
Ligand discovery
on massively
parallel systems

S. R. Shave
P. Taylor

M. Walkinshaw
L. Smith
J. Hardy
A. Trew

Virtual screening is an approach for identifying promising leads for
drugs and is used in the pharmaceutical industry. We present the
parallelization of LIDAEUS (LIgand Discovery At Edinburgh
UniverSity), creating a massively parallel high-throughput virtual-
screening code. This program is being used to predict the binding
modes involved in the docking of small ligands to proteins.
Parallelization efforts have focused on achieving maximum parallel
efficiency and developing a memory-efficient parallel sorting
routine. Using an IBM Blue Gene/Le supercomputer, runtimes
have been reduced from 8 days on a modest seven-node cluster to
62 minutes on 1,024 processors using a standard dataset of 1.67
million small molecules and FKBP12, a protein target of interest in
immunosuppressive therapies. Using more-complex datasets, the
code scales upward to make use of the full processor set of 2,048.
The code has been successfully used for the task of gathering data
on approximately 1.67 million small molecules binding to
approximately 400 high-quality crystallographically determined
ligand-bound protein structures, generating data on more than 646
million protein–ligand complexes. A number of novel ligands have
already been discovered and validated experimentally.

Introduction and background

With proteins playing a major role in almost every

function carried out within a cell, the ability to control

or ‘‘turn off’’ proteins by simply blocking their binding

pockets creates exciting possibilities for controlling

protein activity. Molecules (such as ions, drugs, or

polypeptides) that bind to a protein of interest are

referred to as ligands and may affect the operation of the

protein within an organism. Finding specific and tightly

binding ligands offers the ability to alter the behavior of

proteins and plays an important role in modern medicine

[1, 2]. This paper describes the use of simulation as the

first stage for finding novel non-covalently bound ligands

for known protein structures. Virtual screening (VS)

[3–5] is a broad term and includes de novo ligand design,

that is, engineering a molecule by adding and removing

groups to alter its binding properties. However, for the

purposes of this paper, VS refers to the practice of

molecular docking in which a database of ligands is used

for studying potential interactions with a target receptor

such as a protein-binding site. This is a commonly used

approach in the first stage of the drug discovery process.

Typically, the VS process involves representing the

binding pocket of a protein and then executing two steps.

First, the ligand is positioned (referred to as the process

of posing), and second, the resultant complex is scored.

These steps are often merged or used to direct each other.

Potential ligands are extracted from a database of

available compounds. Software filters can then be

imposed on the potential ligands to ensure that they meet

certain criteria such as Lipinski’s rule of five [6] or that

they are not too similar [7].

Many different codes and approaches exist for

simulating the docking of a ligand to a receptor, and these

approaches vary greatly in their computational

complexity. As mentioned, two main aspects to docking

exist [8]: the positioning and global search in which the

ligand is brought into a potential binding position and the

scoring in which a prediction is made about the strength

of present binding interactions [9, 10].

Two approaches exist for ligand positioning: flexible

body docking and rigid-body docking. Flexible body

docking typically treats the ligand as flexible and the

protein as rigid. Sometimes, however, both the ligand and
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a portion of the protein are considered flexible structures.

Flexible docking studies can be useful, simulating on the

order of hundreds to thousands of protein–ligand

complexes. The least computationally expensive of the

approaches is rigid-body docking. Here, both ligands and

protein receptors are rigid, and docking occurs through

translation and rotation of the ligand. Many thousands of

ligand–protein complexes can be simulated in this way.

Combined approaches also exist and have been useful in

the discovery of a novel binding trench present in the HIV

(human immunodeficiency virus) integrase protein [11].

Flexible docking and rigid docking are vastly different in

terms of complexity. For example, the process of

exploring conformers of relatively simple molecules with

three or four rotatable bonds typically requires more than

200 conformations to be sampled in order to study a

full range of conformational space, even when using a

broad step size. The complexity involved in treating

ligands as flexible structures is a combinatorial problem

that increases dramatically as conformational space is

sampled more exhaustively [12]. Many different codes

and approaches exist that attempt to deal with this

complexity. The most widely used VS tools are GOLD

(Genetic Optimization for Ligand Docking) [13], FlexX

[14], DOCK [15], AutoDock [16], Glide [17, 18], and ICM

(Internal Coordinate Mechanics) [19]. All of these codes

carry out flexible ligand docking, using a range of

approaches such as genetic algorithms, incremental

construction, simulated annealing, and Monte Carlo

methods in order to address the issue of computational

complexity. Overviews of methods that address flexibility,

along with limited comparisons between methods, are

available [20, 21].

