Systems engineers have come to recognize simulation as a val-
uable tool in their work. However, writing simulation programs
can be a difficult, time consuming task requiring intricate and ex-
tensive programming. For simulation to be most useful, 1t must
be possible to carry out a simulation quickly and be possible to
change the simulation eastly as the system design proceeds.

[0 Thes paper describes a general purpose simulation program de-
signed to simplify the task of simulating systems. It is applicable

- to a wide variety of tmportant problems. The program features a

stmple block diagram language with which to describe the system
to be simulated. Given this description, the program will auto-
matically simulate the system.

A!‘general purpose systems simulator
by G. Gordon

18

In the course of his work the systems engineer is constantly faced
with the problem of analyzing the performance of proposed
systems configurations. He needs to design the operating condi-
tions of the proposed system to give optimum performance and
determine whether the configuration will meet the specifications
laid down for the system. The performances of individual ecom-
ponents of the system are usually well understood but, with the
increasing size and complexity of systems, it has become very
difficult to estimate the performance of the many possible combi-
nations of components that need to be considered in the course of
designing a system.

In the face of these difficulties emphasis is being placed upon
the use of computer simulation as a technique for aiding systems
engineering. Suitably programmed, a digital computer can indi-
cate how a proposed system will perform by computing, step by
step, the response of a mathematical model of the system. By it-
self, simulation does not design systems, it merely shows how a
model of a particular configuration performs. The problems of
selecting the configuration of a system and judging the perform-
ance from the results indicated by the simulation remain with the
systems engineer. However, properly used, simulation can pro-
vide valuable design information by showing in some detail how
the components of a system can be expected to behave.

Care must be taken in the way simulation is used, particu-
larly on the question of how the model used in the simulation cor-

IBM Systems Journal September 1962

responds to the system being studied. Some of the problems to be
considered in employing simulation in systems engineering are
discussed in another paper.! The purpose of this paper is to de-
seribe a specific program that has been designed to simplify the
task of creating and running system simulations.

The program to be described is called the General Purpose
Systems Simulator, or GPSS, and it has been written for opera-
tion on the IBMg, 704, 709 and 7090. The program allows the user
to study the logical structure of the system, to follow the flow of
traffic through the system and to measure the effects of blocking
caused by the need to time-share parts of the system or caused
by limiting the capacity of parts of the system. Outputs of the
program give information on:

1 The amount of traffic that flows through the complete system
or through part of the system.

2 The average time and the distribution of time for traffic to
pass through the complete system or between selected points
of the system.

The extent to which elements of the system are loaded, to-
gether with the distribution of the occupancy of storage ele-
ments in the system.

The maximum and the average queue lengths occurring at
various parts of the system, together with the distribution of
the occupancies of the queues.

Statistical variations can be introduced in the simulation and
arrangements are made to sample the state of the system at vari-
ous points of time. The effect of assigning levels of priority to
units of traffic can be studied. It is also possible to simulate the
effects of peak loads by varying the load on the system with time
or by varying speeds of operation with load.

The problem of preparing a computer simulation falls into
two main tasks. First a model of the system to be simulated must
be constructed and then a computer program must be written to
“run” the model. The model is usually expressed as a set of
mathematical and logical equations that represent the response of
the individual system components and describe the interactions
between the components. From such a description of the model,
a programmer can produce a computer program that will run the
model.

The process can be simplified by providing a language or a
prescribed method of describing a model and writing a program
that will run any model that is defined in this manner. The task
of writing individual programs is then removed or greatly reduced.
Usually such programs are restricted to use on a particular class
of problems, such as, for example, a job shop simulator. GPSS is
a program of this general type that employs a language designed
for describing simulation models of systems. The program will
run a simulation directly from a description of the model given
in this language. The user, therefore, need only know the language
used for describing the models and does not need to be able to

IBM Systems Journal September 1962

the
simulator

simulation
preparation

block
diagrams

as simulator
language

block time

program for the computer on which the program operates.

The language has not been chosen for any particular class of
systems. The aim has been to define certain basic actions that are
characteristic of systems so that the program can be applied to a
wide variety of different systems. Following a description of the
principles and the language of the program, two examples of its
application will be given, one to a typical traffic flow problem and
one to a simple production system. Two other examples of its ap-
plication to data-processing systems will be found in a paper! by
E. C. Smith, Jr.

