
A t  present,  there  are many  industr ial  processes of a nonlinear 
character for which  i t   i s   d i f icul t   to  develop an effective  industrial 
process  control  system  because no  eficient  mathematical  method  is 
known  to  carry  out  the  optimization  procedure. 
0 This  paper  presents a flow chart  description  of a computer  pro- 
gram  incorporating  a  new  optimization  technique  which  will resolve 
many  such  problems.  Although  the  mathematical  basis  for  the tech- 
nique  is  suggested,  details  and  proofs  are omitted-these will  appear 
in a subsequent  paper. 

T h e  technique  has  been  successfully tested o n  a number of problems. 
Testing  was  conducted  using a control  system (IBM 1710) a s  well 
a s  both  small  and  large  computers (IBM 1620, 7090). 

A program  for 
optimal  control of nonlinear  processes 

by R. A. Mugele 

The development of a  computer-directed  control  system for a 
general complex industrial  unit,  such  as a chemical plant, a petroleum 
procedure refinery, or an electrical power distribution  system,  can  be seg- 

mented  into  three  major  parts. 
A m.athematica1  model of the system  must be  developed. The 

basic model must describe a t  least the internal  balances and 
transfer of material and energy, and reactions that occur  within 
the system.  This model is also useful in  determining  requirements 
for  constructing,  operating, or modifying the  unit.  The basic 
model may be refined by allowing for  variability  in  operating 
conditions so that  the response of the system to external  changes 
will be  shown and  other useful information, e.g., accounting 
data, can  be  obtained. 

Next, an optimizing  procedure must  be  found which is appli- 
cable to  the model and which will permit  calculation of better, 
or best,  operating  conditions,  according to preset  criteria.  This 
is the  type of problem to be considered in  detail  in the present 
paper. 

Finally,  a control  procedure must be  formulated  for  conveying to 
the process (by  means of controller  set-point and reset  rates, 
switches, clocks, and  other devices) the improved  mode of opera- 
tion which has been computed  by  the optimizing  program. 

In general, some sort of approximation to  an industrial  system 
mathematical may be obtained  with a linear model. In  the linear model, things 
considerations change a t  a constant  rate  relative  to  the basic variables. For 

example, if each  ton per day increase in  throughput a t  a plant 
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produces $100 per day increase in profit, we have  a linear situa- 
tion. But there  are cases in which the linear model is inadequate 
(not precise enough, or misleading as  to trends).  Perhaps, in the 
above example, each additional  ton per day increase in  throughput 
produces a smaller improvement than  the preceding increase. 
In such cases, solutions cannot be obtained by using the relatively 
direct and simple methods of linear programming. We require 
nonlinear programming techniques which  will optimize nonlinear 
objective functions and restraints. 

Several workers have devised methods of nonlinear program- 
ming and these have been applied to such diverse problems as 
gasoline  blending,’ chemical plant problernsl2 and algebraic test 

However, these methods do not  apply to cases in which several 
of the restraints  have complicated nonlinear forms. Such cases 
become important when we consider something as complex as a 
chemical plant or a petroleum refinery. Here the interaction of 
physical, chemical, and economic factors leads to  an involved 
objective function. Also, practical considerations such as product 
specification and component availability lead to a number of 
restraint inequalities, some of them highly nonlinear. Thus, we 
face the problem of nonlinear programming with complicated 
nonlinear restraints. To handle such problems, extensions of 
existing nonlinear methods  have been In the follow- 
ing sections we shall describe such proposals and also some  effective 
methods which have  already been developed and applied to 
full-scale problems. 

Before describing optimization programs and their relation to 
process and control, we  offer some definitions. Variations from 
these will  be found in other publications, as is usually the case in 
a relatively new  field. But in the present paper, the following 
definitions and accompanying notation will  be  used consistently. 
Since we are simultaneously concerned with computer programs, 
some  use of Fortran  notation  has been made. 

Control  variables. Quantities X I ,   X 2 ,  etc., that are  to be  used 
in implementing the result of optimization, Le., producing optimal 
control of a process. The X’s may be subject to bounds and re- 
straints,  but  they  are expected to  vary during solution of the 
problem. The function F and  the R’s (see definitions below  of 
objective function and restraints, respectively) are  to be  ex- 
pressed, either explicitly or implicitly, in terms of the X’s. The 
X’s  form a K-dimensional set  in which a point determines the 
state of the system. In  the dynamic mode, at least one of the X’s 
will  be a variable expressing or implying time. 

