Ligand discovery
on massively
parallel systems

Virtual screening is an approach for identifying promising leads for
drugs and is used in the pharmaceutical industry. We present the
parallelization of LIDAEUS (LIgand Discovery At Edinburgh
UniverSity), creating a massively parallel high-throughput virtual-
screening code. This program is being used to predict the binding
modes involved in the docking of small ligands to proteins.
Parallelization efforts have focused on achieving maximum parallel
efficiency and developing a memory-efficient parallel sorting
routine. Using an IBM Blue Gene/L™ supercomputer, runtimes
have been reduced from 8 days on a modest seven-node cluster to
62 minutes on 1,024 processors using a standard dataset of 1.67
million small molecules and FKBP12, a protein target of interest in
immunosuppressive therapies. Using more-complex datasets, the
code scales upward to make use of the full processor set of 2,048.
The code has been successfully used for the task of gathering data
on approximately 1.67 million small molecules binding to
approximately 400 high-quality crystallographically determined
ligand-bound protein structures, generating data on more than 646
million protein—ligand complexes. A number of novel ligands have
already been discovered and validated experimentally.
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Introduction and background

With proteins playing a major role in almost every
function carried out within a cell, the ability to control
or “turn off” proteins by simply blocking their binding
pockets creates exciting possibilities for controlling
protein activity. Molecules (such as ions, drugs, or
polypeptides) that bind to a protein of interest are
referred to as ligands and may affect the operation of the
protein within an organism. Finding specific and tightly
binding ligands offers the ability to alter the behavior of
proteins and plays an important role in modern medicine
[1, 2]. This paper describes the use of simulation as the
first stage for finding novel non-covalently bound ligands
for known protein structures. Virtual screening (VS)
[3-5] is a broad term and includes de novo ligand design,
that is, engineering a molecule by adding and removing
groups to alter its binding properties. However, for the
purposes of this paper, V'S refers to the practice of
molecular docking in which a database of ligands is used
for studying potential interactions with a target receptor
such as a protein-binding site. This is a commonly used
approach in the first stage of the drug discovery process.

Typically, the VS process involves representing the
binding pocket of a protein and then executing two steps.
First, the ligand is positioned (referred to as the process
of posing), and second, the resultant complex is scored.
These steps are often merged or used to direct each other.
Potential ligands are extracted from a database of
available compounds. Software filters can then be
imposed on the potential ligands to ensure that they meet
certain criteria such as Lipinski’s rule of five [6] or that
they are not too similar [7].

Many different codes and approaches exist for
simulating the docking of a ligand to a receptor, and these
approaches vary greatly in their computational
complexity. As mentioned, two main aspects to docking
exist [8]: the positioning and global search in which the
ligand is brought into a potential binding position and the
scoring in which a prediction is made about the strength
of present binding interactions [9, 10].

Two approaches exist for ligand positioning: flexible
body docking and rigid-body docking. Flexible body
docking typically treats the ligand as flexible and the
protein as rigid. Sometimes, however, both the ligand and
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a portion of the protein are considered flexible structures.
Flexible docking studies can be useful, simulating on the
order of hundreds to thousands of protein-ligand
complexes. The least computationally expensive of the
approaches is rigid-body docking. Here, both ligands and
protein receptors are rigid, and docking occurs through
translation and rotation of the ligand. Many thousands of
ligand—protein complexes can be simulated in this way.
Combined approaches also exist and have been useful in
the discovery of a novel binding trench present in the HIV
(human immunodeficiency virus) integrase protein [11].
Flexible docking and rigid docking are vastly different in
terms of complexity. For example, the process of
exploring conformers of relatively simple molecules with
three or four rotatable bonds typically requires more than
200 conformations to be sampled in order to study a
full range of conformational space, even when using a
broad step size. The complexity involved in treating
ligands as flexible structures is a combinatorial problem
that increases dramatically as conformational space is
sampled more exhaustively [12]. Many different codes
and approaches exist that attempt to deal with this
complexity. The most widely used VS tools are GOLD
(Genetic Optimization for Ligand Docking) [13], FlexX
[14], DOCK [15], AutoDock [16], Glide [17, 18], and ICM
(Internal Coordinate Mechanics) [19]. All of these codes
carry out flexible ligand docking, using a range of
approaches such as genetic algorithms, incremental
construction, simulated annealing, and Monte Carlo
methods in order to address the issue of computational
complexity. Overviews of methods that address flexibility,
along with limited comparisons between methods, are
available [20, 21].

