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EUDOCe is a molecular docking program that has successfully
helped to identify new drug leads. This virtual screening (VS)
tool identifies drug candidates by computationally testing the
binding of these drugs to biologically important protein targets.
This approach can reduce the research time required of
biochemists, accelerating the identification of therapeutically useful
drugs and helping to transfer discoveries from the laboratory to the
patient. Migration of the EUDOC application code to the IBM
Blue Gene/Le (BG/L) supercomputer has been highly successful.
This migration led to a 200-fold improvement in elapsed time for a
representative VS application benchmark. Three focus areas
provided benefits. First, we enhanced the performance of serial
code through application redesign, hand-tuning, and increased
usage of SIMD (single-instruction, multiple-data) floating-point
unit operations. Second, we studied computational load-balancing
schemes to maximize processor utilization and application
scalability for the massively parallel architecture of the BG/L
system. Third, we greatly enhanced system I/O interaction
design. We also identified and resolved severe performance
bottlenecks, allowing for efficient performance on more than 4,000
processors. This paper describes specific improvements in each of
the areas of focus.

Introduction
Pharmaceuticals may address some of the highest-priority

medical challenges facing humanity, including cancers

and infectious diseases. The computational screening of

chemical databases for potential drug candidates has

become a key component in drug discovery and has been

recognized as a beneficial use of supercomputer

technology.

A team of researchers at IBM and the Mayo Clinic

undertook the challenge of porting, optimizing,

and massively parallelizing the EUDOC** program—

a molecular docking and virtual screening (VS)

code developed at the Mayo Clinic—for the

IBM Blue Gene/L* (BG/L) supercomputer platform. Our

goal was to demonstrate that the BG/L can extend the

limits of conventional VS on a commodity computing

cluster and help accelerate the transfer of drug discovery

from laboratory to patient. (Conventional computing

clusters are termed Beowulf clusters—designs for high-

performance parallel computing clusters on personal-

computer hardware—which is commonly used to support

scientific computing.) To achieve this goal, we investigated

barriers to full machine utilization for screening potentially

hundreds of billions of chemicals using tens of thousands

of BG/L processors [1]. In this paper, we report the

performance barriers that we encountered and our

solutions for overcoming these barriers. The solutions and

insights will be useful for porting other docking and life

science applications to the BG/L system. Removal of

these performance barriers led to a 34-fold speedup for

screening 23,426 chemicals using the EUDOC program

executed on 4,096 BG/L processors. This speedup

suggests that the BG/L system is able to extend the scale

of conventional VS by orders of magnitude.
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This paper gives a brief background on VS, the

EUDOC program, and the associated computer

hardware. We explain, for a general audience, the

computing algorithms used by EUDOC and the

significance of the project. Thus, attention is given to

hardware and programming details specific to EUDOC

on the BG/L system, while information on the validation

of the EUDOC program and its application to VS is left

to other publications [2–11].

Virtual screening, EUDOC, and their dependent
computer hardware

Protein structure and protein complexes

Proteins consist of linear chains of hundreds of amino

acids and are usually much larger than the drug-like small

molecules with which the proteins interact. Folding of the

linear chains of amino acids forms three-dimensional

(3D) structures with cavities. These cavities are often

favorable binding sites for complexation with other

molecules such as the drug-like small molecules. The

intermolecular interactions between a protein and a small

molecule are governed by their 3D structures and can be

predicted by a computer docking program such as

EUDOC, which is described below.

The completion of the Human Genome Project and the

growing effort in proteomics research have recently

intensified the attention being paid to 3D structures of

proteins, particularly those regarded as drug targets [12,

13]. Studies of 3D protein structures advance the

understanding of the genomic and proteomic information

and promote the use of such insight [14, 15]. Accordingly,

the Structural Genomics Initiative has been launched to

determine 3D structures of globular proteins bearing

unique folds [16]. To capitalize on the numerous 3D

protein structures garnered from efforts of individual

investigators and from the Structural Genomics

Initiative, a need exists for large-scale computer docking

programs. These programs search for specific

conformations, positions, and orientations of two 3D

structures that permit the strongest intermolecular

interactions. This search is useful because the first step in

essentially all biological activities is binding of one

participant (a ligand) to a complementary, larger partner

(a receptor). Docking programs can identify molecules

with which one particular 3D structure of interest can

form a complex and help researchers understand how the

resulting complex elicits biological signals to other

systems.

