
“Decision” tables are introduced  with reference to business  data 
processing. A method of verifying both the completeness  and con- 
sistency of a problem  description is given. 
0 The  conversion of tables to computer  programs i s  considered and a 
technique of obtaining a computer  program  which  minimizes the 
branching  requirements  with respect  to both memory  and execute 
time is included.  Program debugging and  program  modification are 
also discussed. 

Tables, flow charts, and program logic 
by M.  Montalbano 

The kind of table which forms the basis of tabular techniques tables 
has  four parts so that  the information displayed is sorted  into 
four groups. The  parts of the  table  are described as:  the condition 
stub, which names logical variables; the condition  entry, which 
lists permissible combinations of values for the logical variables; 
the action  stub, which names action  variables; and  the action 
entry, which lists sequences of values for the action variables. 

Each  set of logical variable  values in the condition entry is 
associated with a  set of action  variable values in  the action entry. 
Such an association is called a rule. A rule is thus of the form: 
“If A and B and C and . . . are  true,  then  take consecutive actions 
P and Q and R and . . .” 

with three  product lines, several classes of customers, and a dis- example 
count  and  payment  structure which depends upon class of custo- 
mer, product line, and dollar amount of invoice. These  variables 
are  as follows: 
product  lines (1) engines ( 2 )  pumps (3 )  fans 
Glasses of customers (1) retail ( 2 )  government agencies 

(3 )  engine agents (4) pump  agents 
( 5 )  pump  distributors (6) fan  distributors 

dollar ranges (1) less than $10.00 (2) $10.00 to $49.99 
( 3 )  $50.00 to $99.99 (4) $100.00 or more 

To illustrate, consider the billing procedure of a wholesaler preliminary 

,,.,,. 

The information listed in the example thus  far is the raw 
material for all decisions about discount and terms. It is also, 
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except  for  minor differences in arrangement,  a  completed con- 
dition  stub. 

Note  the ready-made code by which reference can  be  made 
to  the varying  combinations  determining the wholesaler’s billing 
decisions. A  three-digit  number, whose positions  each  represent 
a value  for  one of the  three  kinds of variables  listed  (product, 
customer and dollar  range,  in turn)  can now completely  describe 
any  set of factors: the code number 334, for example, designates an 
order  from an engine agent  for a  fan  costing $100.00 or  more. 

In  analyzing a system,  one  next  determines which significant 
combinations of logical variable  values  occur. The example has 
three  product lines, six classes of customers and four  dollar  amount 
ranges. Thus,  the  total  number of possible product-customer- 
amount combinations is 72. Generally, however, not all possi- 
bilities will occur. If, for example, no engine stocked  costs less 
than $50.00, no  combinations which include both engine and 
either code value 1 or 2 in the dollar  range would ever  occur in 
actual practice. All such  combinations could either  be  omitted 
from  consideration  in the computer  program, or included  only to 
check clerical consistency. 

Of the combinations which do occur, some may  not be signifi- 
cant.  Retail purchases,  for example, may  all be billed identically 
irrespective of product  type  or cost. The product-line and dollar- 
amount  tests  are  thus  not significant in  this case, since, although 
different logical combinations  do occur, they do not affect the 
action to be taken. 

This requires a further extension of the coding scheme. In  
the case of tests which are  not significant, X replaces  one of the 
digits  in the code. For example, X1X will indicate that retail 
purchasers have only  one  rule  applied to  them  whatever  they 
order and however much it costs. 

Table 1 Billing procedure  for sample wholesale problem 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

(1) engine (2) pump 
(3) fan x X X 1 1 i 2 Z 2 2 Z 3 3 E l s e  

(1) retail (2) gov’t 

(5) pump  dmt. (6) fan dlst. 1 2 2 3 3 3 4 4 5 5 5 6 6  
(3) eng. &p!. (4) Pump a!$. 

(1) lees than  $10.00 
(2) $10.00 to $49.99 
(3) $50.00 to $99.99 
(4) $100.00 or more 

discount 0 15% 0 33y0 40% 10% 25% 10%  30% 33% 15% 25% 10% error 

consignment no no no yes yes no yes no  no  no  no  no no 

c.0.d. net net net net net net net 30 - 30- net net net 
30  30 30 30  30  30  30 60- 60 - 30 30 30 

90- 90- 



One further convention completes the code for our present 
purposes. A bar (-) over a digit indicates that  it is the only one 
not admissible in the position it occupies. Government agencies, 
for example, may get discounts only on purchases totalling 
$100.00 or more, irrespective of product class. The corresponding 
coding would thus be X24 if the discount applied and X24 if it 
did not. 

