Scalable molecular
dynamics with NAMD
on the IBM Blue Gene/L

system

NAMD (nanoscale molecular dynamics) is a production molecular
dynamics (MD) application for biomolecular simulations that
include assemblages of proteins, cell membranes, and water
molecules. In a biomolecular simulation, the problem size is fixed
and a large number of iterations must be executed in order to
understand interesting biological phenomena. Hence, we need MD
applications to scale to thousands of processors, even though the
individual timestep on one processor is quite small. NAMD has
demonstrated its performance on several parallel computer
architectures. In this paper, we present various compiler
optimization techniques that use single-instruction, multiple-data
(SIMD) instructions to obtain good sequential performance with
NAMD on the embedded IBM PowerPC® 440 processor core. We
also present several techniques to scale the NAMD application to
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20,480 nodes of the IBM Blue Gene/L™ (BG/L) system. These
techniques include topology-specific optimizations to localize
communication, new messaging protocols that are optimized for the
BG/L torus, topology-aware load balancing, and overlap of
computation and communication. We also present performance
results of various molecular systems with sizes ranging from 5,570

to 327,506 atoms.

Introduction

With a greater understanding of the functioning of
biological systems, the importance of biomolecular
simulations has increased significantly. More than 43,000
structures are publicly available from the Protein Data
Bank (www.pdb.org). The availability of such structures
has enabled researchers to explore the relationship
between structure and function through simulations that
are now based on a firm experimental foundation.
However, for most proteins, scientists are aware only of
amino-acid sequences. Thus, molecular simulations are
needed to predict the detailed three-dimensional (3D)
structure of proteins through the process of simulated
protein folding.

These kinds of molecular simulations present several
computational challenges. Because hydrogen atoms in a
biomolecule vibrate with a period of approximately 10 fs
(femtoseconds), the computational timestep must be
about 1 fs for stable and accurate integration. However,

the phenomenon of interest may occur only at a scale of
microseconds. Several nanoseconds of simulation may be
required even to allow a protein to relax into the nearest
low-energy state. Some phenomena can be studied by
observing the behavior of the molecule over tens of
nanoseconds. Given an initial state, we can force the
simulation through interesting paths of behavior.
However, even with computational shortcuts, we are still
faced with the problem of simulating several million to a
few billion timesteps.

For most molecular dynamics (MD) calculations, the
number of atoms in a particular biologically interesting
configuration is fixed. For example, if we want to study a
particular aquaporin (a protein that straddles a cell
membrane and allows water to cross the membrane), our
simulation would involve one aquaporin tetramer, a
reasonably sized patch of cell membrane in which to
embed it, and a sufficient quantity of water molecules
around the structure. This kind of study may comprise a
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few hundred thousand atoms. Our simulations with a
fixed problem size (e.g., a fixed number of atoms) are in
contrast to the study of continuous phenomena, such as
weather prediction, in which we can simply increase the
resolution to exploit a computer with many processors.
Of course, we can study increasingly large molecules as
machines with more processors become available, but the
size of such molecular assemblies of interest is normally
limited and we still need to study a particular system to
understand its behavior. The key challenge is to quickly
simulate a large number of timesteps.

For some problems, multiple independent or weakly
coupled (e.g., replica-exchange method [1]) simulations
may be used to increase sampling of molecular
configurations. However, for many simulations, artificial
steering forces [2] are used to drive the molecule through
a series of transitions [such as for the rotary mechanism
of adenosine triphosphate (ATP) synthase]. Larger
steering forces produce artifacts; thus, in order to enhance
accuracy, simulations are performed using the smallest
steering forces possible that provide results in a
reasonable time. This suggests that longer simulations are
necessary for accuracy. Larger molecules function
through longer and more complex mechanisms, making
even longer simulations necessary. Thus, larger
simulations have an even greater need for computational
performance than implied by their atom counts alone,
and the challenge of reducing wall-clock (elapsed) time
per step remains.

In our research, we consider the apolipoprotein-Al
(ApoAl) system, a model of a high-density lipoprotein
(HDL) particle [3]. (HDL transports cholesterol in the
bloodstream and is commonly referred to as the good
cholesterol when measured by blood samples taken in a
physician’s office.) With 92,224 atoms and a mix
of proteins, lipids, and water, ApoAl is representative
of modern moderately sized simulations. The serial
(i.e., sequential) simulation of ApoAl takes about 6.2
seconds per timestep on a single processor core of an
IBM Blue Gene/L* (BG/L) system. The challenge is to
replace the 6.2-second computation with one that runs
efficiently on several thousand processors, with each
timestep taking only a few milliseconds.