With most of the above program codes, a choice of

scoring functions is available. Scoring functions are used

in an attempt to estimate the binding energy between

protein and ligand. Many different implementations exist,

but each can be placed in one of three categories: force

field-based methods, empirical scoring functions, and

statistical knowledge-based methods [22]. A number of

studies have shown that none of these methods properly

predicts or accurately estimates the true binding energy,

although each method takes a different approach for

analyzing the same problem. Two studies compared seven

scoring functions [8, 23], and another studied eleven [24].

For example, the scoring function of FlexX highly scores

hydrogen-bonded ligands and tends to neglect lipophilic

binding effects [9]. Because the differences between

scoring functions are so great, results from one screening

run are not directly comparable to those from another.

However, a ligand may have its relative ranking

compared [25]. The diversity exhibited by scoring

functions has been used in consensus scoring. Using

drastically different but well-performing scoring

functions, the accuracy of consensus methods can be

greater than that of their component parts [23, 26–28].

However, the risks associated with consensus methods are

well known. ‘‘Artificial enrichment’’ is the main danger;

that is, the scoring functions are sometimes chosen to

perform well on a specific protein–ligand complex [29].

Also, various contributing functions must be well

understood, and a balance must be achieved so that

positive aspects of one algorithm are not diminished by

another algorithm [30].

With sufficient computing time, it is possible to score

protein–ligand complexes accurately using approaches

derived from quantum mechanics [31–33]. The work

documented in this paper is concerned with what is

commonly known as high-throughput VS (HTVS),

using simplified methods (i.e., methods that use neither

quantum mechanical nor complex molecular dynamics

approaches) to achieve higher simulation throughput [34]

of complexes. The term HTVS includes program codes

and approaches that test on the order of thousands of

protein–ligand complexes in one program run; the

simulation is not set up to produce results for just one

complex.

An exhaustive study of well-known VS programs, using

their default scoring functions, has shown that the

program ICM, which uses metropolis Monte Carlo

techniques, coupled with a force field to explore and score

multiple conformations of a ligand, is the best performer

(i.e., has the smallest root-mean-squared deviation from

known crystallographic structures) when used to recreate

the structure of known protein–ligand complexes [19].

However, this program code may not be applicable to

high-performance approaches that involve the screening

of large databases of small ligands.

Most program codes do not address the possibility

of ligands bonding covalently to the protein receptor.

The codes that do address this feature, using branches

of quantum mechanics, are not high-throughput

approaches. Some high-throughput codes such as FlexX

can be directed to bind the ligand covalently, but this

requires specific knowledge of the complex and is not

performed automatically [14].

A very large increase in the number of determined

protein structures (driven partly by improvements in

x-ray crystallography techniques) has recently been

observed. The most widely used resource for structural

information on proteins is the Protein Data Bank (PDB)

of the Research Collaboratory for Structural

Bioinformatics (RCSB) [35]. With currently more than

40,000 protein structures in the repository, in silico

techniques have an ever-increasing number of target

structures with which to work. (Multiple entries for

structures are deposited in the database while new

techniques improve the resolution of those previously
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submitted. Also, the proteins exist in different

conformations or with different co-crystallized ligands.)

Protein structure information comes in various formats,

and the most widely used format is the PDB file format.

This allows the representation of multiple molecules in a

complex, such as a protein bound to its natural ligand.

Depending on the results obtained from the screening

of thousands of potential ligands, and after further

investigation, it may be worth testing the binding

properties of these ligands in a biochemistry laboratory

[36].

Because of the computational complexity of ligand-

binding studies and the amount of high-performance

computing (HPC) time typically available to biologists,

only recently have VS runs been regularly breaking the

one million receptor–ligand complexes ‘‘barrier’’ [37]. In

recent years, the University of Edinburgh has been able to

provide its scientists with access to teraflop computing

resources. This provides researchers with a significant

increase in available CPU cycles, without the complexity

of applying for time with the U.K. National HPC Service.

