
Scalable molecular
dynamics with NAMD
on the IBM Blue Gene/L
system

S. Kumar
C. Huang
G. Zheng
E. Bohm

A. Bhatele
J. C. Phillips

H. Yu
L. V. Kalé

NAMD (nanoscale molecular dynamics) is a production molecular
dynamics (MD) application for biomolecular simulations that
include assemblages of proteins, cell membranes, and water
molecules. In a biomolecular simulation, the problem size is fixed
and a large number of iterations must be executed in order to
understand interesting biological phenomena. Hence, we need MD
applications to scale to thousands of processors, even though the
individual timestep on one processor is quite small. NAMD has
demonstrated its performance on several parallel computer
architectures. In this paper, we present various compiler
optimization techniques that use single-instruction, multiple-data
(SIMD) instructions to obtain good sequential performance with
NAMD on the embedded IBM PowerPCt 440 processor core. We
also present several techniques to scale the NAMD application to
20,480 nodes of the IBM Blue Gene/Le (BG/L) system. These
techniques include topology-specific optimizations to localize
communication, new messaging protocols that are optimized for the
BG/L torus, topology-aware load balancing, and overlap of
computation and communication. We also present performance
results of various molecular systems with sizes ranging from 5,570
to 327,506 atoms.

Introduction

With a greater understanding of the functioning of

biological systems, the importance of biomolecular

simulations has increased significantly. More than 43,000

structures are publicly available from the Protein Data

Bank (www.pdb.org). The availability of such structures

has enabled researchers to explore the relationship

between structure and function through simulations that

are now based on a firm experimental foundation.

However, for most proteins, scientists are aware only of

amino-acid sequences. Thus, molecular simulations are

needed to predict the detailed three-dimensional (3D)

structure of proteins through the process of simulated

protein folding.

These kinds of molecular simulations present several

computational challenges. Because hydrogen atoms in a

biomolecule vibrate with a period of approximately 10 fs

(femtoseconds), the computational timestep must be

about 1 fs for stable and accurate integration. However,

the phenomenon of interest may occur only at a scale of

microseconds. Several nanoseconds of simulation may be

required even to allow a protein to relax into the nearest

low-energy state. Some phenomena can be studied by

observing the behavior of the molecule over tens of

nanoseconds. Given an initial state, we can force the

simulation through interesting paths of behavior.

However, even with computational shortcuts, we are still

faced with the problem of simulating several million to a

few billion timesteps.

For most molecular dynamics (MD) calculations, the

number of atoms in a particular biologically interesting

configuration is fixed. For example, if we want to study a

particular aquaporin (a protein that straddles a cell

membrane and allows water to cross the membrane), our

simulation would involve one aquaporin tetramer, a

reasonably sized patch of cell membrane in which to

embed it, and a sufficient quantity of water molecules

around the structure. This kind of study may comprise a

�Copyright 2008 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 S. KUMAR ET AL.

177

0018-8646/08/$5.00 ª 2008 IBM

few hundred thousand atoms. Our simulations with a

fixed problem size (e.g., a fixed number of atoms) are in

contrast to the study of continuous phenomena, such as

weather prediction, in which we can simply increase the

resolution to exploit a computer with many processors.

Of course, we can study increasingly large molecules as

machines with more processors become available, but the

size of such molecular assemblies of interest is normally

limited and we still need to study a particular system to

understand its behavior. The key challenge is to quickly

simulate a large number of timesteps.

For some problems, multiple independent or weakly

coupled (e.g., replica-exchange method [1]) simulations

may be used to increase sampling of molecular

configurations. However, for many simulations, artificial

steering forces [2] are used to drive the molecule through

a series of transitions [such as for the rotary mechanism

of adenosine triphosphate (ATP) synthase]. Larger

steering forces produce artifacts; thus, in order to enhance

accuracy, simulations are performed using the smallest

steering forces possible that provide results in a

reasonable time. This suggests that longer simulations are

necessary for accuracy. Larger molecules function

through longer and more complex mechanisms, making

even longer simulations necessary. Thus, larger

simulations have an even greater need for computational

performance than implied by their atom counts alone,

and the challenge of reducing wall-clock (elapsed) time

per step remains.

In our research, we consider the apolipoprotein-A1

(ApoA1) system, a model of a high-density lipoprotein

(HDL) particle [3]. (HDL transports cholesterol in the

bloodstream and is commonly referred to as the good

cholesterol when measured by blood samples taken in a

physician’s office.) With 92,224 atoms and a mix

of proteins, lipids, and water, ApoA1 is representative

of modern moderately sized simulations. The serial

(i.e., sequential) simulation of ApoA1 takes about 6.2

seconds per timestep on a single processor core of an

IBM Blue Gene/L* (BG/L) system. The challenge is to

replace the 6.2-second computation with one that runs

efficiently on several thousand processors, with each

timestep taking only a few milliseconds.

In this paper, we describe how this scaling was

accomplished in the NAMD (nanoscale molecular

dynamics) program running on the BG/L system. NAMD

[4] is a parallel MD application developed at the

University of Illinois at Urbana-Champaign (UIUC) as a

collaborative project involving the Theoretical and

Computational Biophysics Group (www.ks.uiuc.edu) and

the Computer Science Department, which includes the

Parallel Programming Laboratory (charm.cs.uiuc.edu).

NAMD uses an effective parallelization strategy that is a

hybrid of spatial decomposition and force decomposition.

This is supported further by dynamic load-balancing

capabilities of the Charmþþparallel programming system

developed at the UIUC. This hybrid parallelization

strategy has remained effective over the past 10 years.

We begin by describing and reviewing this strategy. We

then present a series of optimizations that include

sequential optimizations targeted toward the IBM

PowerPC* 440 (PPC440) processor cores used in the

BG/L system, as well as parallel optimizations that include

dynamic load balancing. We present performance data

for molecular systems ranging from 5,570 to 327,506

atoms.