In this paper, we describe how this scaling was
accomplished in the NAMD (nanoscale molecular
dynamics) program running on the BG/L system. NAMD
[4] is a parallel MD application developed at the
University of Illinois at Urbana-Champaign (UIUC) as a
collaborative project involving the Theoretical and
Computational Biophysics Group (www.ks.uiuc.edu) and
the Computer Science Department, which includes the
Parallel Programming Laboratory (charm.cs.uiuc.edu).
NAMD uses an effective parallelization strategy that is a
hybrid of spatial decomposition and force decomposition.
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This is supported further by dynamic load-balancing
capabilities of the Charm-++ parallel programming system
developed at the UTUC. This hybrid parallelization
strategy has remained effective over the past 10 years.
We begin by describing and reviewing this strategy. We
then present a series of optimizations that include
sequential optimizations targeted toward the IBM
PowerPC* 440 (PPC440) processor cores used in the
BG/L system, as well as parallel optimizations that include
dynamic load balancing. We present performance data
for molecular systems ranging from 5,570 to 327,506
atoms.

NAMD parallelization strategy
NAMD uses a hybrid strategy that combines spatial
decomposition with force decomposition and couples it
with the dynamic load-balancing framework of Charm-++
The dominant computation in MD is that of nonbonded
forces (i.e., electrostatic and van der Waals forces)
between all pairs of atoms. The potential O(x?) all-pairs
algorithm is optimized to O(n log n) complexity by using
the notions of a cutoff radius r., and separation of
computation of short-range and long-range forces. For
each atom, the nonbonded forces due to atoms within r,
are calculated explicitly. The long-range forces due to the
atoms outside this radius are calculated using an O(n log
n) particle-mesh Ewald algorithm. Even with this
splitting, 90% of the computation cost is due to explicit
calculation of nonbonded forces within the cutoff radius.

Initial attempts at parallel MD simulations in the field
of biophysics were made using existing sequential codes.
We showed in [4] that many such strategies were not
scalable, in the sense of the isoefficiency metric for
scalability [5]. (The isoefficiency metric indicates how well
a parallel workload scales while maintaining a fixed
efficiency.) In particular, the communication-to-
computation ratio of many of these schemes rises with
increasing numbers of processors, and in a way that does
not allow weak scaling. In other words, even if we were to
increase the number of atoms, the communication-to-
computation ratio would not improve. A pure force-
decomposition scheme, such as that in [6, 7], also suffers
from this limitation.

We also showed in [4] that spatial decomposition
does not have this problem. We presented an even
more effective formulation that combines spatial
decomposition and force decomposition that generates
additional parallelism without increasing communication.
In this formulation, the simulation space is divided into
cubic boxes (called patches in NAMD). The size of
each cube b is chosen based on the cutoff distance r.. Let
B =r.+ ry + m, where ry is twice the maximum length
of a bond to a hydrogen atom. The variable m, the
margin, is twice the distance that atoms may move
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without migration between patches being necessary.
Variable b along each dimension is chosen as B/k.
Typically, kis either 1 or 2 (although we have experimented
with k = 3). With k=1 (also referred to as one-away
decomposition), there are about 400-700 atoms per cube.
With k = 2, this decreases to 50-75 atoms. In order to
provide intermediate granularities, we support noncubic
patches. For example, each dimension can be either B or
B/2, for example. With k =1, only atoms in neighboring
patches have to interact (and there are 27 interactions in
which each patch participates). With k = 2, interactions
involve 125 cubes that are two-away from each other in
the coordinate space.

An innovation in NAMD 2.0 [4] was its use of a kind of
force decomposition on top of this spatial decomposition;
for each pair of interacting patches, NAMD creates a
force-computation object (referred to as a compute object
or compute for brevity). With k£ =1, this leads to 14 times
more compute objects than the number of patches. These
compute objects are then assigned to processors under the
control of a dynamic load balancer in Charm++ (see
below). Compared to spatial decomposition by itself, this
strategy also eliminates duplicate computation of forces,
by exploiting Newton’s third law. The parallelization of
NAMD with patch and compute objects is shown in
Figure 1.