It should now be  possible to  interpret Table 1, which  dis- 
plays all of the relevant facts. This  table is divided into four parts 
by intersecting vertical and horizontal double lines. The upper 
left quadrant is the condition stub;  the upper  right is the con- 
dition entry.  The lower left is the action stub;  the lower right the 
action entry.  The columns to  the right of the vertical double line 
describe the rules. These are (‘if. . . then . . .” statements in 
which the  “if” portion is described above the horizontal double 
line and  the  (‘then” portion is described below it. For example, 
the rules corresponding to columns 1, 2, 6, and 14 of Table 1 are, 
respectively, as follows. 

rule 1 If order is from a  retail purchaser, then allow  no discount, 
do not ship on consignment, ship C.O.D. 

rule 2 If order is from government agency and  totals $100.00 or 
more, then allow 15% discount, do not ship on consignment, 
terms  are  net 30 days. 

rule 6 If order is from an engine agent, but is not  for an engine, 
allow 10% discount, do not ship on consignment, terms  are 
net 30 days. 

rule 1.4 If no one of the previous rules applies, a coding error  has 
been made. (The code 132, for example, would  be an error, 
since this company does not stock engines which cost less than 
$50.00.) 

The remainder of this paper will focus largely on the portion 
of a table  in which  logical relationships are displayed-the  con- 
dition entry.  The condition entry, especially  when characterizing 
a complex structure, is useful in: 

programming to compile sets of branching instructions which 
occupy minimum spa.ce in computer memory and which require 
a minimum average number of executions, 

analysis to make easy, comprehensive checks on the complete- 
ness and consistency of sets of logical alternatives, 

debugging to maintain identifiers which  will display the prior 
‘(branch  history” of a program without  breakpoint or state- 
ment-by-statement monitoring, and 

modification to modify sets of branching instructions quickly, 
accurately and with a full realization of all the implications 
of such a modification. 

For convenience, the codes identified in the previous section 
will be called rule  identifiers. The condition entry of Table 1 is 
made up of rule identifiers: XlX, X24, X23, 133 - .%X, Else. 
(This  last is in a special category discussed  below.) The condition 
entry will  now be regarded as a  set of rule identifiers and de- 
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Figure 1 Quick-rule method of deriving flow charts from  tables 
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I tailed consideration will be given to each of the  areas cited above. 

identification of ten pipe products is introduced  in  Table 2. 
One with  redundant  information was chosen intentionally to 
illustrate the elimination of redundancy  by  means of rule 
identifiers. 

The two programming objectives are  to minimize (1) the 
number of branching instructions in memory and (2) the average 
number of executed branching  instructions. 

For simplicity, assume binary branching, though the argu- 
ments given would be equally valid for  other  types. Since differenti- 
ation among the  ten products is required, the minimum number 
of binary branching instructions will be nine. If the  ten products 
occur with  equal frequency, the theoretical minimum average 
number of branching  instructions executed would be log, 10 = 3.32. 

Figures 1 and 3 illustrate two different methods of converting 

To examine programming, another example which requires programming 

the condition entry of Table 2 to a set of branching  instructions. 
~ ~ ~ Y ~ ~ f r ~ ' ' ~ a ~ ~ ~ ~  

Figures 2 and 4 display the resulting flow charts.  Both flow charts by quick-rule method I 
have nine branchpoints  (the minimum number);  but one will 
require an average of 5.4 executed branch  steps compared to 3.4 
for the  other. 

The procedure followed in  Figure 1 will be called the quick- 
rule method. In  the quick-rule method, the objective is to make 
as soon as possible those  tests which will isolate a rule. The pro- 
cedure of Figure 3 will be called the delayed-rule method. In  the 
delayed-rule method, the objective is to delay as long as possible 
the testJs which isolate rules. 