This has been achieved through the purchase of an IBM

Blue Gene/L* (BG/L) supercomputer, which uses a novel

architecture that is designed to provide unprecedented

computing performance, coupled with very low power

consumption, floor space, and cost. Designed to be highly

scalable with low-latency communications, this system

offers a significant breakthrough in supercomputing

technology.

Although the resulting code is designed to be portable

and run on any large-scale HPC platform, the target

architecture for this work has been the BG/L platform. A

detailed description of the architecture and its design

approach have been reviewed elsewhere and will not be

repeated here [38]. However, certain aspects of the

architecture are important to the overall design of the

parallel LIDAEUS (LIgand Discovery At Edinburgh

UniverSity) code and are summarized.

The BG/L supercomputer is based on a classical

massively parallel processor (MPP), distributed-memory

architecture. The BG/L platform has a system-on-a-chip

design, based on the PowerPC* 440 core. This feature

allowed designers to have some customization

capabilities without the cost of developing a totally new

architecture, and it offers a customized memory system,

network interface, and floating-point unit. This

approach was successfully pioneered in the QCDOC

(quantum chromodynamics-on-a-chip) machine, a

special-purpose system for quantum chromodynamics

[39]. The resulting BG/L architecture contains a large

number of simple, inexpensive low-power processors

connected via a custom-designed high-performance

interconnect. One node (also known as a chip) contains

two PowerPC 440 cores, with associated caches and a

low clock frequency (700 MHz). The relatively low clock

frequency is an important feature of the BG/L system,

exploiting the fact that many HPC applications are

memory bound, rather than CPU bound. By using

simple, inexpensive low-clock-frequency processors, the

amount of power generated is low. This in turn allows

for a high physical density of processors, and thus, a

relatively small amount of floor space is required.

However, this does lead to two important considerations

when parallelizing the LIDAEUS code. First, the code

must scale to large numbers of processors or little

performance benefit will be seen because of the low-

clock-speed processor. Second, the code must scale well

in memory, to avoid the relatively small amount of

memory per processor, which limits the problem that

can be studied.

The high-performance interconnect of the BG/L

platform has multiple networks for different tasks. The

main network is a three-dimensional (3D) torus with each

node connected by six links to its nearest neighbors and

utilized for point-to-point communications. These links

are reasonably low latency (3.5 ls) and have a modest

bandwidth (on the order of 160 MB/s) [40]. The second

network is a global combining, broadcast binary tree

network for collective communications (with 5-ls latency
[40]). The third network is a binary tree network designed

specifically for fast barrier synchronization (1.5-ls latency
[40]). The two remaining networks are Ethernet networks.

One is for I/O and the other is for diagnostics. The

relatively low latency of the interconnect is beneficial for

the LIDAEUS parallelization, helping to allow the code

to scale to higher processor counts.

The hardware

The Edinburgh BG/L system is a single-rack IBM BG/L

system with 1,024 chips (2,048 700-MHz PowerPC 440

processors). Installed in December 2004, this was the

first BG/L system in Europe. The machine can operate

either in co-processor (CO) mode, in which only one

processor in each node is utilized for computation and the

other is reserved for communication, or in virtual node

(VN) mode, in which all processors are able to act as

virtual nodes and address both computation and

communication. In VN mode, the resources of the node

must be shared between the two processors. Each core

has a 32-KB-data, 32-KB-instruction L1 cache with no

coherency between the two cores. Each node also has a

very small (2 KB, 128-byte-line) L2 cache, a 4-MB shared

L3 cache, and 512 MB of main memory. The system has

one I/O node for every eight compute chips and four IBM

BladeCenter* JS20 front-end systems for compilation and

batch submission. The system runs driver release 3, with

support for XL Fortran 10.1 and XL C/Cþþ 8.0.
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LIDAEUS
LIDAEUS is a highly adaptable and modular rigid-body

docking VS code written in Cþþ and parallelized using

the Message Passing Interface (MPI). This ensures

portability to a range of parallel platforms. LIDAEUS

focuses on extremely high simulation speed, with the goal

of a single processor being able to process a ligand in a

few seconds. Extensive testing and cross-platform trials

have ensured that the code is stable on a range of

processors and platforms. It has been used successfully to

identify a family of novel cyclin-dependent kinase

inhibitors [41]. Results will be published soon that

document six laboratory-confirmed cyclophilin-A binders

that were found using information obtained from the

parallelized code discussed here [42].