NAMD parallelization strategy
NAMD uses a hybrid strategy that combines spatial

decomposition with force decomposition and couples it

with the dynamic load-balancing framework of Charmþþ.
The dominant computation in MD is that of nonbonded

forces (i.e., electrostatic and van der Waals forces)

between all pairs of atoms. The potential O(n2) all-pairs

algorithm is optimized to O(n log n) complexity by using

the notions of a cutoff radius rc, and separation of

computation of short-range and long-range forces. For

each atom, the nonbonded forces due to atoms within rc
are calculated explicitly. The long-range forces due to the

atoms outside this radius are calculated using an O(n log

n) particle-mesh Ewald algorithm. Even with this

splitting, 90% of the computation cost is due to explicit

calculation of nonbonded forces within the cutoff radius.

Initial attempts at parallel MD simulations in the field

of biophysics were made using existing sequential codes.

We showed in [4] that many such strategies were not

scalable, in the sense of the isoefficiency metric for

scalability [5]. (The isoefficiency metric indicates how well

a parallel workload scales while maintaining a fixed

efficiency.) In particular, the communication-to-

computation ratio of many of these schemes rises with

increasing numbers of processors, and in a way that does

not allow weak scaling. In other words, even if we were to

increase the number of atoms, the communication-to-

computation ratio would not improve. A pure force-

decomposition scheme, such as that in [6, 7], also suffers

from this limitation.

We also showed in [4] that spatial decomposition

does not have this problem. We presented an even

more effective formulation that combines spatial

decomposition and force decomposition that generates

additional parallelism without increasing communication.

In this formulation, the simulation space is divided into

cubic boxes (called patches in NAMD). The size of

each cube b is chosen based on the cutoff distance rc. Let

B ¼ rcþ rH þ m, where rH is twice the maximum length

of a bond to a hydrogen atom. The variable m, the

margin, is twice the distance that atoms may move

S. KUMAR ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

178

without migration between patches being necessary.

Variable b along each dimension is chosen as B/k.

Typically, k is either 1 or 2 (althoughwe have experimented

with k ¼ 3). With k ¼ 1 (also referred to as one-away

decomposition), there are about 400–700 atoms per cube.

With k ¼ 2, this decreases to 50–75 atoms. In order to

provide intermediate granularities, we support noncubic

patches. For example, each dimension can be either B or

B/2, for example. With k¼ 1, only atoms in neighboring

patches have to interact (and there are 27 interactions in

which each patch participates). With k ¼ 2, interactions

involve 125 cubes that are two-away from each other in

the coordinate space.

An innovation in NAMD 2.0 [4] was its use of a kind of

force decomposition on top of this spatial decomposition;

for each pair of interacting patches, NAMD creates a

force-computation object (referred to as a compute object

or compute for brevity). With k¼ 1, this leads to 14 times

more compute objects than the number of patches. These

compute objects are then assigned to processors under the

control of a dynamic load balancer in Charmþþ (see

below). Compared to spatial decomposition by itself, this

strategy also eliminates duplicate computation of forces,

by exploiting Newton’s third law. The parallelization of

NAMD with patch and compute objects is shown in

Figure 1.

More recent proposals for scalable MD [8–10] use the

basic strategy of hybrid decomposition, which originated

in NAMD 2.0. The proposals differ in how the force

computations are assigned to processors, that is, via

either static (but topology-sensitive) schemes [8, 9] or the

Blue Matter MD scheme [10] that allocates work on

the basis of the number of atoms. We believe that the

original scheme is at least as good as or better than these

schemes because of its ability to take the dynamic

processor load into account (assuming that the load

balancer performs well).

Charmþþ is a Cþþ-based parallel programming system

in which the programmer decomposes the work into a

large number of interacting message-driven objects called

chares. The objects may be organized into multiple

indexed collections, known as chare arrays. The ontology

of the programmer does not include processors but only

the objects. Multiple objects can be and typically are

assigned to a single processor. The execution on each

processor is controlled by a scheduler, which selects an

available message, identifies the chare for which it is

destined, allows the chare to process the message, and

repeats. The Charmþþ adaptive runtime system can

reassign objects to processors during a run and handles

all the bookkeeping associated with such migrations

automatically. It measures computational loads of

individual objects and tracks communication between

pairs of objects. On the basis of these measurements, the

load balancer can reassign objects accurately to improve

load balance and to decrease communication.

Blue Gene/L optimizations

Improving sequential performance on the

PowerPC 440 core

The BG/L system is based on the embedded PPC440 core.

A significant effort was required to achieve good

sequential performance on the BG/L embedded core.

Because of aliasing constraints in the NAMD inner loop,

the IBM XL (extensible language) compiler was unable to

generate optimized code. As a result, the inner force

compute loops were not effectively software pipelined.

We eliminated the aliasing constraints by inserting

#pragma disjoint directives in the compute loop to

enable the generation of software-pipelined object code.

In some instances, we manually unrolled and pipelined

the loop to obtain the best performance. (When we use

the phrase unroll the loop, we mean the process in which

the instructions that are called in multiple iterations of the

loop are combined into a single iteration.) We observed

that the bonded code in NAMD had several stack

temporaries because it was using Cþþ operator

overloading. (Bonded code refers to that part of the code

that computes the forces due to atomic bonds.) The stack

temporaries introduced expensive loads, stores, and

pipeline stalls. We reported this to the IBM XL compiler

team and obtained a fix that is now available in XLC

version 8.0. The net result of the above optimizations was

to more than double serial performance on the PPC440.

The optimizations also helped other PowerPC Architecture*

Figure 1

Parallelization of NAMD computation. The “bonded computes”

refer to that portion of the code involved with computing forces

due to atomic bonds, and the “nonbonded computes” refer to the

portion of the code that computes electrostatic forces.

Point to point

Patch integration

Patch integration

Point to point

Multicast

Reductions

Bonded

computes
Nonbonded

computes

PME

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 S. KUMAR ET AL.

179

platforms. Table 1 compares the performance of NAMD

version 2.5 with the prerelease version of NAMD 2.7.

(The BG/L systen optimizations in NAMD were added

after the release of NAMD version 2.5.)

The PPC440 core is enhanced with an additional

floating-point unit called the double floating-point unit

(double FPU) [11]. In order to take advantage of the

double FPU, the addresses of loads and stores must be

aligned to 16 bytes. We had to pad the force vector and

other structures (which were originally 24 bytes) to have a

32-byte alignment, in order to make use of the double

FPU. The force computation in NAMD requires that the

X, Y, and Z dimensions be computed. However, the

SIMD instructions can parallelize only the X and Y

dimensions, and the computation of the Z dimension is

not parallelized by SIMD instructions. This restricts the

achievable speedup from the double FPU to be about

33%.