The program is based on the use of block diagrams as a means
of describing the structure and action of a system. The method
of describing systems with a block diagram is well-known. Each
block of the diagram represents a step in the action of the sys-
tem and lines joining the blocks indicate the sequence of events
than ean oceur. To make a block diagram description of a system
serve as the input to a simulation program, however, a number
of conditions must be met. First, the meaning of the blocks used
in the diagram cannot be left to the individual user but must be
clearly defined to the program. Secondly, it is necessary to asso-
ciate with each block a number, that will be called the block
time, to represent the execution time of the action the block is
simulating. Thirdly, conventions need to be established to control
the way in which the selection of the succession of blocks is
made.

To meet the requirements for a well-defined block diagram a
set of 25 specific block types has been designed, each chosen to
be representative of some basic system action. To use the pro-
gram, the system must be described in terms of a combination of
blocks selected from this set of 25 block types. Each type may be
employed any number of times subject only to the overall limit
that the total block diagram may not contain more than 2047
bloeks.

Each block type is distinguished by a name which is descrip-
tive of its action and it is also given a characteristic symbol to be
used when drawing block diagrams. When the block diagram is
complete, each individual block is also given an identification
number called the block number. These block numbers can usually
be assigned in an arbitrary manner between the values 1 and 2047.

The block time is an integer giving the number of time units
required for the action represented by the block. The magnitude
of the time unit is determined by the program user. The unit is
not specifically entered in the program but is implied by entering
all times throughout the block diagram in terms of this same
basic time unit.

The time required for the action being represented by a block
is not always well-defined. It may be an ill-defined quantity or it
may vary over a range of values, often in a random manner. Ar-
rangements are made to introduce random variations in the block
times where necessary. A simple rectangular distribution of time
can be introduced at any block by specifying two numbers, the

IBM Systems Journal September 1962

mean and the spread for the block. Whenever the program refers
to the block, it will choose at random a block time between the
values of mean minus spread and mean plus spread, with equal
probability being given to each integer in this range. If the block
time does not vary, the spread is set zero to make the block time
a constant value equal to the mean. If desired, the mean may also
be set zero to represent actions that take no time or take a
negligible amount of time compared with the basic time unit.

There are many occasions when the random selection of a
block time from a simple rectangular distribution is an adequate
representation of the system action or is the only representation
of a random process that can be made on the available informa-
tion. At other times, a more precise random distribution is known
or the variation of block times is not random but depends upon
some factor associated with the system. In these cases use can be
made of tables of numbers referred to as functions to introduce a
more accurate representation of the block time. The definition of
these functions and their use will be described later.

To represent the alternative courses of action that may be
followed by the system, more than one line may leave a block.
Correspondingly, one block may be entered by way of more than
one line to indicate that the step represented by that block occurs
in more than one sequence of events. The convention is made that,
with the exception of one block type called the BraNCH block, not
more than two lines may lead from a given block. On the other
hand, no restriction is placed on the number of lines leading into
a given block. If a larger number of paths is required to repre-
sent the results of a particular decision, it is always possible to
use a network of blocks with zero block time, that will lead to the
required number of alternative paths. The BrRANCH block type that
was just mentioned is a block that allows up to 127 alternative
paths and can be used to avoid such networks when the choice be-
tween paths follows some simple rules.

All block types other than those that represent terminal points
of the system, can have two exits. The exits are distinguished by
referring to them as exits 1 and 2 and they are defined by giving
the number of the block to which the exit leads. The blocks the
exits lead to are referred to as next blocks 1 and 2. If there is to
be only one exit from a block it must be defined as next block 1.
1f there are two possible exits from a block both next block 1 and
2 must be defined and, in addition, a number called the selection
factor, S, must be given at that block to determine the choice be-
tween the exits. In the case of the BrancH block, the block num-
bers entered for exits 1 and 2 determine the range of block num-
ber from which the selection is to be made. The set of blocks that
can be reached from a BRaANCH block must, therefore, be numbered
consecutively, otherwise there is no restriction on the manner of
numbering blocks.

