
“Decision” tables are introduced with reference to business data
processing. A method of verifying both the completeness and con-
sistency of a problem description is given.
0 The conversion of tables to computer programs i s considered and a
technique of obtaining a computer program which minimizes the
branching requirements with respect to both memory and execute
time is included. Program debugging and program modification are
also discussed.

Tables, flow charts, and program logic
by M. Montalbano

The kind of table which forms the basis of tabular techniques tables
has four parts so that the information displayed is sorted into
four groups. The parts of the table are described as: the condition
stub, which names logical variables; the condition entry, which
lists permissible combinations of values for the logical variables;
the action stub, which names action variables; and the action
entry, which lists sequences of values for the action variables.

Each set of logical variable values in the condition entry is
associated with a set of action variable values in the action entry.
Such an association is called a rule. A rule is thus of the form:
“If A and B and C and . . . are true, then take consecutive actions
P and Q and R and . . .”

with three product lines, several classes of customers, and a dis- example
count and payment structure which depends upon class of custo-
mer, product line, and dollar amount of invoice. These variables
are as follows:
product lines (1) engines (2) pumps (3) fans
Glasses of customers (1) retail (2) government agencies

(3) engine agents (4) pump agents
(5) pump distributors (6) fan distributors

dollar ranges (1) less than $10.00 (2) $10.00 to $49.99
(3) $50.00 to $99.99 (4) $100.00 or more

To illustrate, consider the billing procedure of a wholesaler preliminary

,,.,,.

The information listed in the example thus far is the raw
material for all decisions about discount and terms. It is also,

IBM Systems Journal September 1.969 51

except for minor differences in arrangement, a completed con-
dition stub.

Note the ready-made code by which reference can be made
to the varying combinations determining the wholesaler’s billing
decisions. A three-digit number, whose positions each represent
a value for one of the three kinds of variables listed (product,
customer and dollar range, in turn) can now completely describe
any set of factors: the code number 334, for example, designates an
order from an engine agent for a fan costing $100.00 or more.

In analyzing a system, one next determines which significant
combinations of logical variable values occur. The example has
three product lines, six classes of customers and four dollar amount
ranges. Thus, the total number of possible product-customer-
amount combinations is 72. Generally, however, not all possi-
bilities will occur. If, for example, no engine stocked costs less
than $50.00, no combinations which include both engine and
either code value 1 or 2 in the dollar range would ever occur in
actual practice. All such combinations could either be omitted
from consideration in the computer program, or included only to
check clerical consistency.

Of the combinations which do occur, some may not be signifi-
cant. Retail purchases, for example, may all be billed identically
irrespective of product type or cost. The product-line and dollar-
amount tests are thus not significant in this case, since, although
different logical combinations do occur, they do not affect the
action to be taken.

This requires a further extension of the coding scheme. In
the case of tests which are not significant, X replaces one of the
digits in the code. For example, X1X will indicate that retail
purchasers have only one rule applied to them whatever they
order and however much it costs.

Table 1 Billing procedure for sample wholesale problem

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

(1) engine (2) pump
(3) fan x X X 1 1 i 2 Z 2 2 Z 3 3 E l s e

(1) retail (2) gov’t

(5) pump dmt. (6) fan dlst. 1 2 2 3 3 3 4 4 5 5 5 6 6
(3) eng. &p!. (4) Pump a!$.

(1) lees than $10.00
(2) $10.00 to $49.99
(3) $50.00 to $99.99
(4) $100.00 or more

discount 0 15% 0 33y0 40% 10% 25% 10% 30% 33% 15% 25% 10% error

consignment no no no yes yes no yes no no no no no no

c.0.d. net net net net net net net 30 - 30- net net net
30 30 30 30 30 30 30 60- 60 - 30 30 30

90- 90-

One further convention completes the code for our present
purposes. A bar (-) over a digit indicates that it is the only one
not admissible in the position it occupies. Government agencies,
for example, may get discounts only on purchases totalling
$100.00 or more, irrespective of product class. The corresponding
coding would thus be X24 if the discount applied and X24 if it
did not.

