The trim prolem
by R. E. Gomory

The Trim Problem has many forms, and most of this paper will
be devoted to a discussion of the simplest one, the so-called one-
dimensional Trim Problem. Some other—and more difficult
forms—will be mentioned at the end, but even the simplest case has
both applications significance and technical difficulties that make it
interesting. To gain some idea of the problem, consider this case.

A paper company owns paper machines which produce wide
rolls of paper. Sometimes, in practice, these rolls may be twelve
feet in width. The paper company’s customers, however, cannot
use rolls of this form but need, let us say, 50-inch-wide rolls.
The paper company, then, is faced with customer demand for
rolls of various width and in various quantities of each width.
The demand is to be met by cutting up the wide rolls into narrow
rolls. In this process, due to the fact that the smaller rolls do not
add up perfectly to make a large one, a certain amount of paper
at the end of the rolls goes to waste. A typical Trim Problem,
then, is to cut up a given supply of large rolls into smaller ones
in such a manner that the demands for each smaller width are
met and so that the paper loss is minimized.

That one approach to this problem is by way of linear pro-
- gramming has been known for some time. In particular, one can
cite an article by A. E. Paull in the Pulp and Paper Magazine
of Canada, January, 1956; an abstract in Econometrica in July,
1955, by A. E. Paull and John R. Walter; and an article in Manage-
ment Science in April, 1957, by Kurt Eisemann. To formulate
the Trim Problem as a system of linear inequalities, one can
proceed as follows.

Each way of cutting up a roll of paper is associated with a
variable. The jt* pattern of cutting is associated with the variable
z; (a pattern of cutting would be, for example, to cut a twelve-foot
roll into three 32-inch rolls, one 30-inch roll and one 15-inch roll).
We can then write down the system of inequalities D, a;; z; < d..
If d; is the amount the customers demand of the 7t width, a;;
is the number of pieces of that width provided by the j* cutting
pattern, and z; is the number of rolls that are cut up using the
j* pattern, then this system of inequalities merely expresses the
fact that all customer orders are met.

However, we not only want to meet the orders, but we want
to do so and minimize paper wastage. To do this, we must add
one more consideration; that is, to the j* pattern, we associate
the number [; which is the loss of waste paper incurred using that
pattern. The total paper lost then is D I;z; and the full problem
is to choose z's that satisfy the set of inequalities above and
minimize the linear expression ». I;z;. To minimize a linear ex-
pression subject to linear inequalities is, of course, a linear pro-
gramming problem.

Although we are still discussing only the simplest form of the
one-dimensional Trim Problem, we are already confronted with
two technical difficulties.

IBM Systems Journal September 1962




1. In solving our linear programming problem, since the z; are
to be interpreted as the number of rolls to be cut up according
to the jt pattern, the x; must be whole numbers. Unfortunately,
ordinary linear programming does not generally yield whole
numbers so that the solution obtained by ordinary methods
will have to be changed or rounded in some way before it
can be used.

. If the number of different widths demanded by the customers
is large and the rolls to be cut up are large in width, the number
of possible patterns to be considered can become astronomical.
If 20 widths are demanded, the demanded widths have a
reasonable distribution and the basic roll size is 300 inches,
the number of combinations exceeds 100,000, It is, therefore,
possible for the number of combinations to defy writing down
and to be certainly too large for incorporation into a linear
programming computation.

In spite of this, people have employed linear programming
effectively to solve these problems. The reasons why it has been
possible in some instances to ignore these difficulties are as follows.

Difficulty 1. In some industries, notably the paper industry,
it is often understood that the customer will accept a number of
rolls that is slightly different from the number he has asked for.
Therefore, one can take a non-integer solution, round the numbers
up, and the extra rolls obtained from this rounding up process
will be accepted by the customer and do not constitute extra
waste. Another factor, which again operates in some paper ap-
plications, is that the resulting x; values are quite large. Thus,
the waste introduced by any method of rounding to a nearest
integer is considered to be negligible. However, in other problems
capable of the same formulation, such as the problem of cutting
up steel beams into shorter ones, neither of these mitigating
factors apply, and this is one reason why linear programming
has not been used in that application.