The selection factor can be used to make two types of decisions
in determining the exit to be followed from a block. If the selec-
tion factor is set between 0 and 1 then a random choice will be

IBM Systems Journal September 1962

alternative
actions

transactions
and items
of equipment

stores and
facilities

made on every occasion an exit is made. The probability of choos-
ing exit 1 will be 1-S, and the probability of choosing exit 2 will
be S.

The other method of deciding between exits is to choose exit
1 if next block 1 is available at the time of the decision and take
exit 2 if exit 1 is not available. If neither exit is available then the
first exit to become available is selected. This mode of operation
is indicated by setting S equal to 1. It is an important mode of
operation that can be used to simulate alternative lines of action
in the system when some component of the system is found to be
busy.

The system represented by the block diagram is operating upon
certain basic units that move through the system. The nature of
these units depend upon the system. For example: in a com-
munication system the units might be messages; in a traffic study
they might be people or vehicles; in a data processing system they
might be records and so on. For convenience, the unit is referred
to in the simulation as a transaction. The simulation proceeds by
creating transactions to represent these units and moving the
transactions through the block diagram in the same manner as
the units would progress through the system represented by the
block diagram.

The system being studied will also involve certain phys-
ical components which operate upon the transactions individu-
ally or in groups as they proceed through the system. To simulate
the effects of these components, the simulation includes elements
referred to as ttems of equipment. Certain of the block types are
concerned with the interaction between transactions and items of
equipment.

The principal property of an item of equipment that is of in-
terest in a simulation study is the limit of its capacity to handle
transactions simultaneously. The existence of such limits can
cause congestion and a significant part of any system simulation
is concerned with measuring the effects that these limits have on
the overall performance of a system.

A distinction is made between two types of equipment accord-
ing to whether the capacity for handling transactions is limited
to one transaction or more than one transaction. An item of
equipment that can handle only one transaction at a time is called
a facility. An item of equipment that can handle many transac-
tions simultaneously, up to a specified limit, is called a store. Up
to 511 facilities and 511 stores can be employed in the simulation.
They are identified by number and the block types that are con-
cerned with equipment refer to the number of the particular item
of equipment they employ. Because of the capacity limits set by
equipment, blocks that employ equipment can cause congestion
when the equipment is fully engaged by transactions. These
blocks will then be unavailable to a transaction attempting to
enter. In these circumstances, the transaction can be made to wait
until room is made available or it can be diverted to some other
course of action by use of the selection factor described before.

IBM Systems Journal September 1962

The interpretation placed upon stores and facilities depends
upon the system being simulated. In a communication system, for
example, a trunk might be represented as a store with capacity
equal to the number of lines in the trunk while a terminal pass-
ing one message at a time would be a facility. In a vehicle traffic
study, a road might be represented by a store while a toll booth
would be represented by a facility and so on. The representation
of system components by items of equipment will also depend
upon the type of study being condueted. In one study, for example,
a computer complex may be represented as a single item of equip-
ment. Another study may require more detail and treat the major
parts of the computer complex such as the memory, channels, disk
files, ete., as separate items of equipment, each with its character-
istic capacity.

Items of equipment that do not correspond to a system com-
ponent, are sometimes introduced into a simulation to effect con-
trol over the flow of transactions. If, for example, there are two
or more parts of a system such that only one part can be in use at
a time, entrance to any one part can be made contingent upon
seizing a facility that will then block off the other parts. Similarly,
taking up capacity in a store can be made to limit the number of
transactions allowed in any one part of a system. Some of the 25
basic block types will now be described and an example using
these blocks will then be given to illustrate the method of using
the program. Not all the block types will be described; a more
complete description of the program can be found in reference 2.

Figure 1 illustrates four block types concerned with creating,
destroying and moving transactions without involving equipment.
The block type called orIGINATE creates transactions and enters
them into the simulation. The block time of this type represents
the interval of time between successive creations. Creation of
transactions continues even if the transactions are unable to
leave the orIGINATE block when the exit blocks are unavailable.
For this reason, the mean at an orRIGINATE block may not be set
at zero since this would represent an infinite rate of generation. A
TERMINATE block removes transactions from the system the in-
stant they enter the TERMINATE block. This block therefore has no
block time nor does it have any exits.

