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At present, there are many industrial processes of a nonlinear
character for which it is difficult to develop an effective industrial
process control system because no efficient mathematical method is
known to carry out the optimization procedure.

U] This paper presents a flow chart description of a computer pro-
gram incorporating a new optimization technique which will resolve
many such problems. Although the mathematical basts for the tech-
nique 1s suggested, details and proofs are omitted—these will appear
in a subsequent paper.

O The technique has been successfully tested on a number of problems.
Testing was conducted using a control system (IBM 1710) as well
as both small and large computers (IBM 1620, 7090).

of nonlinear processes
by R. A. Mugele

The development of a computer-directed control system for a
complex industrial unit, such as a chemical plant, a petroleum
refinery, or an electrical power distribution system, can be seg-
mented into three major parts.

A mathematical model of the system must be developed. The
basic model must describe at least the internal balances and
transfer of material and energy, and reactions that occur within
the system. This model is also useful in determining requirements
for constructing, operating, or modifying the unit. The basic
model may be refined by allowing for variability in operating
conditions so that the response of the system to external changes
will be shown and other useful information, e.g., accounting
data, can be obtained.

Next, an optimizing procedure must be found which is appli-
cable to the model and which will permit calculation of better,
or best, operating conditions, according to preset criteria. This
is the type of problem to be considered in detail in the present
paper.

Finally, a control procedure must be formulated for conveying to
the process (by means of controller set-point and reset rates,
switches, clocks, and other devices) the improved mode of opera-
tion which has been computed by the optimizing program.

In general, some sort of approximation to an industrial system
may be obtained with a linear model. In the linear model, things
change at a constant rate relative to the basic variables. For
example, if each ton per day increase in throughput at a plant
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produces $100 per day increase in profit, we have a linear situa-
tion. But there are cases in which the linear model is inadequate
{(not precise enough, or misleading as to trends). Perhaps, in the
above example, each additional ton per day increase in throughput
produces a smaller improvement than the preceding increase.
In such cases, solutions eannot be obtained by using the relatively
direct and simple methods of linear programming. We require
nonlinear programming techniques which will optimize nonlinear
objective functions and restraints.

Several workers have devised methods of nonlinear program-
ming and these have been applied to such diverse problems as
gasoline blending,' chemical plant problems,” and algebraic test
problems.®"*

However, these methods do not apply to cases in which several
of the restraints have complicated nonlinear forms. Such cases
become important when we consider something as complex as a
chemical plant or a petroleum refinery. Here the interaction of
physical, chemical, and economic factors leads to an involved
objective function. Also, practical considerations such as product
specification and component availability lead to a number of
restraint inequalities, some of them highly nonlinear. Thus, we
face the problem of nonlinear programming with complicated
nonlinear restraints. To handle such problems, extensions of
existing nonlinear methods have been proposed.®’® In the follow-
ing sections we shall describe such proposals and also some effective
methods which have already been developed and applied to
full-scale problems.

Before describing optimization programs and their relation to
process and control, we offer some definitions. Variations from
these will be found in other publications, as is usually the case in
a relatively new field. But in the present paper, the following
definitions and accompanying notation will be used consistently.
Since we are simultaneously concerned with computer programs,
some use of Fortran notation has been made.

Control vartables. Quantities X1, X2, etc., that are to be used
in implementing the result of optimization, i.e., producing optimal
control of a process. The X’s may be subject to bounds and re-
straints, but they are expected to vary during solution of the
problem. The function F and the R’s (see definitions below of
objective function and restraints, respectively) are to be ex-
pressed, either explicitly or implicitly, in terms of the X'’s. The
X's form a K-dimensional set in which a point determines the
state of the system. In the dynamic mode, at least one of the X’s
will be a variable expressing or implying time.

Uncontrollable variables. Quantities V1, V2, ete., that are not
used in implementing the result of optimization, but do enter
as parameters in the model, varying primarily as a result of
disturbances in the inputs.