Uncontrollable  variables. Quantities V 1 ,   V 2 ,  etc., that are not 
used in implementing the result of optimization, but do enter 
as parameters in the model, varying primarily as a result of 
disturbances in the  inputs. 

Rounds. Quantities which  define the range of the X’s.  Upper 
bounds are X U l ,   X U 2 ,  etc. Lower bounds are X L 1 ,   X L 2 ,  etc. 
The range of X 1  is defined by X U 1  - XL1.  Where the problem 
conditions do not specify such bounds, arbitrary values may be 
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provided (e.g., large negative X L 1  and large positive X U ) .  
The relations X L  5 X 5 X U  define a set of states including the 
feasible points as a subset. 

Increments  (steps). Quantities D l ,   0 2 ,  etc., to be used in 
computing the effects of changing control variables X 1 ,   X 2 ,  etc., 
during the optimization calculation. These increments are used 
to change the X ' s  positively or negatively, individually or in 
combinations, as required by the program. The D's have assigned 
starting values, but  are increased or decreased during the compu- 
tation, as required by the program. 

Tolerance. A quantity T ,  positive and usually small, which 
defines the minimum allowable ratio of D's to the  starting values 
of the D's. When D's have been reduced often enough to match 
this tolerance, the optimization calculation stops. 

Restraints. Quantities R l ,  R2,  etc., which have been chosen, 
formulated, or programmed, so as to impose limitations on some 
action,  product, process, or method. In simple cases, R's  may 
limit some directly verifiable or measurable quantity (e.g., a 
minimum octane  number in gasoline blending, or the  total mass 
charged to a blast furnace). In more complex  cases, R's may in- 
volve technical and economic quantities that are  not directly 
verifiable or measurable (e.g., the yield of an undesirable inter- 
mediate in  a chemical  process, or the expected additional cost of 
purchasing some raw material if it is required in small lots). 
The R's  are required to be non-negative a t  the end of each major 
cycle.  Some caution must be exercised in dealing with restraints, 
to avoid thinking of properties of a particular R as properties of the 
optimization problem. For example, the functions R 1  = X 1  - X 2  
and R2 = X 1  ** 3 - X 1  ** 2 * X 2  + X 1  * X 2  ** 2 - X 2  ** 3 
are interchangeable as restraints, since they  are non-negative in 
exactly the same region; yet  their  gradients  are  very different. 

Feasible. Having all control variables within (or at) bounds, 
and no restraints negative. A feasible region  is  one in which  all 
points  are feasible ( X L  5 X 5 X U  and R 2 0). 

Objective function. A quantity F that has been chosen, formu- 
lat,ed, or programmed, so as to measure the desirability of some 
action,  product, process, or method. In simple cases, F may be a 
directly verifiable or measurable quantity (e.g., the daily pro- 
duction of a  particular grade of paper at  a mill, or the number of 
typewriters produced on an assembly line). In more complex  cases, 
F may involve technical and economic quantities that are  not 
directly verifiable or measurable (e.g., safety penalties, tax esti- 
mates,  amortization). 

Optimization. Determining a maximum for an objective 
function. 

Local optimum. A feasible point such that any feasible small 
change will cause a decrease in the objective function. 

Restrained optimum. A local optimum (condition of system, 
or control array) that has some control variable at  its bound, or 
some restraint  equal to zero, i.e., just feasible. 

Global optimum. That local optimum which has  the highest 
value of the objective function. 
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Point. An element of the K-dimensional space determined by 

Base  point. A point from which probes originate. 
Probe. A point established by increasing or decreasing a 

Solution. A point calculated by means of an optimization 

Major cycle. A cycle of computation which leads to a feasible 

Region. A set of points. 
Convex  (set or region). Raving  the  property  that A * X + 

(1 - A )  * Y is  in the  set whenever X ,  Y are  both in the  set  and 
O l A I l .  