Virtual screening and the EUDOC program

Once a drug target, such as a protein target, is identified,

drug discovery that identifies chemical compounds as

drug candidates relies primarily on two technologies:

combinatorial chemistry (including solid-phase and

parallel syntheses) and high-throughput screening. The

combinatorial chemistry approach is based on the

premise that the greater the diversity of compounds

tested, the better the chance of finding one that can be

developed into a drug. High-throughput screening is a

process by which many compounds can be tested

automatically for activity as modulators of a particular

biological target. The combination of the two

technologies has been regarded as a powerful tool for

drug discovery. However, the two technologies still

cannot shorten the duration of the drug discovery process

to the extent desired because the success rates of current

high-throughput screening strategies are approximately

0.1%, and combinatorial chemistry usually requires 6

months to understand and develop reaction conditions

for making structurally diverse compounds.

Computational screening (or VS), on the other hand,

can be pursued by computationally docking each

compound in a database into the active site of a drug

target in order to identify drug candidates through

evaluation of the binding affinity of the compound,

controlled by charge and shape complementarity. This

approach can help increase the success rate of high-

throughput screening by selecting a biased subset for

experimental testing. The approach also complements

high-throughput screening in cases in which a particular

biological assay is not suitable for robotic screening, and

it affords screening of chemicals that are not yet made or

not currently available.

In 1990, a computer was used to screen 10,000

chemicals in the Cambridge Crystallographic Database,

leading to the identification of a haloperidol analog

capable of inhibiting HIV-1 (human immunodeficiency

virus 1) and HIV-2 proteases with a Ki of ’100 lM [17].

(Ki is the dissociation constant of the protease-inhibitor

complex.) The screening was accomplished by using a

computer program called DOCK, which computationally

docks each chemical into the active site of the enzymes

and evaluates the shape complementarity of the docked

compound relative to the active site of the two enzymes

[17]. Inspired by this seminal work, the EUDOC program

was devised to accomplish the following two tasks: 1) to

predict ligand–receptor complexes from 3D receptor

structures (referred to as complex prediction) and 2) to

identify a subset of chemicals that is abundant with

chemicals that are capable of binding to the active site of

a given 3D receptor structure (referred to as VS).

EUDOC was originally devised to perform on a

commodity computing cluster of loosely connected Intel

Xeon** processors [2]. It has shown success in predicting

drug-bound protein complexes, identifying drug leads,

and reproducing crystal structures of small-molecule

complexes [3, 4, 6–11].
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EUDOC is unique among molecular docking codes in

that it uses conformation selection theory to address

molecule flexibility. Molecular complexation in biology is

best described by the conformational induction theory

[18] that involves a ligand (e.g., a small molecule) binding

initially to a less-compatible conformation of a receptor

(e.g., a protein) and then adjusting its conformation to

induce the most compatible structural conformations of

the receptor. However, the conformation induction

approach is not ideal for docking studies because computing

the mutually dependent conformational changes of both

ligand and receptor is time consuming. Alternatively, the

conformation selection theory involves a scenario in

which both ligand and receptor select their preformed

conformations that are most compatible with each other

to effect binding by shifting two equilibriums

progressively from less-compatible to most-compatible

conformations for both partners [19–24], where the

preformed conformations are conformations at the local

minima of their potential energy surfaces (i.e., local

minimum conformations). When the most compatible

conformers of ligand and receptor are the most prevalent,

the conformation selection theory becomes the lock–key

theory [18].

The conformation selection theory is ideal to

computationally account for molecular flexibility in

docking, because it can convert a ligand–receptor

association best described by the conformational

induction theory to a series of associations, each of which

can be described by the lock–key theory [18]. The

conformation selection theory thereby affords vast

opportunities for massively parallel computing and

enables a EUDOC-based docking study to be performed

on thousands of BG/L processors with high efficiency

[1, 2].

In order to use EUDOC, a user specifies a docking

region, that is, a rectangular box (termed the docking box)

that encloses a binding pocket of a receptor (Figure 1).

The docking box confines the translations of the mass

center of the ligand. The EUDOC program then

generates different ligand–receptor complexes by a

systematic combination of translations of the ligand

along the x-, y- and z-axes and rotations of the ligand

around the x-, y- and z-axes within the docking box with

user-defined increments. These increments are expected to

be between 0.25–1.5 Å and 5–30 degrees of arc, although

the program handles cases outside of these ranges. As

described in [2], the initial search is done by rotation at a

10-degree-of-arc increment and translation at 1.0-Å

increments. A local optimization follows by rotation at a

5-degree-of-arc increment and translation at a 0.25-Å

increment in a region within 20 degrees of arc and 2.0 Å.