More recent proposals for scalable MD [8—10] use the
basic strategy of hybrid decomposition, which originated
in NAMD 2.0. The proposals differ in how the force
computations are assigned to processors, that is, via
either static (but topology-sensitive) schemes [8, 9] or the
Blue Matter MD scheme [10] that allocates work on
the basis of the number of atoms. We believe that the
original scheme is at least as good as or better than these
schemes because of its ability to take the dynamic
processor load into account (assuming that the load
balancer performs well).

Charm-++is a C++-based parallel programming system
in which the programmer decomposes the work into a
large number of interacting message-driven objects called
chares. The objects may be organized into multiple
indexed collections, known as chare arrays. The ontology
of the programmer does not include processors but only
the objects. Multiple objects can be and typically are
assigned to a single processor. The execution on each
processor is controlled by a scheduler, which selects an
available message, identifies the chare for which it is
destined, allows the chare to process the message, and
repeats. The Charm++ adaptive runtime system can
reassign objects to processors during a run and handles
all the bookkeeping associated with such migrations
automatically. It measures computational loads of
individual objects and tracks communication between
pairs of objects. On the basis of these measurements, the
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Parallelization of NAMD computation. The “bonded computes”
refer to that portion of the code involved with computing forces
due to atomic bonds, and the “nonbonded computes” refer to the
portion of the code that computes electrostatic forces.

load balancer can reassign objects accurately to improve
load balance and to decrease communication.

Blue Gene/L optimizations

Improving sequential performance on the

PowerPC 440 core

The BG/L system is based on the embedded PPC440 core.
A significant effort was required to achieve good
sequential performance on the BG/L embedded core.
Because of aliasing constraints in the NAMD inner loop,
the IBM XL (extensible language) compiler was unable to
generate optimized code. As a result, the inner force
compute loops were not effectively software pipelined.
We eliminated the aliasing constraints by inserting
ffpragma disjoint directives in the compute loop to
enable the generation of software-pipelined object code.
In some instances, we manually unrolled and pipelined
the loop to obtain the best performance. (When we use
the phrase unroll the loop, we mean the process in which
the instructions that are called in multiple iterations of the
loop are combined into a single iteration.) We observed
that the bonded code in NAMD had several stack
temporaries because it was using C++ operator
overloading. (Bonded code refers to that part of the code
that computes the forces due to atomic bonds.) The stack
temporaries introduced expensive loads, stores, and
pipeline stalls. We reported this to the IBM XL compiler
team and obtained a fix that is now available in XLC
version 8.0. The net result of the above optimizations was
to more than double serial performance on the PPC440.

The optimizations also helped other PowerPC Architecture*
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Table 1  Single-processor timestep (seconds) on various
PowerPC Architectures for ApoAl.

Architecture NAMD 2.5 NAMD 2.7
prerelease
PowerPC 440 700 MHz 14.0 6.60
PowerPC 440d 700 MHz 14.1 6.17
PowerPC 970 2.0 GHz 3.90 1.87
POWER4* 1.5 GHz 4.80 2.25

platforms. Table 1 compares the performance of NAMD
version 2.5 with the prerelease version of NAMD 2.7.
(The BG/L systen optimizations in NAMD were added
after the release of NAMD version 2.5.)

The PPC440 core is enhanced with an additional
floating-point unit called the double floating-point unit
(double FPU) [11]. In order to take advantage of the
double FPU, the addresses of loads and stores must be
aligned to 16 bytes. We had to pad the force vector and
other structures (which were originally 24 bytes) to have a
32-byte alignment, in order to make use of the double
FPU. The force computation in NAMD requires that the
X, Y, and Z dimensions be computed. However, the
SIMD instructions can parallelize only the X and Y
dimensions, and the computation of the Z dimension is
not parallelized by SIMD instructions. This restricts the
achievable speedup from the double FPU to be about
33%.

The actual performance improvement with the SIMD
optimizations is only about 7%, as shown in Table 1. We
are working on further optimizing the SIMD version of
NAMD. A reason for lower 440d performance may be a
cache miss in the force-compute loop. (440d refers to the
SIMD extensions for the PPC440 core.) This loop uses
interpolation tables for the three independent terms in the
energy potential (electrostatic plus Lennard—Jones 2
and r~©), thus eliminating reciprocal-square-root and erfc
(complementary error function) computations. The
interpolation table is quite large and of the order of
several hundred cache lines. Many PowerPC Architecture
implementations have relatively small level 1 (L1) caches
(32 KB on the BG/L system). This may lead to cache
misses in the inner compute loop of NAMD. Because the
access pattern to the interpolation table is quite irregular,
even the level 2 (L2) prefetch unit on the Blue Gene/L
chip may not be effective in this case.