Vector. An ordered set of quantities (components, or major 
variables) which determines the  state of a system  (operating 
vector). It also determines  a change in the  state (gradient or  step 
vector). As an example, consider the condition of a  reactor to be 
specified by feed temperature T ,  catalyst  concentration C, and 
pressure P. Then we may  write x = ( T ,  C,  P )  to represent  the 
operating vector. A function of this  vector is evaluated according 
to  the  separate values of the components; for example, if F is 
the daily  product value for the reactor, we may  write F = f(a) 
to indicate that F is some known function of T,  C,  and P. 

Gradient. A vector which expresses the local variation of a 
function. In the case of F(X1,  XZ, . . , X K ) ,  the gradient  vector 
is the  set (aFIaX1,  aFlaX2, - , aF/aXK) .  This may  be ex- 
pressed  by grad F or V F .  It determines the direction of most 
rapid change in F.  This direction is sometimes described as 
normal to F = const,ant. 

Linear. Having a. constant  gradient. To emphasize the far- 
reaching consequences of this simple restriction, we note the 
success already achieved by linear pr~gramming.’*’*~,~ This 
success is in large measure due to  the  advantage of having a 
constant  gradient and therefore one which does not, ha.ve to be 
recalculated a t  each step toward the optimum. 

Projection. A vector which expresses the local variation of a 
function in a special direction. When the “projection of Z on RJ” 
is  specified, this vector has  the form P = Z + A * V R J .  It is also 
normal to VJRJ. Hence, we have Z N  * (aRJ /aZN)  + 
A * (aRJ,/aZN) ** 2 = 0, from which A may be calculated. 
When the “projection of Z on R J  and RM” is  specified, P will 
have the form 2 + A 1  * V R J  + A 2  * V R K  and will be normal 
to both V R J  and V R M ,  with the coefficients A1 and A2 to be 
determined from two equations. This procedure may be extended 
to projections of higher order, but is necessarily limited to pro- 
jection on K - 1 confluent restraints, where K is the number of 
control variables. In particular, if Z = V F ,  then P is the  ‘(gradient 
projection of F.” 

The principal problem considered in this  paper  may now  be 
stated in mathematical form. 

Given (1) F ,  a real single valued function of set of K real 
bounded control variables ( X l ,   X 2 ,  XK), (2)  a  set of restraint 

the K control variables (X’s) .  

particular control variable ( X  f 0). 

program to be a local optimum. 

improvement in the objective function. 
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functions (Rl ,  R2 . a), each of which is a real single valued 
function of the control  variables, and (3) that  there exists a 
feasible subset of the K-dimensional space  determined  by the 
control  variables; we  are  required to Jind (1) a global optimum. 

We will now describe some nonlinear  programming  techniques 
nonlinear that  have been applied  (with  varied success) to  the above  problem. 
optimization These  techniques are fairly well known and serve as a useful point 

of departure in the development of more  general  nonlinear 
methods. 

Analytical  method. Use elementary  calculus to determine  all 
proper  maxima possessed by the objective  function. The highest of 
these  maxima may be the solution, if feasible. Next  determine 
restrained local maxima  subject to each of the  restraints  and 
bounds (Lagrange’s method of indeterminate  multipliers is con- 
venient for t’his). The highest of these may be the solution, if 
feasible and  not surpassed  in the earlier  calculations.  Next,  do the 
same  for local maxima  subject to pairs of restraints or bounds. 
Continue  in  this way until all local maxima  on  groups of restraints 
or  bounds  have been isolated. Then select the global maximum. 
Some of the mathematics  required in this  method  may be found 
in the l i t e r a t ~ r e . “ ~ ~ ’ ~ ~ ’ ~ ~  

Grid  method. Space X J  values at reasonable  intervals for 
each  variable (e.g., divide the  entire  range of each  variable 
into  ten  parts). Calcu!ate F a t  each feasible member of the 
(i, + l)(iz + 1) - (i, + 1 )  resulting  grid  points (where i, is the 
number of intervals for variable X J ) .  Designate the point  with 
the highest F value as the “first  solution.” If more precision is 
required, explore the vicinity of the first  solution  on  a finer mesh 
than before (or else apply some interpolation device, such  as  by 
using a second-degree hypersurface).  Continue  this  until  satis- 
factory precision is  obtained.  Check  the  solution by making 
gradient  or gradient-projection excursions. To reduce  computing 
time when using this  method, eliminate  portions of the grid 
whenever possible by considering analytical  properties of the 
restraints.  This is sometimes called the  “case  study”  method  in 
design work. 