The translations and rotations are iterated with numerous

conformations of both ligand and receptor. Different

conformations of the ligand and receptor are generated

by a conformational search of the ligand structure and a

molecular dynamics simulation of the receptor structure

in water using commercially available conformational

search and molecular dynamics simulation codes. The

EUDOC program then calculates the intermolecular

interaction energies of all the generated ligand–receptor

complexes and identifies the most energetically favorable

ligand–receptor complexes. The interaction energy is

calculated from the potential energy of the ligand–

receptor complex relative to the potential energies of the

ligand and protein in their free state.

The result of the docking study is governed by the

translational and rotational increments, the size of the

docking box employed, and the numbers of different

conformations of ligand and receptor used. The

convergence of the docking results using the EUDOC

program—namely that the different binding modes have

been sampled sufficiently—can be confirmed by repeating

the calculation with smaller translational and rotational

increments.

During the outbreak of severe acute respiratory

syndrome (SARS) in 2003, the EUDOC program was

used to identify anti-SARS drug candidates by docking

361,413 chemicals against a computer-generated 3D

model of a chymotrypsin-like cysteine proteinase (CCP)

from a SARS-associated coronavirus [9, 25]. CCP is an

ideal drug target for treating SARS viral infection

because it is required for viral replication and

transcription. The 3D model of CCP was generated from

its genetic sequence by homology modeling and multiple

Figure 1

Example of a docking box.
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molecular dynamics simulations [25]. The ligand set used

in the study was selected from a Mayo Clinic in-house

chemical database that contained 2.5 million drug-like

molecules, 70% of which are commercially available. The

selection criteria were that the number of conformation-

governing rotatable bonds of each selected chemical must

be fewer than four and that the molecular weights of these

selected chemicals must be in the range of 400–9,000

Dalton.

VS against CCP using EUDOC was performed on a

commodity computing cluster using 396 Xeon 2.2-GHz

processors. One of us (Y.-P. P.) devised this cluster at the

Mayo Clinic; it has 235 nodes that are connected by

100-Mb Ethernet, and each node has two processors,

512 MB of memory, and an 80-GB local disk. This VS

identified 12 chemicals for antiviral testing. Of the 12

chemicals tested in cell-based inhibition assays, one

inhibited the human SARS-coronavirus Toronto-2 strain

with an effective concentration (EC50) of 23 lM, and four

others exhibited 13% to 17% inhibition at a drug

concentration of 32 lM [9]. The most potent inhibitor

lead overlays well with a reported scissile-bond-

containing substrate fragment bound in the active site of

CCP [25]. These results demonstrate that, given target

information at the gene level only, the VS method can

identify chemicals that penetrate and rescue cells from

viral infection. This is also an important validation of the

VS approach using the drug-target information at the

gene level.

The commodity computing cluster performance of the

VS for SARS virus inhibitors summarized above is used

as a baseline for much of the rest of this paper. The ligand

set commonly used in this study was a 23,426-ligand subset

selected from the 361,413 ligands described above. The

selection criterion was that the molecular weight of each

selected chemical from the 361,413-ligand set must be in

the range of 400–420 Dalton. The runtime of the

commodity computing cluster set the expectations for a

state-of-the-art search by EUDOC at 242 minutes.

However, after fully optimizing the serial code performance

of EUDOC, we found it effective to use a worst-case

receptor [farnesyltransferase (FTase)] and an associated

selected subset test case in determining performance

improvements. The meaning of worst case and the details

of this aspect of the study are described below in the

section on serial code optimizations.

Computer hardware for virtual screening

The computation for the VS described above fits the

definition of an embarrassingly parallel calculation.

(Using the parlance of parallel computing, an

embarrassingly parallel calculation is one for which no

particular effort is needed to segment the problem into

numerous parallel tasks.) The workload is segmented into

independent units of work by the nature of the problem,

and these workunits can be processed in any order with

no dependencies among them. Commodity clusters are

well suited to VS.