With most of the above program codes, a choice of
scoring functions is available. Scoring functions are used
in an attempt to estimate the binding energy between
protein and ligand. Many different implementations exist,
but each can be placed in one of three categories: force
field-based methods, empirical scoring functions, and
statistical knowledge-based methods [22]. A number of
studies have shown that none of these methods properly
predicts or accurately estimates the true binding energy,
although each method takes a different approach for
analyzing the same problem. Two studies compared seven
scoring functions [8, 23], and another studied eleven [24].
For example, the scoring function of FlexX highly scores
hydrogen-bonded ligands and tends to neglect lipophilic
binding effects [9]. Because the differences between
scoring functions are so great, results from one screening
run are not directly comparable to those from another.
However, a ligand may have its relative ranking
compared [25]. The diversity exhibited by scoring
functions has been used in consensus scoring. Using
drastically different but well-performing scoring
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functions, the accuracy of consensus methods can be
greater than that of their component parts [23, 26-28].
However, the risks associated with consensus methods are
well known. “Artificial enrichment” is the main danger;
that is, the scoring functions are sometimes chosen to
perform well on a specific protein—ligand complex [29].
Also, various contributing functions must be well
understood, and a balance must be achieved so that
positive aspects of one algorithm are not diminished by
another algorithm [30].

With sufficient computing time, it is possible to score
protein—ligand complexes accurately using approaches
derived from quantum mechanics [31-33]. The work
documented in this paper is concerned with what is
commonly known as high-throughput VS (HTVS),
using simplified methods (i.e., methods that use neither
quantum mechanical nor complex molecular dynamics
approaches) to achieve higher simulation throughput [34]
of complexes. The term HTV'S includes program codes
and approaches that test on the order of thousands of
protein—ligand complexes in one program run; the
simulation is not set up to produce results for just one
complex.

An exhaustive study of well-known VS programs, using
their default scoring functions, has shown that the
program ICM, which uses metropolis Monte Carlo
techniques, coupled with a force field to explore and score
multiple conformations of a ligand, is the best performer
(i.e., has the smallest root-mean-squared deviation from
known crystallographic structures) when used to recreate
the structure of known protein—ligand complexes [19].
However, this program code may not be applicable to
high-performance approaches that involve the screening
of large databases of small ligands.

Most program codes do not address the possibility
of ligands bonding covalently to the protein receptor.
The codes that do address this feature, using branches
of quantum mechanics, are not high-throughput
approaches. Some high-throughput codes such as FlexX
can be directed to bind the ligand covalently, but this
requires specific knowledge of the complex and is not
performed automatically [14].

A very large increase in the number of determined
protein structures (driven partly by improvements in
x-ray crystallography techniques) has recently been
observed. The most widely used resource for structural
information on proteins is the Protein Data Bank (PDB)
of the Research Collaboratory for Structural
Bioinformatics (RCSB) [35]. With currently more than
40,000 protein structures in the repository, in silico
techniques have an ever-increasing number of target
structures with which to work. (Multiple entries for
structures are deposited in the database while new
techniques improve the resolution of those previously
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submitted. Also, the proteins exist in different
conformations or with different co-crystallized ligands.)
Protein structure information comes in various formats,
and the most widely used format is the PDB file format.
This allows the representation of multiple molecules in a
complex, such as a protein bound to its natural ligand.

Depending on the results obtained from the screening
of thousands of potential ligands, and after further
investigation, it may be worth testing the binding
properties of these ligands in a biochemistry laboratory
[36].