An Apvance block is used to represent any action requiring time
but not involving equipment. Since it does not involve equipment
it cannot cause congestion; it is often used, therefore, with a zero
block time as a buffer at the exit of a block using equipment to
ensure that the equipment is released. It may also be used with
zero time and a selection factor of 1 to precede a block using
equipment in order to divert transactions when the equipment is
busy.

The BrancH block is similar to an ApvaNce but it allows up to
127 exits from the block. The selection of the exit follows special
rules, however. The selection factor must be either 0 or 1. In the
former case, a random selection from all possible exits is made
with equal probability being given to each. With S=1, an attempt

IBM Systems Journal September 1962

creation,
destruction

and movement
of transactions

O

ORIGINATE

O

TERMINATE

use of
facilities

ADVANCE

BRANGH ¥

Figure 2

Figure 3

RELEASE

use of
stores

modes of

operation

gathering
statistics

is made to leave by the lowest numbered exit; if this is unavailable,
the next highest is tried and so on. If all exits are busy, the
transaction waits for the first exit to become available.

Figure 2 shows a group of three blocks concerned with the
use of facilities. In each case the flag on the side of the block
symbol is used to earry the number of the facility associated with
the block.

The HoLD block allows a transaction that enters the block to
engage the facility for as long as the transaction remains in the
block. The sE1zE block allows a transaction to engage the facility
upon entering the block. The transaction, however, keeps control
of the facility when it leaves the skize block and remains in con-
trol until it enters a RELEASE block associated with the same
facility. Between the points at which the transaction seizes the
facility and releases the facility any number of blocks may be
inserted to represent the actions followed by the transaction
while it has control of the facility. The same facility may be
mentioned at many different points of the block diagram indicat-
ing the different places in the system requiring its use.

In Figure 3 there are three blocks associated with stores, the
agsociated store being numbered in the flag attached to the sym-
bol. The actions of these blocks are analogous to the three facility
type blocks of Figure 2. The sTorE block allows a transaction to
occupy space in the store associated with the block for as long
as the transaction is in the block. The ENTER block allows a
transaction to take up space in the store but the space is not given
back until a transaction enters a LEAVE block.

Three modes of operation are allowed for each of these blocks,
differing in the amount of space that is controlled by the trans-
action. In a normal mode, only one unit of space is involved. In a
parameter mode, the amount of space depends upon a number
called a parameter that is associated with the transaction. The
generation and use of parameters will be deseribed later. In the
third mode, called the total mode, the entire store is filled or
emptied as the transaction takes up or gives back space.

The same store may be referred to by several blocks each em-
ploying any of the modes. A common count is maintained of the
total space occupied by all such blocks. Any time there is insuf-
ficient space available for a transaction it will be refused entrance
to a STORE or ENTER block but other transactions requiring less
space may still be able to advance. An important distinction exists
between the way the program treats transactions engaging facili-
ties and entering stores. The transaction that engages a facility at
a SEIZE block is the only transaction that may release the facility.
In the case of sTorE, however, one transaction can take up the
space at an ENTER block while a different transaction can give
back the space at a LEAVE block.

One of the main objects of using a simulation program is to
gather statistics about the estimated performance of the system
being simulated. Some of the blocks are concerned with gathering
statistics rather than representing system actions. These are il-

IBM Systems Journal September 1962

lustrated in Figure 4. As has been pointed out, blocks involving
equipment can cause congestion if the equipment involved is
busy. As a result blocks that do not use equipment, such as the
ADVANCE, may contain any number of transactions waiting for
equipment to become available. The program will maintain such
transactions in a queue which is served on a first-come first-served
basis. The program will not, however, maintain any statistics
about these queues unless they occur in a QUEUE block. These
blocks, therefore, are placed in positions where congestion is an-
ticipated, such as immediately in front of a HOLD block. The pro-
gram will measure the average queue size and the maximum queue
size occurring in each QUEUE block. If desired, the program will
also give the distribution of the queue length sampled at uniform
intervals of time. As many as 511 QUEUEs can be included in the
simulation. The number of the queue is indicated in the flag at-
tached to the QUEUE block symbol.