Difficulty 2. This can be overcome in small problems by simply
enumerating all possible patterns. As the size of the problem grows
and the situation becomes worse, some of the patterns are dropped
from consideration. For example, one might consider only those
patterns whose trim loss is four per cent or less. On large problems,
however, even this approach is not easy, for one must still generate
an enormous number of columns even with these exclusions, and
it sometimes happens (see, for example, the paper by P. F. Reith
entitled ‘“The Trim Problem” published by IBM, Amsterdam)
that a pattern which is bad in itself (wastes a lot of paper) will
figure in the solution because it has the effect of allowing a great
many of other effective patterns to be used. There is also the
great practical nuisance of having to generate a new collection of
patterns whenever a new problem involving any different widths
has to be solved.

One could, of course, hope to dispose of Difficulty 1 by means
of integer programming; i.e., the systematic methods that have
been developed to solve linear programming problems whose
variables are construed to be integers. However, the present state

IBM Systems Journal September 1962




of development of these techniques does not permit the solution
of problems with a large number of variables, and it seems that
at the present time it is fair to say that integer programming
cannot make a direct contribution to solving the first difficulty.

The second difficulty is much less fundamental and can be
overcome by the methods described by Gilmore and Gomory in
IBM Research Report No. 408. The essence of the idea is this.
One starts with a small arbitrary collection of patterns—just
enough patterns so that the customer’s demands can be met in
some fashion by using just these patterns and solving the asso-
ciated small linear programming problem. If there are n different
widths demanded, one need only use n patterns in this part of the
problem. Once this problem has been solved, one uses the prices
obtained from the linear programming solution to generate a new
cutting pattern that will lead to an improved solution.

I will first describe this process mathematically and then give
a short intuitive explanation.

The original problem is to solve a large linear programming
problem Az > d involving a large matrix A.

- . T

Iy

Each possible pattern is represented by a column. The entry
in the top row of the j* column a,; is the width of roll or the cost C
agsociated with a standard roll. (Minimizing the total paper width
used and minimizing the waste are, of course, equivalent ob-
jectives.) Solving a restricted linear programming problem, say
one involving only the first n 4 1 columns and the slacks (i.e.,
considering only these patterns) means findinga (N + 1 X N -+ 1)
matrix P = (p;;) such that Pd has only non-negative entries and
such that the top row II of P (which will automatically be of the
form (1, —1II, --- —IL,) with all II; > 0) has a non-negative
scalar product with each allowed column. Suppose we find such
a II. We now want to know whether or not an improvement can

IBM Systems Journal September 1962




be made by including some omitted column; i.e., if we multiply
the big matrix A by P, will there be any negative entries in the
top row? Or, alternatively, does there exist a column whose scalar
product with II is negative? Any such column is a string of non-
negative integers a; such that Y, aw; < W when w, is the ¢*
width and W the standard width, so the question is, do there exist
non-negative integers a, such that Z aw; < W and Z all; > C.
If we maximize ) a.II; subject to D a;w; < W we can easily test
afterward to see if the maximum value exceeds C, so the essential
problem that must be solved is

max Z,,.H,.
2w W

where the a; are non-negative integers. It is fortunate that this
maximizing problem, which seeks a new pattern for us, is of a
recognizable type, for it is the so-called ‘“knapsack problem”
which has been the subject of several articles, especially that of
Dantzig, “Discrete Variable Extremum Problems,” Operations
Research Volume 5, No. 2.

The “knapsack problem’” gets its name from the following
intuitive interpretation—the single inequality appearing is taken
as the capacity of the soldier’s knapsack; that is, it represents the
most weight which he can reasonably carry. The w, are the weights
of the individual articles which he might put into the knapsack
and the II, represent the values to him of each article. His problem
is to select how much of each article to include in the knapsack
so that the weight limit is not exceeded and he carries the most
valuable articles possible. This is the problem of selecting the a,.

As these articles point out, the “knapsack problem’ can be

resolved by the techniques of dynamic programming (Bellman,
Dynamic Programming, Princeton University Press, 1957). In
our case, this means that we introduce the function ¢, (z), defined
as being the solution to a problem in which use of the first m articles
only is allowed and the weight limit, instead of being W is z.
The function ¢,(z) can be computed recursively by means of the
formula

¢.() = max a1, + Cni(& — aw,.)}

0Law, <z

which says, essentially, that the m article, x capacity, knapsack
problem can be reduced to the m — 1 problem by considering
each possible amount of the mt™ article and combining it with the
best possible use of the remaining available weight in the knap-
sack. By means of this recursion formula, ¢, can be computed
from a knowledge of ¢,_; and this process iterated until ¢, is at
hand where n is the number of articles. Then, c¢,(w) gives the
value of the solution to the maximizing problem, and the q;
that actually attain that value are easily obtained by the standard
methods of dynamic programming. Although the dynamic pro-
gramming approach to the knapsack problem is the easiest one

IBM Sy s Journal Sept




to describe, other approaches are possible and sometimes better;
one of these, which is rather difficult to describe briefly, is, in
fact, being used in our latest program. (See P. C. Gilmore, ‘“An
Algorithm for the Generalized Knapsack Problem,” IBM Research
Note NC-15.)