Because of the computational complexity of ligand-
binding studies and the amount of high-performance
computing (HPC) time typically available to biologists,
only recently have VS runs been regularly breaking the
one million receptor—ligand complexes “barrier” [37]. In
recent years, the University of Edinburgh has been able to
provide its scientists with access to teraflop computing
resources. This provides researchers with a significant
increase in available CPU cycles, without the complexity
of applying for time with the U.K. National HPC Service.
This has been achieved through the purchase of an IBM
Blue Gene/L* (BG/L) supercomputer, which uses a novel
architecture that is designed to provide unprecedented
computing performance, coupled with very low power
consumption, floor space, and cost. Designed to be highly
scalable with low-latency communications, this system
offers a significant breakthrough in supercomputing
technology.

Although the resulting code is designed to be portable
and run on any large-scale HPC platform, the target
architecture for this work has been the BG/L platform. A
detailed description of the architecture and its design
approach have been reviewed elsewhere and will not be
repeated here [38]. However, certain aspects of the
architecture are important to the overall design of the
parallel LIDAEUS (LIgand Discovery At Edinburgh
UniverSity) code and are summarized.

The BG/L supercomputer is based on a classical
massively parallel processor (MPP), distributed-memory
architecture. The BG/L platform has a system-on-a-chip
design, based on the PowerPC* 440 core. This feature
allowed designers to have some customization
capabilities without the cost of developing a totally new
architecture, and it offers a customized memory system,
network interface, and floating-point unit. This
approach was successfully pioneered in the QCDOC
(quantum chromodynamics-on-a-chip) machine, a
special-purpose system for quantum chromodynamics
[39]. The resulting BG/L architecture contains a large
number of simple, inexpensive low-power processors
connected via a custom-designed high-performance
interconnect. One node (also known as a chip) contains
two PowerPC 440 cores, with associated caches and a
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low clock frequency (700 MHz). The relatively low clock
frequency is an important feature of the BG/L system,
exploiting the fact that many HPC applications are
memory bound, rather than CPU bound. By using
simple, inexpensive low-clock-frequency processors, the
amount of power generated is low. This in turn allows
for a high physical density of processors, and thus, a
relatively small amount of floor space is required.
However, this does lead to two important considerations
when parallelizing the LIDAEUS code. First, the code
must scale to large numbers of processors or little
performance benefit will be seen because of the low-
clock-speed processor. Second, the code must scale well
in memory, to avoid the relatively small amount of
memory per processor, which limits the problem that
can be studied.

The high-performance interconnect of the BG/L
platform has multiple networks for different tasks. The
main network is a three-dimensional (3D) torus with each
node connected by six links to its nearest neighbors and
utilized for point-to-point communications. These links
are reasonably low latency (3.5 us) and have a modest
bandwidth (on the order of 160 MB/s) [40]. The second
network is a global combining, broadcast binary tree
network for collective communications (with 5-us latency
[40]). The third network is a binary tree network designed
specifically for fast barrier synchronization (1.5-us latency
[40]). The two remaining networks are Ethernet networks.
One is for I/O and the other is for diagnostics. The
relatively low latency of the interconnect is beneficial for
the LIDAEUS parallelization, helping to allow the code
to scale to higher processor counts.

The hardware

The Edinburgh BG/L system is a single-rack IBM BG/L
system with 1,024 chips (2,048 700-MHz PowerPC 440
processors). Installed in December 2004, this was the
first BG/L system in Europe. The machine can operate
either in co-processor (CO) mode, in which only one
processor in each node is utilized for computation and the
other is reserved for communication, or in virtual node
(VN) mode, in which all processors are able to act as
virtual nodes and address both computation and
communication. In VN mode, the resources of the node
must be shared between the two processors. Each core
has a 32-KB-data, 32-KB-instruction L1 cache with no
coherency between the two cores. Each node also has a
very small (2 KB, 128-byte-line) L2 cache, a 4-MB shared
L3 cache, and 512 MB of main memory. The system has
one I/O node for every eight compute chips and four IBM
BladeCenter* JS20 front-end systems for compilation and
batch submission. The system runs driver release 3, with
support for XL Fortran 10.1 and XL C/C++ 8.0.
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LIDAEUS

LIDAEUS is a highly adaptable and modular rigid-body
docking VS code written in C++ and parallelized using
the Message Passing Interface (MPI). This ensures
portability to a range of parallel platforms. LIDAEUS
focuses on extremely high simulation speed, with the goal
of a single processor being able to process a ligand in a
few seconds. Extensive testing and cross-platform trials
have ensured that the code is stable on a range of
processors and platforms. It has been used successfully to
identify a family of novel cyclin-dependent kinase
inhibitors [41]. Results will be published soon that
document six laboratory-confirmed cyclophilin-A binders
that were found using information obtained from the
parallelized code discussed here [42].