We are exploring new computational algorithms that
may have more SIMD computation but would require a
smaller interpolation table. We also plan to take
advantage of the PowerPC reciprocal-square-root
approximation instruction in order to further reduce the
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number of entries in the interpolation table. We hope
these optimizations will further improve the performance
of NAMD on the BG/L platform as well as other
PowerPC Architecture platforms.

Topology mapping
The BG/L supercomputer has a torus interconnection
network [12] for application data exchange. Because a
torus interconnection network has limited bisection
bandwidth, localizing communication results in better
application performance. For NAMD, this fact makes
careful mapping of patches to processors critical for
achieving strong scaling on the BG/L system. The patches
in NAMD are allocated to processors using an
orthogonal recursive bisection (ORB) scheme [13] to map
the patch objects to the BG/L torus. The dimensions of
the BG/L torus depend on the size of the processor
partition, while the dimensions of the patch torus depend
on the size of the problem. Both the processor and patch
tori are typically not cubic. Thus, first, the axes of the
patch and processor tori are sorted, and then the largest
dimensions of the processor torus are matched with the
corresponding dimensions of the patch torus. For
example, when we map a 13 X 6 X 4 patch torus to an 8 X
32 X 16 processor torus, we obtain the following axis
map: Xprocesor = ZLpatchs Yprocessor = Apatchs Zprocessor =
Ypatch- Next, we rotate the patch grid so that its
dimensions match the processor grid using the above
computed axis map. Once this is done, we can use ORB
(as described below) to allocate patches to processors.
The ORB scheme splits patches along the longest
dimension and then computes the total load of each of the
two partitions. The load generation function takes into
account the patch computation, which depends on the
number of atoms and the expected communication
overhead of each patch. Next, the processor grid (torus) is
halved to form two subgrids in which the size of each
partition corresponds to the load of the patch partition.
This is repeated recursively until we have one patch that is
allocated to a random processor in the corresponding
processor subgrid. Figure 2 shows the mapping of patches
and computes onto the 3D torus of the BG/L system.

Communication optimizations

We have developed a native Charm++ runtime system,
optimized for the BG/L platform on top of the BG/L
message layer [14]. We found the Charm-++ Message
Passing Interface (MPI) driver not suitable to make
progress on the network because it called MPI Iprobe and
MPI Test functions, thus introducing communication
overheads. An optimized runtime also allowed us to
explore the adaptive eager messaging protocol that does
not require the ordering semantics of MPI.
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The production MPI software [15] on the BG/L system
has two protocols for point-to-point messages: eager and
rendezvous. In the eager protocol, all packets are sent
using the in-order deterministic routing scheme. The first
packet matches the MPI-posted receives and the rest of
the payload is copied into an application buffer. In the
rendezvous protocol, first an RTS (request-to-send)
packet is sent to the receiver. When the receiver is ready
to receive, it sends a CTS (clear-to-send) packet back to
the sender. Upon receiving the CTS, the sender sends the
application buffer using adaptive routing.

Because the eager protocol uses deterministic routing,
it can restrict the communication performance of the
application. Even though the rendezvous protocol uses
adaptive routing, it has a three-way handshake, which is
not very effective in the Charm-++ scenario. The three-way
handshake restricts overlap of computation and
communication. It is possible that the sender starts
computing after sending the messages and cannot process
the CTS packet as soon as it arrives. Moreover, the
overhead of the RTS and CTS packets makes rendezvous
less suitable for the most common NAMD messages,
which are only a few kilobytes.

We present the adaptive eager protocol to optimize the
scenario in which the application sends several short
messages that are a few kilobytes. The adaptive eager
protocol sends messages with adaptive routing while
avoiding RTS and CTS packets. In this protocol, each
processor keeps a system-wide connection list with one
slot for each processor in the booted partition. Each
packet must carry all the state information for the
message. In MPI, this state would include the
communicator and tag for the message, along with the
source and the size. Thus, for an MPI implementation of
the adaptive eager protocol, the tag and communicator
would also have to be sent to match the incoming
message with a list of posted receives. Hence, the
bandwidth achievable with the adaptive eager protocol in
MPI will be lower than that for eager or rendezvous.
Moreover, only one message can be outstanding because
messages must be matched in order.