Another important set of statistics that are frequently wanted
are the transit times of transactions in getting from one point of
the system to another. These statistics can be gathered by using
MARK and TABULATE blocks. The program makes a note of the
current clock time on each transaction that enters a Mark block.
Later, when the transaction arrives at a TABULATE block, the pro-
gram notes the clock time upon arrival, subtracts the MARK
time placed on the transaction by the Mark block and enters the
difference in a table. There can be as many as 63 tables in the
simulation. The table associated with a TaBULATE block is num-
bered in the flag attached to the block symbol. Each table has 16
tabulation intervals and maintains frequency counts of the num-
ber of entries falling in each tabulation interval. The tabulation
intervals are set by the program user at the beginning of the
simulation run.

As an example of how the program is used, consider the prob-
lem of measuring the flow of traffic through a supermarket.
Shoppers enter a supermarket, but before shopping they must
each get a basket. The number of baskets is limited to 150 and if
none is available the shopper leaves the supermarket without
shopping. Having obtained a basket, the shopper spends some
time shopping, checks out at a counter and then leaves, returning
the basket on the way out. Two types of shopper will be as-
sumed, express shoppers and non-express or normal shoppers.
Separate check-out facilities are available for the two types of
shopper. For the express shopper there is only one counter but for
the normal shopper there are 7 counters.

Figure 5 illustrates the section of the block diagram concerned
with the actions of getting a basket. An oricINATE block creates
transactions, each representing one shopper. The convention
adopted in drawing the blocks is that the block number is placed
at the top center of the block and the mean and spread, if any,
are placed at the center separated by a colon. The mean is at the
left and the spread on the right. The oriciNaTE block, for ex-
ample, is block number 1 and has a mean of 36 units and a spread

IBM Systems Journal September 1962

Figure 4

C)

Q

TABULATE

super-
market
example

Figure 5 Get basket

O

Figure 6 Shop

NORMAL

6

2640:1820

Figure 7 Check-out

Figure 8 Lleave

of 18. The unit of time chosen in this example is 1 second so that
the average time between arrivals is 36 seconds, but the time may
vary from 18 to 54 seconds.

To represent the baskets, a store, number 1, is defined with a
capacity of 150, equal to the number of baskets. To get a basket,
the transaction representing the shopper must move into an ENTER
block, number 4, associated with store number 1. The attempt to
enter is made through an apvance block, number 2, with zero
block time and S=1. The eNTER block is at exit 1 of this ApvaNcE
block so the transaction will move into the ENTER block if there is
space available in store 1, that is, if there is a basket available. If
this is not so, the transaction moves to a TERMINATE block, number
3, indicating that the shopper leaves because no basket is avail-
able.

Having got a basket the shopper moves into the supermarket
and shops. This part of the simulation is illustrated in Figure 6.
One factor to be measured in this simulation will be the time
shoppers spend in the supermarket. The transactions are there-
fore sent to a MARK block to note on each transaction the time at
which shopping begins. The Mmark block is also used to divide the
flow of transactions into two streams representing the express and
normal shoppers. It will be assumed that 25% of the shoppers
are express so a selection factor of 0.25 is set in the Mmarx block.
Shopping will be represented by simple apvaNcE blocks, one for
each type of shopper. The average shopping time is set to be 44
minutes for the normal and 7 minutes 20 seconds for the express
shoppers. When the transaction leaves these ApvaNcE blocks,
shopping is complete and the shoppers move to the check-out
counters.

The check-out section of the block diagram is represented in
Figure 7. It is to be expected that there will be congestion at the
counters and the program will be arranged to measure the queues.
The transactions therefore go to one of two QUEUE blocks im-
mediately preceding the blocks representing the check-out equip-
ment. Since there is only one check-out counter for express
shoppers, this counter will be represented by a facility number 1
and a Horb block is used to represent the action of occupying the
check-out counter. Each transaction representing an express
shopper moves, in turn, into the HOLD block for service and oc-
cupies the counter for a time ranging from %% to 1Y% minutes. It
then moves on making room for the next shopper in the queue.

For the normal shoppers, there are seven check-out counters
and these are represented by a store, number 2, of capacity 7. The
sTORE block operates in a normal mode so that up to seven trans-
actions at a time can be in the sTorE block. Each stays for a time
varying between 3 and 9 minutes and then moves on.

Having left the check-out counter the customers prepare to
leave the supermarket. Both streams are brought together at this
point and move to the section illustrated in Figure 8.