LIDAEUS job preparation is a serial process that is
carried out on a local non-HPC Linux** system. Using a
PDB file to represent the target protein, the first stage of
the job preparation is to profile certain energy values
present. These energies are written to map files, and the
internal representation is a finely spaced cubic lattice with
cells spaced typically 0.5 A apart. This gives a volumetric
representation of specific energies associated with the
space surrounding the protein. Three maps describe
van der Waals, hydrophobic, and hydrogen-bonding
energies [41]. Points in the volumes have their energies
defined in the following way. The van der Waals (vdw)
map is defined as follows by the classic Lennard—Jones
potential:

1
12 6
E(vdw) = Xn: [A/rp fB/rp .
The sum is over set n where 1 — n are all atoms not
forming hydrogen bonds with a probe; ry, is the separation
between the protein atom and the probe (p); and 4 and B
are coefficients from the Amber molecular dynamics
package [43]. The hydrogen-bond-donor and hydrogen-
bond-acceptor energy maps are defined in a similar way
as the van der Waals map but include a weighting term
dependent on the deviation from ideal hydrogen-bond
angles. This weighting is encoded by high energy values in
the map file, which can be visualized as a halo of ideal
hydrogen-bonding angles by using isosurfaces at a
suitable energy level.

The next stage of job preparation involves site point
generation, that is, the generation of a collection of a
special set of points located near the binding site. The
map files typically represent the entire volume occupied
by the protein and its surrounding area. The standard
method of inhibiting a protein involves binding one or
more foreign molecules to key sites known as binding
sites. A protein may have one or more defined binding
sites. Often, PDB files represent the protein complexed
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with its natural ligand. This natural ligand directs site
point generation that defines the target pocket. The
positioning of these points is determined by a search
through the map files in the volume defined by the
natural ligand (plus an adjustable amount of additional
volume) and the energy values present. Generation of
these points is flexible, but by default 170 points are
found in the pocket and considered as one of three types:
hydrophobic, hydrogen-bond acceptor, and hydrogen-
bond donor. These types denote the type of atom that
would favorably sit in a certain position (from an energy
standpoint). The distribution of site points is many
times denser than that of the atoms in a molecule. These
points offer a way to constrain the search in ligand
positioning, overlaying atoms of key types onto
appropriate site points.

The action of LIDAEUS during execution can be
broken down into a pipeline consisting of four modules
(Preen, Pose, Score, and Sort) through which the small
molecules (potential ligands) are passed. These small
molecules in the SDF (structure data file) format are
typically put into their vacuum minimum energy
conformation and docked using this conformation.

For this reason, large molecules such as peptides are
unsuitable for docking using LIDAEUS. The next section
of this paper briefly describes the expansion of LIDAEUS
to enable flexible ligand docking. In the following
paragraphs, we discuss the main modules of LIDAEUS.

Preen—Atom hybridization state information is added
to an internal representation of the molecule.
Hybridization denotes characteristics of an atom that vary
according to the bonding interactions and the atomic
orbital state of those bound atoms.

