xi (a pattern of cutting would be, for example, to  cut a twelve-foot 
roll into  three 32-inch rolls, one 30-inch  roll and one 15-inch roll). 
We can then write down the system of inequalities a i j  xi 5 di .  
If d,  is the amount  the customers demand of the ith width, aii 
is the number of pieces of that width provided by the jth rutting 
pattern,  and xi is the number of rolls that  are  cut  up using the 
jth patkern, then  this  system of inequalities merely expresses the 
fact that all customer orders are met. 

However, we not only want to meet the orders, but we want 
to  do so and minimize paper wastage. To do this, we must  add 
one more consideration; that is, to  the jth pattern, we associate 
the number li which is the loss of waste paper incurred using that 
pattern.  The  total paper lost then is lixi and  the full problem 
is to choose x’s that satisfy the  set of inequalities above and 
minimize the linear expression lixi. To minimize a linear ex- 
pression subject to linear inequalities is, of course, a linear pro- 
gramming problem. 

Although we are  still discussing only the simplest form of the 
one-dimensional Trim  Problem, we are  already confronted with 
two technical difficulties. 
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1. In solving our linear programming problem, since the zi are 
to be interpreted as the number of rolls to be cut  up according 
to  the j t h  pattern,  the xi must be  whole numbers. Unfortunately, 
ordinary linear programming does not generally yield whole 
numbers so that  the solution obtained by ordinary  methods 
will have to be changed or rounded in some way before it 
can be used. 

2. If the number of different widths demanded by  the customers 
is large and  the rolls to be cut  up  are large in  width, the number 
of possible patterns  to be considered can become astronomical. 
If 20 widths  are  demanded, the demanded widths  have a 
reasonable distribution and  the basic roll  size is 300 inches, 
the number of combinations exceeds 100,000. It is, therefore, 
possible for the number of combinations to defy writing down 
and  to be certainly  too large for incorporation into a linear 
programming computation. 
In spite of this, people have employed linear programming 

effectively to solve these problems. The reasons why it has been 
possible in some instances to ignore these difficulties are as follows. 

Dificulty 1. In some industries,  notably the paper  industry, 
it is often understood that  the customer will accept a number of 
rolls that is slightly different from the number he has asked for. 
Therefore, one can take a non-integer solution, round the numbers 
up,  and  the  extra rolls obtained from this rounding up process 
will  be accepted by  the customer and do not  constitute  extra 
waste. Another  factor, which again operates  in some paper  ap- 
plications, is that  the resulting xi values are  quite large. Thus, 
the waste introduced by any method of rounding to a nearest 
integer is considered to be negligible. However, in  other problems 
capable of the same formulation, such as the problem of cutting 
up steel beams into  shorter ones, neither of these  mitigating 
factors  apply, and  this  is one reason why linear programming 
has  not been  used in that application. 

Dificulty 2. This can be overcome in small problems by simply 
enumerating all possible patterns. As the size of the problem grows 
and  the  situation becomes  worse,  some of the  patterns  are dropped 
from consideration. For example, one might consider only those 
patterns whose trim loss is four per cent or less.  On large problems, 
however, even this approach is not  easy, for one must  still generate 
an enormous number of columns even with  these exclusions, and 
it sometimes happens (see, for example, the paper by P. F. Reith 
entitled “The  Trim Problem’’ published by IBM, Amsterdam) 
that a pattern which is bad  in itself (wastes a lot of paper) will 
figure in the solution because it has  the effect of allowing a great 
many of other effective patterns to be used. There is also the 
great  practical nuisance of having to generate a new collection of 
patterns whenever a new problem involving any different widths 
has to be solved. 

One could, of course, hope to dispose of Difficulty 1 by means 
of integer programming; i.e., the systematic  methods that have 
been developed to solve linear programming problems whose 
variables are construed to be integers. However, the present state 
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of development of these techniques does not permit the solution 
of problems with a large number of variables, and it seems that 
a t  the present time it is fair to say that integer programming 
cannot make a  direct contribution to solving the first difficulty. 