Monte  Carlo  methods. Use a random  number  table (or gener- 
ator)  to select a point in the bounded region. Retain  this  point if 
feasible, and calculate its F.  Repeat  for  another  random  point. 
Retain  the new point if its F is higher than  that of the old point. 
Continue  in  this way for a predetermined  number of points 
(calculated  from statistical considerations to give a  preset confi- 
dence  level). The last  retained  point is taken as an approximate 
solution.  Check this solution by making  gradient or gradient- 
projection excursions. 

A variation of this  method uses the  retained  point as a start 
for the next  move. Then  the direction of the move  is  determined 
a t  random,  but  the  magnitude is fixed. If a certain  number of 
moves does not produce an improvement,  the  magnitude of the 
move is decreased. Brooks3 discusses some of the possibilities of 
these  methods. 

Cross-section or univariate  method. With fixed starting  values of 
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X2;X3 . - - , X K ,  vary X1 by pre-selected steps, spanning it.s 
range. At each point, calculate F if feasible. Select the best F so 
far  and  set  the corresponding value of X1. Then  vary X2 in the 
same way, and set X2 according t,o the best feasible point so far. 
Continue in this way until a complete cycle produces no further 
change in F .  As with the grid method, a finer  mesh may be intro- 
duced after  the final approximation is achieved. As usual, the 
solution must be checked by making gradient or gradient-pro- 
jection ex~ursions.’~ 

Blocking  methods. Consider the possibility of reducing the 
region to be examined in a systematic  rather than a random 
manner (cf. Monte Carlo methods).  The general idea is to elimi- 
nate  about half of the bounded region at  each step. These methods 
may be satisfactory for a small number of variables, but  they 
become unmanageable for a large number of variables because 
the procedure requires a knowledge of the objective function and 
of the  restraint functions for at  least the “corners” of the region 
to be eliminated. In a region with k major variabl&,  there  are 
2k such corners. For IC = 20, this number is more than one million. 

Gradient  projection  method. From a feasible starting  point, 
follow the gradient  until  stopped  by a rest,raint. Follow this 
restraint,  via  gradient projections on tangent hyperplanes, until 
stopped  by  another  restraint.  Then follow the two  restraints,  via 
gradient projections on intersections of tangent hyperplanes, until 
stopped  by a restraint. Follow this  restraint,  via  gradient pro- 
jections on tangent hyperplanes, until stopped by  another re- 
straint. Continue in this way until  “cornered”  (at a restrained 
maximum) or stopped by  a zero gradient  or  gradient projection 
(at a proper maximum or partially restrained maximum). Check 
the final calculated point to see whether it is a solution. Due to 
the use of tangents to approximate restraints, it will sometimes 
be necessary to  return to  the feasible region  when a calculated 
step  has led to  a non-feasible point.  This is done by an inter- 
polation procedure.6 

Among the above, probably the gradient projection method is 
most adequately developed for wide  use in systems that have non- 
linear objective functions. 

We will present our approach to  the basic problem stated above 
by describing, at the flow chart level, a computer program in- 
corporating  the  mathematical technique. This computer program 
will  be referred to  as  the Probe  Program. The program employs 
a new optimizing procedure, which applies some principles not 
found in any of the methods previously described. It does not 
require continuity or the existence of derivatives for either the 
control variables or  the objective or restraint functions. It does 
not require the feasible region to be  convex. It is convergent, with 
a self-adjusting feature for the increment size. It has been  pro- 
grammed with special consideration for the needs of control 
systems and has been  successfully tested on the IBMm 1620, 1710, 
and 7090 computers. In t,he development of the Probe  Program, 
certain theorems for existence and convergence have been derived. 
However, the object of the present paper is to describe the pro- 
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gram; the precise statements  and proofs of these theorems are 
reserved for a later paper. We  know of no “pathological” cases 
corresponding to  an industrial  system  for which the Probe  Pro- 
gram would fail (assuming, of course, that  the computer involved 
has  appropriate  capability). 

The Probe  Program attacks  the basic problem by finding (1) a 
feasible point X ( N )  and (2) a sequence of points X ( J )  with the 
properties (a) the first X ( J )  is X ( N ) ,  (b) for I > J ,  F ( X ( 1 ) )  > 
F ( X ( J ) ) ,  and (c) F ( X ( L ) )  is a local optimum, where X ( L )  is the 
last X ( J ) .  