Pose—This is the most computationally intensive part
of the pipeline. The pose module takes its name from the
action of positioning (i.e., “posing”) a ligand against a
target. Many poses may be generated by a potential
ligand. Because LIDAEUS is a rigid-body docking code,
suitable poses for the ligand are achieved through
rotation and translation. Instead of iterating through all
orientations and positions of the ligand at a coarse
resolution, the pregenerated site points are used to
constrain the positioning search. LIDAEUS generates a
list of distances between bonded atoms in the ligand, as
well as a list of distances between each site point (up to an
adjustable cutoff value). A search tree is used in the
following set of actions to explore combinations of fitting
points. Each stage of depth within the tree matches ligand
atoms to site points with increasing tolerance values.
These values are user definable, but by default, the first
four atoms are fitted with tolerances 0.02 A, 0.04 A,
0.06 A, and 0.08 A. The list of distances between bonded
atoms in the ligand is checked against distances between
site points. If a match is found, a test is carried out to see
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whether the next bonded atom in the tree fits a distance
present between nearby site points. If the depth of the tree
of fitting atoms reaches a user-definable depth (by default
four), the ligand in the correct position is able to satisfy
the atom-type requirements described by the site points.
Once it is known that a set of certain ligand atoms can
overlay a set of site points, the 3D coordinates are
extracted and LU factorization is used to obtain a
combined rotation—translation matrix that overlays the
key ligand atoms onto matching site points. This matrix is
then stored with the representation of the ligand.
Applying this matrix to the 3D coordinates of the ligand
produces a pose. With ligands able to generate multiple
poses, the computational complexity of the problem bears
little relation to the number of ligands being tested.

Score—For each pose entry present in the
representation of the potential ligand, the combined
translation and rotation matrix is applied to the molecule.
With the molecule oriented into a potential binding
position, the energy maps are used to sum the energy
contributions being made by each atom.

The resulting score has units of kcal mol™'. A six-
dimensional conjugate gradient energy minimization is
then applied to the molecule as directed by the predicted
binding score in an attempt to refine the previously
generated pose. This process is repeated for each pose
entry belonging to a molecule.

Sort—LIDAEUS maintains a record of the best-
scoring poses across all potential ligands. It is important
to note that the score denotes the energy change in
binding; the more negative a binding score, the stronger
the ligand is predicted to bind. A positive score predicts
that energy must be added to the system in order to bind
the molecule in the position dictated by its pose. Many
different factors affect the range of scores achieved in the
final sorted list, but a good-scoring ligand (therefore,
predicted to be a strong binder) has a score less than
about —20 kcal mol ™.

A standard dataset for benchmarking purposes exists
and contains 1.67 million small molecules (in the SDF
format) that may be purchased from 24 catalogs obtained
from suppliers. In this benchmark, the receptor target for
these molecules is known as FKBPI12, and it plays an
important role in immunosuppressive therapies. The
structure is taken from the RCSB PDB and has the PDB
identifier 1FKJ. This dataset is so large that it is
unmanageable in a serial or low-processor-count parallel-
processing environment. Selection of a random 30,000
molecules and subsequent simplistic predictive scaling
calculations show that this dataset used with its target
would take 29 days to analyze on an AMD Opteron** 246
Linux system with 2 GB of RAM. Runtime lengths such
as this restrict users to the screening of small datasets in
an effort to obtain the results they need in the amount of
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time available to them. HPC systems are an attractive
platform for VS runs. The ultimate goal in the
parallelization of LIDAEUS is to reduce the runtime for
the standard dataset, thereby providing researchers with
more freedom to experiment and set up even more
complex runs with larger datasets.

Parallelization

The original version of LIDAEUS ran on a seven-node
openMosix** [44] cluster consisting of seven AMD XP
2600 processors, each with 1 GB of RAM and a standard
Gigabit Ethernet network acting as the interconnect. The
system, therefore, consisted of a cluster of standard
desktop machines managed by openMosix to create

a cluster capable of distributed computing. This
functionality is achieved by process load balancing
between nodes (machines). By starting multiple processes
and pipelines of LIDAEUS on each node of the cluster
and running the molecular data through a simple
multiplexer program, which distributed molecules to
instances of the pipeline, we allowed the operating system
to migrate pipelines from nodes with a high workload to
nodes that have a lesser load.

While this approach to parallelization enabled more
results to be gathered in a shorter amount of time, there
was still a need for a truly parallel version of the code
because of the restrictiveness of the openMosix
parallelization and its ability to run only in an openMosix
environment. Running the code on modern HPC systems
would allow the use of a large number of processors—
that is, many more than the seven used in the cluster.