The second  difficulty is much less fundamental  and  can be 
overcome by the methods described by Gilmore and Gomory in 
IBM Research Report No. 408. The essence of the idea is this. 
One starts with a small arbitrary collection of patternejust  
enough patterns so that the customer’s demands can be met in 
some fashion by  using just these patterns  and solving the asso- 
ciated small linear programming problem. If there  are n different 
widths demanded, one  need only use n patterns in this  part of the 
problem.  Once this problem has been solved, one  uses the prices 
obtained from the linear programming solution to generate a new 
cutting  pattern that will  lead to  an improved solution. 

I will first describe this process mathematically and  then give 
a short intuitive explanation. 

The original problem is to solve a large linear programming 
problem A s  2 d involving a large matrix A .  

Each possible pattern is represented by a column. The  entry 
in the  top row of the j th  column aoi is the width of roll or the cost C 
associated with  a  standard roll. (Minimizing the  total paper width 
used and minimizing the waste are, of course, equivalent ob- 
jectives.) Solving a restricted linear programming problem, say 
one involving only the first n + 1 columns and the slacks (i.e., 
considering  only these patterns) means finding a ( N  + 1 X N + 1) 
matrix P = ( p i i )  such that Pd has only non-negative entries  and 
such that  the  top row 1T of P (which  will automatically be of the 
form (1, - 1 T 1  . . . -11,) with all Hi 2 0) has  a non-negative 
scalar product with each allowed  column. Suppose we find such 
a n. We  now want to know whether or not an improvement can 
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be made by including some omitted column; i.e., if we multiply 
the big matrix A by P, will there be any negative entries in the 
top row? Or, alternatively, does there exist a column whose scalar 

width and W the standard width, so the question is, do there exist 
non-negative integers ai such that c aiw, 5 W and aini > C .  
If we maximize c aJIi subject to c aiwi 5 W we can easily test 
afterward to see if the maximum value exceeds C ,  so the essential 
problem that must be solved is 

C ‘ , W i  I w 
where the ai are non-negative integers. It is fortunate that this 
maximizing problem, which seeks a new pattern for us, is of a 
recognizable type, for it is the so-called “knapsack problem” 
which has been the subject of several articles, especially that of 
Dantzig, “Discrete Variable Extremum Problems,” Operations 
Research Volume 5 ,  No. 2. 

The “knapsack problem” gets its name from the following 
intuitive interpretation-the single inequality appearing is taken 
as the capacity of the soldier’s knapsack; that is, it represents the 
most weight which he can reasonably carry. The w i  are the weights 
of the individual articles which he might put into the knapsack 
and the rIi represent the values to him of each article. His problem 
is to select how much of each article to include in the knapsack 
so that the weight limit is not exceeded and he carries the most 
valuable articles possible. This is the problem of selecting the a,. 

As these articles point out, the “knapsack problem” can be 
resolved by the techniques of dynamic programming (Bellman, 
Dynamic Programming, Princeton University Press, 1957). In 
our case, this means that we introduce the function c,(x), defined 
as being the solution to a problem in which use of the first m articles 
only is allowed and the weight limit, instead of being W is x. 
The function c,(x) can be computed recursively by means of the 
formula 

c,(x) = max {urn& + C,-~(X - a,w,)} 

0 5 a,w, 5 x 
which says, essentially, that the m article, x capacity, knapsack 
problem can be reduced to the m - 1 problem by considering 
each possible amount of the mth article and combining it with the 
best possible use of the remaining available weight in the knap- 
sack. By means of this recursion formula, c, can be computed 
from a knowledge of c,-, and this process iterated until c, is at 
hand where n is the number of articles. Then, c,(w) gives the 
value of the solution to the maximizing problem, and the ai 
that actually attain that value are easily obtained by the standard 
methods of dynamic programming. Although the dynamic pro- 
gramming approach to the knapsack problem is the easiest one 
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to describe, other approaches are possible and sometimes better; 
one of these, which is rather difficult to describe briefly, is, in 
fact, being used in  our  latest program. (See P. C .  Gilmore, “An 
Algorithm for the Generalized Knapsack  Problem,”  IBM Research 
Note NC-15.) 