LIDAEUS job preparation is a serial process that is

carried out on a local non-HPC Linux** system. Using a

PDB file to represent the target protein, the first stage of

the job preparation is to profile certain energy values

present. These energies are written to map files, and the

internal representation is a finely spaced cubic lattice with

cells spaced typically 0.5 Å apart. This gives a volumetric

representation of specific energies associated with the

space surrounding the protein. Three maps describe

van der Waals, hydrophobic, and hydrogen-bonding

energies [41]. Points in the volumes have their energies

defined in the following way. The van der Waals (vdw)

map is defined as follows by the classic Lennard–Jones

potential:

EðvdwÞ ¼
X1

n

A=r
12

p
� B=r

6

p

h i
:

The sum is over set n where 1 � n are all atoms not

forming hydrogen bonds with a probe; rp is the separation

between the protein atom and the probe (p); and A and B

are coefficients from the Amber molecular dynamics

package [43]. The hydrogen-bond-donor and hydrogen-

bond-acceptor energy maps are defined in a similar way

as the van der Waals map but include a weighting term

dependent on the deviation from ideal hydrogen-bond

angles. This weighting is encoded by high energy values in

the map file, which can be visualized as a halo of ideal

hydrogen-bonding angles by using isosurfaces at a

suitable energy level.

The next stage of job preparation involves site point

generation, that is, the generation of a collection of a

special set of points located near the binding site. The

map files typically represent the entire volume occupied

by the protein and its surrounding area. The standard

method of inhibiting a protein involves binding one or

more foreign molecules to key sites known as binding

sites. A protein may have one or more defined binding

sites. Often, PDB files represent the protein complexed

with its natural ligand. This natural ligand directs site

point generation that defines the target pocket. The

positioning of these points is determined by a search

through the map files in the volume defined by the

natural ligand (plus an adjustable amount of additional

volume) and the energy values present. Generation of

these points is flexible, but by default 170 points are

found in the pocket and considered as one of three types:

hydrophobic, hydrogen-bond acceptor, and hydrogen-

bond donor. These types denote the type of atom that

would favorably sit in a certain position (from an energy

standpoint). The distribution of site points is many

times denser than that of the atoms in a molecule. These

points offer a way to constrain the search in ligand

positioning, overlaying atoms of key types onto

appropriate site points.

The action of LIDAEUS during execution can be

broken down into a pipeline consisting of four modules

(Preen, Pose, Score, and Sort) through which the small

molecules (potential ligands) are passed. These small

molecules in the SDF (structure data file) format are

typically put into their vacuum minimum energy

conformation and docked using this conformation.

For this reason, large molecules such as peptides are

unsuitable for docking using LIDAEUS. The next section

of this paper briefly describes the expansion of LIDAEUS

to enable flexible ligand docking. In the following

paragraphs, we discuss the main modules of LIDAEUS.

Preen—Atom hybridization state information is added

to an internal representation of the molecule.

Hybridization denotes characteristics of an atom that vary

according to the bonding interactions and the atomic

orbital state of those bound atoms.

Pose—This is the most computationally intensive part

of the pipeline. The pose module takes its name from the

action of positioning (i.e., ‘‘posing’’) a ligand against a

target. Many poses may be generated by a potential

ligand. Because LIDAEUS is a rigid-body docking code,

suitable poses for the ligand are achieved through

rotation and translation. Instead of iterating through all

orientations and positions of the ligand at a coarse

resolution, the pregenerated site points are used to

constrain the positioning search. LIDAEUS generates a

list of distances between bonded atoms in the ligand, as

well as a list of distances between each site point (up to an

adjustable cutoff value). A search tree is used in the

following set of actions to explore combinations of fitting

points. Each stage of depth within the tree matches ligand

atoms to site points with increasing tolerance values.