Parallelization of LIDAEUS for the BG/L system at
the University of Edinburgh takes the form of an MPI
“task farm” that uses data decomposition as the
parallelization strategy. Essentially, one processor runs a
master process, reading in the small molecules to be
complexed with the protein and then serving them to
waiting worker processes residing on other processors.
The worker processes run their own Preen, Pose, and
Score code. As with any parallel code, computational
load balancing must be addressed. Note that the code is
intended for screening more than one million molecules in
a single run, and the molecule data can be served to
worker processes in relatively small sets (~5 to 50
molecules at a time). This data-serving process greatly
limits the scope for load imbalance.

The initial parallelization was to be specifically for
describing the binding pockets of a range of proteins. A
selection criteria was applied to the full RCSB PDB (as of
March 9, 2005), selecting crystallographically determined
structures with a resolution better than 1.7 A that made at
least four hydrogen-bonding contacts with the protein
and no covalent bonds between the protein and ligand.
Sequence similarity searching was then used to obtain a
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LIDAEUS operation without sort. Parallel efficiency is studied for
different numbers of processors (with 128 as the baseline) for the
standard dataset using three different target receptors. The Protein
Data Bank identifiers for these receptors are given in the key.

diverse set of proteins with a sequence similarity not
exceeding 90%. This specific problem with searching did
not require sorting or retention of only the top results
because information on the best-scoring minimized and
non-minimized poses for each molecule was retained. The
code has been used to screen a collection of 1.67 million
molecules against a resultant selection of 387 protein-
binding pockets. The results of this large computational
run are stored in a database, and data-mining techniques
are used to investigate the effectiveness of molecular
descriptors in predicting binding affinities. Figure 1 shows
that the lack of a parallel sort, as well as any lack of
interprocess communication, results in almost linear
scaling and a parallel efficiency with up to 512 processors.
With 1,024 processors, parallel efficiency for one receptor
is as low as 54%. Further investigation is required,
although a possible explanation for the low efficiency is
that for 1,023 worker processes, each writing its results to
a file at unpredictable intervals (with the master process
reading from disk), the network switch through which the
BG/L file I/O travels becomes saturated. While the total
amount of data written in a run of the standard dataset is
manageable at approximately 15 GB, the constant writing
of a small amount of data by 1,023 streams may explain
the poor parallel efficiency. The scaling data used to
produce Figure 1 suggests diminishing returns beyond
1,024 processors. A version of the code described later
removes the requirement for such large amounts of 1/O
and subsequently shows improved scaling.
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As previously stated, site points offer a way to
constrain the search space in the positioning of ligands. A
more exhaustive search of this space can be carried out by
altering a user-specifiable variable called “resol.” This
variable acts as a tolerance value that denotes the distance
the center point of key ligand atoms must be from site
points. The default value of 0.02 A may be increased to
carry out a more exhaustive search. As this value
increases, the computational complexity exhibits
exponential growth. Massive numbers of VS runs, dealing
with millions of small molecules, are not suitable for
larger tolerance values. Because the goal of VS is the
discovery of interesting drug leads, higher tolerance
values are useful only when using VS runs on smaller
targeted subsets or classes of small molecules. However,
this tolerance value offers the ability to alter the amount
of computation required to process a small molecule.
With this in mind, along with the consideration that the
limiting factor (I/O) will remain constant with an
increasing number of poses, it is possible to set up runs
with a larger number of poses that scale to and beyond
the limit of a single BG/L cabinet utilizing 2,048
processor cores.

In order for the parallel version of LIDAEUS to be
used as an HTVS tool in the rigorous sense of the term
HTVS, we did not collect information on the best poses
for each molecule but instead implemented a sorting
algorithm to produce a reduced list of the top-scoring
results from all poses made by all molecules. An
interesting characteristic of the BG/L architecture,
specifically the current version of its compute node kernel
(CNK), is that no exceptions or errors are generated
when a chip has filled its local RAM and a stack overflow
event occurs. The lightweight nature of the CNK means
that there is also no virtual memory. Depending on the
mode in which each node is run (i.e., CO or VN mode),
each chip has either 512 MB or 256 MB of local memory,
respectively. With the possibility of a ligand binding to a
protein in a variety of poses, one small molecule may
produce many positions and scores that must be retained
or at least considered for retention at the sorting stage. In
a restricted-memory environment such as this, a problem
arises. We are attempting to sort a dataset so large that all
of it cannot be held in one memory location. The sort
cannot proceed on one processor. A collaborative effort
among processors must be made.