However, the commodity computing cluster solution

limits the scale of VS primarily because of the space

limitation at machine installation sites. Extending the

scale of conventional VS by orders of magnitude requires

the supercomputing-level system designs that currently

encompass large-scale computations [26–30]. Given the

sizes of available chemical databases (containing billions

of compounds) [1] and the nontrivial nature of runtime

load-balancing of large-scale VS (see below), large-scale

VS can be considered a supercomputer-level problem

instead of a cluster-level problem. Thus, there should be

motivation to migrate or port a VS code from clusters to

leading-edge supercomputers such as the BG/L computer.

For clarity, a short comparison of the clusters and the

BG/L system is provided in Table 1.

Challenge of migrating a virtual screening code from

clusters to the BG/L system

With VS, two processors should search through a

database twice as fast as one, or 16,384 processors twice

as fast as 8,192, because each ligand–receptor pairing

is an independent search. While this type of screening

task is trivially parallelizable over a few processors,

parallelization over thousands of processors is not an

easy endeavor. The runtime or computational load for

each processor must be carefully balanced because the

Table 1 Comparison of characteristics: Beowulf cluster vs. the Blue Gene/L system.

Cluster Blue Gene/L system

Processor One to two CPU sockets (possibly multicore) per

board; high-frequency Intel Xeon, AMD

Opteron**, etc.

512 node cards (1,024 processors) per midplane;

700-MHz IBM PowerPC* 440

Interconnect 10–1,000 Mb/s Ethernet (e.g., Myrinet**,

Quadrics**, InfiniBand**)

Five specialized networks for point-to-point,

collective, or I/O tasks

File system Local drives for each node are common Network-attached shared file system
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time to complete the screening task is the time for the last

processor to finish its complete set of assigned workunits.

This balance is especially important when using the

thousands of processors available on a BG/L system.

Some basic assumptions change when moving from a

cluster to the BG/L system. The single-node performance

and I/O bandwidth of the BG/L system are much lower

compared to a cluster, but the network bandwidth and

the number of processors on the BG/L system are much

higher. While each cluster node typically has a local drive,

the BG/L system uses a shared file system. These

differences present challenges and new opportunities that

are addressed below.

Porting, optimization, and massive
parallelization of EUDOC on the BG/L system

Project aims

With its architecture of many densely packed, low-cost

nodes, and in view of one installation of the machine

ranking as number one on the TOP500** list of most

powerful supercomputers in the world in 2005, the BG/L

system seemed to be an ideal platform for scaling up

conventional VS by orders of magnitude. The high

computing efficiency of the BG/L system in terms of

dollar/flops (floating-point operations per second),

watts/flops, cooling dollar/flops, and floor space/flops is

reported in Reference [31]. In order to achieve our goal

of demonstrating that the BG/L system can extend

beyond the limits of conventional VS on commodity

computing clusters and help accelerate the transfer of

drug discovery from laboratory to patient, we set out

to port, optimize, and massively parallelize EUDOC for

the BG/L system through a collaboration between the

Computer-Aided Molecular Design Laboratory of the

Mayo Clinic and the Development Laboratory of IBM in

Rochester, Minnesota. The specific aims of this

collaboration were as follows:

1. Maintain accuracy of VS results on the BG/L system.

2. Enable much larger VS studies on the BG/L system.

3. Approach an interactive solution response for

results, given sufficient BG/L nodes.

4. Identify barriers to full machine utilization on the

BG/L system.

Realization of these aims offers insights into porting

other docking and life science applications on the BG/L

system and assistance with hardware and project planning.

Porting EUDOC to the BG/L system

The Linux** operating system-like compute node kernel

on the BG/L system [32] provided most of the

functionalities required by the EUDOC application, with

a few exceptions such as the lack of the fork capability.

The missing functionalities were easily overcome by

simple modification of the EUDOC code to better match

the BG/L environment, as discussed further in the

following subsection. The parallelization portion of the

EUDOC code had to be completely revised because the

original code was devised to work on a cluster of

processors connected by the 100-Mb Ethernet.

Serial code optimizations

The original EUDOC code uses a modular software

design and has approximately a dozen separate programs

connected with system calls. Because the BG/L kernel

does not have the fork capability, the system call in C

does not work. However, this problem was solved by

changing each program to a subroutine.