Consider Figure 1. At  the  top of the page is the condition 
entry portion of the original table, represented now as a  set of ten 
rule identifiers labelled, as  they  are  in  Table 2, with the Roman 
numerals I-X. To  its  right is a seven-by-five array which dis- 
plays  a row-by-row count of digit occurrences in the condition 

Table 2 Condition stub  and  condition entry for sample  pipe  problem 

I I1 111 I V  v VI  VI1  VI11  IX x 

(1) black (2) galvanized I 1 1 1 1  1 2 2 2 2  2 

(1) single length 
(2) double  length 1 1 1 2 2 1 1 1 1 2  

(1) plain end  (2) threaded only 
(3)  threaded  and coupled 
(4)  threaded one end 1 2 3 3 3 1 2 3 3 4  

(1)  light wall (2)  standard wall 
(3)  heavy wall 1 2 2 2 3 2 2 2 2 2  

(1) unoiled (2) oiled 1 2 2 2 2 1 1 1 1 1  

(1) uniform (2) semi-random 
(3)  random 1 2 2 3 3 1 2 2 3 3  

(1) 1-inch (2) l%-inch 
(3) 2-inch (4) 2X-inch 
(5) 4-inch 3 4 4 5 5 1 1 2 2 3  



Figure 3 Delayed-rule method of  deriving flow charts from tables 

I I1  I11 IV V VI  VI1  VI11  IX x 

I 

I I1  I11  IV v VI  VI1 VI11 I X  x 

2 1 2  

IV V 

2 1 2  3 1 3  

VI1 VI11 VI   IX X I1 I11 

2 1 3  

I 

I11 V VI11  VI  IX X I 
entry.  This  array  is called the row count matrix. The entries in this 
matrix tell, for the row  in  which they appear, how many times a 1 
occurs in the condition entry, how many times a 2 occurs, etc. 

Looking at the first row of the row count matrix, observe that 
1 occurs  five times in the first row of the condition entry,  as does 2. 
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Figure 4 Flow chart derived from Table 2 by delayed-rule method 

Similarly, the  third row is seen to be  made up of two Its, two 2’s’ 
five 3’s and one 4. 

In  the procedure  illustrated  in  Figure 1, those  questions are 
asked which will determine  a  rule  as  quickly as possible. This is 
accomplished by looking for the smallest  number  in the row 
count  matrix  and  asking  the question  associated  with this number. 
In  Figure 1, the smallest  number in  the row count  matrix  is 1 
which occurs three times.  These 1’s indicate that  there is one 
occurrence of a 4 in row 3; one occurrence of a 3 in row 4, and one 
occurrence of a 1 in row 4. The corresponding  questions  are: 
“Is this  product  threaded on one end?”,  “Is  this  product heavy- 
wall?” and “Is this  product light-wall?”  An  affimative  answer to 
one of these  questions gives corresponding  identification of the 
product as X, V  or I. The first three  branchpoints of Figure 2 
ask  these questions. 

These  products  are now eliminated  from further consideration. 
The condition entry  is  thus reduced to seven columns. The row 
count  matrix for this reduced  condition entry shows four 1’s. 
In  this case, however, the 1’s occur in  pairs, so only two rules  can 
be isolated a t  this  stage; rules IV  and VI.  Rule  IV  can be selected 
on the basis  either of a 2 in the second position or  a 5 in the 
seventh  position.  Similarly,  rule VI  can be  isolated on the basis 
either of a 1 in the  third position or  a 1 in the sixth position. The 
circles in selected rules IV  and  VI show the  tests  actually  made 
in the flow chart of Figure 2 ;  the checkmarks show the  alternative 
tests which could have been made. The remaining  steps follow in 
the same  manner. The complete flow chart (Figure 2) is the  end 
result of the process. 

As previously  noted, this flow chart  is efficient with  respect 
to  storage  but  not efficient with  respect to  average execution  time. 
Let  us consider Figure 3 to see how the  tests can  be scheduled so as 
to  minimize average  execution  time. 
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In Figure 3 (in which we omit the row count  matrix  and  the 
untested rows  in the condition entry),  tests  are scheduled to 
delay rule identification as long as possible. The procedure em- 
ployed might be described as “Ask those questions first which 
will make  the two differentiated groups of rule identifiers as 
similar in size as possible.” This procedure is illustrated  in Figures 
3 and 4. If the rules are of equal frequency, the flow chart of 
Figure 4 will result  in an average  number of 3.4 branch-instruction 
executions per  product.  Like its predecessor, the flow chart of 
Figure 4 also requires minimum memory space. (The  numbers 
in brackets and parentheses which are shown in Figure 4 will be 
discussed later.) 