Bounds. Quantities which define the range of the X’s. Upper
bounds are XU1, XU2, etec. Lower bounds are XL1, XL2, etec.
The range of X1 is defined by XU1 — XL1. Where the problem
conditions do not specify such bounds, arbitrary values may be
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provided (e.g., large negative XL1 and large positive XU1).
The relations XL < X < XU define a set of states including the
feasible points as a subset.

Increments (steps). Quantities D1, D2, etc., to be used in
computing the effects of changing control variables X1, X2, etc.,
during the optimization calculation. These increments are used
to change the X's positively or negatively, individually or in
combinations, as required by the program. The D’s have assigned
starting values, but are increased or decreased during the compu-
tation, as required by the program.

Tolerance. A quantity T, positive and usually small, which
defines the minimum allowable ratio of D’s to the starting values
of the D’s. When D’s have been reduced often enough to match
this tolerance, the optimization calculation stops.

Restraints. Quantities R1, R2, etc., which have been chosen,
formulated, or programmed, so as to impose limitations on some
action, product, process, or method. In simple cases, R's may
limit some directly verifiable or measurable quantity (e.g., a
minimum octane number in gasoline blending, or the total mass
charged to a blast furnace). In more complex cases, R’s may in-
volve technical and economic quantities that are not directly
verifiable or measurable (e.g., the yield of an undesirable inter-
mediate in a chemical process, or the expected additional cost of
purchasing some raw material if it is required in small lots).
The R’s are required to be non-negative at the end of each major
cycle. Some caution must be exercised in dealing with restraints,
to avoid thinking of properties of a particular R as properties of the
optimization problem. For example, the functions R1 = X1 — X2
and R2 = X1 #x3 — X1 % 2% X2 4 X1* X2%x2 — X2*x3
are interchangeable as restraints, since they are non-negative in
exactly the same region; yet their gradients are very different.

Feasible. Having all control variables within (or at) bounds,
and no restraints negative. A feasible region is one in which all
points are feasible (XL < X < XU and R > 0).

Objective function. A quantity F that has been chosen, formu-
lated, or programmed, so as to measure the desirability of some
action, product, process, or method. In simple cases, F may be a
directly verifiable or measurable quantity (e.g., the daily pro-
duction of a particular grade of paper at a mill, or the number of
typewriters produced on an assembly line). In more complex cases,
F may involve technical and economic quantities that are not
directly verifiable or measurable (e.g., safety penalties, tax esti-
mates, amortization).

Optimization. Determining a maximum for an objective
function.

Local optimum. A feasible point such that any feasible small
change will cause a decrease in the objective function.

Restrained opttmum. A local optimum (condition of system,
or control array) that has some control variable at its bound, or
some restraint equal to zero, i.e., just feasible.

Global optimum. That local optimum which has the highest
value of the objective function.
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Point. An element of the K-dimensional space determined by
the K control variables (X's).

Base potnt. A point from which probes originate.

Probe. A point established by increasing or decreasing a
particular control variable (X & D).

Solution. A point calculated by means of an optimization
program to be a local optimum.

Major cycle. A cycle of computation which leads to a feasible
improvement in the objective function.

Region. A set of points.

Convex (set or region). Having the property that 4 * X -+
(1 — A) * Y is in the set whenever X, Y are both in the set and
0<A<I.

Vector. An ordered set of quantities (components, or major
variables) which determines the state of a system (operating
vector). It also determines a change in the state (gradient or step
vector). As an example, consider the condition of a reactor to be
specified by feed temperature 7T', catalyst eoncentration C, and
pressure P. Then we may write X = (T, C, P) to represent the
operating vector. A function of this vector is evaluated according
to the separate values of the components; for example, if I is
the daily product value for the reactor, we may write F = f(X)
to indicate that F is some known function of 7, C, and P.

Gradient. A vector which expresses the local variation of a
function. In the case of F(X1, X2, --- , XK), the gradient vector
is the set (3F/0X1, 0F/0X2, --- , dF/dXK). This may be ex-
pressed by grad F or VF. It determines the direction of most
rapid change in F. This direction is sometimes described as
normal to F' = constant.