Reverting to a more intuitive description, we can say this.
One obtains from the linear programming solution a price II;
for each width demanded. What these II; measure is how much
it costs to produce rolls of that width using present cutting
patterns. With present patterns, some widths may be easy or
cheap to obtain and others expensive. If then a special algorithm
is used to generate a new pattern to provide widths which are
currently difficult or costly to obtain, it will produce an improve-
ment over the present methods. This is the function of the knap-
sack sub-routine. Once the new pattern is discovered, it is added
to the problem (another pattern automatically drops out), and

_the present solution is improved. This leads to the solution of a
. new sub-problem, a new vector II, etc. This process is iterated
until a solution is reached which no further pattern ean improve,
and this is, of course, optimal.

Using this technique, it has been possible to solve on the IBMg
7090 problems involving very large numbers of patterns and to
obtain an answer that uses the best possible combination. This
approach, in addition to considering all possibilities, has the
following practical advantage—it is only necessary to load the
machine with the available roll widths of the customers’ demands.
The machine itself generates the patterns as they are required. It is
not necessary to create, maintain or change a library of useful
patterns, W. E. Winans of IBM, Green Bay, Wisconsin, is cur-
rently writing an IBM 1620 program based on this technique.

Of course, the problem we have described is the very simplest
one and in the very simplest form. I will cite a few complications.

1. Not all patterns of cutting are allowable because the cutting
machines have only a certain number of knives.

2. The customers don’t want rolls of paper but want sheets whose
length as well as the width is specified.

The first of these complications can be dealt with quite easily.
By certain modifications in the sub-routine, patterns whose
cutting would require too many knives can be eliminated from
consideration. The second is much more difficult, and I do not
know of any fully satisfactory method of approach. For a fuller
description of the second difficulty, an excellent reference is the
paper by P. F. Reith cited earlier.

The second complication leads naturally to consideration of
the so-called two-dimensional Trim Problem. This problem is
encountered in metal industries where, instead of cutting widths
from a roll, rectangles of different sizes are to be cut from large
rectangular sheets. Linear programming can again be applied and
the two technical difficulties occur again, with the number of
possibilities occurring under the second difficulty being even
greater than before. However, the application of the remedy

IBM Systems Journal September 1962




described above does not appear to be easy. Still further com-
plications are being investigated by Helmut Maak, IBM Muhl-
heim, Germany.

Still other variants, both of problem and technique, are pos-
sible. Reith has studied the very interesting inverse problem; i.e.,
given a demand for paper, what width paper machine; i.e., what
standard roll is best? Also, in Europe, M. Genuys of IBM Paris
has done work on a column-generating technique that uses integer
programming at the point where dynamic programming was
used in the method described above. Here in the United States,
C. E. Berry of IBM Portland has a 1620 program which gives an
approximate solution to the problem and proceeds by quite dif-
ferent methods—no linear programming is employed. A technical
description of this work will be available soon.

It seems likely that various forms of the Trim Problem will
be with us for some time to come,

On modifying the 1620 ADD table
by G. Gerson

The fact that arithmetic is performed on the IBMg 1620 Data
Processing System by means of TABLE LOOKUP provides an
opportunity for introducing special operations which may be
executed by suitable table modification.

It is the purpose of this note to suggest, by means of an ex-
ample, that many practical problems may be resolved by this
technique. The problem faced was as follows.

A 40-digit field was to be tested. Each of the digits of this
field arose as the result of a physical test, and was independent
of each of the other digits in the field. The physical tests were
associated with a production process, and the accompanying
computations had to be performed in real time. The field was to
be compared with two other 40-digit fields called the upper limii
field and the lower lLimit field. The requirement was that each
digit of the original field had to be less than or equal to the corre-
sponding digit of the upper limit field and greater than or equal
to the corresponding digit of the lower limit field. Furthermore,
there were 96 sets of these upper and lower limit fields. In the
worst, possible case, the original field had to be compared to all
96 sets, and the real time requirements were such that all com-
parisons had to be performed on the 1620 in one second. A careful
timing estimate using the COMPARE operation (which required
that the digits be stripped away and tested one by one) indicated

IBM Systems Journal September 1962