If the rules were not of equal frequency, but  their relative 
frequencies were known, the “minimum-average-path” principle 
just described would require  only minor modification. Each  rule 
would have  its relative frequency associated with it  as a “weight.” 
Instead of a row count  matrix, one would have  a row weight count 
matrix. The objective would then become to divide the condition 
entry  into groups of as nearly  equal weight as possible. 

Descriptions of complicated sets of interacting decisions are 
analysis frequently inconsistent or incomplete so that analysis is manda- 

tory. The rule identifiers provide a ready  means to check sets of 
such statements for both completeness and consistency. This 
kind of checking can be done: first,  by the system  analyst to 
establish his own understanding; second, by  the programmer to 
check the system analysis; and  third,  by  the compiler to check 
the program. A limited discussion supporting  this statement is 
given in  the remainder of the paper.  A more thorough discussion 
would require  a  paper in its own right. 

Consider the occurrence of a (‘don’t-care’’ indication in the 
:ompleteness condition entry  and  its effect on the “table-to-flow-chart” pro- 

cedure discussed above. 
Rule 2 in the wholesaling example (Table 1) has X24 as  its 

rule identifier. The X-the ((don’t care” indicator-in this case 
signifies that  any permissible digit in the first position will lead 
to rule 2; in other words, 124,  224 and 324 are equivalent rules- 
as long as our  order is from a  government agency and is for  a total 
amount of $100.00 or more, the 15% discount will apply,  whether 
the article purchased is an engine, a pump,  or  a  fan.  Thus, the 
effect of a ((don’t-care”  indicator is to consolidate several columns 
into one-the number of columns depending upon the number of 
alternatives possible for the logical variable to which the ‘(don’t- 
care” applies. If two ((don’t-care”  indications occur in  the same 
column, the number of columns consolidated into one is m X n, 
where m and n are  the number of alternative values for the first 
and second logical variables, respectively. The extension to three 
or more (‘don’t-care”  entries is done similarly. 

Table 3, and Figures 5 and 6 may  make  this clearer by illus- 
trating  the relationship between compound rules (those  in which 
‘(don’t-care”  entries occur) and simple rules (those in which each 
variable is  specified exactly). 

Table 3 is an uncoded table  or,  rather,  the uncoded condition 
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Toble 3 Condition stub and condition entry of sample table containing “don‘t 
core“ entries 

1 2 3 4 5 6 i 8  

A eq. 2.5 I’ Y I’ X N N Else 

Bvs. 19 < < = = = = > 

C = p  = p  = Q  

D is pos. Y X Y N  

stub  and condition entry of a table. The “don’t-care’’ condition 
is indicated  by the absence of an  entry in any cell  where the  test 
is not significant. Note that one of the rules in  this  table is a 
catch-all rule called “Else.” This is the rule that applies if no 
other rule holds. 

Figure 5 shows just  the condition entry portion of the same 
table, first as a coded set of compound rules in which “don’t-care” 
is indicated by the presence of an X in a cell and, second, as  the 
equivalent set of simple rules into which the compound rule table 
can be analyzed. 

In  the simple rule table, we have allowed four columns for 
rule 8-the Else rule. The  total number of simple rules possible 
is the same as  the  total number of rule identifiers we can write. 
In this case, the rule identifiers are of the form a b c dl where a 
can be either 1 or 2; b can be either 1, 2, or 3; c can be either 1 
or 2;  and d can be either 1 or 2. The  total number of different rule 
identifiers is thus 2 X 3 x 2 x 2 = 24. We get 20 of these 24 
from the decomposition of compound rules 1-7 into simple rules. 
The remaining four must therefore make up  the simple rules 
combined into rule 8. 

Figure 6 illustrates some of the  further analysis possible. Part 
I of Figure 6 is merely a copy of the compound rule table of 
Figure 5 written  in more compact form, with a number under 
each compound rule which tells how many simple rules it repre- 
sents. 