The program starts by making probes (excursions) from a 
feasible point, in directions of increasing and decreasing X’s. The 
first successful probe (feasible point  with improved F )  determines 
the next point of the course, and this  point becomes a base for 
further probing. The course is continued until no improved 
feasible point is achieved, possibly due to “approaching”  a re- 
straint. In a later section, we shall describe a procedure for “follow- 
ing” a  restraint. 

When a course terminates  “away  from” all bounds and re- 
st.raints,  approach to a solution is indicated. When the appropriate 
procedures have failed to produce any advance, it is time  to 
decrease the increment sizes and  repeat the entire procedure. 
After repeated reductions, the tolerance is matched, and  the 
calculation stops. The point resulting from the last  major cycle 
is reported as a solution. 

A number of practical additions to  the basic  logic outlined 
above  are included in the program. One of these involves as- 
signing priorities to probes, and  to restraint calculations, in order 
to improve the efficiency of calculation. Another involves special 
calculations which improve efficiency in a  “ridge”  situation (that 
is, a situation where V F changes greatly within one step). Another 
consists in designating certain variables as “discrete,” in which 
case their increments will be integer multiples of specified values 
(usually unity),  and  the variables themselves will take on only 
specified values (usually integers). 

These variations  are incorporated in the Probe  Program  but 
are  omitted from the  “Compact Probe  Program,” which is the 
subject of another r e p ~ r t . ’ ~  

The  Probe  Program consists of an executive routine  and 
several major subprograms-called, EDGE, ENTER, FENCE,  FINISH, 

FOUL, OBJECT, ORDER, PROBE, and RIDGE (which for notational 
convenience will  be designated in small capitals).  A schematic 
flow chart for the  Probe  Program is presented in Figure 1. 

In Figure 1, we see that  the basic “optimizing” logic starts  at 
the fifth block (entering subprogram PROBE), which is described 
later.  The assumption here is that a feasible starting point is 
available. If not, one would normally be found by means of 
subprogram FOUL, described later. 

In  the course of subprogram PROBE, the critical probes (highest 
and lowest feasible and non-feasible) are  stored. If any probe is 
non-feasible, the  gate  to subprogram EDGE is opened, and  that 
subprogram will  be  used to follow a  restraint, if needed. In any 
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case, when an improved feasible point is found, the results are 
listed as required and  the control  situation is reviewed (Is  there 
an  “interrupt” situation? Is an  alarm  set? Are new data available?). 
If no control  action is required, the program  returns to sub- 
program PROBE for  another cycle. When a point is reached where 
the subprogram fails to produce feasible improvement, the in- 
crements are reduced (halved). When the  ratio of increments 
to their  initial  values falls below a preassigned tolerance, the 
solution is listed if required, and  the controls are reset. 

Thus we see that  the Probe  Program is simple in concept. 
However, it is suitable for use with large and complicated prob- 
lems. In  the sections that follow, the  entire program is discussed 
in enough detail to guide coding for any stored-program  computer. 

We will now describe the optimizing subprograms. Subprogram 
PROBE is shown in flow form in Figure 2. This  program imple- 
ments the probing procedure which was mentioned in the Probe 
Program description. The general procedure is as follows. With 

Figure 2 Flow chart  for  subprogram PROBE 
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Figure 3 Flow chart for subprogram EDGE 
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preselected step sizes for  all control variables, probe from a 
feasible point (base point) in the (positive and negative) direc- 
tions of the control variables, in a preset order. Desist as soon as 
a feasible point with a higher value of F is found. Use this  point 
as a new base point and  set a flag to indicate  this condition. If no 
improved feasible point is found, set a flag to indicate this con- 
dition, before leaving the subprogram. While probing, upgrade 
the high and low feasible and non-feasible probes (see description 
of subprogram  EDGE) when needed. Also remove the  “bypass 
EDGE” flag whenever a non-feasible probe occurs. 