Each transaction was marked at the time of beginning to
shop. Since they are now about to leave the supermarket, the

IBM.Sy s Journal September 1962

transactions are sent to a TABULATE block to enter into table 1 a
measure of the total time the shopper spent in the supermarket.
The basket is then returned by entering a Leave block that re-
turns the space taken up at the ENTER block. Finally, the trans-
actions are removed at a TERMINATE block.

The complete diagram appears as shown in Figure 9. Each
block is numbered and the exits for each block are identified. One
card is punched for each block. The cards have a simple fixed field
format. Figure 10 illustrates the completed coding form from
which the cards for this problem are punched.

Included in the coding form are certain control cards required
to describe the simulation run. A JoB card identifies the begin-
ning of the problem deck and a sTART card defines the end of the
problem deck. REMARKS cards allow comments to be printed in
the output listing. The sTART card in this case indicates that the
run begins at zero time with an initially empty condition and that
the simulation is to run until 1200 shoppers have passed through
the supermarket. For each store used in the simulation a capaciTy
card defines the capacity of each store. For each table associated
with a TABULATE block a TABLE card defines the tabulation inter-
vals. In this case table 1 has intervals of 500 units beginning at
500 as lower limit.

One output that can be obtained from the program is a count
of the number of times a block is entered. If this information is
required for a block, a 1 is entered in column 65 of the BLOCK card.
The 3 entered for the TERMINATE block indicates that not only is
a block count to be gathered but, in addition, the entries to this
block count towards the end of the simulation.

When the simulation is completed a series of outputs are

printed and these are illustrated in Figure 11. The first output, not
shown in Figure 11, is a listing of the input cards defining the

Figure 10 Completed coding form for supermarket problem

General Purpass System Simulator
(Block Cards)

ELEMENTARY SUPERMARKET MODEL [pace 1 oF 1
Newman [oaTE July 2, 1962
0 3 n 3 ST T m

e o (3 nemanun

avocn i

s & 5 o

1 s k1] 1 66
SUBLRMARELT, EL FAl
goarxs | 1Ly JﬂMT¥ BASIC Eonn‘ »

REMARKS BASIC TIME UNIT IS |

REMARKS
ORIGINATE
ADVANCE
TERMINATH

seman | sewzas |Fion-

36 18

1

2

3

| 4
CAPACITY | 1
MARK s
ADVANCE | 6
7

8

9

1

)

ADVANCE
QUEUE

QUEUE
STORE

[

CAPACITY
HOLD 1

TABULATE| 12
TABLE 1

LEAVE 13
TERMINATE
START o

END
=7

IBM Syst Journal September 1962

Figure 9 Supermarket
problem

6
2640:1820

7
440:220

74

refinement of
supermarket
model

Figure 11

Output of supermarket simulation

1
4
7
10
13

2

BLOCK COUNT

1313
1312
347
862
1200

FACILITY NR 1

NO TIMES BLOCKS ENT

BLOCK COUNT

2
5
8
11
14

1312
1312

910
345

1200

TIME END SIM 47640

BLOCK COUNT

3

6 965

9 345
12 1200

FRACTION OF TIME IN USE .4278

150
7

50
4

MAX QUEUE LGTH

STORE NR STORAGE CAPACITY AVERAGE UTILIZATION

1
2

QUEUE NR
1

.5962
.9367

AV QUEUE LGTH

27.1471
.1360

TABLE NUMBER 1 MODE 0 TOTAL NUMBER IN TABLE 1200
TOTAL TIME IN TABLE 3971800 MEAN OF TABLE 3309.833
VARIANCE OF TABLE 3789437.0938

LIMIT

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500

NO

148
196

4
9
55
91

161
148

91
31
4

PER CENT

12.33
16.33
.00
.33
.75
.58
.58
.58
.42
.33
.25
.58
.58
.33
.00

CUM

12.33
28.67
28.67
29.00
29.75
34.33
41.92
52.50
65.92
78.25
89.50
97.08
99.67
100.00
100.00

MULT OF MEAN

.1511
.3021
.4532
.6043
.7553
.9064
.0575
.2085
.3596
.5107
.6617
.8128
.9638
.1149
.2660

B DD DD b et et e el et d

.00 100.00 .4170

problem. The time at which the simulation ended is shown fol-
lowed by the block counts that have been mentioned. Information
is then given about each facility, store and queue in the simula-
tion. For the facilities the program gives the fraction of total
time for which the facility was engaged. For the stores, the aver-
age occupancy is given and for the queues, the average and maxi-
mum queue lengths are shown. Finally, the tables of statistics
that were requested are printed.