The actual performance improvement with the SIMD

optimizations is only about 7%, as shown in Table 1. We

are working on further optimizing the SIMD version of

NAMD. A reason for lower 440d performance may be a

cache miss in the force-compute loop. (440d refers to the

SIMD extensions for the PPC440 core.) This loop uses

interpolation tables for the three independent terms in the

energy potential (electrostatic plus Lennard–Jones r�12

and r�6), thus eliminating reciprocal-square-root and erfc

(complementary error function) computations. The

interpolation table is quite large and of the order of

several hundred cache lines. Many PowerPC Architecture

implementations have relatively small level 1 (L1) caches

(32 KB on the BG/L system). This may lead to cache

misses in the inner compute loop of NAMD. Because the

access pattern to the interpolation table is quite irregular,

even the level 2 (L2) prefetch unit on the Blue Gene/L

chip may not be effective in this case.

We are exploring new computational algorithms that

may have more SIMD computation but would require a

smaller interpolation table. We also plan to take

advantage of the PowerPC reciprocal-square-root

approximation instruction in order to further reduce the

number of entries in the interpolation table. We hope

these optimizations will further improve the performance

of NAMD on the BG/L platform as well as other

PowerPC Architecture platforms.

Topology mapping

The BG/L supercomputer has a torus interconnection

network [12] for application data exchange. Because a

torus interconnection network has limited bisection

bandwidth, localizing communication results in better

application performance. For NAMD, this fact makes

careful mapping of patches to processors critical for

achieving strong scaling on the BG/L system. The patches

in NAMD are allocated to processors using an

orthogonal recursive bisection (ORB) scheme [13] to map

the patch objects to the BG/L torus. The dimensions of

the BG/L torus depend on the size of the processor

partition, while the dimensions of the patch torus depend

on the size of the problem. Both the processor and patch

tori are typically not cubic. Thus, first, the axes of the

patch and processor tori are sorted, and then the largest

dimensions of the processor torus are matched with the

corresponding dimensions of the patch torus. For

example, when we map a 133 63 4 patch torus to an 83

32 3 16 processor torus, we obtain the following axis

map: Xprocesor ¼ Zpatch, Yprocessor ¼ Xpatch, Zprocessor ¼
Ypatch. Next, we rotate the patch grid so that its

dimensions match the processor grid using the above

computed axis map. Once this is done, we can use ORB

(as described below) to allocate patches to processors.

The ORB scheme splits patches along the longest

dimension and then computes the total load of each of the

two partitions. The load generation function takes into

account the patch computation, which depends on the

number of atoms and the expected communication

overhead of each patch. Next, the processor grid (torus) is

halved to form two subgrids in which the size of each

partition corresponds to the load of the patch partition.

This is repeated recursively until we have one patch that is

allocated to a random processor in the corresponding

processor subgrid. Figure 2 shows the mapping of patches

and computes onto the 3D torus of the BG/L system.

Communication optimizations

We have developed a native Charmþþ runtime system,

optimized for the BG/L platform on top of the BG/L

message layer [14]. We found the CharmþþMessage

Passing Interface (MPI) driver not suitable to make

progress on the network because it called MPI Iprobe and

MPI Test functions, thus introducing communication

overheads. An optimized runtime also allowed us to

explore the adaptive eager messaging protocol that does

not require the ordering semantics of MPI.

Table 1 Single-processor timestep (seconds) on various

PowerPC Architectures for ApoAl.

Architecture NAMD 2.5 NAMD 2.7

prerelease

PowerPC 440 700 MHz 14.0 6.60

PowerPC 440d 700 MHz 14.1 6.17

PowerPC 970 2.0 GHz 3.90 1.87

POWER4* 1.5 GHz 4.80 2.25

S. KUMAR ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

180

The production MPI software [15] on the BG/L system

has two protocols for point-to-point messages: eager and

rendezvous. In the eager protocol, all packets are sent

using the in-order deterministic routing scheme. The first

packet matches the MPI-posted receives and the rest of

the payload is copied into an application buffer. In the

rendezvous protocol, first an RTS (request-to-send)

packet is sent to the receiver. When the receiver is ready

to receive, it sends a CTS (clear-to-send) packet back to

the sender. Upon receiving the CTS, the sender sends the

application buffer using adaptive routing.

Because the eager protocol uses deterministic routing,

it can restrict the communication performance of the

application. Even though the rendezvous protocol uses

adaptive routing, it has a three-way handshake, which is

not very effective in the Charmþþ scenario. The three-way
handshake restricts overlap of computation and

communication. It is possible that the sender starts

computing after sending the messages and cannot process

the CTS packet as soon as it arrives. Moreover, the

overhead of the RTS and CTS packets makes rendezvous

less suitable for the most common NAMD messages,

which are only a few kilobytes.

We present the adaptive eager protocol to optimize the

scenario in which the application sends several short

messages that are a few kilobytes. The adaptive eager

protocol sends messages with adaptive routing while

avoiding RTS and CTS packets. In this protocol, each

processor keeps a system-wide connection list with one

slot for each processor in the booted partition. Each

packet must carry all the state information for the

message. In MPI, this state would include the

communicator and tag for the message, along with the

source and the size. Thus, for an MPI implementation of

the adaptive eager protocol, the tag and communicator

would also have to be sent to match the incoming

message with a list of posted receives. Hence, the

bandwidth achievable with the adaptive eager protocol in

MPI will be lower than that for eager or rendezvous.

Moreover, only one message can be outstanding because

messages must be matched in order.

Unlike in MPI, in Charmþþ all messages are received

as unexpected messages, so only the size of the message is

needed in all arriving packets to allocate a buffer for the

message. Fortunately, packets on the BG/L system have

an 8-byte software header. We were able to pack the

message size, source, packet offset, and a sequence

number into the 8-byte software header, with each of

those fields occupying 21, 18, 21, and 4 bits, respectively.

After receiving a packet, the receiver looks up the

connection list, and if a buffer for that sequence number

has not been allocated, it makes a request of the

application (e.g., the Charmþþ runtime application) for a

buffer to receive the message.

