
Identifying, tabulating, and
analyzing contacts between
branched neuron
morphologies

J. Kozloski
K. Sfyrakis

S. Hill
F. Schürmann

C. Peck
H. Markram

Simulating neural tissue requires the construction of models of the
anatomical structure and physiological function of neural
microcircuitry. The Blue Brain Project is simulating the
microcircuitry of a neocortical column with very high structural
and physiological precision. This paper describes how we model
anatomical structure by identifying, tabulating, and analyzing
contacts between 104 neurons in a morphologically precise model of
a column. A contact occurs when one element touches another,
providing the opportunity for the subsequent creation of a
simulated synapse. The architecture of our application divides the
problem of detecting and analyzing contacts among thousands of
processors on the IBM Blue Gene/Le supercomputer. Data
required for contact tabulation is encoded with geometrical data
for contact detection and is exchanged among processors. Each
processor selects a subset of neurons and then iteratively 1) divides
the number of points that represents each neuron among column
subvolumes, 2) detects contacts in a subvolume, 3) tabulates
arbitrary categories of local contacts, 4) aggregates and analyzes
global contacts, and 5) revises the contents of a column to achieve a
statistical objective. Computing, analyzing, and optimizing local
data in parallel across distributed global data objects involve
problems common to other domains (such as three-dimensional
image processing and registration). Thus, we discuss the generic
nature of the application architecture.

Introduction

Building neural tissue: The neocortical column

Since the late nineteenth century, researchers have

observed biological tissue at the microscopic scale. Their

studies have revealed tremendous complexity, especially

in the structure and composition of neural tissue [1]. At

the scale revealed by light microscopy (1–100 lm at 5- to

100-fold magnification), neural tissue is composed of two

primary cell types: glia and neurons. Both glia and

neurons are branched structures whose morphologies are

varied and categorized by many clear subtypes [2].

In the early 1950s, studies began to elucidate the

electrical dynamics of neural tissue at this same

microscopic scale [3]. Glial cells exhibit simple electrical

dynamics and provide a supporting matrix into which

neurons grow, develop, and live. Neurons, on the other

hand, produce rich electrical dynamics, whose properties

also provide a basis for categorization [4]. When neurons

form neural microcircuits, these dynamics in turn yield

the emergent electrical and computational properties of

neural tissue. Hodgkin and Huxley’s studies of single-

neuron electrophysiology yielded the first formal,

predictive model of the dynamics of a simple isopotential

neuron [5]. Researchers elaborated on this model

beginning in the 1970s in order to accommodate the

branching, spatially extended structure present in most

neurons [6, 7]. These methods include compartmental

modeling, or the practice of modeling neurons as

branched graphs of isopotential compartments [8]

(Figure 1).

Neurons communicate via two types of connections

known as synapses. Electrical synapses provide a resistive

electrical coupling between the interiors of compartments

�Copyright 2008 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 J. KOZLOSKI ET AL.

43

0018-8646/08/$5.00 ª 2008 IBM

from different neurons. Chemical synapses provide a

means by which electrical activity in a compartment that

precedes a synapse (i.e., a presynaptic compartment)

causes the release of neurotransmitter chemicals. Through

diffusion and a complex series of molecular mechanisms,

neurotransmitter release causes electrical activity in a

compartment following the synapse (i.e., in a postsynaptic

compartment). Hence, electrical synapses are

bidirectional, while chemical synapses are always

unidirectional.

Simulations of compartmental neuron models typically

examine single neurons for which synapses may be

modeled as a set of parameterized current sources [8]. In

the 1980s, some researchers began composing simulated

neural microcircuits from compartmental neuron models,

thereby representing at least a portion of the synapses of a

neuron as logical inputs from other neuron models [9].

Synapse locations specified in lists of connections between

neuron compartments were used to create either arbitrary

circuits or approximations of real circuits.

A great diversity of neurons exist in the neocortex and

create what is known as the neocortical microcircuit. (The

neocortex refers to the outermost layer of the cerebral

hemispheres in mammals.) The Blue Brain Project, based

on widely accepted neuron categories [10], classifies

neocortical neurons into 21 morphological types and 20

electrophysiological types, with 32 combined electro-

morphological types (Figure 2). The neocortical tissue is a

six-layered sheet, from 1 to 4 mm in thickness and 1 to

10,000 cm2 in lateral extent. This sheet is divided laterally

into columns, each about 0.5 mm in diameter with a radial

axis oriented normal to the plane of the sheet.We assemble

each column using approximately 10,000 neurons that are

sampled from all of the varying morphological and

electrophysiological types according to neuron density

functions that vary along the radial axis of the column. It is

this variation that creates the layered appearance of the

sheet. Packed densely into the volume of the column

(which is comparable to the volume of a toothbrush

bristle), these diverse branching structures are woven

tightly into what Ramón y Cajal colorfully described as the

‘‘jungle . . . impenetrable and indefinable’’ [1].