Subprogram EDGE is shown in flow form in Figure 3. This 
program directs the procedure after  a  restraint (or set of re- 
straints)  has been sensed during the operation of subprogram 
PROBE. It directs the course of computation so as  to “follow” the 

tion away from the  restraint. An outline of the procedure follows. 
Since a t  least one of the probe points is non-feasible and all 

probes within one step of the base point  have been evaluated 
(otherwise we would not  have  entered  subprogram  EDGE), we 
know that highest and lowest feasible (denoted H F ,   L F  respec- 
tively) and non-feasible (denoted H N ,   L N  respectively) points 
have been evaluated. We now test  the midpoint between H F  
and H N .  If feasible, evaluate. If not better  than  the base point, 
replace H F  by  the new point  and proceed similarly with L F  and 
L N .  Repeat  the procedure using H F  and H N  (as well as  the 
procedure using LF and L N )  four times before leaving this 
subprogram. 

In Figure 4, some of the concepts involved in the nonlinear 
problem and  its solution are illustrated. For a certain chemical 

( L  nearest”  restraint, unless improvement is available in a direc- 

an example of 
PROBE and EDGE reaction, the yield of a desirable product ( F )  is known as a function 
operation of pressure (Xl) and  temperature (X2). Natural lower bounds 

exist for temperature (since this  reactor will always be  heated, 
never cooled) and  for pressure (since the  reactants  enter under 
positive pressure). Practical  upper bounds also exist, since either  a 
temperature  greater  than XU2 or  a pressure greater than XU1 
would be  harmful to  the reactor. Hence the feasible region for 
this problem must be within the indicated rectangle. But  there 
are  further conditions. (1) For  certain combinations of temperature 
and pressure, polymerization occurs. This is undesirable, and is 
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tion of PROBE and EDGE with reduced step sizes  will produce still 
further feasible improvements. 

The main,  or executive program is shown in flow form in 
Probe Figure 5. In addition to connecting the subprograms and organiz- 
executive ing the necessary initializing, finalizing and branching, the execu- 
program tive program also calls in the subprograms which  define the 

particular problem to be solved. Such subprograms  are briefly 
described in the following paragraphs. 

The executive program will branch to EKTER only at the  start 
of the calculation. Accordingly, this  subprogram should include 
all one-time operations needed to set  up  later calculations. It will 
set  the values needed to satisfy existing control requirements. 
It may  set  initial values for D’s, or use values stored  during  a 
previous cycle. 

The executive program and  the  subroutines will branch to 
OBJECT whenever the objective function F is to be calculated. 
This subprogram  computes F from the currently  stored values of 
X 1 ,   X 2 ,  etc. It returns  the result to a fixed location and branches 
back. If desired, a  tally can be programmed to advance each 
time OBJECT is entered;  this will provide a record of how many 
times F has been recalculated. 

The executive program and  the subprograms will branch to 
FENCE whenever the  restraint functions R1, R2, etc.  are  to be 
calculated. This subprogram  computes R1, R2, etc. from the 
currently  stored  values of X 1 ,   X 2 ,  etc. If any  restraint comes out 
negative, the subprogram  sets a non-feasible flag and exits. If no 
rest,raint is negative, the exit is reached with the feasible flag set. 
The non-feasible flag can also be set  by overstepping a  bound; 
but  this is handled by the executive program. Figure 6 shows 
the simple logic of this  subprogram. 

Figure 5 Flow chart  for executive program 
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The executive program will branch to FINISH under one of 
these conditions: (1) at  the conclusion of the optimization, (2) if 
control is to be initiated, (3) if an error is indicated, (4) if a feasible 
starting  point is not available. Subprogram FINISH will provide 
instructions for implementing control, correcting errors, or setting 
alarms, as required. 

As previously indicated, a number of additional subprograms 
are included for purposes of flexibility and efficiency, although they 
might be omitted for the sake of compactness. These subprograms 
are briefly described in the following paragraphs. 

The  starting point will ordinarily be feasible, since the  Probe 
Program will  be running on a process  which runs within the 
assigned restraints and bounds. However, if a feasible starting 
point is not known, one is calculated via subprogram FOUL as 
follows. Set  up  the pseudo-objective function FR whose value is 
that of the algebraically smallest R. Run  the optimizer on this 
function (normally without  restraints),  not to a maximum of 
FR, but only until FR becomes positive. We then  have  a feasible 
point, since all R’s must be positive. Then we return  to  the main 
program. 