Linear. Having a constant gradient. To emphasize the far-
reaching consequences of this simple restriction, we note the
success already achieved by linear programming.''”**** This
success is in large measure due to the advantage of having a
constant gradient and therefore one which does not have to be
recalculated at each step toward the optimum.

Projection. A vector which expresses the local variation of a
funetion in a special direction. When the “projection of Z on BJ"
is specified, this vector has the form P = Z + A * VRJ. It is also
normal to VRJ. Hence, we have . ZN * (3RJ/IZN) +
A * D (BRJ/IZN) ** 2 = 0, from which 4 may be calculated.
When the “projection of Z on BJ and RM” is specified, P will
have the form Z + Al * VRJ + A2 * VRK and will be normal
to both VRJ and VRM, with the coefficients A1 and A2 to be
determined from two equations. This procedure may be extended
to projections of higher order, but is necessarily limited to pro-
jection on K — 1 confluent restraints, where K is the number of
control variables. In particular, if Z = WV F, then P is the ‘“‘gradient
projection of F.”

The principal problem considered in this paper may now be
stated in mathematical form.

Given (1) F, a real single valued function of set of K real
bounded control variables (X1, X2, --- XK), (2) a set of restraint
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functions (R1l, B2 -.-), each of which is a real single valued
function of the control variables, and (3) that there exists a
feasible subset of the K-dimensional space determined by the
control variables; we are required to find (1) a global optimum.

We will now describe some nonlinear programming techniques
that have been applied (with varied success) to the above problem.
These techniques are fairly well known and serve as a useful point
of departure in the development of more general nonlinear
methods.

Analytical method. Use elementary calculus to determine all
proper maxima possessed by the objective function. The highest of
these maxima may be the solution, if feasible. Next determine
restrained local maxima subject to each of the restraints and
bounds (Lagrange’s method of indeterminate multipliers is con-
venient for this). The highest of these may be the solution, if
feasible and not surpassed in the earlier calculations. Next, do the
same for local maxima subject to pairs of restraints or bounds.
Continue in this way until all local maxima on groups of restraints
or bounds have been isolated. Then select the global maximum.
Some of the mathematics required in this method may be found
in the literature.”-'°"*':*?

Grid method. Space XJ values at reasonable intervals for
each variable (e.g., divide the entire range of each variable
into ten parts). Calculate F at each feasible member of the
(¢, + 1)@ + 1) -+« (& -+ 1) resulting grid points (where ¢, is the
number of intervals for variable XJ). Designate the point with
the highest F value as the “first solution.” If more precision is
required, explore the vicinity of the first solution on a finer mesh
than before (or else apply some interpolation device, such as by
using a second-degree hypersurface). Continue this until satis-
factory precision is obtained. Check the solution by making
gradient or gradient-projection excursions. To reduce computing
time when using this method, eliminate portions of the grid
whenever possible by considering analytical properties of the
restraints. This is sometimes called the “case study’” method in
design work.

Monte Carlo methods. Use a random number table (or gener-
ator) to select a point in the bounded region. Retain this point if
feasible, and calculate its F. Repeat for another random point.
Retain the new point if its F is higher than that of the old point.
Continue in this way for a predetermined number of points
(calculated from statistical considerations to give a preset confi-
dence level). The last retained point is taken as an approximate
solution. Check this solution by making gradient or gradient-
projection excursions.

A variation of this method uses the retained point as a start
for the next move. Then the direction of the move is determined
at random, but the magnitude is fixed. If a certain number of
moves does not produce an improvement, the magnitude of the
move is decreased. Brooks® discusses some of the possibilities of
these methods.

Cross-section or univariate method. With fixed starting values of
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X2, X3 --- , XK, vary X1 by pre-selected steps, spanning its
range. At each point, calculate F if feasible. Select the best F so
far and set the corresponding value of X1. Then vary X2 in the
same way, and set X2 according to the best feasible point so far.
Continue in this way until a complete cycle produces no further
change in F. As with the grid method, a finer mesh may be intro-
duced after the final approximation is achieved. As usual, the
solution must be checked by making gradient or gradient-pro-
jection excursions.’