Any time more complexity is added to a parallel code,
consideration must be given to its effect on the overall
execution time caused by the new code interaction with
existing components. In addition to the two existing
classes of processor—the master and the worker—we
have a new class, the sink. Conceptually, the sink sits at
the bottom of the task farm into which the workers dump
their results. If the workers simply performed the
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screening and then indiscriminately communicated their
results to the sink, the performance of the code would
decrease because of the communications overhead.
Therefore, it is important to reduce the amount of
communications generated. In order to achieve this
objective, we introduce the idea of a cutoff value. At the
start of the screening process, all worker processes screen
their data, filling up a small buffer. When this buffer is full
(typically when it contains ~50 poses), the contents are
sent to the sink, which depending on their scores, adds
them to its sorted list. When the requested sort size has
been achieved by the sink (e.g., a size corresponding to
1,000 molecules), a cutoff value can be calculated. A new
pose that does not meet the requirements of the cutoff can
be disregarded, as it will never enter the sorted list. This
cutoff value is then communicated back to the workers so
that this new criteria can be applied to their local buffers.
Consideration must be given to the time at which
this cutoff value should be communicated. One approach
is to allow the worker processes to communicate their
buffers to the sink and then request a new cutoff value
(assuming that their data changed the cutoff). In another
approach, when the worker initiates communication
with the sink, a cutoff is received. The worker then
removes entries from its buffer that do not meet the
criteria and proceeds with the send. We chose the first
pattern of suggested communication. At the start of the
screening process, with the cutoff value set high to allow
potentially all poses to be communicated to the sink, the
code has a performance decrease. As the screening
progresses, the cutoff is updated and communication to
the sink is reduced. A logical approach to reducing this
performance decrease would seem to be to set the cutoff
to allow only very good dockings to enter the sink list.
This approach may be undesirable because when a sorted
list of 1,000 of the best-scoring poses is requested but
fewer than 1,000 poses make it past the cutoff, the list will
not contain 1,000 elements. A counterintuitive result,
described later, shows that when other variables, such as
the worker buffer size, are set sensibly, we may want to
allow a large range of dockings to be considered in order
to ensure shorter runtimes. Aside from the number of
processors used for the VS run, three user-tunable
variables exist that relate to the parallel sort, that is, the
previously mentioned score cutoff starting value, the
worker buffer size, and the number of elements the final
sorted list should include. Failure to specify values results
in the use of predefined defaults. Interestingly, the
algorithm can be described as self-tuning. As long as the
worker buffer size is not set to an unsuitably small or
large value (e.g., ~1 or more than 1,000), the score cutoff
value, which dictates communication, converges to a
suitable value no matter how large its original starting
value. As a consequence, small runs can be set up to
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Using the code implementing the parallel sort, convergence of the
sink score cutoff values is shown for three different initial values
of score cutoff. Data was collected using the standard dataset
against the receptor represented by the Protein Data Bank
identifier 1FKJ.

explore the behavior of the program when a larger
proportion of its runtime is spent with an unoptimized
score cutoff.