A fixed order of probing, and a fixed order of calculating the 
restraints,  may  not be the most efficient. Subprogram ORDER is 
used to make this ordering more efficient. The procedure used in 
probing is to bring the successful probe to  the head of the list, 
moving its opposite t’o the end. For example, if the probe order 
in a 3-variable problem has been -2, +3, +1,  - 1, -3, +2, and 
a successful probe is made on the  fourth  trial (- l) ,  the new probe 
order becomes - 1, -2, +3, -3, +2, +l. In  the ordering of 
restraint calculations, priorities are assigned according to  the 
number of times a  restraint turns up negative during a  major 
cycle; in this way, the number of restraint calculations needed to 
discover non-feasible points is usually reduced. 

where gradients change sharply within one step (although this is 
not common with well  designed  processes, and indicates some 
danger of instability in the system). For such cases, RIDGE is 

~ used to increase efficiency. Suppose that probes from the base 
point (at full step size) have failed to indicate an impending 
restraint,  yet  have also failed to yield an improved point. Then 
before reducing step size,  proceed as follows. Between the two 
highest-valued probes, evaluate the midpoint. Exit from the 
subprogram if the midpoint is  non-feasible (failure) or if it is 
feasible and higher than  the base point (success). Otherwise, 
use the evaluation together with a quadratic approximation to 
estimate the maximum F between the critical probe points. 

The  Probe  Program is compatible with various modes of 
control. Some of these will  be described briefly in the following 
paragraphs, with an indication of how the Probe  Program applies. 

Steady-state mode. The steady-state condition of a process is 
one in which changes in control, once made, will remain fixed for 
a long time (for example, in a continuous chemical plant with 
uniform inputs  and  outputs). In this case, the Probe  Program is 

I In some problems, progress may be  slowed somewhat in regions 
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to be used whenever a significant change in inputs  or process 
conditions occurs. The results will provide an operator guide, 
indicating the setpoints for control instruments  to  attain optimal 
operation. Occasionally, the  Probe Program can also be used to 
determine  whether some operating conditions far different from 
normal might provide a still better  operation. 

Dynamic  mode. The dynamic condition of a process is one in 
which changes in control are made frequently (for example, in a 
catalytic process with several reactors, where the  catalyst  activity 
continually varies). In this case, the Probe  Program is to be used 
in the closed loop, being called in after each new data-gathering 
cycle to  start reoptimizing the operation. In a case where the  data 
cycles are  far  apart,  the control variables should be not only set 
points, but also derivatives, so that control conditions are  ad- 
vanced smoothly. In a case where the  data cycles are close to- 
gether, the  Probe Program,  operating  after several stages of data 
processing, may  not  have  time to complete the optimization calcu- 
lation to the specified tolerance. In this case, (see Figure 5 )  an 
exit to  the control cycle is permitted a t  the end of any major 
cycle of optimization. When this exit is used, an improved, al- 
though  not  strictly  optimal, control strategy is directed to  the 
process through the closed  loop. 

Dynamic  scheduling  mode. The dynamic scheduling condition 
of a process is one in which changes in control are made fre- 
quently, while changes in the objective or the  restraints also occur 
(for example, in a refinery, where restraints  vary  with shipping 
schedules and seasons, and  the objective may be a profit function 
integrated over several weeks). In this case, the  Probe Program 
is to be used both in off-line calculation (as described for the 
steady-state mode) and  in  the closed  loop (as described for the 
dynamic mode). Included in the off-line calculations there will 
occasionally be some suboptimizations, which will be applied to 
simplify the subsequent closed-loop calculation. 

As an example, suppose we have  a process with five control 
application to a variables, and wish to optimize a profit function G, integrated 
profit function over six future  time periods. This presumes that we are prepared 

to solve a 30-variable optimization problem as indicated in 
Table 1. 