Unlike in MPI, in Charm++ all messages are received
as unexpected messages, so only the size of the message is
needed in all arriving packets to allocate a buffer for the
message. Fortunately, packets on the BG/L system have
an 8-byte software header. We were able to pack the
message size, source, packet offset, and a sequence
number into the 8-byte software header, with each of
those fields occupying 21, 18, 21, and 4 bits, respectively.
After receiving a packet, the receiver looks up the
connection list, and if a buffer for that sequence number
has not been allocated, it makes a request of the
application (e.g., the Charm++ runtime application) for a
buffer to receive the message.
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Mapping of patches and computes onto the BG/L torus.

As Charm++does not require message ordering, we can
allow several messages to be outstanding at a given time.
The packets of these messages can arrive together and are
distinguished by a sequence number. The maximum
number of outstanding messages is determined by the
number of bits allocated to the sequence number. This
corresponds to 16 outstanding messages with a 4-bit
sequence number. Once the receiver has received all of the
16 messages, it sends an acknowledgment back to the
sender, which then sends the next set of 16 messages.

Dynamic load balancing

NAMD uses the Charm++ dynamic load-balancing
framework [16, 17]. The patches are initially placed in a
topology-optimized manner using the ORB scheme
presented in the section on topology mapping. In order to
achieve good computational and communication load
balancing, the Charm++ runtime must record the most
up-to-date application and system load information. The
Charm++ runtime exploits a simple heuristic called
principle of persistence [18] to automatically obtain load
information. This principle simply exploits the fact that
the object computation times and communication
patterns (number and bytes of messages exchanged
between each communicating pair of objects) tend to
persist over time, which holds for MD simulations in
which atoms move slowly. This heuristic makes it possible
to instrument the application automatically at runtime
and use the newly instrumented load information to
predict the load in the near future. In NAMD, the load-
balancing framework measures the computational load of
all the objects along with the communication and
background load of nonmigratable work on the
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Spanning tree showing multicast origins (i.e., patches represented
by cubes) and proxies (circles).

processors. The load statistics are provided as a
parameter to a load-balancing strategy (i.e., algorithm)
that computes the new object placements.

We use two load-balancing strategies in NAMD. The
first scheme involves a comprehensive load-balancing
strategy that assigns migratable work (mostly nonbonded
force computation), ignoring the initial placement of such
work. This comprehensive scheme is performed only once
during a run of NAMD. The second load-balancing
strategy involves a refinement strategy that moves just a
few objects from overloaded processors to lightly loaded
processors. The refinement scheme (i.e., procedure) is
called periodically (every few thousand timesteps) to
move compute objects to balance changes in processor
load for atom migrations.

Both the comprehensive and the refinement strategies
have topology optimizations built into them. In the
comprehensive strategy, the load balancer first assigns all
the compute objects to a max-heap. The strategy then
picks the most overloaded compute object and assigns it
to a processor on the basis of a greedy heuristic that takes
into account the processor load, the communication
history, the proximity of the processor on the BG/L torus
to the patches whose interaction is being computed, and
the number of destinations in the patch multicast. The
size of the patch multicast depends on the number of
proxies, which are destination processors that keep copies
of the patch coordinate data for one or more local
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computes. The comprehensive strategy is biased by initial
proxies placed on processors that are close to the patch
processor on the BG/L torus. This strategy also favors the
use of processors that are fewer than four hops from the
midpoint of the patches whose interaction is being
computed in the compute object.

In the refinement strategy, the overloaded processors
are first allocated to a max-heap. The strategy involves a
loop that picks the highest-loaded processors and then
removes the overloaded objects in that processor to a
lightly loaded accepting processor. This accepting
processor is chosen using heuristics similar to those in the
comprehensive scheme. The refinement strategy iterates
until no overloaded processors exist with a load above a
threshold. The refinement strategy favors lightly loaded
processors within eight hops of the midpoint of the
patches whose interaction is being computed.