Part I1 is a row count matrix for rules 1-7. Note that  the count 
is not  the  actual number of occurrences of X ,  1, 2, or 3 in Part I, 

Figure 5 Coded condition entry portion of Toble 3 

1 2 3 4 5 6 7 8  

A ( 2 ) 1 1 1 2 2 2 X E  
B ( 2 ) 1 1 2 2 2 2 3  
C ( 2 ) X X X 1 1 2 X  
D ( 2 1 1 2 X 1 2 X X  

1 2 3 
1 1 1  
2 2 2  
1 1 2  
1 2 1  

1 2 3 4 5  6 7 

B 1 1   2 2 2 2  
1 1 2 2 1 1 2 2  

D l 1   1 2 1 2 1 2 1 2  

4 5  6 
1 2 2 2 2 1  

M 2  2 2 3   2 1 1  

__ 
1 
3 
1 
2 

~ 

7 
1 1 2  
3 3 3  
2 2 1  
1 2 1  

- 
2 
3 
1 
2 - 



Figure 6 Analysis of ”Else” rule in Toble 3 

Part I 

1 2 3 4 5 6 7 8  

Part I1 

(1-7) 
x 1 2 3  

Part I11 

1 2 3  
(1-7) 

8 8 4  
0 4 8 8  

16 2 2 
14  3  3 

12 8 

10 10 
10 10 

4 8 8  
4 

4 
2 2  
2 2  

but  the weighted number of occurrences-each occurrence of a 
digit adds  the column weight (the  number at  the foot of the 
column in Part  I)  to  the row count. 

Part I11 shows the row count  matrix for rules 1-7 after  the 
X’s have been converted into  the 1’s and 2’s, or the l’s, 2’s, and 
3’s they represent. In  the first row of Part 11, for example, the 
count in the X-column is 8. Since A ,  the variable in the first row, 
takes on only the values 1 and 2,  half of the simple rules covered 
by  the X have 1’s in this digit position and half have 2’s. Thus 4 
added to  the 1-count and 4 to  the 2-count gives the  Part I11 
entries in that row; twelve 1’s and eight 2’s. (Part I11 could, of 
course, have been obtained directly from the simple rule table 
of Figure 5. )  

Part  IV of Figure 6 displays the row count matrix for rule 8, 
the Else rule. This is obtainable directly from the  Part I11 row 
count  matrix. In  the digit positions corresponding to two-valued 
variables, the 24 simple rules will divide into twelve 1’s and 
twelve 2’s. In  the three-variable position, the simple rules will 
divide into eight l’s, eight 2’s, and eight 3’s. 

An inspection of Part I11 shows  which digit values are missing 
in each row. These missing digit values must occur in the Else 
column. This information is enough to enable writing out  the 
Else row count  matrix. (We could also go on to write out all the 
simple rules which make up  the Else column, if  we chose.) 

At  the end of a procedure such as this-one which can be 
carried out easily by the system analyst, the programmer, or the 
computer-the complete set of alternatives implicit in the set of 
logical variables specified in the condition stub  has been  verified. 
For every possible combination, the action to  be  taken  has been 
specified. 

Consistency as well as completeness can be checked as  part of 
consistency the same procedure. Suppose the original Table 3 had contained 

a rule R with entries as shown in  Table 4. The rule identifier for 
R is  1212. Rule R is thus seen to be inconsistent with rule 3, since 
the rule identifier of rule 3 is  12XX-which includes 1212 as one 
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of the simple rules of which it is made  up. In other words, the Table 4 
statement  that one action is to be taken whenever A = 1 and 
B = 2 is inconsistent with the  statement  that a different action 
is to be  taken if A = 1, E = 2, C = 1, and D = 2. 

The “don’t-care” entries modify somewhat the flow-chart 
optimization procedure described above. The additional principle 
required can be described briefly as: “Delay  as long as possible 
any  test  in a row in which X’s appear.” E 

Applying this principle and  the delayed-rule principle pre- 
viously described we get  Figure 7: a flow chart for the problem 
originally described by  Table 3. It contains seven branchpoints, 
which is the minimum to distinguish among eight rules. The 
branch segments are labelled with  partial  or complete rule identi- 
fiers. (Note that  the rule identifier for the Else rule is 21XX- 
which is in keeping with the row count  matrix information.) 
These  branch segment labels appear  above  or to  the left of the 
branch segment which they label. 