The example that has been given is a relatively simple model
of a supermarket. It would be simple to refine the model in a
number of ways by including more blocks. For example, the
shopping area could be represented by a number of blocks, each
representing a different section of the supermarket and each hav-
ing a certain probability of being entered. The section represent-
ing getting the baskets could be elaborated so that a percentage
of customers enter the supermarket without bothering to get a
basket, or it could be arranged that customers who need a basket
walt a while before leaving if no basket is available.

IBM Systems Journal September 1962

The block times that are not zero or constant in this example
have all been represented by means and spreads giving random
selections from simple rectangular distributions. One important
respect in which the problem can be elaborated is to use functions
and parameters to introduce more realism in these block times.

A function is a table of up to eight pairs of numbers defining
the relationship between an input quantity X and an output Y.
These values define the function at the specified points and the
program interpolates linearly between these points. A total of 31
such functions is allowed, each being identified by a number 1 to
31. The functions themselves are defined by entering two cards,
one defining the X values and the other defining the correspond-
ing Y values. The functions can operate in one of four modes de-
pending on the nature of variable X used as an input quantity.

The output from a function ean be used for two purposes; to
control a block time or to supply a parameter. When used to con-
trol a block time the function output Y is used to multiply the
normal block time determined by the use of a mean and spread.
If the mean is set to 1 and the spread to 0, the function value Y
becomes the block time directly. Use of a function to control
block times in this way can be called for at any block by entering
the funetion number of the BLOoCK card.

One mode of operation for the function is a random number
mode in which the input X is a number selected at random be-
tween 0 and 1. Operating in this mode, the functions allow a
more complex distribution of block times than the simple rec-
tangular distribution given by a mean and spread alone.

A parameter is a number that is derived from a function and
attached to any transaction that enters a block type called assian,
designed especially for this purpose. The BLock card identifies the
function from which the assignment is to be made. The signifi-
cance placed upon the parameter is determined by the program
user. In the supermarket example given above, it could be used
to represent the number of items the shopper purchases. With
the version of the program described in reference 1 only one pa-
rameter can be attached to each transaction. Other versions of
the program allow more than one parameter to be attached to
any transaction.

One use of parameters has already been mentioned. They may
be used to control the number of units of space a transaction oc-
cupies in a store. Another use is that they can be used to provide
the input X employed when using a funetion, thus making a block
time depend upon the parameter of the transaction entering a
block. This is called the parameter mode of operating functions. In
the supermarket, for example, suppose an AssiGN block with a
function operating in a random number mode has been used to
attach a parameter representing the number of purchases. Another
function expressing the relationship between the number of pur-
chases and check-out time could be employed at blocks 10 and 11
to control the check-out times according to the number of pur-
chases.

IBM Systems Journal September 1962

functions
and
parameters

Figure 12

O

GENERATE

generation
and flow of
transactions

Two other modes of operating the functions are a clock mode
in which the input X is the current clock time and a store mode
in which the input X is the current number of spaces occupied in
a particular store. The clock mode can be used to introduce the
effects of peak loads on a system by making the block time at
ORIGINATE blocks depend up real time. The store mode can be
used to introduce the effects of congestion on operating times.
For example, the times at the blocks representing the shopping
could be made to depend upon the number of people in the super-
market as indicated by the space occupied in store number 1.

When using functions for the purpose of assigning parameters,
the function may be used in any of the four modes that have been
described. In particular, the parameter mode may be used so that
the parameter on a transaction at the time of entering an AssiGN
block can be used to reassign the parameter. In later versions
of the program it is also possible to assign numbers directly to
parameters or add and subtract numbers to the exiting parameter.
For example, an assieN block with the statement P1IEK10 will
assign the number 10 to parameter 1 or P2-K4 will subtract 4
from the current value of parameter 2.