Once the load-balancing strategy has finished
reassigning compute objects, the Charm-++ runtime
application moves the objects to their new destinations.
After the moves are finished, a new spanning tree is
constructed for each patch to multicast its atom
coordinate data. The spanning tree creation also ensures
that no processor is overloaded with spanning tree
intermediates from different patches. Figure 3 shows
patches and their multicast targets superimposed on a
two-dimensional (2D) view of the physical processor
topology. A two-level k-ary tree is generally used in
NAMD, with the value of k close to ten.

Overlap of computation and communication

The BG/L system has two PPC440 cores on each node.
However, it does not have a DMA (direct memory access)
unit on the compute node. Ideally, one of the cores could
serve as a communication coprocessor, but because of
lack of cache coherence, the caches must be flushed for
any communication between the cores. The overhead of
cache flushing may limit the performance of the
coprocessor mode because the messages in NAMD are
relatively short.

In this paper, we present a technique that can overlap
computation and communication in virtual node mode
[19]. Each core has six normal-priority torus FIFOs (first
in, first outs), and each of these FIFOs can store up to
four packets. At a full link bandwidth of 175 MB/s, each
FIFO would fill up in about 4,320 processor cycles. We
have observed in NAMD that the achievable throughput
due to network contention corresponds to only about two
links, which implies that each FIFO would fill up on
average every 12,960 cycles. We can have the cores
compute for these 12,960 cycles and periodically make
calls in order to drain network FIFOs and call the
progress engine in the messaging software. In NAMD,
the rate of progress is specified as a command line
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parameter and can be tuned to the processor partition
size and the benchmark.

The BG/L torus interconnect is a reliable network in
which a packet is sent downstream only if there are
resources available for it. The local resources of the
packet are released when the receiver acknowledges the
error-free reception of the packet. Hence, the reception
FIFOs must be drained before they fill to capacity. If this
is not done, packets will be trapped in intermediate
buffers on the network. The progress calls in NAMD
prevent this from happening, as network reception FIFOs
are drained from the inner compute loops.

We had to develop infrastructure in the Charm++
runtime system in order to support such progress calls
from application entry methods. We extended this
runtime to support immediate messages, within the
progress calls. With an immediate method, the handler
for the message is called within the progress call, allowing
the message to be forwarded to other processors. The
NAMD coordinate multicast uses a spanning tree to
multicast data to the destinations (see the section on
dynamic load balancing). If an intermediate destination
on the spanning tree is busy in a compute loop, the
multicast messages will be delayed, resulting in poor
performance. With immediate messages, the multicast
data can be forwarded on the intermediate nodes within a
few thousand processor cycles after the message has
arrived. Similarly, immediate messages can also be used
for the force reduction messages that are sent back to the
patches.

Particle-mesh Ewald
NAMD uses the particle-mesh Ewald (PME) method [20]
to compute the long-range interactions between the
atoms. The PME method requires two 3D fast Fourier
transforms (FFTs) to be computed. NAMD 2.6 used a
1D decomposition for the FFT operations. Because the
1D decomposition requires only a single transpose of the
FFT grid, it is the preferred algorithm on clusters with
slower networks and small numbers of processors.
Parallelism for the FFT in the 1D decomposition is
limited to the number of planes in the grid, and 108
processors for the ApoAl benchmark. However, the
message-driven execution model of Charm-++ allows a
small amount of FFT work to be interleaved with the rest
of the force calculation, allowing NAMD to scale to
thousands of processors even with the 1D decomposition.
Nevertheless, we have observed that this 1D decomposition
does not scale well on the BG/L system and many other
architectures because of insufficient parallelism.

We implemented a 2D decomposition for the PME
method, in which the FFT calculation is decomposed into
thick pencils with three phases of computation and two
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phases of transpose communication. A thick pencil along
the X dimension will contain all the FFT grid points in
the X dimension, while the Y and Z dimension sizes
would typically vary from one to four grid points. The
FFT operation is computed by three arrays of chares in
Charm++ with a different array for each of the three
phases of transposes. At the limits of scalability, this
operation is mainly dominated by communication
overhead of small transpose messages. We used the real-
to-complex optimization to reduce the computation and
communication overhead of the FFT operation by a
factor of 2.