These values are user definable, but by default, the first

four atoms are fitted with tolerances 0.02 Å, 0.04 Å,

0.06 Å, and 0.08 Å. The list of distances between bonded

atoms in the ligand is checked against distances between

site points. If a match is found, a test is carried out to see
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whether the next bonded atom in the tree fits a distance

present between nearby site points. If the depth of the tree

of fitting atoms reaches a user-definable depth (by default

four), the ligand in the correct position is able to satisfy

the atom-type requirements described by the site points.

Once it is known that a set of certain ligand atoms can

overlay a set of site points, the 3D coordinates are

extracted and LU factorization is used to obtain a

combined rotation–translation matrix that overlays the

key ligand atoms onto matching site points. This matrix is

then stored with the representation of the ligand.

Applying this matrix to the 3D coordinates of the ligand

produces a pose. With ligands able to generate multiple

poses, the computational complexity of the problem bears

little relation to the number of ligands being tested.

Score—For each pose entry present in the

representation of the potential ligand, the combined

translation and rotation matrix is applied to the molecule.

With the molecule oriented into a potential binding

position, the energy maps are used to sum the energy

contributions being made by each atom.

The resulting score has units of kcal mol�1. A six-

dimensional conjugate gradient energy minimization is

then applied to the molecule as directed by the predicted

binding score in an attempt to refine the previously

generated pose. This process is repeated for each pose

entry belonging to a molecule.

Sort—LIDAEUS maintains a record of the best-

scoring poses across all potential ligands. It is important

to note that the score denotes the energy change in

binding; the more negative a binding score, the stronger

the ligand is predicted to bind. A positive score predicts

that energy must be added to the system in order to bind

the molecule in the position dictated by its pose. Many

different factors affect the range of scores achieved in the

final sorted list, but a good-scoring ligand (therefore,

predicted to be a strong binder) has a score less than

about �20 kcal mol�1.

A standard dataset for benchmarking purposes exists

and contains 1.67 million small molecules (in the SDF

format) that may be purchased from 24 catalogs obtained

from suppliers. In this benchmark, the receptor target for

these molecules is known as FKBP12, and it plays an

important role in immunosuppressive therapies. The

structure is taken from the RCSB PDB and has the PDB

identifier 1FKJ. This dataset is so large that it is

unmanageable in a serial or low-processor-count parallel-

processing environment. Selection of a random 30,000

molecules and subsequent simplistic predictive scaling

calculations show that this dataset used with its target

would take 29 days to analyze on an AMD Opteron** 246

Linux system with 2 GB of RAM. Runtime lengths such

as this restrict users to the screening of small datasets in

an effort to obtain the results they need in the amount of

time available to them. HPC systems are an attractive

platform for VS runs. The ultimate goal in the

parallelization of LIDAEUS is to reduce the runtime for

the standard dataset, thereby providing researchers with

more freedom to experiment and set up even more

complex runs with larger datasets.

Parallelization
The original version of LIDAEUS ran on a seven-node

openMosix** [44] cluster consisting of seven AMD XP

2600 processors, each with 1 GB of RAM and a standard

Gigabit Ethernet network acting as the interconnect. The

system, therefore, consisted of a cluster of standard

desktop machines managed by openMosix to create

a cluster capable of distributed computing. This

functionality is achieved by process load balancing

between nodes (machines). By starting multiple processes

and pipelines of LIDAEUS on each node of the cluster

and running the molecular data through a simple

multiplexer program, which distributed molecules to

instances of the pipeline, we allowed the operating system

to migrate pipelines from nodes with a high workload to

nodes that have a lesser load.

While this approach to parallelization enabled more

results to be gathered in a shorter amount of time, there

was still a need for a truly parallel version of the code

because of the restrictiveness of the openMosix

parallelization and its ability to run only in an openMosix

environment. Running the code on modern HPC systems

would allow the use of a large number of processors—

that is, many more than the seven used in the cluster.

Parallelization of LIDAEUS for the BG/L system at

the University of Edinburgh takes the form of an MPI

‘‘task farm’’ that uses data decomposition as the

parallelization strategy. Essentially, one processor runs a

master process, reading in the small molecules to be

complexed with the protein and then serving them to

waiting worker processes residing on other processors.