In the description of the program given so far, the only de-
cisions that can be made in the model are in the choice of exits
made with the use of the selection factors. Certain of the block
types are concerned with introducing control over the generation
and flow of transactions in other ways. These are illustrated in
Figure 12.

The orIGINATE block described before creates transactions ir-
respectively of whether the transactions can leave the ORIGINATE
block and proceed into the system. A GENERATE block also creates
transactions but only so long as the transactions can enter the sys-
tem. This allows the system itself to decide when to enter a trans-
action by arranging that the exit to the GENERATE block is normally
blocked and is only unblocked when a transaction is required.
The block time still controls the interval between successive ar-
rivals of transactions. Unlike an oricINATE block, however, the
block time can be zero so that, if desired, a batch of transactions
can be entered simultaneously.

The sprrr block allows one transaction to be created by an-
other. Every transaction entering a spLiT block produces a copy
which leaves by way of exit 2 while the original transaction leaves
by way of exit 1. Pairs of transactions that have been created at
a sPLIT block can be synchronized in their movement by the use of
a pair of MaTcH blocks. The two MaTcH blocks are arranged to
cross-refer to each other by recording each other’s block number
as exit 2. When a transaction that has been split arrives at one
MATCH block it will wait there until the other member of the pair
arrives at the other maTca block. Both transactions may then pro-
ceed by leaving their respective matcu blocks by way of exit 1.
This allows the user to simulate the execution of simultaneous pro-
cesses that must both be completed before proceeding to another
stage of the processing. If desired, transactions may be split sev-

IBM Systems Journal Sep

eral times to represent more than two simultaneous processes.

The GaTE block is used to test the status of a piece of equip-
ment. The block refers to a facility or store and a transaction
may only enter the ATk if the piece of equipment is in one of a
number of specified states. The principal conditions that may be
tested are whether the facility is in use or not in use and whether
a store is full, not full, empty or not empty. In later versions of
the program it is also possible to test whether or not a parameter
is equal to a particular value.

Used in conjunction with a store where the contents are being
decremented by a LEAVE block or with an assiGN block that is de-
crementing a parameter by 1, caTE blocks can be used to make
transactions execute a number of loops.

A second example of a model is shown in Figure 13 to illustrate
some of the methods by which control over the flow of transactions
is exercised. The example represents a simple manufacturing
process in which one job at a time is processed. The job requires
that three parts be made and these are made concurrently. When

Figure 13 Manufacturing problem

GENERATE

SEIZE CONTROL

SET COUNTER:
PROCESS PARTS

BUFFER:
LEAVE BY 1

TEST STORE
TO BE EMPTY

ASSEMBLE AND
RELEASE CON-
TROL

TERMINATE

IBM Systems Journal September 1962

another
example

81

32

all parts are ready, they are assembled and the next job is started.

Referring to figure 13, the GENERATE block creates a transac-
tion which immediately seizes facility 1. The facility is not re-
leased until the job is ready for assembly, thus arranging that the
next job is not started until operations on the preceding job have
been completed. A network of spLiT blocks creates four copies of
the transaction. Three of these represent the parts to be manu-
factured and they go to Apvance blocks simulating the manu-
facturing processes. The fourth transaction sets a counter by
entering a store of capacity three in a total mode. It then waits at
a MATCH block for the processed parts to arrive.

As each part arrives, a MATcH is effected. The transaction
representing the part removes the count of 1 from the store and is
then destroyed. The control transaction uses a GATE to check
whether the store is empty. If not, it returns to wait for another
MATCH until finally all parts arrive and the transaction represent-
ing the completed parts passes through the ¢ATE to be assembled
and release the system for the next job.

Not all features of the program have been described but enough
of the concepts have been shown to illustrate the method em-
ployed. With a little training and experience the program provides
a relatively simple way of constructing and running a simulation
quickly and easily. The program is applicable to a substantial set
of important problems and thereby allows simulation to play a
greater part in systems engineering solutions.

REFERENCES

1. Smith, E. C,, Jr., “Simulation in Systems Engineering,” IBM Systems
Journal, this issue, p. 33.

2. Gordon, G., “A General Purpose Systems Simulation Program,” Proe. of
the Eastern Joint Computer Conference, Washington, D. C., December
1961, The Macmillan Co.

IBM Syst Journal Sep