It should now be possible to interpret Table 1, which dis-
plays all of the relevant facts. This table is divided into four parts
by intersecting vertical and horizontal double lines. The upper
left quadrant is the condition stub; the upper right is the con-
dition entry. The lower left is the action stub; the lower right the
action entry. The columns to the right of the vertical double line
describe the rules. These are (‘if. . . then . . .” statements in
which the “if” portion is described above the horizontal double
line and the (‘then” portion is described below it. For example,
the rules corresponding to columns 1, 2, 6, and 14 of Table 1 are,
respectively, as follows.

rule 1 If order is from a retail purchaser, then allow no discount,
do not ship on consignment, ship C.O.D.

rule 2 If order is from government agency and totals $100.00 or
more, then allow 15% discount, do not ship on consignment,
terms are net 30 days.

rule 6 If order is from an engine agent, but is not for an engine,
allow 10% discount, do not ship on consignment, terms are
net 30 days.

rule 1.4 If no one of the previous rules applies, a coding error has
been made. (The code 132, for example, would be an error,
since this company does not stock engines which cost less than
$50.00.)

The remainder of this paper will focus largely on the portion
of a table in which logical relationships are displayed-the con-
dition entry. The condition entry, especially when characterizing
a complex structure, is useful in:

programming to compile sets of branching instructions which
occupy minimum spa.ce in computer memory and which require
a minimum average number of executions,

analysis to make easy, comprehensive checks on the complete-
ness and consistency of sets of logical alternatives,

debugging to maintain identifiers which will display the prior
‘(branch history” of a program without breakpoint or state-
ment-by-statement monitoring, and

modification to modify sets of branching instructions quickly,
accurately and with a full realization of all the implications
of such a modification.

For convenience, the codes identified in the previous section
will be called rule identifiers. The condition entry of Table 1 is
made up of rule identifiers: XlX, X24, X23, 133 - .%X, Else.
(This last is in a special category discussed below.) The condition
entry will now be regarded as a set of rule identifiers and de-

IBM Systems Journal Seplember I969

condition
entry
usage

5s

Figure 1 Quick-rule method of deriving flow charts from tables

I I1 111 IV v VI VI1 VI11 I X x 1 2 3 4 5

1 1 1 1 1 2 2 2 2 2 5 5

1 1 1 2 2 1 1 1 1 2 7 3

1 2 3 3 3 1 2 3 3 4 2 2 5 0

1 2 2 2 3 2 2 2 2 2 0 8 0

1 2 2 2 2 1 1 1 1 1 6 4

1 2 2 3 3 1 2 2 3 3 2 4 4

3 4 4 5 5 1 1 2 2 3 2 2 2 2 2

I V X
”-

1 1 2

1 2 2
”_

”_

1 3 0

00 2
”-

”_

1 2 1

1 3 3

3 5 3

”_

”_

”-

I1 I11 IV VI VI1 VI1 IX 1 2 3 4 5

1 1 1 2 2 2 2 3 4

1 1 2 1 1 1 1 6 0

0 2 4 2 3 3 1 2 3 3

2 2 2 2 2 2 2 7

4 3 2 2 2 1 1 1 1

2 2 3 1 2 2 3 0 4 2

4 4 5 1 1 2 2 2 2 2 0

I1 111 VI1 VI11 I X 1 2 3 4 5

1 1 2 2 2 2 3

1 1 1 1 1 5

2 3 2 3 3 2 3

2 2 2 2 2 5

2 2 1 1 1 3 2

2 2 2 2 3 4 0

4 4 1 2 2 0 2 2

VI1 IX

2 2
”

I1 I11 VI11

1 1 0

1 2 3 4 5

2 0
”

1 1 1 3 1 1
”

0 3 3 2 3

2 2 2 2 2
”

2 2 1 4 1 1
”

2 2 2 3
”

0 2
”

4 4 2 4 0 2

6.4 IBM Systems Journal September 1969

I tailed consideration will be given to each of the areas cited above.

identification of ten pipe products is introduced in Table 2.
One with redundant information was chosen intentionally to
illustrate the elimination of redundancy by means of rule
identifiers.

The two programming objectives are to minimize (1) the
number of branching instructions in memory and (2) the average
number of executed branching instructions.

For simplicity, assume binary branching, though the argu-
ments given would be equally valid for other types. Since differenti-
ation among the ten products is required, the minimum number
of binary branching instructions will be nine. If the ten products
occur with equal frequency, the theoretical minimum average
number of branching instructions executed would be log, 10 = 3.32.