In addition to the two FFT calculations, PME in
NAMD has two computation and communication
phases. These phases send grid data from the patches in
NAMD to the PME force computation and FFT chares.
The PME calculation begins with the computation of
the charge grid by interpolating each atom to a charge
grid typically of size 4 X 4 X 4. The contribution of each
atom is reduced locally. Next, the intersecting section of
the charge grid is sent to the FFT thick-pencil chare along
the Z dimension. The FFT thick pencils preform a
forward 3D FFT followed by the Ewald calculation on
the transformed grid in k space. Next, a backward 3D
FFT is performed that computes the long-range forces
that are sent back to the patches. The forces are then
integrated to update atom positions and velocities in the
next integrate phase.

One of the advantages in the 2D decomposition is that
the number of messages sent or received by any given
processor is greatly reduced compared to the 1D
decomposition for large simulations running on large
numbers of processors. Consider a typical situation in
which each 16-A patch contributes to a 24 X 24 X 24
block of the FFT grid. For an N X N X N patch grid, each
slab of an N-slab 1D decomposition communicates with
up to 2N? patches, and each patch communicates with 24
slabs. For the same system, with a 2D decomposition,
each thick pencil of m X m grid lines communicates with
at most 16N patches (assuming m < 16), and each patch
communicates with (24/m + 1)* pencils. Thus, the 2D
decomposition has fewer messages to and from patches if
N > 8 and m > 7, a simulation of roughly 200,000 atoms.
Similarly, messages per processor are reduced for the
FFT transposes for pencils larger than 2 X 2 grid lines.

Performance results

We used four different molecular systems to obtain
performance benchmarks for NAMD on the BG/L
system. The benchmarks include the 5,570-atom islet
amyloid polypeptide (IAPP) system [21], the lysozyme in
urea simulation [22] (39,864 atoms), ApoAl (92,224
atoms), and the F{-ATPase system (327,506 atoms).
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NAMD performance on various benchmarks: (a) coprocessor
mode; (b) virtual node mode.

Table 2 Impact of performance optimizations for the ApoAl
benchmark on 4,096 processors applied in the given order. (The
XY here represents the two-away optimization; i.e., two-away
splitting along X and Y dimensions has been enabled.)

Version Time (ms/step)
MPI 14.13
MPI with topology optimization 12.91
Native without progress calls 8.93
Native with progress calls 8.62
Native with two-away XY 3.48
Native with spanning tree 34
One-dimensional PME 4.7
Two-dimensional pencil PME 43
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Table 2 presents the gains of the various performance
optimizations described in the previous sections for the
ApoATl system on 4,096 processors, with the cutoff and
PME computation. Because we wanted to isolate the
gains of each of the optimizations, we disabled PME for
the first six runs. We observed that the performance
gained from optimizations often depends on the order in
which they are applied. From Table 2, we can conclude
that the two most effective optimizations correspond
to the two-away communication and the Charm++
native machine layer. Even though not clearly reflected
in the table, spanning trees are much more effective on
larger processor partitions.

The scaling of NAMD with PME on four molecular
systems is presented in Figures 4(a) and 4(b). The full
electrostatic (PME) frequency for each of these runs was
chosen on the basis of the timestep of the simulation, and
this frequency was 2 for IAPP and lysozyme and 4 for
ApoAl and F{-ATPase. All of these performance runs
used the native layer of Charm-++ with spanning trees and
immediate messages enabled. The performance presented
here excludes I/O overheads. The coprocessor mode
results exhibit decreasing timesteps up to 16,384 CPUs for
lysozyme and up to 20,480 CPUs for both ApoAl and
F;-ATPase. The virtual node mode results for lysozyme
and ApoAl have decreasing timesteps up to 16,384 CPUs
(8,192 nodes). Table 3 shows the best performance and
speedups achieved on the different benchmarks and the
two-away options used for them. The speedup is
computed from the NAMD performance on the smallest
processor partition that has enough memory to run the
benchmark. We have found that the two-away options
have significant grain-size overheads, and this could be a
reason for the limited scaling of NAMD. Note that for
IAPP, lysozyme, and ApoAl, the performance saturates
at about 2-ms. We are exploring new schemes to further
improve the scaling of the NAMD application.

Related work

Blue Matter [10] is another MD application that has
demonstrated very good performance on 16,384 nodes of
the BG/L system. Blue Matter also uses a spatial
decomposition algorithm, although this algorithm is
different from the one used in NAMD, and Blue Matter
uses low-level message-passing primitives. Blue Matter
uses 2D decomposition for the PME computation and
an optimized FFT library that scales to 16,384 nodes

of the BG/L system [23].