One important preparatory step in optimizing the serial

code involved changing the code to use double-precision

floating-point calculations instead of single precision. This

was a prerequisite for the use of the BG/L SIMD (single-

instruction, multiple-data) floating-point units (FPUs),

which operate on double-precision values [33]. We initially

focused on the computationally intensive eudoc800

subroutine. In order to take advantage of the BG/L

hardware, the code was optimized specifically for the

BG/L system. Figure 2 shows the performance

improvements in eudoc800 obtained by compiler

optimization options, algorithmic revisions, and code

revisions. Timings shown in Figure 2 were obtained for

eudoc800 runs using a ten-ligand subset of the above

Figure 2

Single-node performance and code improvements. Note how the 

single-node performance improves as successive optimizations 

are incorporated into the EUDOC code, resulting in a four-fold 

improvement over the original. The x-axis indicates various kinds 

of optimizations and code revisions. 
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described 23,426-ligand database against FTase [4, 34].

FTase and the ten ligands were chosen to reflect the

computational characteristics of a worst-case docking

scenario because the receptor has a huge binding pocket,

which makes it challenging to find an optimal fit.

Additionally, more optimization runs of eudoc800 could

be performed in a short time. Each bar in Figure 2 reflects

a level of performance achieved after accomplishing

specific improvements as described below.

The first bar labeled ‘‘Original’’ shows the timing for

the eudoc800 module in its base form as optimized with

the �O3 compiler option.

By focusing on the optimization of some key

calculation code kernels, mainly the vrec reciprocal

evaluation that all Lennard–Jones energy evaluations

require, we minimize time spent in the library routines.

Loops in the eudoc800 subroutine were combined in order

to eliminate unnecessary arrays for intermediate results of

computations and to improve timings by reducing the

amount of traffic to and from memory. The arrays were

replaced by scalar temporary variables that could be

mapped by the compiler to register storage on the

processor, thereby reducing the number of memory

accesses. The overall improvement produced by these

revisions is indicated by the second bar in Figure 2

(labeled ‘‘Flatten’’).

EUDOC computes intermolecular distances between

the receptor and the ligand. The distance calculation loop

made use of a conditional statement in the original code

[see column 1 of Table 2(a)], preventing the use of SIMD

instructions on the BG/L system. This problem was

solved by separating the compute-intense portion of the

loop (which contained the distance calculation) from the

portion that contains the if ( ) statement, as illustrated

in column 2 of Table 2(a). In Figure 2, the timing

obtained from this change is indicated by the third bar

[labeled ‘‘Move if ( )’’].

The data operands used in the calculations were

aligned (forced to start on a 16-byte boundary) and the

compiler informed of the alignment with the alignx

directive. The resulting performance improvement is

illustrated by the fourth bar (labeled ‘‘alignx’’).

Table 2 Improvements to EUDOC inner loop source code.

(a) Sample code improvements

Original code Move if ( ) __fsel

For j , count
tmp ¼ foo[i]�bar[j]
if (tmp , VAL)
goto next;

For j , count
tmp[j] ¼ foo[i]�bar[j];

For j , count
if (tmp [j] , VAL)
goto next;

double jp¼zero¼0.0,one¼1.0, diff;
for j , count
tmp ¼ foo[i]�bar[j]
diff ¼ VAL� tmp
diff¼ __fsel (diff, zero, one);
jp þ¼ diff;

if (jp . 0.0)
goto next

(b) Code with full optimizations

const Complex double
HLIM ¼ __cmplx(CONSTANT, CONSTANT),
one ¼ __cmplx(1.0, 1.0),
zero ¼ cmplx(0.0, 0.0);
Complex double tmp, cfoo, jp¼zero;
double foo;
int jbatch¼count�9;
cfoo¼ __cmplx(foo, foo);
alignx(16,bar);
#pragma unroll (5)
for(j¼0;j,jbatch;j¼jþ2)
f
tmp ¼ __lfpd (&bar[j]);
tmp ¼ __fpsub (cfoo, tmp); //tmp¼foo�bar[j]
tmp ¼ __fpnmsub (HLIM, tmp, tmp); //tmp¼CONSTANT�tmp*tmp
tmp ¼ __fpsel(tmp, zero, one);
jp ¼ __fpadd(jp, tmp); //Accumulate jump registers
g
if (( __creal (jp) þ __cimag (jp)).0.0)
goto next:
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As described in [35], the vrec function uses the

reciprocal estimate instruction (__fpre) to obtain the first

estimate for the reciprocal of a number (accurate to 13

bits), and then performs two Newton’s iterations to refine

the reciprocal to the double-precision required accuracy.