As Charmþþdoes not require message ordering, we can

allow several messages to be outstanding at a given time.

The packets of these messages can arrive together and are

distinguished by a sequence number. The maximum

number of outstanding messages is determined by the

number of bits allocated to the sequence number. This

corresponds to 16 outstanding messages with a 4-bit

sequence number. Once the receiver has received all of the

16 messages, it sends an acknowledgment back to the

sender, which then sends the next set of 16 messages.

Dynamic load balancing

NAMD uses the Charmþþ dynamic load-balancing

framework [16, 17]. The patches are initially placed in a

topology-optimized manner using the ORB scheme

presented in the section on topology mapping. In order to

achieve good computational and communication load

balancing, the Charmþþ runtime must record the most

up-to-date application and system load information. The

Charmþþ runtime exploits a simple heuristic called

principle of persistence [18] to automatically obtain load

information. This principle simply exploits the fact that

the object computation times and communication

patterns (number and bytes of messages exchanged

between each communicating pair of objects) tend to

persist over time, which holds for MD simulations in

which atoms move slowly. This heuristic makes it possible

to instrument the application automatically at runtime

and use the newly instrumented load information to

predict the load in the near future. In NAMD, the load-

balancing framework measures the computational load of

all the objects along with the communication and

background load of nonmigratable work on the

Figure 2

Mapping of patches and computes onto the BG/L torus.

Patches

Bonded computes

Nonbonded

computes

y

x

z

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 S. KUMAR ET AL.

181

processors. The load statistics are provided as a

parameter to a load-balancing strategy (i.e., algorithm)

that computes the new object placements.

We use two load-balancing strategies in NAMD. The

first scheme involves a comprehensive load-balancing

strategy that assigns migratable work (mostly nonbonded

force computation), ignoring the initial placement of such

work. This comprehensive scheme is performed only once

during a run of NAMD. The second load-balancing

strategy involves a refinement strategy that moves just a

few objects from overloaded processors to lightly loaded

processors. The refinement scheme (i.e., procedure) is

called periodically (every few thousand timesteps) to

move compute objects to balance changes in processor

load for atom migrations.

Both the comprehensive and the refinement strategies

have topology optimizations built into them. In the

comprehensive strategy, the load balancer first assigns all

the compute objects to a max-heap. The strategy then

picks the most overloaded compute object and assigns it

to a processor on the basis of a greedy heuristic that takes

into account the processor load, the communication

history, the proximity of the processor on the BG/L torus

to the patches whose interaction is being computed, and

the number of destinations in the patch multicast. The

size of the patch multicast depends on the number of

proxies, which are destination processors that keep copies

of the patch coordinate data for one or more local

computes. The comprehensive strategy is biased by initial

proxies placed on processors that are close to the patch

processor on the BG/L torus. This strategy also favors the

use of processors that are fewer than four hops from the

midpoint of the patches whose interaction is being

computed in the compute object.

In the refinement strategy, the overloaded processors

are first allocated to a max-heap. The strategy involves a

loop that picks the highest-loaded processors and then

removes the overloaded objects in that processor to a

lightly loaded accepting processor. This accepting

processor is chosen using heuristics similar to those in the

comprehensive scheme. The refinement strategy iterates

until no overloaded processors exist with a load above a

threshold. The refinement strategy favors lightly loaded

processors within eight hops of the midpoint of the

patches whose interaction is being computed.

Once the load-balancing strategy has finished

reassigning compute objects, the Charmþþ runtime

application moves the objects to their new destinations.

After the moves are finished, a new spanning tree is

constructed for each patch to multicast its atom

coordinate data. The spanning tree creation also ensures

that no processor is overloaded with spanning tree

intermediates from different patches. Figure 3 shows

patches and their multicast targets superimposed on a

two-dimensional (2D) view of the physical processor

topology. A two-level k-ary tree is generally used in

NAMD, with the value of k close to ten.

Overlap of computation and communication

The BG/L system has two PPC440 cores on each node.

However, it does not have a DMA (direct memory access)

unit on the compute node. Ideally, one of the cores could

serve as a communication coprocessor, but because of

lack of cache coherence, the caches must be flushed for

any communication between the cores. The overhead of

cache flushing may limit the performance of the

coprocessor mode because the messages in NAMD are

relatively short.

In this paper, we present a technique that can overlap

computation and communication in virtual node mode

[19]. Each core has six normal-priority torus FIFOs (first

in, first outs), and each of these FIFOs can store up to

four packets. At a full link bandwidth of 175 MB/s, each

FIFO would fill up in about 4,320 processor cycles. We

have observed in NAMD that the achievable throughput

due to network contention corresponds to only about two

links, which implies that each FIFO would fill up on

average every 12,960 cycles. We can have the cores

compute for these 12,960 cycles and periodically make

calls in order to drain network FIFOs and call the

progress engine in the messaging software. In NAMD,

the rate of progress is specified as a command line

Figure 3

Spanning tree showing multicast origins (i.e., patches represented

by cubes) and proxies (circles).

S. KUMAR ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

182

parameter and can be tuned to the processor partition

size and the benchmark.

The BG/L torus interconnect is a reliable network in

which a packet is sent downstream only if there are

resources available for it. The local resources of the

packet are released when the receiver acknowledges the

error-free reception of the packet. Hence, the reception

FIFOs must be drained before they fill to capacity. If this

is not done, packets will be trapped in intermediate

buffers on the network. The progress calls in NAMD

prevent this from happening, as network reception FIFOs

are drained from the inner compute loops.

We had to develop infrastructure in the Charmþþ
runtime system in order to support such progress calls

from application entry methods. We extended this

runtime to support immediate messages, within the

progress calls. With an immediate method, the handler

for the message is called within the progress call, allowing

the message to be forwarded to other processors. The

NAMD coordinate multicast uses a spanning tree to

multicast data to the destinations (see the section on

dynamic load balancing). If an intermediate destination

on the spanning tree is busy in a compute loop, the

multicast messages will be delayed, resulting in poor

performance. With immediate messages, the multicast

data can be forwarded on the intermediate nodes within a

few thousand processor cycles after the message has

arrived. Similarly, immediate messages can also be used

for the force reduction messages that are sent back to the

patches.