The number in square  brackets (below or to the  right of each 
branch  segment) is the number of rules included in that segment. 
There  are 24 rules to apportion. The first test splits  these 24 into 
groups of 8 and 16. In  the %branch, the second test splits  these 
into  groups of 4 and 4. (One of these groups turns  out  to be the 
compound rule, 3.) In  the 16-branch, the second test  splits the 
rules up  into groups of 8 and 8. (One of these  groups turns  out 
to be rule 7.) The splitting process continues until all rules have 
been identified. If rules 1 through 8 occur with equal frequency, 
the average is 3.25 branch  instruction executions per rule. 

the lines connecting branchpoint symbols. These codes record the 
branch  history of the line segment next to which they appear. 
A code like i?XXX?X (Figure 4)) for example, means that 
variables one, two and six have been tested  prior to  the point 
in  the flow chart at which this  number  appears,  and that  the  tests 
have  determined that  the current  value of the first variable is not 
1, the second variable is not 2, and  the sixth  variable is not 2. 

These codes are, in effect, incomplete rule identifiers when they 

Figures 4 and 7 display digital codes  which are associated with debugging 

Figure 7 Flow chart derived from Table 3 by modified delayed-rule method 

22XX 1 [4] XlXX I [El 

2211 r11 h 
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occur between successive branchpoints, and complete rule identi- 
fiers  when they occur between branchpoints and action boxes. 
If a computer program were written so as to maintain the current 
rule identifier (complete or incomplete) in a standard location 
available to a debugging program, the information provided by 
such a rule identifier would  be a powerful debugging aid. It would 
also provide assistance in  systematic program checkout and 
diagnostics, since an  automatic means to cycle through  all per- 
missible rule identifiers could be devised for each program so 
constructed. 

As previously noted, the numbers in  square  brackets which 
accompany the rule identifiers merely record how many simple 
rules are contained in them. The large numbers associated with 
the rules of Figure  4 measure the large amount of redundancy in 
the system. 

The point  about modification can readily be made. Consider 
program the pipe program described by  Table 2. Suppose it is wished to 
modification discontinue manufacturing light-wall pipe and  substitute a new 

product: galvanized, double-length, threaded-one-end, heavy- 
wall,  oiled, semi-random, 4-inch  pipe.  All that is needed is to 
strike one column from the table and  add another-an easy 
transition compared to  the difficult redrawing of a flow chart 
which this same problem would require. 

The preceding discussion, in which tables  and  their correspond- 
the use of ing flow charts  have been prepared in conjunction, serves to indicate 
tables the relative merits of the two forms of display of logical structure. 

The  table is superior to  the flow chart  in displaying computer- 
independent information; the flow chart is superior in displaying 
computer-dependent information. If the problems discussed above 
were to be programmed for machines which did branching by 
some other method than binary choice, the flow charts would  be 
different but  the  tables would be unchanged. In this sense, tables 
are problem-oriented; flow charts  are computer-oriented. 

There is another aspect in which tables  are problem-oriented. 
We have been considering primarily the condition entry portion 
of the table, since this is the point of greatest difference with 
past practice. But  the division of the  table  into  its four sections is, 
in itself, a useful aid in problem description. The condition stub 
is a list of all the questions and permissible answers pertinent to a 
particular problem. The condition entry is a list of all permissible 
combinations of answers. The action stub is a list of all the actions 
pertinent to a particular problem. The action entry is a list of the 
permissible sequences of actions. The rules serve to associate a 
specific set of answers with a particular sequence of actions. 

The question arises as  to  the  type of problem for which tabular 
techniques are effective. In some types of problems the stages of the 
accompanying procedural study can be characterized by the 
following four kinds of questions. 

1 ((How do you know  when to  or how to do such-and-such?’’ 
2 (‘DO this condition and  that condition ever occur together?” 
3 “What steps might you have to  take in doing such-and-such?” 
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4 “When  this condition and  this condition and this condition, 
etc., occur together, which steps do you actually take?” 

Since the four sections of a  table correspond functionally to 
these four kinds of questions, tabular techniques should be ad- 
vantageous in the associated types of problems. 

vestigation: tables in their present form can become unwieldy remarks 
when problem segments are prefaced by one or two simple de- 
cisions rather  than six or seven complicated ones; it would  some- 
times be convenient to have rules in a table refer to other rules in 
the same table; rule identifiers in which the variable values are 
connected by  (‘or”  rather than  ((and” would sometimes be a 
convenience, and so on. Such further investigation would be 
desirable, since it would enhance the already considerable merit 
of tables  as a means to implement program logic. 

There  are, of course, many problems meriting further in- concluding 
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