Here, Newton’s method is used to solve the equation

f(x) ¼ a � 1/x ¼ 0, when the reciprocal of a is desired:

x0 ¼ __fpre(X); Xiþ1 ¼ XiþXi* (1.0�a*Xi).
In this study, we found that eudoc800 retained enough

precision without two iterations of Newton’s method

because the VS results using the revised eudoc800 were

the same as those obtained using the original eudoc800

code. This observation is consistent with the example

given in [33]. The improvement of this revision is shown

by the fifth bar (labeled ‘‘Newton’’).

We further improved the eudoc800 code by using the

data-select instruction as shown in the ‘‘__fsel’’ column

of Table 2(a). The __fsel function shown here is

equivalent to if (diff .¼0) diff¼one else diff¼zero.
The __fsel built-in function maps directly to an IBM

PowerPC processor assembly instruction. This replaces

the final loop containing the if ( ) with a single if ( )

statement that tests whether the branch is taken.

Consequently, the compiler can utilize the SIMD

instructions to improve dataflow through the caches and

to pipeline this loop much more efficiently than the

original code.

Additional optimizations of the loop are shown in

Table 2(b). The tmp and jp variables are now __Complex

double scalars, which map directly to the primary

register–secondary register pairs in the register file of the

processor. The loop is unrolled by five. (When we use the

phrase ‘‘loop is unrolled,’’ we refer to the process in which

the instructions that are called in multiple iterations of the

loop are combined into a single iteration.) This matches

the floating-point latency for multiply–adds (and most

other SIMD floating-point instructions). When unrolling

by five, the two floating-point registers, used for storing

five instructions previously, are available to be accessed

when needed for the next operation, because the compiler

has placed four other instructions between these register

references during the loop unrolling process. The

compiler still manages the floating-point register usage,

memory references, and instruction scheduling for this

loop.

Newer XL compiler levels also contribute to

performance. Upgrading the XL C compiler from version

7.0 to 8.0 decreased runtimes by 21%. The timing

associated with these changes is shown by the sixth bar

(labeled ‘‘Intrinsics’’).

The changes described in this section yielded a fourfold

improvement compared with the original eudoc800 code

compiled with the�O3 optimization option. Compared to

the ‘‘Flatten’’ bar in Figure 2, hand-tuning yielded a

threefold improvement, underscoring the value of hand-

tuning as a complement to state-of-the-art compiler

technology.

Parallel code optimization

The EUDOC program uses a master/worker scheme

implemented by a message-passing interface (MPI) on a

cluster of up to 800 Xeon processors connected with the

100-Mb Ethernet. The master node dispenses workunits

on request from the worker nodes. The size of the

workunit is a predetermined number of ligands sent to

each worker node for screening. In the EUDOC code for

the cluster implementation, the workunit size was 65

ligands. This size provided a balance between best-case

total workload completion time and prevention of master

overload due to network bottleneck conditions.

The workunit size was examined on the BG/L system

to understand how to take advantage of the BG/L

architecture, which can have up to 65,536 dual-core nodes

connected with a high-speed network [36]. We found that

load balance could be greatly improved by using small

workunits because the interprocessor communication

network on the BG/L system is specifically designed for

high bandwidth and readily accommodates more master/

worker interchange traffic than the network on a

commodity computing cluster. Communication

bottlenecks, which would have been typical on a cluster

running with data partitioned into smaller workunits,

were never encountered on the BG/L system even when

the workunit size was reduced to one ligand.

The four plots in Figure 3(a) illustrate the improvement

in the balance of runtimes across processors in the

parallel execution of EUDOC jobs as the workunit size

varies. A flat graph is indicative of processors finishing

work at similar times and represents full machine and

processors utilization. At a workunit of 60 ligands, which

is comparable to the cluster implementation, we

observed significant variations in processor runtimes.

Decreasing the workunit size on the BG/L system

provided a significantly improved balance between

processing time and prevention of master node overload.

Machine utilization is measured by the ratio of the

average total runtime for all processors to the maximum

total runtime of any single processor. A significant

difference indicates that the majority of processors have

completed their entire set of assigned workunits and

become idle, while a small number of processors are still

doing work. This indicates that completion time could be

shortened if tasks could be allocated more evenly among

processors. According to this measurement, the machine

utilization on the BG/L system was 53% for the 60-ligand

workunit case and 92% for the 3-ligand workunit

scenario.
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Figure 3
Improving processor load balance. (a) Improvement in load balance through reduction in workunit (WU) size. Smaller granularity dispatches 

of work make the processor runtimes more similar. Note the more balanced distribution of runtimes as WU size is reduced from 60 to 3. Job 