Blocking methods. Consider the possibility of reducing the
region to be examined in a systematic rather than a random
manner (cf. Monte Carlo methods). The general idea is to elimi-
nate about half of the bounded region at each step. These methods
may be satisfactory for a small number of variables, but they
become unmanageable for a large number of variables because
the procedure requires a knowledge of the objective function and
of the restraint functions for at least the ‘ corners’” of the region
to be eliminated. In a region with k major variables, there are
2* such corners. For k = 20, this number is more than one million.

Gradient projection method. From a feasible starting point,
follow the gradient until stopped by a restraint. Follow this
restraint, via gradient projections on tangent hyperplanes, until
stopped by another restraint. Then follow the two restraints, via
gradient projections on intersections of tangent hyperplanes, until
stopped by a restraint. Follow this restraint, via gradient pro-
jections on tangent hyperplanes, until stopped by another re-
straint. Continue in this way until “cornered” (at a restrained
maximum) or stopped by a zero gradient or gradient projection
(at a proper maximum or partially restrained maximum). Check
the final calculated point to see whether it is a solution. Due to
the use of tangents to approximate restraints, it will sometimes
be necessary to return to the feasible region when a calculated
step has led to a non-feasible point. This is done by an inter-
polation procedure.®

Among the above, probably the gradient projection method is
most adequately developed for wide use in systems that have non-
linear objective functions.

We will present our approach to the basic problem stated above
by describing, at the flow chart level, a computer program in-
corporating the mathematical technique. This computer program
will be referred to as the Probe Program. The program employs
a new optimizing procedure, which applies some principles not
found in any of the methods previously described. It does not
require continuity or the existence of derivatives for either the
control variables or the objective or restraint functions. It does
not require the feasible region to be convex. It is convergent, with
a self-adjusting feature for the increment size. It has been pro-
grammed with special consideration for the needs of control
systems and has been successfully tested on the IBMg 1620, 1710,
and 7090 computers. In the development of the Probe Program,
certain theorems for existence and convergence have been derived.
However, the object of the present paper is to deseribe the pro-
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gram; the precise statements and proofs of these theorems are
reserved for a later paper. We know of no “pathological” cases
corresponding to an industrial system for which the Probe Pro-
gram would fail (assuming, of course, that the computer involved
has appropriate capability).

The Probe Program attacks the basic problem by finding (1) a
feasible point X(N) and (2) a sequence of points X (J) with the
properties (a) the first X(J) is X(&), (b) for I > J, F( X)) >
F(X(J)), and (e) F(X(L)) is a loeal optimum, where X (L) is the
last X(J).

The program starts by making probes (excursions) from a
feasible point, in directions of increasing and decreasing X's. The
first successful probe (feasible point with improved F) determines
the next point of the course, and this point becomes a base for
further probing. The course is continued until no improved
feasible point is achieved, possibly due to “approaching” a re-
straint. In a later section, we shall describe a procedure for “follow-
ing” a restraint.

When a course terminates ‘“away from” all bounds and re-
straints, approach to a solution is indicated. When the appropriate
procedures have failed to produce any advance, it is time to
decrease the increment sizes and repeat the entire procedure.
START JERDAND After re;peated reductions, the tolerance is matched, and the