The worker processes run their own Preen, Pose, and

Score code. As with any parallel code, computational

load balancing must be addressed. Note that the code is

intended for screening more than one million molecules in

a single run, and the molecule data can be served to

worker processes in relatively small sets (;5 to 50

molecules at a time). This data-serving process greatly

limits the scope for load imbalance.

The initial parallelization was to be specifically for

describing the binding pockets of a range of proteins. A

selection criteria was applied to the full RCSB PDB (as of

March 9, 2005), selecting crystallographically determined

structures with a resolution better than 1.7 Å that made at

least four hydrogen-bonding contacts with the protein

and no covalent bonds between the protein and ligand.

Sequence similarity searching was then used to obtain a
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diverse set of proteins with a sequence similarity not

exceeding 90%. This specific problem with searching did

not require sorting or retention of only the top results

because information on the best-scoring minimized and

non-minimized poses for each molecule was retained. The

code has been used to screen a collection of 1.67 million

molecules against a resultant selection of 387 protein-

binding pockets. The results of this large computational

run are stored in a database, and data-mining techniques

are used to investigate the effectiveness of molecular

descriptors in predicting binding affinities. Figure 1 shows

that the lack of a parallel sort, as well as any lack of

interprocess communication, results in almost linear

scaling and a parallel efficiency with up to 512 processors.

With 1,024 processors, parallel efficiency for one receptor

is as low as 54%. Further investigation is required,

although a possible explanation for the low efficiency is

that for 1,023 worker processes, each writing its results to

a file at unpredictable intervals (with the master process

reading from disk), the network switch through which the

BG/L file I/O travels becomes saturated. While the total

amount of data written in a run of the standard dataset is

manageable at approximately 15 GB, the constant writing

of a small amount of data by 1,023 streams may explain

the poor parallel efficiency. The scaling data used to

produce Figure 1 suggests diminishing returns beyond

1,024 processors. A version of the code described later

removes the requirement for such large amounts of I/O

and subsequently shows improved scaling.

As previously stated, site points offer a way to

constrain the search space in the positioning of ligands. A

more exhaustive search of this space can be carried out by

altering a user-specifiable variable called ‘‘resol.’’ This

variable acts as a tolerance value that denotes the distance

the center point of key ligand atoms must be from site

points. The default value of 0.02 Å may be increased to

carry out a more exhaustive search. As this value

increases, the computational complexity exhibits

exponential growth. Massive numbers of VS runs, dealing

with millions of small molecules, are not suitable for

larger tolerance values. Because the goal of VS is the

discovery of interesting drug leads, higher tolerance

values are useful only when using VS runs on smaller

targeted subsets or classes of small molecules. However,

this tolerance value offers the ability to alter the amount

of computation required to process a small molecule.

With this in mind, along with the consideration that the

limiting factor (I/O) will remain constant with an

increasing number of poses, it is possible to set up runs

with a larger number of poses that scale to and beyond

the limit of a single BG/L cabinet utilizing 2,048

processor cores.

In order for the parallel version of LIDAEUS to be

used as an HTVS tool in the rigorous sense of the term

HTVS, we did not collect information on the best poses

for each molecule but instead implemented a sorting

algorithm to produce a reduced list of the top-scoring

results from all poses made by all molecules. An

interesting characteristic of the BG/L architecture,

specifically the current version of its compute node kernel

(CNK), is that no exceptions or errors are generated

when a chip has filled its local RAM and a stack overflow

event occurs. The lightweight nature of the CNK means

that there is also no virtual memory. Depending on the

mode in which each node is run (i.e., CO or VN mode),

each chip has either 512 MB or 256 MB of local memory,

respectively. With the possibility of a ligand binding to a

protein in a variety of poses, one small molecule may

produce many positions and scores that must be retained

or at least considered for retention at the sorting stage. In

a restricted-memory environment such as this, a problem

arises. We are attempting to sort a dataset so large that all

of it cannot be held in one memory location. The sort

cannot proceed on one processor. A collaborative effort

among processors must be made.