The problem here is to optimize F = W1* G1 + + W 6  * G6 
where the G’s are values of the objective function for the sucees- 
sive time periods, and  the W’s are weighting factors,  related to 
the reliabilities of forecasts for the respective time periods. In 

Table 1 Optimization-30-variable problem 

time period 1 1  2 3 4 5 6 

control variable variable in dynamic optimization 

x 1  x11 x12 . . .  X16 
x 2   x 2 1  x22 . . .  X26 
x3 X31 X32 . . .  X36 
x 4  X41 X42 . . .  X46 
x5 x51 x52 . . .  X56 

1.4 IBM Systems Journal September 1966 



addition to  the  “integrated” objective  function,  there will also 
be certain  restraint  functions which apply over the span of six 
t,ime periods. In this  set,ting, the 30-variable problem is solved 
off-line. The result is a schedule on which the process control is 
started. After  the first time period, the optimizing calculation is 
carried out on-line, and only as a 5-variable problem. In  the 
5-variable calculation, only the schedule for the sixth  time period 
is calculated, the  other X’s being treated  as constants. The former 
values of X16 to X56 now  become scheduled values of X15 to 
X55, etc. At  any time when a check calculation of X11 to X51 
(the control variables next to be implemented) is desired, this 
can also be run  as a  &variable  optimization, using the previously 
calculated values of X11 to X51 as a starting point, again treating 
the remaining X’s as constants. This check calculation will 
ordinarily be used  when significant changes in uncontrollable vari- 
ables are known to occur, thus producing changes in the objective 
or  restraint functions. 

Problems of different degrees of complexity have been used 
to  test  the Probe  Program. To conclude, the  output of a 4-vari- 
able test problem is exhibited to give the  reader some indication 
of the relations between problem data and program parameters. 

In this problem (see Table 2) F represents the profit per unit 
of a certain chemical product.  This  has been formulated as a 
quadratic  function of four principal process variables. The  total 
production rate R is required to be not  greater than K1 and  not 
less than K2.  This production rate  has also been formulated as a 
quadratic function of the four principal controllable variables. 

Looking a t  Cycle 1, we see that  the objective  function F has 
increased to 29.075 from an initial  value of 29.005. This was done 
by increasing X2 to .0500 from its initial value of .OOOO. The 
restraints remain positive. 

Looking at Cycle 4, we see that  the objective function has in- 
creased still more to 29.0785. Although probes have been made 
with  other variables, X2 is the only one that  has given a useful 
change, increasing still more, to .0524. The first restraint  has 

Table 2 Example of output Probe Program-4-variable problem 

F = F(X1, X2, X3, X4), and F is a quadratic function 
R1 = K l  - R(X1, X2, X3, X4), and R l  is a quadratic function 

Upper  bound  for each X is 2.0 
Lower bound  for each X is -2.0 
Tolerance is .OQOOOOI 
Initial  step size for each X is 0.1 

R2 = ” K 2  + R(X1, X2, X3, X4) 

CYCLE x1 x 2   x 3   x 4  R1 R2 F 

START -2.0000 0.0000 2.0000  -2.0000  0.1933  1.8067  29.005 
1 -2.0000 0.0500 2.0000 -2.0000 0.0089 1.9911 29.075 
2  -2.0000 0.0516 2.0000 -2.0000 0.0031 1.9969 29.077 
3  -2.0000 0.0523 2.0000 -2.0000 0.0002 1.9998 29.0784 
4 -2.0000 0.0524 2.0000 -2.0000 O.OOOO+ 1.9999f 29.0785+ 
5  -2.0000 0.0524 2.0000 -2.0000 O.OOOO+ 1.9999+ 29.0785+ 
6  -2.0000 0.0524+ 2.0000 -2.0000 O.OOOO+ 1.9999” 29.0785+ 
7  -2.0000 0.0524+ 2.0000 -2.0000 O.OOOO+ 1.9999+ 29.0785+ 

END -2.0000 0.0524+ 2.0000  -2.0000 0.0000 2.0000 29.0785+ 
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become  zero (indicating the maximum  allowable production rate). 
The step-size has become very small, indicating approach to a 
maximum. 

Looking at the solution, we see that no further improvement 
was made after Cycle 4. The solution is fully restrained with X1 
and X4 at  their lower bounds, X 3  at  its upper bound,  and X2 
at  a value which makes R1 exactly zero. 

In  the present paper, the main problem considered has been 
response that of optimizing a process with respect to certain control vari- 
optimization ables. On this basis, we have  not specifically  considered the means 

of optimizing the response of a control system. However, this 
problem has been attacked  by  a number of workers, and some 
results appear in the literature of control  system^."'^"^ A special 
application of the Compact Probe Program to a  study of this 
type (response optimization) has also  been re~0rted. l~ 
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