calculation stops. The point resulting from the last major cycle
—[ is reported as a solution.
WAKE A number of practical additions to the basic logic outlined
", PRELIMINARY . . .
ORRELOAD. caLCuLAToNs above are included in the program. One of these involves as-
FINISH) ENTER) signing priorities to probes, and to restraint calculations, in order
to improve the efficiency of caleulation. Another involves special
TSt —ost—] calculations which improve efficiency in a ‘““ridge” situation (that
SOLUTIONS PRELIMINARY . . . . .
F RESRED is, a situation where ¥V F changes greatly within one step). Another
COME] consists in designating certain variables as “discrete,”’ in which
case their increments will be integer multiples of specified values
(usually unity), and the variables themselves will take on only
TOLERANCE? emorosme|  specified values (usually integers).
START, PROCEED]
These variations are incorporated in the Probe Program but
: are omitted from the ‘“Compact Probe Program,” which is the
REDUCE J|suENTER L. subject of another report.™*
b o The Probe Program consists of an executive routine and
several major subprograms—called, EDGE, ENTER, FENCE, FINISH,
. FOUL, OBJECT, ORDER, PROBE, and RIDGE (which for notational
FEAGIBLE. rranonreas| | convenience will be designated in small capitals). A schematic
POINT FOUND? PROBES . . .
flow chart for the Probe Program is presented in Figure 1.
In Figure 1, we see that the basic “optimizing’ logic starts at
= > the fifth block (entering subprogram pROBE), which is described
RESULTS et | | later. The assumption here is that a feasible starting point is

Figure 1 Flow chart
for Probe Program

INTERRUPT
STOP,

SET
CONTROLS

Al
PROCEED

subprogram rouL, described later.

i In the course of subprogram PROBE, the critical probes (highest
AVAILABLE suatroskaM) | and lowest feasible and non-feasible) are stored. If any probe is
non-feasible, the gate to subprogram EDGE is opened, and that
subprogram will be used to follow a restraint, if needed. In any

available. If not, one would normally be found by means of

NEW DATA

NO
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case, when an improved feasible point is found, the results are
listed as required and the control situation is reviewed (Is there
an “interrupt”’ situation? Is an alarm set? Are new data available?).
If no control action is required, the program returns to sub-
program PROBE for another cycle. When a point is reached where
the subprogram fails to produce feasible improvement, the in-
crements are reduced (halved). When the ratio of increments
to their initial values falls below a preassigned tolerance, the
solution is listed if required, and the controls are reset.

Thus we see that the Probe Program is simple in concept.
However, it is suitable for use with large and complicated prob-
lems. In the sections that follow, the entire program is discussed
in enough detail to guide coding for any stored-program computer.

We will now describe the optimizing subprograms. Subprogram optimizing
PROBE is shown in flow form in Figure 2. This program imple- subprograms
ments the probing procedure which was mentioned in the Probe
Program description. The general procedure is as follows. With

Figure 2 Flow chart for subprogram PROBE
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Figure 3 Flow chart for subprogram EDGE
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DIAGRAM [NDICATES ASSIGNMENT OF Notation

LABELS TO CRITICAL PROBE POINTS.

B base point
objective function
value of ¥ at B,
HF, ...

highest feasible,
non-feasible probes
lowest feasible,
non-feasible probes
NH index for half-
steps

X control variable
value of X at B,
HF, ...

F
FB, FHF, ...

~_ - F=CONST. HF, HN

LF, LN

preselected step sizes for all control variables, probe from a
feasible point (base point) in the (positive and negative) direc-
tions of the control variables, in a preset order. Desist as soon as
a feasible point with a higher value of F is found. Use this point
as a new base point and set a flag to indicate this condition. If no
improved feasible point is found, set a flag to indicate this con-
dition, before leaving the subprogram. While probing, upgrade
the high and low feasible and non-feasible probes (see description
of subprogram EpGE) when needed. Also remove the ‘“bypass
EDGE" flag whenever a non-feasible probe occurs.

Subprogram EpGE is shown in flow form in Figure 3. This
program directs the procedure after a restraint (or set of re-
straints) has been sensed during the operation of subprogram
PROBE. It directs the course of computation so as to “follow’ the
“nearest’’ restraint, unless improvement is available in a direc-
tion away from the restraint. An outline of the procedure follows.

Since at least one of the probe points is non-feasible and all
probes within one step of the base point have been evaluated
(otherwise we would not have entered subprogram EDGE), we
know that highest and lowest feasible (denoted HF, LF respec-
tively) and non-feasible (denoted HN, LN respectively) points
have been evaluated. We now test the midpoint between HF
and HN. If feasible, evaluate. If not better than the base point,
replace HF by the new point and proceed similarly with LF and
LN. Repeat the procedure using HF and HN (as well as the
procedure using LF and LN) four times before leaving this
subprogram.