Any time more complexity is added to a parallel code,

consideration must be given to its effect on the overall

execution time caused by the new code interaction with

existing components. In addition to the two existing

classes of processor—the master and the worker—we

have a new class, the sink. Conceptually, the sink sits at

the bottom of the task farm into which the workers dump

their results. If the workers simply performed the

Figure 1

LIDAEUS operation without sort. Parallel efficiency is studied for 

different numbers of processors (with 128 as the baseline) for the 

standard dataset using three different target receptors. The Protein 

Data Bank identifiers for these receptors are given in the key.
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screening and then indiscriminately communicated their

results to the sink, the performance of the code would

decrease because of the communications overhead.

Therefore, it is important to reduce the amount of

communications generated. In order to achieve this

objective, we introduce the idea of a cutoff value. At the

start of the screening process, all worker processes screen

their data, filling up a small buffer. When this buffer is full

(typically when it contains ;50 poses), the contents are

sent to the sink, which depending on their scores, adds

them to its sorted list. When the requested sort size has

been achieved by the sink (e.g., a size corresponding to

1,000 molecules), a cutoff value can be calculated. A new

pose that does not meet the requirements of the cutoff can

be disregarded, as it will never enter the sorted list. This

cutoff value is then communicated back to the workers so

that this new criteria can be applied to their local buffers.

Consideration must be given to the time at which

this cutoff value should be communicated. One approach

is to allow the worker processes to communicate their

buffers to the sink and then request a new cutoff value

(assuming that their data changed the cutoff). In another

approach, when the worker initiates communication

with the sink, a cutoff is received. The worker then

removes entries from its buffer that do not meet the

criteria and proceeds with the send. We chose the first

pattern of suggested communication. At the start of the

screening process, with the cutoff value set high to allow

potentially all poses to be communicated to the sink, the

code has a performance decrease. As the screening

progresses, the cutoff is updated and communication to

the sink is reduced. A logical approach to reducing this

performance decrease would seem to be to set the cutoff

to allow only very good dockings to enter the sink list.

This approach may be undesirable because when a sorted

list of 1,000 of the best-scoring poses is requested but

fewer than 1,000 poses make it past the cutoff, the list will

not contain 1,000 elements. A counterintuitive result,

described later, shows that when other variables, such as

the worker buffer size, are set sensibly, we may want to

allow a large range of dockings to be considered in order

to ensure shorter runtimes. Aside from the number of

processors used for the VS run, three user-tunable

variables exist that relate to the parallel sort, that is, the

previously mentioned score cutoff starting value, the

worker buffer size, and the number of elements the final

sorted list should include. Failure to specify values results

in the use of predefined defaults. Interestingly, the

algorithm can be described as self-tuning. As long as the

worker buffer size is not set to an unsuitably small or

large value (e.g., ;1 or more than 1,000), the score cutoff

value, which dictates communication, converges to a

suitable value no matter how large its original starting

value. As a consequence, small runs can be set up to

explore the behavior of the program when a larger

proportion of its runtime is spent with an unoptimized

score cutoff.

Figure 2 represents a standard scan of 1.67 million

compounds against the receptor target FKBP12. When

the score cutoff is started at three drastically different

values (0, 500, and 1,000), convergence of the score cutoff

values occurs extremely quickly. It seems counterintuitive

that the larger the score cutoff value, the slightly shorter

the overall execution time. We observed runtimes of

10,983, 10,977, and 10,973 seconds, respectively, using

default settings and three different starting score cutoff

values, running on 128 nodes (256 processor cores). The

speed of cutoff convergence can be seen in Figure 2, with

the value for each scan at or less than 0 within 31 seconds

of program execution. At this point, the lowest

established cutoff is achieved by the scan using an initial

value of 1,000. This observation for runs with a higher

starting score cutoff is due to the fact that the contents of

local buffers will be communicated many more times than

those for runs with a lower cutoff. This higher rate of

communication is caused by more molecules making it

past the cutoff and filling the buffers earlier. As the scan

with the higher starting score cutoff progresses, the

communicated buffers will typically contain a range of

results varying greatly in their score. For example, some

results are just able to enter the buffer through the score

cutoff, while others easily enter the buffer. In another

Figure 2

Using the code implementing the parallel sort, convergence of the 

sink score cutoff values is shown for three different initial values 

of score cutoff. Data was collected using the standard dataset 

against the receptor represented by the Protein Data Bank 

identifier 1FKJ.
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run with a more restrictive cutoff, the local buffers can be