Reverting to a more intuitive description, we can say  this. 
One obtains from the linear programming solution a price IIi  

for each width demanded. What these IIi measure is how much 
it costs to produce rolls of that width using present cutting 
patterns.  With present patterns, some widths  may be easy or 
cheap to obtain  and  others expensive. If then a special algorithm 
is used to generate a new pattern  to provide widths which are 
currently difficult or costly to obtain, it will produce an improve- 
ment over the present methods. This is the function of the knap- 
sack sub-routine. Once the new pattern is discovered, it is added 
to  the problem (another pattern automatically  drops out),  and 
the present solution is improved. This leads to  the solution of a 
new sub-problem, a new vector 11, etc. This process is  iterated 
until a solution is reached which  no further  pattern can improve, 
and  this is, of course, optimal. 

Using this technique, it has been  possible to solve on the IBMB 
7090 problems involving very large numbers of patterns  and  to 
obtain an answer that uses the best possible combination. This 
approach, in addition to considering all possibilities, has the 
following practical advantage-it is only necessary to load the 
machine with the available roll widths of the customers’ demands. 
The machine itself generates the  patterns  as  they  are required. It is 
not necessary to create,  maintain or change a library of useful 
patterns. W. E. Winans of IBM, Green Bay, Wisconsin, is cur- 
rently writing an  IBM 1620 program based on this technique. 

Of course, the problem we have described is the very simplest 
one and in the very simplest form. I will cite a few complications. 

1. Not all patterns of cutting  are allowable because the  cutting 

2. The customers don’t  want rolls of paper but want sheets whose 
machines have only a certain number of knives. 

length as well as the  width is specified. 

The first of these complications can be dealt with quite easily. 
By  certain modifications in the sub-routine, patterns whose 
cutting would require too  many knives can be eliminated from 
consideration. The second is much more difficult, and I do not 
know of any fully satisfactory  method of approach.  For a fuller 
description of the second difficulty, an excellent reference is the 
paper  by P. F. Reith cited earlier. 

The second complication leads naturally  to consideration of 
the so-called two-dimensional Trim Problem. This problem is 
encountered in  metal  industries where, instead of cutting  widths 
from a roll, rectangles of different sizes are to be cut from large 
rectangular sheets. Linear programming can again be applied and 
the two technical difficulties occur again,  with the number of 
possibilities occurring under the second difficulty being even 
greater than before. However, the application of the remedy 

IBM Systems Journal September 1963 81 



described above does not  appear to be easy. Still further com- 
plications are being investigated by Helmut  Maak, IBM Muhl- 
heim, Germany. 

Still other  variants,  both of problem and technique, are pos- 
sible. Reith  has studied the very interesting inverse problem; i.e., 
given a demand for paper,  what  width paper machine; i.e., what 
standard roll is best? Also, in Europe,  M. Genuys of IBM  Paris 
has done work on a column-generating technique that uses integer 
programming at  the point where dynamic programming was 
used in the method described above. Here  in  the United States, 
C. E. Berry of IBM Portland  has  a 1620 program which  gives an 
approximate solution to  the problem and proceeds by quite dif- 
ferent methods-no linear programming is employed. A technical 
description of this work  will  be available soon. 

It seems likely that various forms of the Trim Problem will 
be with us for  some time to come. 

On modifying the 1620 ADD table 
by G. Gerson 

The  fact  that arithmetic is performed  on the  IBMB 1620 Data 
Processing System by means of TABLE LOOKUP provides an 
opportunity for introducing special operations which may be 
executed by suitable table modification. 

It is the purpose of this  note to suggest, by means of an ex- 
ample, that many practical problems may be  resolved by this 
technique. The problem faced was as follows. 

A 40-digit  field  was to be tested.  Each of the digits of this 
field arose as the result of a physical test,  and was independent 
of each of the  other digits in the field. The physical tests were 
associated with a production process, and  the accompanying 
computations  had to be performed in real time. The field  was to 
be compared with two other 40-digit  fields  called the upper limit 
jield and  the lower limit jield. The requirement was that each 
digit of the original field had  to be  less than or equal to  the corre- 
sponding digit of the upper limit field and greater  than or equal 
to the corresponding digit of the lower limit field. Furthermore, 
there were 96 sets of these upper and lower limit fields. In the 
worst possible  case, the original field had  to be compared to all 
96 sets, and  the real time requirements were such that all com- 
parisons had to be performed on the 1620 in  one second. A careful 
timing estimate using the COMPARE operation (which required 
that the digits be stripped away and tested one by one) indicated 
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