Particle-mesh Ewald

NAMD uses the particle-mesh Ewald (PME) method [20]

to compute the long-range interactions between the

atoms. The PME method requires two 3D fast Fourier

transforms (FFTs) to be computed. NAMD 2.6 used a

1D decomposition for the FFT operations. Because the

1D decomposition requires only a single transpose of the

FFT grid, it is the preferred algorithm on clusters with

slower networks and small numbers of processors.

Parallelism for the FFT in the 1D decomposition is

limited to the number of planes in the grid, and 108

processors for the ApoA1 benchmark. However, the

message-driven execution model of Charmþþ allows a

small amount of FFT work to be interleaved with the rest

of the force calculation, allowing NAMD to scale to

thousands of processors even with the 1D decomposition.

Nevertheless,wehaveobserved that this 1Ddecomposition

does not scale well on the BG/L system and many other

architectures because of insufficient parallelism.

We implemented a 2D decomposition for the PME

method, in which the FFT calculation is decomposed into

thick pencils with three phases of computation and two

phases of transpose communication. A thick pencil along

the X dimension will contain all the FFT grid points in

the X dimension, while the Y and Z dimension sizes

would typically vary from one to four grid points. The

FFT operation is computed by three arrays of chares in

Charmþþ with a different array for each of the three

phases of transposes. At the limits of scalability, this

operation is mainly dominated by communication

overhead of small transpose messages. We used the real-

to-complex optimization to reduce the computation and

communication overhead of the FFT operation by a

factor of 2.

In addition to the two FFT calculations, PME in

NAMD has two computation and communication

phases. These phases send grid data from the patches in

NAMD to the PME force computation and FFT chares.

The PME calculation begins with the computation of

the charge grid by interpolating each atom to a charge

grid typically of size 4 3 4 3 4. The contribution of each

atom is reduced locally. Next, the intersecting section of

the charge grid is sent to the FFT thick-pencil chare along

the Z dimension. The FFT thick pencils preform a

forward 3D FFT followed by the Ewald calculation on

the transformed grid in k space. Next, a backward 3D

FFT is performed that computes the long-range forces

that are sent back to the patches. The forces are then

integrated to update atom positions and velocities in the

next integrate phase.

One of the advantages in the 2D decomposition is that

the number of messages sent or received by any given

processor is greatly reduced compared to the 1D

decomposition for large simulations running on large

numbers of processors. Consider a typical situation in

which each 16-Å patch contributes to a 24 3 24 3 24

block of the FFT grid. For an N3N3N patch grid, each

slab of an N-slab 1D decomposition communicates with

up to 2N2 patches, and each patch communicates with 24

slabs. For the same system, with a 2D decomposition,

each thick pencil of m 3 m grid lines communicates with

at most 16N patches (assuming m , 16), and each patch

communicates with (24/m þ 1)2 pencils. Thus, the 2D

decomposition has fewer messages to and from patches if

N . 8 and m . 7, a simulation of roughly 200,000 atoms.

Similarly, messages per processor are reduced for the

FFT transposes for pencils larger than 2 3 2 grid lines.

Performance results

We used four different molecular systems to obtain

performance benchmarks for NAMD on the BG/L

system. The benchmarks include the 5,570-atom islet

amyloid polypeptide (IAPP) system [21], the lysozyme in

urea simulation [22] (39,864 atoms), ApoA1 (92,224

atoms), and the F1-ATPase system (327,506 atoms).

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 S. KUMAR ET AL.

183

Table 2 presents the gains of the various performance

optimizations described in the previous sections for the

ApoA1 system on 4,096 processors, with the cutoff and

PME computation. Because we wanted to isolate the

gains of each of the optimizations, we disabled PME for

the first six runs. We observed that the performance

gained from optimizations often depends on the order in

which they are applied. From Table 2, we can conclude

that the two most effective optimizations correspond

to the two-away communication and the Charmþþ
native machine layer. Even though not clearly reflected

in the table, spanning trees are much more effective on

larger processor partitions.

The scaling of NAMD with PME on four molecular

systems is presented in Figures 4(a) and 4(b). The full

electrostatic (PME) frequency for each of these runs was

chosen on the basis of the timestep of the simulation, and

this frequency was 2 for IAPP and lysozyme and 4 for

ApoA1 and F1-ATPase. All of these performance runs

used the native layer of Charmþþwith spanning trees and

immediate messages enabled. The performance presented

here excludes I/O overheads. The coprocessor mode

results exhibit decreasing timesteps up to 16,384 CPUs for

lysozyme and up to 20,480 CPUs for both ApoA1 and

F1-ATPase. The virtual node mode results for lysozyme

and ApoA1 have decreasing timesteps up to 16,384 CPUs

(8,192 nodes). Table 3 shows the best performance and

speedups achieved on the different benchmarks and the

two-away options used for them. The speedup is

computed from the NAMD performance on the smallest

processor partition that has enough memory to run the

benchmark. We have found that the two-away options

have significant grain-size overheads, and this could be a

reason for the limited scaling of NAMD. Note that for

IAPP, lysozyme, and ApoA1, the performance saturates

at about 2-ms. We are exploring new schemes to further

improve the scaling of the NAMD application.

Related work
Blue Matter [10] is another MD application that has

demonstrated very good performance on 16,384 nodes of

the BG/L system. Blue Matter also uses a spatial

decomposition algorithm, although this algorithm is

different from the one used in NAMD, and Blue Matter

uses low-level message-passing primitives. Blue Matter

uses 2D decomposition for the PME computation and

an optimized FFT library that scales to 16,384 nodes

of the BG/L system [23].

So far, we have kept the NAMD software quite

general. Architecture-specific optimizations are made

available to NAMD through abstractions in the

Charmþþ runtime code. Table 4 compares the

performance of NAMD with that of Blue Matter.

NAMD performance is better than that of Blue Matter at

Table 2 Impact of performance optimizations for the ApoA1

benchmark on 4,096 processors applied in the given order. (The

XY here represents the two-away optimization; i.e., two-away

splitting along X and Y dimensions has been enabled.)