runtime is determined by the longest running processor time, which drops from 24,500 seconds to 17,800 seconds with WU3—a performance 

improvement of 27%. (b) Additional refinement in load balance is achieved through an HTT pre-sort scheme for ligand input data file. See 

text for details. The x-axis corresponds to 1 through 512 processors.
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We observed that even using a three-ligand workunit

size, a few processors completed their runs with wall-

clock times noticeably longer than other processors. This

problem could be solved by using a one-ligand workunit

on the BG/L system. However, this solution would

increase network traffic. In this study, we observed the

runtime for docking each ligand on a BG/L processor to

be generally proportional to the number of atoms in the

ligand. Therefore, a head-tail-tail (HTT) scheme was used

to improve the load balance by sorting the database in

order of descending number of atoms in the ligand and then

distributing one ligand from the head of the sorted list

(corresponding less runtime) and two from the tail of the

list (corresponding to more runtime) to each worker. As

shown in Figure 3(b), this scheme improved the machine

utilization from 92% to 98% for the best-case

performance of the three-ligand workunit case without

increasing network traffic. The plot on the left is an

expanded scale for the workunit size of 3 that is shown in

Figure 3(a). Note how the remaining spike of processor

runtime is eliminated by the HTT algorithm, as shown in

the plot on the right in Figure 3(b), achieving a near-flat

set of balanced runtimes. Final runtime is lowered to

16,700 seconds, for an overall performance gain of 32%

compared with the 60-workunit original case.

Sorting a database according to the number of atoms in

the ligand can be done before the VS and is a one-time

investment. Therefore, the HTT, head-tail, or head

scheme is recommended for performing massively parallel

calculations at fine granularities. Other load-balancing

approaches [37, 38] are worth exploring as well in follow-

on work. Smaller workunits generally produce better

parallelism and lead to better machine utilization. The

workunit size on the BG/L system can be as small as one

ligand because of the high-bandwidth communication

interconnect of the BG/L system. This fine granularity in

assignment of workunits provides the greatest

opportunity for balancing the CPU loads across all

processors. However, in this mode of operation, we

recommend sorting a database according to the number

of atoms in the ligand prior to VS because of the large

differences in ligand size, which has a significant effect on

the runtimes for the one-ligand workunits.

I/O barrier to massive parallelization

The serial and parallel code optimizations made the

revised EUDOC code scale reasonably well for up to 512

BG/L processors. Profiling the revised code on large

numbers of BG/L processors identified the I/O bottleneck

that caused poor scaling of EUDOC over more than 512

BG/L processors. The scaling characteristics of several

revisions of the EUDOC code are summarized in

Figure 4. The curve denoting the original base Blue Gene*

shows that the original EUDOC code ran slower on the

BG/L system (1,300 minutes) than on a commodity

computing cluster (242 minutes) and that it scaled poorly

on the BG/L system. Although the single-processor

runtimes were significantly improved, as shown by the

curve denoting improved serial code, the revised code still

ran no faster on the BG/L system than on a commodity

computing cluster regardless of the number of BG/L

processors used. It was only when the I/O loads were

reduced significantly, as shown by the curve labeled ‘‘I/O

Figure 4

EUDOC runtime improvements. (a) SARS virus 23,426-ligand 

test-case runtimes. Good scaling at 82% efficiency or better was 

eventually obtained for EUDOC. The curve labeled “current best 

scaling” illustrates runtimes for this version of the application, 

with best performance at 4,096 processors, corresponding to the 

rightmost point of the curve. The shared file system exhibits 

bottlenecks at larger configurations. Initial versions of the code 

demonstrated elapsed times no better than the 396 Xeon node 

cluster baseline comparison, even with enhancements as provided 

in “improved serial code.” Minimizing I/O allowed more 

processors to contribute to speedup by reducing load on the 

centralized shared file system. (b) Resulting SARS virus 23,426- 

ligand test-case speedup, with excellent efficiency demonstrated 

through 4,096 processors. 
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bottleneck reduced,’’ that EUDOC on the BG/L system

scaled to well more than 1,024 BG/L processors and ran

faster on the BG/L (32 minutes) system than on a

commodity computing cluster (242 minutes). Further

reduction of the I/O loads—by replacing dynamic

memory allocation with static array declaration and other

significant code revisions specific to EUDOC—improved

the scalability of the EUDOC code on the BG/L system

from 1,024 to 4,096 BG/L processors and, most

importantly, reduced the wall-clock (elapsed) time of

screening 23,426 ligands against CCP for anti-SARS drug

candidates from 242 minutes using 396 Xeon processors

(2.2 GHz) on a commodity computing cluster to 13 and 7

minutes using 2,048 and 4,096 PowerPC 440 processors

(700 MHz) on the BG/L system, respectively, as shown by

the ‘‘Current best scaling’’ curve.