In Figure 4, some of the concepts involved in the nonlinear
problem and its solution are illustrated. For a certain chemical
reaction, the yield of a desirable product (F) is known as a function
of pressure (X1) and temperature (X2). Natural lower bounds
exist for temperature (since this reactor will always be heated,
never cooled) and for pressure (since the reactants enter under
positive pressure). Practical upper bounds also exist, since either a
temperature greater than XU2 or a pressure greater than XUl
would be harmful to the reactor. Hence the feasible region for
this problem must be within the indicated rectangle. But there
are further conditions. (1) For certain combinations of temperature
and pressure, polymerization occurs. This is undesirable, and is
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therefore ruled out by the relation R1 (X1, X2) > 0. In Figure 4,
this removes the shaded area at the left from the feasible region.
(2) For other conditions of temperature and pressure, the product
will contain more than some specified amount of an undesirable
component, even though the yield of the desirable product is
high. This condition is ruled out by the relation B2(X1, X2) > 0.
In Figure 4 this removes the shaded area at the right from the
feasible region. The remaining unshaded area ABCDEGA repre-
sents the feasible region.

In Figure 4, the combined operation of PROBE and EDGE is
illustrated by course SRQPNMLK. At S, the initial probe in-
creases X2, and an improved feasible point R is achieved. At R,
the restraint R1 = 0 is encountered when increasing X2, but an
increase in X1 produces improvement. At N, four feasible ad-
vances have been made with the basic step size. So the step size
is increased, and M is the next improved feasible point. The probes
from M do not produce an improved feasible point, but inter-
polation between the low-feasible probe (U) and the low-non-
feasible probe (T) leads to L (second half-step), an improved
feasible point. From L, a similar procedure takes us to K. The
point K is very close to the restrained optimum which represents
the solution of this problem. In fact, any of the points M, L, or K
might represent a good operating condition for the reactor. How-
ever, if a close tolerance has been chosen, the continued applica-

Figure 4 Operation of subprograms PROBE and EDGE
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tion of PROBE and EpGE with reduced step sizes will produce still
further feasible improvements.

The main, or executive program is shown in flow form in

Probe Figure 5. In addition to connecting the subprograms and organiz-

executive  ing the necessary initializing, finalizing and branching, the execu-

program tive program also calls in the subprograms which define the
particular problem to be solved. Such subprograms are briefly
described in the following paragraphs.

The executive program will branch to ENTER only at the start
of the calculation. Accordingly, this subprogram should include
all one-time operations needed to set up later calculations. It will
set the values needed to satisfy existing control requirements.
It may set initial values for D’s, or use values stored during a
previous cycle.

The executive program and the subroutines will branch to
oBJECT whenever the objective function F is to be calculated.
This subprogram computes F from the currently stored values of
X1, X2, ete. It returns the result to a fixed location and branches
back. If desired, a tally can be programmed to advance each
time oBJECT is entered; this will provide a record of how many
times F has been recalculated.

The executive program and the subprograms will branch to
FENCE whenever the restraint functions R1, R2, etc. are to be
calculated. This subprogram computes R1, R2, etc. from the
currently stored values of X1, X2, ete. If any restraint comes out
negative, the subprogram sets a non-feasible flag and exits. If no
restraint is negative, the exit is reached with the feasible flag set.
The non-feasible flag can also be set by overstepping a bound;
but this is handled by the executive program. Figure 6 shows
the simple logic of this subprogram.

Figure 5 Flow chart for executive program
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The executive program will branch to FINISH under one of
these conditions: (1) at the conclusion of the optimization, (2) if
control is to be initiated, (3) if an error is indicated, (4) if a feasible
starting point is not available. Subprogram riNisH will provide
instructions for implementing control, correcting errors, or setting
alarms, as required.

As previously indicated, a number of additional subprograms
are included for purposes of flexibility and efficiency, although they
might be omitted for the sake of compactness. These subprograms
are briefly described in the following paragraphs.