Version Time (ms/step)

MPI 14.13

MPI with topology optimization 12.91

Native without progress calls 8.93

Native with progress calls 8.62

Native with two-away XY 3.48

Native with spanning tree 3.4

One-dimensional PME 4.7

Two-dimensional pencil PME 4.3

Figure 4

NAMD performance on various benchmarks: (a) coprocessor

mode; (b) virtual node mode.

1

2

4

8

 16

 32

 64

 128

 256

 512

 1,024

32K16K8K4K2K1K5122561286432

F1-ATPase

ApoA1

Lysozyme

IAPP

1

4

 16

 64

 256

 1,024

32K16K8K4K2K1K5122561286432

F1-ATPase

ApoA1

Lysozyme

IAPP

Number of processors

(a)

Number of processors

(b)

S
te

p
 t

im
e

 (
m

s)
S

te
p
 t

im
e

 (
m

s)

S. KUMAR ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

184

small processor partition sizes, but at the limits of

scalability, its performance is similar to that of

Blue Matter.

Remaining challenges

PME

As expected, our measurements confirm that the new

pencil decomposition of the 3D FFT is significantly faster

than the plane decomposition. The main bottleneck in

PME now is the patch-to-pencil communication, which

has relatively large messages compared with the transpose

messages. We are exploring new mapping and

decomposition schemes to optimize this data movement

operation. We are also exploring new low-latency

message-passing optimizations to further improve the

performance of the PME 3D-FFT calculation.

Spanning trees

It is clear from our experiments that the spanning trees

are useful for communicating coordinates from patches to

compute objects and for collecting forces back from

them. Without these trees, each patch will send

approximately 60 to 80 messages and receive as many in

each step. We use a two-level spanning tree with a

branching factor of about 10. However, the spanning tree

intermediate nodes (STINs) present a new challenge: The

spanning tree can be determined only after the load

balancer decides where to migrate computes, if any.

However, when an STIN is placed on a processor, it may

become overloaded. Even worse, because each patch

creates a spanning tree for its clients independently,

multiple STINs may be assigned to a processor. We used

a centralized strategy to create all spanning trees together

in order to reduce the number of STINs assigned to a

processor, which helps improve performance. However,

even one STIN adds a few hundred microseconds of

overhead to a node (counting both a downward and an

upward path through it). Figure 5 is a projections timeline

view of a 16,384-node run of NAMD with the ApoA1

benchmark. The color code for this projections plot is as

follows. Red corresponds to the integrate computation,

blue the force computation, and pink the spanning tree.

Black regions represent communication overhead in the

message layer, and white represents idle time.

This figure clearly shows the communication overhead

of spanning trees on processor ID 15,236. Thus, more-

powerful techniques are needed to break the circular

dependence between STIN placement and load balancing.

We plan to explore the simultaneous creation of STINs as

a part of load balancing. Alternatively, it will be helpful

to utilize a packet-level multicast strategy [as used by the

SPI (system programming interface) layer in Blue

Matter], possibly combined with either packet-level or

higher-level reduction. Lower-level support for such

overlapping multicasts, in which each processor sends

data to 60 to 80 destinations, in future computers will be

critical for continued performance improvements.

Summary and future work

We have described the basic parallelization strategies

used by NAMD and how it was optimized for the BG/L

supercomputer. Several new optimizations were necessary

to tune the performance of NAMD on the BG/L system.

Some of these optimizations were motivated by the

available number of processors, which was an order of

magnitude larger than the largest previous machine for

NAMD. Other optimizations were motivated by the

Table 3 NAMD benchmark best timesteps on the BG/L system in coprocessor mode.

Benchmark Processors Best timestep (ms) Speedup Options

IAPP 2,048 2.17 315 Two-away X, Y, Z

Lysozyme 16,384 1.85 1,580 Two-away X, Y, Z

ApoAl 20,480 2.07 2,981 Two-away X, Y, Z

ATPase 20,480 4.13 5,918 Two-away X, Y

Table 4 Comparison of NAMD and Blue Matter: Times are in milliseconds. (CO: coprocessor; VN: virtual node.)

Number of nodes 512 1,024 2,048 4,096 8,192 16,384

Blue Matter (ms) 38.42 18.95 9.97 5.39 3.14 2.09

NAMD CO mode (ms) 18.6 9.56 5.84 3.86 2.91 2.14

NAMD VN mode (ms) 11.3 6.26 4.34 3.06 2.36 2.11

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 S. KUMAR ET AL.

185

various challenges of the BG/L architecture. We have

presented an overview of these optimizations and

performance data that shows that simulations of even a

relatively small (92,224-atom) system perform quite well

on 20,480 processors.

In addition to the immediate challenges identified in the

previous section, the NAMD team is planning to

incorporate techniques that reduce the memory footprint

per processor, leading to simulations of larger molecular

systems, as well as to parallelize the NAMD I/O.

Optimizations for other machines, including the

Cray XT3** and the forthcoming Blue Gene/P* system,

are also planned.

Acknowledgments
We acknowledge the various students and staff of the

Parallel Programming Laboratory and the Theoretical

and Computational Biophysics Group at the University

of Illinois, for their assistance in developing NAMD on

the BG/L system. We thank Glenn Martyna and Fred

Mintzer for time allocation on the BG/L machine located

at the IBM T. J. Watson Research Center. We thank

T. J. C. Ward, Mark Giampapa, Mark Mendell, and the

compiler group at IBM Toronto for their help in

optimizing the sequential performance of NAMD on

PowerPC Architectures. We thank Gheorghe Almasi and

Gabor Dozsa for assistance with the BG/L message layer.

We also thank Philip Heidelberger for providing technical

insights on the BG/L torus interconnection network. This

work was supported by the National Institutes of Health

(NIH PHS 5 P41 RR05969–04).

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Cray, Inc.,
in the United States, other countries, or both.

References

1. Y. Sugita and Y. Okamoto, ‘‘Replica-Exchange Molecular
Dynamics Method for Protein Folding,’’ Chem. Phys. Lett.
314, No. 1, 141–151 (1999).

2. M. Sotomayor and K. Schulten, ‘‘Single-Molecule
Experiments In Vitro and In Silico,’’ Science 316, No. 5828,
1144–1148 (2007).