Similar scalability was observed when screening 23,426

ligands from the same database against FTase. Because

FTase has a larger binding site than CCP, the runtime for

each ligand against FTase is generally 50% longer than

that of CCP (Figure 5). This alleviates the I/O loads for

screening against FTase because of the relatively low

frequency of workunit dispatching. A similar scalability

was also observed when the database was increased from

23,426 to several hundred thousand ligands by

concatenating several instances of this database.

The EUDOC program was originally designed to

execute in stages on a commodity computing cluster with

independent file systems. For each phase of execution, all

outputs for a succeeding stage are sent to disk. For large-

scale EUDOC runs on a BG/L system with a shared file

system, this means the runtime for each processor

depends on how fast the shared file system can handle

concurrent accesses to hundreds of thousands of

independent files in the 23,426 ligand test case. The

number of these files can increase to the millions for a

larger database. EUDOC adjustments were made

reducing the amount of I/O produced. Consequently, the

application scaled well up to configurations of 4,096

processors, but it required additional modifications to

scale further. Such modifications, employing the unique

internal networks of the BG/L system and not possible on

commodity computing clusters, would lead to

embarrassingly parallel status through file system I/O

reduction.

A distributed file system such as the IBM General

Parallel File System* (GPFS*) can in theory improve the

scaling further. However, because of the modular nature

of VS (i.e., a large-database screen can be divided into

small-database screens, each of which can be performed

on one or two racks of a BG/L system with up to 4,096

processors), the current best-scaling version of the

EUDOC code on the BG/L system offers a practical

solution to the large-scale VS problem.

The I/O barrier identified herein offers an insight into

porting other docking and life science applications to a

BG/L system. Porting embarrassingly parallel codes,

which run well on commodity computing clusters that

have multiple file systems, to the BG/L system

incorporating a shared file system requires attention to

the I/O bottleneck. As demonstrated above, the EUDOC

code runs slower on the BG/L system than on a

commodity computing cluster if no improvements are

made to the I/O implementation, to the compute kernels,

and to the load balance of the program.

The BG/L system: An ideal platform for
large-scale virtual screening
The study described in this paper offers a proof of

concept that the BG/L system can provide significant

speed improvement for VS using the EUDOC program

optimized for the BG/L system, allowing larger databases

to be screened in a shorter time. With further work on I/O

improvement, EUDOC would better fit the archetype of a

trivially parallel VS program and search potentially

hundreds of billions of chemicals in real time, given a

sufficiently large BG/L configuration.

Much of this study focused on a real-life VS of 361,

413 chemicals against CCP, which identified a small-

molecule CCP inhibitor exhibiting an EC50 of 23 lM in a

cell-based assay [9]. Screening a subset of 23,426

chemicals from the 361,413-chemical database that also

identified the 23-lM inhibitor required 242 minutes on a

commodity computing cluster using 396 Xeon 2.2-GHz

processors. The BG/L implementation described herein

Figure 5

Histogram of runtimes for the 23,426-ligand database run against 

the SARS and FTase receptors. Both cases scale similarly when 

the CPU load is balanced through single-ligand workunit distribu-

tion. 
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was able to reduce this time to 7 minutes using 4,096

BG/L processors, representing a 34-fold speedup

compared with the commodity computing cluster baseline

and a 186-fold speedup compared with the initial

EUDOC code ported to the BG/L system (1,300

minutes).

Given the outstanding performance of VS on the BG/L

system and the modular nature of VS, the BG/L system is

an ideal platform for large-scale VS that enables the

genome-to-drug-lead approach—that is, identifying drug

candidates by using only genomic information as

exemplified by the identification of the CCP inhibitor [1].

The genome-to-drug-lead approach empowered by the

BG/L system helps to reduce the manpower requirements

of searching for drug leads—which is one of the greatest

limitations to drug discovery—and exploits the extensive

availability of drug targets at the gene level, ultimately

enhancing the possibility of accelerating progress from

laboratory to patient.
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