Accurately specifying connections between all 10,000

neurons in a column is both an opportunity to map known

circuit parameters into an accurate connection list and a

challenging simulation task. While analytic approaches

exist for estimating circuit statistics from neuron

morphologies [11], precisely modeling the neocortical

column allows us to derive specific circuits from real

neuron morphologies. This approach is desirable both

because neuron morphology data is easier to collect and,

therefore, more complete than precise circuit connectivity

data, and because the observed specificity in the circuit

likely derives from known regularities in tissue

composition. As with any endeavor in computational

neuroscience, the goal involves a compromise between

unknown and known parameters, as well as an attempt to

derive rules and principles from biological observations

that can be used to refine existing models.

BlueBuilder: The neocortical column structural

modeler

To build the column, the Blue Brain Project has

implemented the BlueBuilder Structural Modeler [12].

This tool provides interfaces between a database of

single-neuron morphologies and a model of the

neocortical tissue, as well as between the model tissue and

a column specification file. A user builds the tissue by

loading single-neuron morphologies from the database

and distributing these neurons within a column

visualization either manually or by application of various

density functions. After the desired tissue composition

has been crafted, the software creates a column

specification file that includes the three-dimensional (3D)

location of every point describing each neuron in the

column, as well as information about the identity of each

neuron and its parts (see Figure 2).

Data in the neuron database are derived from

three sources, collected in the following order: 1)

electrophysiological measurements of the neurons, 2)

morphological reconstructions of the neurons, and 3)

morphological measurements of the reconstructions.

First, an experimenter accesses a neuron in the actual

cortical tissue using a microelectrode. This electrode

allows the experimenter to record and assign the electrical

dynamics of the neuron to a category such as ‘‘classical

Figure 1

Neuron modeling. An anatomist captures points using online

microscopy in order to describe segments (left) of a neuron (right;

scale bar is 100 m). The points are used to construct a model of a

branching graph of equipotential compartments coupled by

resistors (center). The term “segment” refers to two points and the

line that joins them.

�

J. KOZLOSKI ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

44

accommodating’’ (cAD) or ‘‘classical fast spiking’’ (cFS).

(The terms cAD and cFS describe the sequence of action

potentials, or ‘‘spikes’’—e.g., for cAD neurons, spike

frequency decreases during the sequence, whereas for cFS

neurons, spike frequency is high and constant.) This

electrophysiological category (or ‘‘e-type’’) is associated

with the neuron in the neuron database. The electrode

contains a biological agent that darkly stains the neuron.

The anatomist views the stained neuron through a

microscope and uses an apparatus to digitize the

morphology of the neuron by recording the 3D location

of points representing branch points or transitions in the

direction or diameter of a neural fiber (or neurite) [13].

The anatomist identifies each neurite as either an axon

(i.e., a presynaptic output fiber) or a dendrite (i.e., a

postsynaptic input fiber) and estimates each neurite

diameter at each point collected. A ‘‘reconstruction’’ in

the database comprises all of the approximately 4,000

points from a single neuron, and each reconstruction is

analyzed and assigned to a morphological category, or

‘‘m-type,’’ such as ‘‘layer 5 cortico-subcortical pyramidal

cell’’ (L5CSPC) or ‘‘Martinotti cell’’ (MC), which is then

associated with the neuron in the neuron database (see

Figure 2).

Circuit building: Problem description and

requirements

The column specification file contains approximately 40

million points, each comprising three coordinates, a

diameter, and a pre-computed distance between each

point and each subsequent point in a segment. The

problem then is to calculate the location of all contacts

between segments in this model of the tissue. Points

comprising neurons form sets, to which each contact must

ultimately be related. Thus, neuron identity (i.e., layer,

e-type, and m-type), branch identity (axon or dendrite,

branch order), and the identity of branch points are also

present for each relevant set. Set data are derived from

individual measurements of individual neurons in the

database, usually taken from different animals and often

on different days. The Blue Brain Project has limited its

�

Figure 2
A pair of touching neurons are categorized by their e-type (electrophysiological category) and m-type (morphological category), resulting in

a unique identifier in a “neuron-space” (scale bar is 100 m). These identifiers are concatenated to give rise to a unique contact identity key

for the tabulation of detected contacts. The expression “([e-type & m-type], [e-type & m-type])” refers to a category of touches formed by

considering contacts between neurons that fall into the intersection of two neuron categories denoted “e-type & m-type.”