3. J. C. Phillips, W. Wriggers, Z. Li, A. Jonas, and K. Schulten,
‘‘Predicting the Structure of Apolipoprotein A-I in
Reconstituted High-Density Lipoprotein Disks,’’ Biophys J.
73, No. 5, 2337–2346 (1997).

4. L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N.
Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and K.
Schulten, ‘‘NAMD2: Greater Scalability for Parallel
Molecular Dynamics,’’ J. Comput. Phys. 151, 283–312 (1999).

5. A. Y. Grama, A. Gupta, and V. Kumar, ‘‘Isoefficiency:
Measuring the Scalability of Parallel Algorithms and

Figure 5
Projections snapshot showing performance bottlenecks. The seven horizontal bars display processor activity. The yellow oval highlights a

region of interest, namely the overhead of the spanning tree. The four diagonal lines in the oval indicate communication, with the red bars as

the sources of spanning trees.

P
ro

ce
ss

o
r

ID

y

Time (s)

x
�

S. KUMAR ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

186

Architectures,’’ IEEE Parallel & Distributed Technol. Syst. &
Technol. 1, No. 3, 12–21 (1993).

6. S. J. Plimpton and B. A. Hendrickson, ‘‘A New Parallel
Method for Molecular-Dynamics Simulation of
Macromolecular Systems,’’ J. Comput. Chem. 17, No. 3,
326–337 (1996).

7. Y.-S. Hwang, R. Das, J. H. Saltz, M. Hodoscek, and B. R.
Brooks, ‘‘Parallelizing Molecular Dynamics Programs for
Distributed-Memory Machines,’’ IEEE Comput. Sci. Eng. 2,
No. 2, 18–29 (1995).

8. G. S. Almasi, C. Casxcaval, J. G. Castanos, M. Denneau,
W. Donath, M. Eleftheriou, M. Giampapa, et al.,
‘‘Demonstrating the Scalability of a Molecular Dynamics
Application on a Petaflop Computer,’’ Proceedings of the 15th
International Conference on Supercomputing, New York, 2001,
pp. 393–406.

9. K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood,
B. A. Gregersen, J. L. Klepeis, et al., ‘‘Molecular Dynamics—
Scalable Algorithms for Molecular Dynamics Simulations on
Commodity Clusters,’’ Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, Tampa, FL, 2006, Article 84.

10. B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward,
M. Giampapa, M. C. Pitman, and R. S. Germain, ‘‘Blue
Matter: Approaching the Limits of Concurrency for Classical
Molecular Dynamics,’’ Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, Tampa, FL, 2006, Article 87.

11. S. Chatterjee, L. R. Bachega, P. Bergner, K. A. Dockser, J. A.
Gunnels, M. Gupta, F. G. Gustavson, et al., ‘‘Design and
Exploitation of a High-Performance SIMD Floating-Point
Unit for Blue Gene/L,’’ IBM J. Res. & Dev. 49, No. 2/3,
377–391 (2005).

12. N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara,
M. E. Giampapa, P. Heidelberger, et al., ‘‘Blue Gene/L Torus
Interconnection Network,’’ IBM J. Res. & Dev. 49, No. 2/3,
265–276 (2005).

13. H. D. Simon, ‘‘Partitioning of Unstructured Problems for
Parallel Processing,’’ Comput. Syst. Eng. 2, No. 2/3, 135–148
(1991).

14. M. Blocksome, C. Archer, T. Inglett, P. McCarthy, M.
Mundy, J. Ratterman, A. Sidelnik, et al., ‘‘Design and
Implementation of a One-Sided Communication Interface for
the IBM eServer Blue Genet Supercomputer,’’ Proceedings of
the 2006 ACM/IEEE Conference on Supercomputing, Tampa,
FL, 2006, Article No. 120.

15. G. Almasi, C. Archer, J. G. Castanos, J. A. Gunnels, C. C.
Erway, P. Heidelberger, X. Martorell, et al., ‘‘Design and
Implementation of Message-Passing Services for the Blue
Gene/L Supercomputer,’’ IBM J. Res. & Dev. 49, No. 2/3,
393–406 (2005).

16. R. K. Brunner and L. V. Kalé, ‘‘Handling Application-
Induced Load Imbalance Using Parallel Objects,’’ Parallel and
Distributed Computing for Symbolic and Irregular Applications,
World Scientific Publishing, 2000, pp. 167–181.

17. G. Zheng, ‘‘Achieving High Performance on Extremely Large
Parallel Machines,’’ Ph.D. dissertation, University of Illinois
at Urbana-Champaign, 2005.

18. L. V. Kalé, ‘‘The Virtualization Model of Parallel
Programming: Runtime Optimizations and the State of Art,’’
LACSI 2002, Albuquerque, NM, October 2002.

19. S. Kumar, C. Huang, G. Almasi, and L. V. Kalé, ‘‘Achieving
Strong Scaling with NAMD on Blue Gene/L,’’ 20th
International Parallel and Distributed Processing Symposium,
April 2006.

20. T. Darden, D. York, and L. Pedersen, ‘‘Particle mesh Ewald.
An N�log(N) Method for Ewald Sums in Large Systems,’’ J.
Chem. Phys. 98, 10089–10092 (1993).

21. P. Westermark, U. Engstrom, K. H. Johnson, G. T.
Westermark, and C. Betsholtz, ‘‘Islet Amyloid Polypeptide:
Pinpointing Amino Acid Residues Linked to Amyloid Fibril
Formation,’’ Proc. Natl. Acad. Sci. 87, 5036–5040 (1990).

22. R. Zhou, M. Eleftheriou, A. K. Royyuru, and B. J. Berne,
‘‘Destruction of Long-Range Interactions by a Single

Mutation in Lysozyme,’’ Proc. Natl. Acad. Sci. 104, No. 14,
5824–5829 (2007).

23. M. Eleftheriou, B. Fitch, A. Rayshubskiy, T. J. C. Ward, and
R. Germain, ‘‘Performance Measurements of the 3D FFT on
the Blue Gene/L Supercomputer,’’ Proceedings of the 11th
International Euro-Par Conference, 2005, pp. 270–803.

Received March 16, 2007; accepted for publication

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 S. KUMAR ET AL.