Figures 1 and 3 illustrate two different methods of converting

To examine programming, another example which requires programming

the condition entry of Table 2 to a set of branching instructions.
~ ~ ~ Y ~ ~ f r ~ ' ' ~ a ~ ~ ~ ~

Figures 2 and 4 display the resulting flow charts. Both flow charts by quick-rule method I
have nine branchpoints (the minimum number); but one will
require an average of 5.4 executed branch steps compared to 3.4
for the other.

The procedure followed in Figure 1 will be called the quick-
rule method. In the quick-rule method, the objective is to make
as soon as possible those tests which will isolate a rule. The pro-
cedure of Figure 3 will be called the delayed-rule method. In the
delayed-rule method, the objective is to delay as long as possible
the testJs which isolate rules.

Consider Figure 1. At the top of the page is the condition
entry portion of the original table, represented now as a set of ten
rule identifiers labelled, as they are in Table 2, with the Roman
numerals I-X. To its right is a seven-by-five array which dis-
plays a row-by-row count of digit occurrences in the condition

Table 2 Condition stub and condition entry for sample pipe problem

I I1 111 I V v VI VI1 VI11 IX x

(1) black (2) galvanized I 1 1 1 1 1 2 2 2 2 2

(1) single length
(2) double length 1 1 1 2 2 1 1 1 1 2

(1) plain end (2) threaded only
(3) threaded and coupled
(4) threaded one end 1 2 3 3 3 1 2 3 3 4

(1) light wall (2) standard wall
(3) heavy wall 1 2 2 2 3 2 2 2 2 2

(1) unoiled (2) oiled 1 2 2 2 2 1 1 1 1 1

(1) uniform (2) semi-random
(3) random 1 2 2 3 3 1 2 2 3 3

(1) 1-inch (2) l%-inch
(3) 2-inch (4) 2X-inch
(5) 4-inch 3 4 4 5 5 1 1 2 2 3

Figure 3 Delayed-rule method of deriving flow charts from tables

I I1 I11 IV V VI VI1 VI11 IX x

I

I I1 I11 IV v VI VI1 VI11 I X x

2 1 2

IV V

2 1 2 3 1 3

VI1 VI11 VI IX X I1 I11

2 1 3

I

I11 V VI11 VI IX X I
entry. This array is called the row count matrix. The entries in this
matrix tell, for the row in which they appear, how many times a 1
occurs in the condition entry, how many times a 2 occurs, etc.

Looking at the first row of the row count matrix, observe that
1 occurs five times in the first row of the condition entry, as does 2.

66 IBM Systems Journal September 1962

Figure 4 Flow chart derived from Table 2 by delayed-rule method

Similarly, the third row is seen to be made up of two Its, two 2’s’
five 3’s and one 4.

In the procedure illustrated in Figure 1, those questions are
asked which will determine a rule as quickly as possible. This is
accomplished by looking for the smallest number in the row
count matrix and asking the question associated with this number.
In Figure 1, the smallest number in the row count matrix is 1
which occurs three times. These 1’s indicate that there is one
occurrence of a 4 in row 3; one occurrence of a 3 in row 4, and one
occurrence of a 1 in row 4. The corresponding questions are:
“Is this product threaded on one end?”, “Is this product heavy-
wall?” and “Is this product light-wall?” An affimative answer to
one of these questions gives corresponding identification of the
product as X, V or I. The first three branchpoints of Figure 2
ask these questions.

These products are now eliminated from further consideration.
The condition entry is thus reduced to seven columns. The row
count matrix for this reduced condition entry shows four 1’s.
In this case, however, the 1’s occur in pairs, so only two rules can
be isolated a t this stage; rules IV and VI. Rule IV can be selected
on the basis either of a 2 in the second position or a 5 in the
seventh position. Similarly, rule VI can be isolated on the basis
either of a 1 in the third position or a 1 in the sixth position. The
circles in selected rules IV and VI show the tests actually made
in the flow chart of Figure 2 ; the checkmarks show the alternative
tests which could have been made. The remaining steps follow in
the same manner. The complete flow chart (Figure 2) is the end
result of the process.

As previously noted, this flow chart is efficient with respect
to storage but not efficient with respect to average execution time.
Let us consider Figure 3 to see how the tests can be scheduled so as
to minimize average execution time.