So far, we have kept the NAMD software quite
general. Architecture-specific optimizations are made
available to NAMD through abstractions in the
Charm-++ runtime code. Table 4 compares the
performance of NAMD with that of Blue Matter.
NAMD performance is better than that of Blue Matter at
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Table 3 NAMD benchmark best timesteps on the BG/L system in coprocessor mode.

Benchmark Processors Best timestep (ms) Speedup Options

IAPP 2,048 2.17 315 Two-away X, Y, Z
Lysozyme 16,384 1.85 1,580 Two-away X, Y, Z
ApoAl 20,480 2.07 2,981 Two-away X, Y, Z
ATPase 20,480 4.13 5,918 Two-away X, Y

Table 4 Comparison of NAMD and Blue Matter: Times are in milliseconds. (CO: coprocessor; VN: virtual node.)

Number of nodes 512 1,024
Blue Matter (ms) 38.42 18.95
NAMD CO mode (ms) 18.6 9.56
NAMD VN mode (ms) 11.3 6.26

2,048 4,096 8,192 16,384
9.97 5.39 3.14 2.09
5.84 3.86 291 2.14
4.34 3.06 2.36 2.11

small processor partition sizes, but at the limits of
scalability, its performance is similar to that of
Blue Matter.

Remaining challenges

PME

As expected, our measurements confirm that the new
pencil decomposition of the 3D FFT is significantly faster
than the plane decomposition. The main bottleneck in
PME now is the patch-to-pencil communication, which
has relatively large messages compared with the transpose
messages. We are exploring new mapping and
decomposition schemes to optimize this data movement
operation. We are also exploring new low-latency
message-passing optimizations to further improve the
performance of the PME 3D-FFT calculation.

Spanning trees

It is clear from our experiments that the spanning trees
are useful for communicating coordinates from patches to
compute objects and for collecting forces back from
them. Without these trees, each patch will send
approximately 60 to 80 messages and receive as many in
each step. We use a two-level spanning tree with a
branching factor of about 10. However, the spanning tree
intermediate nodes (STINs) present a new challenge: The
spanning tree can be determined only after the load
balancer decides where to migrate computes, if any.
However, when an STIN is placed on a processor, it may
become overloaded. Even worse, because each patch
creates a spanning tree for its clients independently,
multiple STINs may be assigned to a processor. We used
a centralized strategy to create all spanning trees together
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in order to reduce the number of STINs assigned to a
processor, which helps improve performance. However,
even one STIN adds a few hundred microseconds of
overhead to a node (counting both a downward and an
upward path through it). Figure 5 is a projections timeline
view of a 16,384-node run of NAMD with the ApoAl
benchmark. The color code for this projections plot is as
follows. Red corresponds to the integrate computation,
blue the force computation, and pink the spanning tree.
Black regions represent communication overhead in the
message layer, and white represents idle time.

This figure clearly shows the communication overhead
of spanning trees on processor ID 15,236. Thus, more-
powerful techniques are needed to break the circular
dependence between STIN placement and load balancing.
We plan to explore the simultaneous creation of STINs as
a part of load balancing. Alternatively, it will be helpful
to utilize a packet-level multicast strategy [as used by the
SPI (system programming interface) layer in Blue
Matter], possibly combined with either packet-level or
higher-level reduction. Lower-level support for such
overlapping multicasts, in which each processor sends
data to 60 to 80 destinations, in future computers will be
critical for continued performance improvements.

Summary and future work

We have described the basic parallelization strategies
used by NAMD and how it was optimized for the BG/L
supercomputer. Several new optimizations were necessary
to tune the performance of NAMD on the BG/L system.
Some of these optimizations were motivated by the
available number of processors, which was an order of
magnitude larger than the largest previous machine for
NAMD. Other optimizations were motivated by the
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various challenges of the BG/L architecture. We have
presented an overview of these optimizations and
performance data that shows that simulations of even a
relatively small (92,224-atom) system perform quite well
on 20,480 processors.

In addition to the immediate challenges identified in the
previous section, the NAMD team is planning to
incorporate techniques that reduce the memory footprint
per processor, leading to simulations of larger molecular
systems, as well as to parallelize the NAMD 1/O.
Optimizations for other machines, including the
Cray XT3** and the forthcoming Blue Gene/P* system,
are also planned.
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