187

April 11, 2007; Internet publication January 16, 2008

Sameer Kumar IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (sameerk@us.ibm.com). Dr. Kumar received a B.Tech.
(1999) degree in computer science from Indian Institute of
Technology, Madras, India, and an M.S. and Ph.D. degrees in
computer science from the University of Illinois at Urbana-
Champaign. His Ph.D. thesis focused on optimizing
communication for massively parallel processing. He is currently a
Research Staff Member at the T. J. Watson Research Center and is
working on the Blue Gene* Project. His research interests include
scaling parallel applications to massively parallel machines and
next-generation interconnection network design. He coauthored a
paper on scaling the molecular dynamics program NAMD, and it
was one of the winners of the Gordon Bell Prize at the 2002
Supercomputing Conference.

Chao Huang Department of Computer Science, Thomas M.
Siebel Center, University of Illinois at Urbana-Champaign, Urbana,
Illinois 61801 (chuang10@uiuc.edu). Mr. Huang received a B.E.
degree in computer science from Tsinghua University, Beijing,
in 2001 and an M.S. degree in computer science from the
University of Illinois at Urbana-Champaign in 2004. Mr. Huang is
a Ph.D. candidate at the Parallel Programming Laboratory at the
University of Illinois. His research focuses on higher-level language
that allows expression of overall flow of control in complicated
parallel programs.

Gengbin Zheng Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801
(gzheng@uiuc.edu). Dr. Zheng received B.S. (1995) and M.S.
(1998) degrees in computer science from the Beijing University,
Beijing, China. His master’s thesis concerned a high-performance
Fortran compiler. He received a Ph.D. degree in computer science
from the University of Illinois at Urbana-Champaign in 2005. He
is a postdoctoral research associate in computer science and
engineering, working with both the Center for Simulation of
Advanced Rockets and Professor Laxmikant V. Kalé. His research
interests span various aspects of parallel computing, including
dynamic automatic load balancing to scale highly adaptive parallel
applications to a large number of processors, simulation-based
method to predict performance of applications for large parallel
machines, and fault tolerance. He coauthored a paper on scaling
the molecular dynamics program NAMD, and it was one of the
winners of the Gordon Bell Prize at the 2002 Supercomputing
Conference.

Eric Bohm Department of Computer Science, Thomas M. Siebel
Center, University of Illinois at Urbana-Champaign, Urbana, Illinois
61801 (ebohm@uiuc.edu). Mr. Bohm received a B.S. degree in
computer science from the State University of New York at
Buffalo in 1992. He worked as Director of Software Development
for Latpon Corporation from 1992 to 1995, and next as Director of
National Software Development from 1995 to 1996. He worked as
Enterprise Application Architect at MEDE America from 1996 to
1999 and as an Application Architect at WebMD from 1999 to
2001. Following a career shift toward academia, he joined the
Parallel Programming Lab at University of Illinois at Urbana-
Champaign in 2003. His current focus as a Research Programmer
is on optimizing molecular dynamics codes for tens of thousands of
processors.

Abhinav Bhatele Department of Computer Science, Thomas
M. Siebel Center, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801 (bhatele2@uiuc.edu). Mr. Bhatele received a

B.Tech. degree in computer science and engineering from Indian
Institute of Technology, Kanpur, India, in 2005. He is a Ph.D.
student at the Parallel Programming Lab at the University of
Illinois. His research is centered on topology-aware mapping and
load balancing for parallel applications. He is a co-developer of the
molecular dynamics applications NAMD and LeanCP, developed
at the Parallel Programming Lab.

James C. Phillips Theoretical and Computational Bio-Physics
Group, University of Illinois at Urbana-Champaign, Urbana, Illinois
61801. Dr. Phillips received his B.S. degree in physics and
mathematics from Marquette University, Milwaukee, Wisconsin,
in 1993, and his M.S. and Ph.D. degrees in physics from the
University of Illinois at Urbana-Champaign in 1994 and 2002,
respectively. He was supported by a Fannie and John Hertz
Graduate Fellowship and a Department of Energy Computational
Science Graduate Fellowship. He is currently a Senior Research
Programmer in the Theoretical and Computational Biophysics
Group at the Beckman Institute for Advanced Science and
Technology, University of Illinois at Urbana-Champaign.
Dr. Phillips is the lead developer of the scalable molecular
dynamics program NAMD, which received a 2002 Gordon Bell
Prize, and the NAMD application has been cited in more than 500
published technical papers. His research interests span the field of
biomolecular simulation, from potential functions and simulation
protocols to numerical methods and parallel computing.

Hao Yu IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(yuh@us.ibm.com). Dr. Yu received B.S. and M.S. degrees in
computer science from Tsinghua University, Beijing, China, in
1994 and 1997. He received his Ph.D. degree in computer science
from Texas A&M University, College Station, Texas, in 2004. He
is currently a postdoctoral researcher at the IBM T. J. Watson
Research Center. His research interests include compiler
optimization for high-performance computing, system software for
scalable systems, and parallel I/O.

Laxmikant V. Kalé Department of Computer Science,
Thomas M. Siebel Center, University of Illinois at Urbana-
Champaign, Urbana, Illinois 61801 (kale@uiuc.edu). Professor
Kalé has been working on various aspects of parallel computing,
with a focus on enhancing performance and productivity via
adaptive runtime systems. His collaborations involve the widely
used biomolecular simulation program NAMD, which won the
Gordon Bell Prize at the Supercomputing Conference in 2002.
Other collaborative work focuses on computational cosmology,
quantum chemistry, rocket simulation, space-time meshes, and
other unstructured mesh applications. His group successfully
distributes and supports software embodying his research ideas
involving Charmþþ, adaptive MPI, and the ParFUM framework.
Professor Kalé received the B.Tech. degree in electronics
engineering from Benares Hindu University, Varanasi, India, in
1977, and an M.E. degree in computer science from Indian
Institute of Science in Bangalore, India, in 1979. He received a
Ph.D. degree in computer science from the State University of New
York, Stony Brook, in 1985. He worked as a scientist at the Tata
Institute of Fundamental Research from 1979 to 1981. He joined
the faculty of the University of Illinois at Urbana-Champaign as an
Assistant Professor in 1985, where he is currently employed as a
professor.

S. KUMAR ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

188