I B M Systems Journal September 1962 67

In Figure 3 (in which we omit the row count matrix and the
untested rows in the condition entry), tests are scheduled to
delay rule identification as long as possible. The procedure em-
ployed might be described as “Ask those questions first which
will make the two differentiated groups of rule identifiers as
similar in size as possible.” This procedure is illustrated in Figures
3 and 4. If the rules are of equal frequency, the flow chart of
Figure 4 will result in an average number of 3.4 branch-instruction
executions per product. Like its predecessor, the flow chart of
Figure 4 also requires minimum memory space. (The numbers
in brackets and parentheses which are shown in Figure 4 will be
discussed later.)

If the rules were not of equal frequency, but their relative
frequencies were known, the “minimum-average-path” principle
just described would require only minor modification. Each rule
would have its relative frequency associated with it as a “weight.”
Instead of a row count matrix, one would have a row weight count
matrix. The objective would then become to divide the condition
entry into groups of as nearly equal weight as possible.

Descriptions of complicated sets of interacting decisions are
analysis frequently inconsistent or incomplete so that analysis is manda-

tory. The rule identifiers provide a ready means to check sets of
such statements for both completeness and consistency. This
kind of checking can be done: first, by the system analyst to
establish his own understanding; second, by the programmer to
check the system analysis; and third, by the compiler to check
the program. A limited discussion supporting this statement is
given in the remainder of the paper. A more thorough discussion
would require a paper in its own right.

Consider the occurrence of a (‘don’t-care’’ indication in the
:ompleteness condition entry and its effect on the “table-to-flow-chart” pro-

cedure discussed above.
Rule 2 in the wholesaling example (Table 1) has X24 as its

rule identifier. The X-the ((don’t care” indicator-in this case
signifies that any permissible digit in the first position will lead
to rule 2; in other words, 124, 224 and 324 are equivalent rules-
as long as our order is from a government agency and is for a total
amount of $100.00 or more, the 15% discount will apply, whether
the article purchased is an engine, a pump, or a fan. Thus, the
effect of a ((don’t-care” indicator is to consolidate several columns
into one-the number of columns depending upon the number of
alternatives possible for the logical variable to which the ‘(don’t-
care” applies. If two ((don’t-care” indications occur in the same
column, the number of columns consolidated into one is m X n,
where m and n are the number of alternative values for the first
and second logical variables, respectively. The extension to three
or more (‘don’t-care” entries is done similarly.

Table 3, and Figures 5 and 6 may make this clearer by illus-
trating the relationship between compound rules (those in which
‘(don’t-care” entries occur) and simple rules (those in which each
variable is specified exactly).

Table 3 is an uncoded table or, rather, the uncoded condition

58 IBM Systems Journal September 196s

Toble 3 Condition stub and condition entry of sample table containing “don‘t
core“ entries

1 2 3 4 5 6 i 8

A eq. 2.5 I’ Y I’ X N N Else

Bvs. 19 < < = = = = >

C = p = p = Q

D is pos. Y X Y N

stub and condition entry of a table. The “don’t-care’’ condition
is indicated by the absence of an entry in any cell where the test
is not significant. Note that one of the rules in this table is a
catch-all rule called “Else.” This is the rule that applies if no
other rule holds.

Figure 5 shows just the condition entry portion of the same
table, first as a coded set of compound rules in which “don’t-care”
is indicated by the presence of an X in a cell and, second, as the
equivalent set of simple rules into which the compound rule table
can be analyzed.

In the simple rule table, we have allowed four columns for
rule 8-the Else rule. The total number of simple rules possible
is the same as the total number of rule identifiers we can write.
In this case, the rule identifiers are of the form a b c dl where a
can be either 1 or 2; b can be either 1, 2, or 3; c can be either 1
or 2; and d can be either 1 or 2. The total number of different rule
identifiers is thus 2 X 3 x 2 x 2 = 24. We get 20 of these 24
from the decomposition of compound rules 1-7 into simple rules.
The remaining four must therefore make up the simple rules
combined into rule 8.

Figure 6 illustrates some of the further analysis possible. Part
I of Figure 6 is merely a copy of the compound rule table of
Figure 5 written in more compact form, with a number under
each compound rule which tells how many simple rules it repre-
sents.