Figure 2 represents a standard scan of 1.67 million
compounds against the receptor target FKBP12. When
the score cutoff is started at three drastically different
values (0, 500, and 1,000), convergence of the score cutoff
values occurs extremely quickly. It seems counterintuitive
that the larger the score cutoff value, the slightly shorter
the overall execution time. We observed runtimes of
10,983, 10,977, and 10,973 seconds, respectively, using
default settings and three different starting score cutoff
values, running on 128 nodes (256 processor cores). The
speed of cutoff convergence can be seen in Figure 2, with
the value for each scan at or less than 0 within 31 seconds
of program execution. At this point, the lowest
established cutoff is achieved by the scan using an initial
value of 1,000. This observation for runs with a higher
starting score cutoff is due to the fact that the contents of
local buffers will be communicated many more times than
those for runs with a lower cutoff. This higher rate of
communication is caused by more molecules making it
past the cutoff and filling the buffers earlier. As the scan
with the higher starting score cutoff progresses, the
communicated buffers will typically contain a range of
results varying greatly in their score. For example, some
results are just able to enter the buffer through the score
cutoff, while others easily enter the buffer. In another
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Data Bank identifiers shown in the key.
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run with a more restrictive cutoff, the local buffers can be
said to contain higher-quality results but are
communicated less frequently. Essentially, results of
poorer quality are being used to flush the good results in
the local buffers through to the sink. A lack of
communication keeps the sink cutoff values artificially
unrestrictive. This flushing, and the ideal rate at which it
should occur, is an artifact of the previously mentioned
user-definable sorting variables. Figure 3 shows runtimes
for the standard dataset against a receptor with PDB
identifier 1FKJ. A total of 256 processors are used for a
range of worker buffer sizes and initial score cutoffs. It is
important to note that this version of the code, which
implements the parallel sort, works on a different
problem than the original problem with no sort. The
problem for which the initial code version was used
concerned the profiling of binding pockets. Here, the best
minimized and best non-minimized poses for a molecule
were written to disk. This is different from the action of
the code when carrying out a true VS run in which the
best of all poses are to be kept or sorted. Here, every pose
must be considered for output to the latter stage of
sorting. One molecule has the potential to generate many
poses. Thus, instead of considering just two poses per
molecule, multiple poses are considered. This is reflected
in profiling results; the time required for processing the
same dataset in both versions of the code typically is 1.5
to 1.7 times longer when each pose generated is
considered for retention. Essentially, the two codes are
incomparable. As can be seen from Figure 4, profiling the
code implementing the parallel sort has resulted in almost
100% parallel efficiency up to 1,024 processors. It is worth
noting that profiling shows parallel efficiency at more
than 100% in some instances. This level of efficiency is
due to the fact that the value is calculated using 128
processors as the baseline, and with more processors,
more worker buffers are being flushed, filling the larger
sink buffer and establishing a cutoff earlier. Cache effects
may also influence performance.

This result supports the previous hypotheses that the
code without the parallel sort is being I/O bound at
higher numbers of processors. The self-optimizing nature
of the sort has ensured that most of the computation,
after early convergence of the score cutoff, proceeds in
almost a trivially parallel manner.

Future work concerned with the LIDAEUS code will
expand the program features to enable flexible ligand
docking. Development will tailor the code to the
lightweight massively parallel characteristics of the BG/L
architecture. We aim to ensure that the increase in
execution time does not become too large. We also do not
want to depart from the main goal of LIDAEUS
development; that is, LIDAEUS is a tool for drug lead
discovery and not for predicting the exact binding mode
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of a ligand at the expense of increased and more
restrictive computational runtimes. While ligand
flexibility is not a new concept, the novelty of LIDAEUS
lies in the scale of jobs it was designed to process. Typical
LIDAEUS runs will continue to simulate more than one
million receptor—-ligand complexes.

Conclusion

In conclusion, LIDAEUS has been parallelized and
deployed on a massively parallel system, greatly reducing
the amount of computational runtime required to screen
compounds against a target receptor. The initial goal of
the parallelization effort was to collect information on the
standard dataset of 1.67 million molecules binding to 387
binding pockets. This required the simulation of more
than 646 million protein—ligand complexes, as well as 387
separate LIDAEUS runs, something unobtainable
without a truly parallel version of the code and access to
the massive HPC resources such as those delivered by the
BG/L system. The reduced runtime of LIDAEUS jobs
has been key to achieving this goal.

Each version of the parallel code has reduced HTVS
runtime, previously on the order of weeks to hours. The
high availability of the BG/L system has made daily runs
of this magnitude a reality, enabling quicker turnaround
in the identification of promising leads for useful
compounds.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Linus
Torvalds, Advanced Micro Devices, Inc., or Amnon Barak in the
United States, other countries, or both.
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