The starting point will ordinarily be feasible, since the Probe
Program will be running on a process which runs within the
assigned restraints and bounds. However, if a feasible starting
point is not known, one is calculated via subprogram rouL as
follows. Set up the pseudo-objective function FR whose value is
that of the algebraically smallest R. Run the optimizer on this
function (normally without restraints), not to a maximum of
FR, but only until FR becomes positive. We then have a feasible
point, since all R's must be positive. Then we return to the main
program.

A fixed order of probing, and a fixed order of calculating the
restraints, may not be the most efficient. Subprogram ORDER is
used to make this ordering more efficient. The procedure used in
probing is to bring the successful probe to the head of the list,
moving its opposite to the end. For example, if the probe order
in a 3-variable problem has been —2, 43, 41, —1, —3, +2, and
a successful probe is made on the fourth trial (—1), the new probe
order becomes —1, —2, +3, —3, 42, +1. In the ordering of
restraint calculations, priorities are assigned according to the
number of times a restraint turns up negative during a major
cycle; in this way, the number of restraint calculations needed to
discover non-feasible points is usually reduced.

In some problems, progress may be slowed somewhat in regions
where gradients change sharply within one step (although this is
not common with well designed processes, and indicates some
danger of instability in the system). For such cases, RIDGE is
used to increase efficiency. Suppose that probes from the base
point (at full step size) have failed to indicate an impending
restraint, yet have also failed to yield an improved point. Then
before reducing step size, proceed as follows. Between the two
highest-valued probes, evaluate the midpoint. Exit from the
subprogram if the midpoint is non-feasible (failure) or if it is
feasible and higher than the base point (success). Otherwise,
use the evaluation together with a quadratic approximation to
estimate the maximum F between the critical probe points.

The Probe Program is compatible with various modes of
control. Some of these will be described briefly in the following
paragraphs, with an indication of how the Probe Program applies.

Steady-state mode. The steady-state condition of a process is
one in which changes in control, once made, will remain fixed for
a long time (for example, in a continuous chemical plant with
uniform inputs and outputs). In this case, the Probe Program is
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to be used whenever a significant change in inputs or process
conditions occurs. The results will provide an operator guide,
indicating the setpoints for control instruments to attain optimal
operation. Occasionally, the Probe Program can also be used to
determine whether some operating conditions far different from
normal might provide a still better operation.

Dynamic mode. The dynamic condition of a process is one in
which changes in control are made frequently (for example, in a
catalytic process with several reactors, where the catalyst activity
continually varies). In this case, the Probe Program is to be used
in the closed loop, being called in after each new data-gathering
cycle to start reoptimizing the operation. In a case where the data
cycles are far apart, the control variables should be not only set
points, but also derivatives, so that control conditions are ad-
vanced smoothly. In a case where the data cycles are close to-
gether, the Probe Program, operating after several stages of data
processing, may not have time to complete the optimization calcu-
lation to the specified tolerance. In this case, (see Figure 5) an
exit to the control cycle is permitted at the end of any major
cycle of optimization. When this exit is used, an improved, al-
though not strictly optimal, control strategy is directed to the
process through the closed loop.

Dynamic scheduling mode. The dynamic scheduling condition
of a process is one in which changes in control are made fre-
quently, while changes in the objective or the restraints also occur
(for example, in a refinery, where restraints vary with shipping
schedules and seasons, and the objective may be a profit function
integrated over several weeks). In this case, the Probe Program
is to be used both in off-line calculation (as described for the
steady-state mode) and in the closed loop (as described for the
dynamic mode). Included in the off-line calculations there will
occasionally be some suboptimizations, which will be applied to
simplify the subsequent closed-loop calculation.