Part I1 is a row count matrix for rules 1-7. Note that the count
is not the actual number of occurrences of X , 1, 2, or 3 in Part I,

Figure 5 Coded condition entry portion of Toble 3

1 2 3 4 5 6 7 8

A (2) 1 1 1 2 2 2 X E
B (2) 1 1 2 2 2 2 3
C (2) X X X 1 1 2 X
D (2 1 1 2 X 1 2 X X

1 2 3
1 1 1
2 2 2
1 1 2
1 2 1

1 2 3 4 5 6 7

B 1 1 2 2 2 2
1 1 2 2 1 1 2 2

D l 1 1 2 1 2 1 2 1 2

4 5 6
1 2 2 2 2 1

M 2 2 2 3 2 1 1

__
1
3
1
2

~

7
1 1 2
3 3 3
2 2 1
1 2 1

-
2
3
1
2 -

Figure 6 Analysis of ”Else” rule in Toble 3

Part I

1 2 3 4 5 6 7 8

Part I1

(1-7)
x 1 2 3

Part I11

1 2 3
(1-7)

8 8 4
0 4 8 8

16 2 2
14 3 3

12 8

10 10
10 10

4 8 8
4

4
2 2
2 2

but the weighted number of occurrences-each occurrence of a
digit adds the column weight (the number at the foot of the
column in Part I) to the row count.

Part I11 shows the row count matrix for rules 1-7 after the
X’s have been converted into the 1’s and 2’s, or the l’s, 2’s, and
3’s they represent. In the first row of Part 11, for example, the
count in the X-column is 8. Since A , the variable in the first row,
takes on only the values 1 and 2, half of the simple rules covered
by the X have 1’s in this digit position and half have 2’s. Thus 4
added to the 1-count and 4 to the 2-count gives the Part I11
entries in that row; twelve 1’s and eight 2’s. (Part I11 could, of
course, have been obtained directly from the simple rule table
of Figure 5.)

Part IV of Figure 6 displays the row count matrix for rule 8,
the Else rule. This is obtainable directly from the Part I11 row
count matrix. In the digit positions corresponding to two-valued
variables, the 24 simple rules will divide into twelve 1’s and
twelve 2’s. In the three-variable position, the simple rules will
divide into eight l’s, eight 2’s, and eight 3’s.

An inspection of Part I11 shows which digit values are missing
in each row. These missing digit values must occur in the Else
column. This information is enough to enable writing out the
Else row count matrix. (We could also go on to write out all the
simple rules which make up the Else column, if we chose.)

At the end of a procedure such as this-one which can be
carried out easily by the system analyst, the programmer, or the
computer-the complete set of alternatives implicit in the set of
logical variables specified in the condition stub has been verified.
For every possible combination, the action to be taken has been
specified.

Consistency as well as completeness can be checked as part of
consistency the same procedure. Suppose the original Table 3 had contained

a rule R with entries as shown in Table 4. The rule identifier for
R is 1212. Rule R is thus seen to be inconsistent with rule 3, since
the rule identifier of rule 3 is 12XX-which includes 1212 as one

60 IBM Systems Journal September 1962

of the simple rules of which it is made up. In other words, the Table 4
statement that one action is to be taken whenever A = 1 and
B = 2 is inconsistent with the statement that a different action
is to be taken if A = 1, E = 2, C = 1, and D = 2.

The “don’t-care” entries modify somewhat the flow-chart
optimization procedure described above. The additional principle
required can be described briefly as: “Delay as long as possible
any test in a row in which X’s appear.” E

Applying this principle and the delayed-rule principle pre-
viously described we get Figure 7: a flow chart for the problem
originally described by Table 3. It contains seven branchpoints,
which is the minimum to distinguish among eight rules. The
branch segments are labelled with partial or complete rule identi-
fiers. (Note that the rule identifier for the Else rule is 21XX-
which is in keeping with the row count matrix information.)
These branch segment labels appear above or to the left of the
branch segment which they label.

The number in square brackets (below or to the right of each
branch segment) is the number of rules included in that segment.
There are 24 rules to apportion. The first test splits these 24 into
groups of 8 and 16. In the %branch, the second test splits these
into groups of 4 and 4. (One of these groups turns out to be the
compound rule, 3.) In the 16-branch, the second test splits the
rules up into groups of 8 and 8. (One of these groups turns out
to be rule 7.) The splitting process continues until all rules have
been identified. If rules 1 through 8 occur with equal frequency,
the average is 3.25 branch instruction executions per rule.

the lines connecting branchpoint symbols. These codes record the
branch history of the line segment next to which they appear.
A code like i?XXX?X (Figure 4)) for example, means that
variables one, two and six have been tested prior to the point
in the flow chart at which this number appears, and that the tests
have determined that the current value of the first variable is not
1, the second variable is not 2, and the sixth variable is not 2.