said to contain higher-quality results but are

communicated less frequently. Essentially, results of

poorer quality are being used to flush the good results in

the local buffers through to the sink. A lack of

communication keeps the sink cutoff values artificially

unrestrictive. This flushing, and the ideal rate at which it

should occur, is an artifact of the previously mentioned

user-definable sorting variables. Figure 3 shows runtimes

for the standard dataset against a receptor with PDB

identifier 1FKJ. A total of 256 processors are used for a

range of worker buffer sizes and initial score cutoffs. It is

important to note that this version of the code, which

implements the parallel sort, works on a different

problem than the original problem with no sort. The

problem for which the initial code version was used

concerned the profiling of binding pockets. Here, the best

minimized and best non-minimized poses for a molecule

were written to disk. This is different from the action of

the code when carrying out a true VS run in which the

best of all poses are to be kept or sorted. Here, every pose

must be considered for output to the latter stage of

sorting. One molecule has the potential to generate many

poses. Thus, instead of considering just two poses per

molecule, multiple poses are considered. This is reflected

in profiling results; the time required for processing the

same dataset in both versions of the code typically is 1.5

to 1.7 times longer when each pose generated is

considered for retention. Essentially, the two codes are

incomparable. As can be seen from Figure 4, profiling the

code implementing the parallel sort has resulted in almost

100% parallel efficiency up to 1,024 processors. It is worth

noting that profiling shows parallel efficiency at more

than 100% in some instances. This level of efficiency is

due to the fact that the value is calculated using 128

processors as the baseline, and with more processors,

more worker buffers are being flushed, filling the larger

sink buffer and establishing a cutoff earlier. Cache effects

may also influence performance.

This result supports the previous hypotheses that the

code without the parallel sort is being I/O bound at

higher numbers of processors. The self-optimizing nature

of the sort has ensured that most of the computation,

after early convergence of the score cutoff, proceeds in

almost a trivially parallel manner.

Future work concerned with the LIDAEUS code will

expand the program features to enable flexible ligand

docking. Development will tailor the code to the

lightweight massively parallel characteristics of the BG/L

architecture. We aim to ensure that the increase in

execution time does not become too large. We also do not

want to depart from the main goal of LIDAEUS

development; that is, LIDAEUS is a tool for drug lead

discovery and not for predicting the exact binding mode

Figure 3

The execution time is shown for the standard dataset forming a 

complex with a receptor (Protein Data Bank identifier 1FKJ) when 

256 processors are used. A range of worker buffer sizes (WBSs) 

and initial score cutoffs are shown.
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LIDAEUS operation with sort. Parallel efficiency is shown for a 

range of processors (128 as the baseline) for the standard dataset 

scanned against three different target receptors with Protein 

Data Bank identifiers shown in the key.
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of a ligand at the expense of increased and more

restrictive computational runtimes. While ligand

flexibility is not a new concept, the novelty of LIDAEUS

lies in the scale of jobs it was designed to process. Typical

LIDAEUS runs will continue to simulate more than one

million receptor–ligand complexes.

Conclusion
In conclusion, LIDAEUS has been parallelized and

deployed on a massively parallel system, greatly reducing

the amount of computational runtime required to screen

compounds against a target receptor. The initial goal of

the parallelization effort was to collect information on the

standard dataset of 1.67 million molecules binding to 387

binding pockets. This required the simulation of more

than 646 million protein–ligand complexes, as well as 387

separate LIDAEUS runs, something unobtainable

without a truly parallel version of the code and access to

the massive HPC resources such as those delivered by the

BG/L system. The reduced runtime of LIDAEUS jobs

has been key to achieving this goal.

Each version of the parallel code has reduced HTVS

runtime, previously on the order of weeks to hours. The

high availability of the BG/L system has made daily runs

of this magnitude a reality, enabling quicker turnaround

in the identification of promising leads for useful

compounds.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Linus
Torvalds, Advanced Micro Devices, Inc., or Amnon Barak in the
United States, other countries, or both.
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