As an example, suppose we have a process with five control
variables, and wish to optimize a profit function G, integrated
over six future time periods. This presumes that we are prepared
to solve a 30-variable optimization problem as indicated in
Table 1. :

The problem here is to optimize F = W1*Gl1 + --- 4 W6*G6
where the G's are values of the objective function for the sucees-
sive time periods, and the W’s are weighting factors, related to
the reliabilities of forecasts for the respective time periods. In

Table 1 Optimization—30-variable problem

time period 1 2 3 4 5

control variable variable in dynamic optimization

X1 Xi1 X12
X2 X21 X22
X3 X31  X32
X4 X41 X42
X5 X51 X52
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addition to the “integrated” objective function, there will also
be certain restraint functions which apply over the span of six
time periods. In this setting, the 30-variable problem is solved
off-line. The result is a schedule on which the process control is
started. After the first time period, the optimizing calculation is
carried out on-line, and only as a 5-variable problem. In the
5-variable calculation, only the schedule for the sixth time period
is calculated, the other X's being treated as constants. The former
values of X16 to X56 now become scheduled values of X15 to
X55, ete. At any time when a check calculation of X11 to X51
(the control variables next to be implemented) is desired, this
can also be run as a 5-variable optimization, using the previously
calculated values of X11 to X51 as a starting point, again treating
the remaining X's as constants. This check ecalculation will
ordinarily be used when significant changes in uncontrollable vari-
ables are known to occur, thus producing changes in the objective
or restraint functions.

Problems of different degrees of complexity have been used
to test the Probe Program. To conclude, the output of a 4-vari-
able test problem is exhibited to give the reader some indication
of the relations between problem data and program parameters.

In this problem (see Table 2) F represents the profit per unit
of a certain chemical product. This has been formulated as a
quadratic function of four principal process variables. The total
production rate R is required to be not greater than K1 and not
less than K2. This production rate has also been formulated as a
quadratic function of the four principal controllable variables.

Looking at Cycle 1, we see that the objective function F has
increased to 29.075 from an initial value of 29.005. This was done

by increasing X2 to .0500 from its initial value of .0000. The
restraints remain positive.

Looking at Cycle 4, we see that the objective function has in-
creased still more to 29.0785. Although probes have been made
with other variables, X2 is the only one that has given a useful
change, increasing still more, to .0524. The first restraint has

Table 2 Example of output Probe Program—4-variable problem

F = F(X1, X2, X3, X4), and F is a quadratic function

Rl = K1 — R(X1, X2, X3, X4), and Rl is a quadratic function
R2 = —K2 + R(X1, X2, X3, X4)

Upper bound for each X is 2.0

Lower bound for each X is —2.0

Tolerance is .0000001

Initial step size for each X is 0.1

CYCLE X1 X2 X3 X4 R1 R2 F

START —2.0000 0.0000  2.0000 —2.0000 0.1933 1.8067  29.005
—2.0000 0.0500  2.0000 —2.0000 0.0089 19911  29.075
—2.0000 0.0516  2.0000 -—2.0000 0.0031 1.9969  29.077
—2.0000 0.0523  2.0000 —2.0000 0.0002 1.9998 29.0784
—2.0000 0.0524  2.0000 —2.0000 0.00004 1.9999+4 29.0785--
—2.0000 0.0524  2.0000 -2.0000 0.0000-- 1.9999-4 29.0785+
—2.0000 0.0524+ 2.0000 ~-2.0000 0.0000-+ 1.99994 29.0785+
—2.0000 0.0524+ 2.0000 —2.0000 0.0000+ 1.99994 29.0785+

p —2.0000 0.0524+ 2.0000 —2.0000 0.0000  2.0000 29.0785+
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become zero (indicating the maximum allowable production rate).
The step-size has become very small, indicating approach to a
maximum.

Looking at the solution, we see that no further improvement
was made after Cycle 4. The solution is fully restrained with X1
and X4 at their lower bounds, X3 at its upper bound, and X2
at a value which makes R1 exactly zero.

In the present paper, the main problem considered has been
that of optimizing a process with respect to certain control vari-
ables. On this basis, we have not specifically considered the means
of optimizing the response of a control system. However, this
problem has been attacked by a number of workers, and some
results appear in the literature of control systems.''**'** A special
application of the Compact Probe Program to a study of this
type (response optimization) has also been reported.'’
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