These codes are, in effect, incomplete rule identifiers when they

Figures 4 and 7 display digital codes which are associated with debugging

Figure 7 Flow chart derived from Table 3 by modified delayed-rule method

22XX 1 [4] XlXX I [El

2211 r11 h
1 I B M Systems Journal September 1962 61
I

occur between successive branchpoints, and complete rule identi-
fiers when they occur between branchpoints and action boxes.
If a computer program were written so as to maintain the current
rule identifier (complete or incomplete) in a standard location
available to a debugging program, the information provided by
such a rule identifier would be a powerful debugging aid. It would
also provide assistance in systematic program checkout and
diagnostics, since an automatic means to cycle through all per-
missible rule identifiers could be devised for each program so
constructed.

As previously noted, the numbers in square brackets which
accompany the rule identifiers merely record how many simple
rules are contained in them. The large numbers associated with
the rules of Figure 4 measure the large amount of redundancy in
the system.

The point about modification can readily be made. Consider
program the pipe program described by Table 2. Suppose it is wished to
modification discontinue manufacturing light-wall pipe and substitute a new

product: galvanized, double-length, threaded-one-end, heavy-
wall, oiled, semi-random, 4-inch pipe. All that is needed is to
strike one column from the table and add another-an easy
transition compared to the difficult redrawing of a flow chart
which this same problem would require.

The preceding discussion, in which tables and their correspond-
the use of ing flow charts have been prepared in conjunction, serves to indicate
tables the relative merits of the two forms of display of logical structure.

The table is superior to the flow chart in displaying computer-
independent information; the flow chart is superior in displaying
computer-dependent information. If the problems discussed above
were to be programmed for machines which did branching by
some other method than binary choice, the flow charts would be
different but the tables would be unchanged. In this sense, tables
are problem-oriented; flow charts are computer-oriented.

There is another aspect in which tables are problem-oriented.
We have been considering primarily the condition entry portion
of the table, since this is the point of greatest difference with
past practice. But the division of the table into its four sections is,
in itself, a useful aid in problem description. The condition stub
is a list of all the questions and permissible answers pertinent to a
particular problem. The condition entry is a list of all permissible
combinations of answers. The action stub is a list of all the actions
pertinent to a particular problem. The action entry is a list of the
permissible sequences of actions. The rules serve to associate a
specific set of answers with a particular sequence of actions.

The question arises as to the type of problem for which tabular
techniques are effective. In some types of problems the stages of the
accompanying procedural study can be characterized by the
following four kinds of questions.

1 ((How do you know when to or how to do such-and-such?’’
2 (‘DO this condition and that condition ever occur together?”
3 “What steps might you have to take in doing such-and-such?”

62 IBM Systems Journal September 196d

4 “When this condition and this condition and this condition,
etc., occur together, which steps do you actually take?”

Since the four sections of a table correspond functionally to
these four kinds of questions, tabular techniques should be ad-
vantageous in the associated types of problems.

vestigation: tables in their present form can become unwieldy remarks
when problem segments are prefaced by one or two simple de-
cisions rather than six or seven complicated ones; it would some-
times be convenient to have rules in a table refer to other rules in
the same table; rule identifiers in which the variable values are
connected by (‘or” rather than ((and” would sometimes be a
convenience, and so on. Such further investigation would be
desirable, since it would enhance the already considerable merit
of tables as a means to implement program logic.

There are, of course, many problems meriting further in- concluding

BIBLIOGRAPHY
Grad, Burton, “Tabular Form in Decision Logic,” Dafumation, July,

1961.
Kavanagh, Thomas F., “TABSOL-A Fundamental Concept for Systems

Oriented Languages,” PTOCeedingS of the 1960 Eastern Joint Computer Con-
ference.

Evans, OrreD Y., “Advanced Analysis Method for Integrated Electronic
Data Processing,” IBM General Information Manual, #F20-8047.

1 IBM Systems Journal September 1988 6s