Contact count: 12

e-type

m
-t

yp
e

Contact category:

([e-type & m-type], [e-type & m-type])

cAD bAD dAD cFS bFS dFS cST bST dST cIS bIS IBS rBS tBS cAL dAL bAL cNA bNA dNA

L2PC
L3PC
L4PC
L4SP
L4SS
L5CSPC
L5CHPC
L6CTPC
L6CCPC
L6CSPC
HC
CRC
MC
BTC
DBC
BP
NGC
LBC
NBC
SBC
ChC

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 J. KOZLOSKI ET AL.

45

studies to a particular area of the neocortex (the

somatosensory area) of the albino Wistar rat. Circuit

building is challenging because sets typically span the

entire data space (i.e., the entire volume of the column),

while the principal calculation of contacts between

segments must occur over all points within a local space.

Circuit statistics are derived from many experimental

sources. Anatomical studies at a variety of scales (e.g.,

light microscopic and electron microscopic scales) yield

distributions of neurons and synapses in the column.

Electrophysiological studies using simultaneous

recordings from more than one neuron [14] yield

probabilities of connectivity between neurons of

particular categories (e.g., e-type to e-type, m-type to

m-type). Optical methods are also used to probe

connections in parallel [15]. Because circuit tracing and

measurement techniques have undergone rapid

development only recently, these data at present are

heterogeneous, incomplete, and changing. Nevertheless,

they represent the target for any validation of the

structural simulation of the column, described above.

We attempted to create a system for rapidly identifying

contacts between all 40,000,000 neurite segments (defined

by two points) present in the column specification file.

The geometrical problem of calculating the distance

between cylindrical objects is well understood [16]. The

scale of our calculation, however, motivated us to target

our application for the massively parallel architecture of

the IBM Blue Gene/L* (BG/L) supercomputer [17]. We

require the maximum possible speed for calculating these

contacts because the observed contact statistics in the

column must fit experimental observations from any and

all sources. We expected that the initial column specified

in BlueBuilder would not fit these statistics. Thus,

requirements emerged that 1) the column specification

must be revisable within the current application such that

the precise neuron position and rotation about the radial

axis are modifiable, and 2) column revision must occur

iteratively on the basis of some comparison between

observed and simulated circuit statistics. Because we

anticipated that many thousands of iterations would be

necessary to fit the simulated tissue to observed circuit

statistics, we recognized that contact detection and

tabulation for the full column must be accomplished in

approximately 1 minute by the full 8,192-processor BG/L

supercomputer used for the Blue Brain Project.

Parallel algorithm overview

Iterative architecture

Design philosophy: Collective equality

The parallel software architecture that we pursued avoids

master/slave relationships between the processors of

the BG/L system. We use the phrase master/slave to refer

to a communication protocol in which one process (the

master) controls one or more other processes (the slaves),

such that the direction of control is always from the

master to the slaves. Our goal was to minimize I/O and

communication and create a compute-bound application

whose performance would, therefore, scale linearly with

respect to the number of processors. We recognized that

the column specification file could be read once into

memory, given its size of 1.73 GB and given that the

amount of memory available was 2.1 TB. Because the

computational work involved with contact detection is

inherently local (the relationship between two neurites is

localized to a point in the 3D column), we also recognized

that the work of each processor could be derived from a

specific location in the column. However, assigning the

work from these locations could not be performed by a

single master processor without multiple accesses to a file,

since each processor has access to only 256 MB of

memory. Therefore, we recognized that the calculation

needed for distributing work for contact detection itself

had be distributed. For this reason, processes in the

current architecture are collectively equal: Each performs

precisely the same operations on data read from a single

file. This property has many additional benefits that we

address below, including 1) a logical data structure for

neuron data read from a file, 2) exclusive use of the

collective communication functions of the Message

Passing Interface (MPI), the functions of which have been

optimized on the BG/L system for rapid data exchange

among all processors [18], and 3) a simple interface to design

and extend the parallel algorithm.

Initialization

The work performed by each process in the MPI

application we describe here differs only in its starting

data and is, thus, a single-program, multiple-data

(SPMD) application. Initialization allows processor rank

to determine which data is read from a file and ensures

that the amount of data read is nearly equal for each

processor. In this way, distributing the work of contact

detection is nearly load balanced with respect to

computation and communication loads. The scheme for

distributing the work of contact detection is also

calculated during initialization and ensures adequate load

balancing during this more computationally intensive

second phase of the algorithm.

The role of the Director

We observed a need to incorporate arbitrary circuit

analysis steps into the algorithm in order to allow for new

refinements to the measurement and fitting of circuit

statistics. We anticipated, for example, the need to correct

for the effect of arbitrary spatial sampling resolution in

J. KOZLOSKI ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

46

the neuron digitization method [13] on contact

distributions, as well as the need, at times, to transform

individual contacts between neurites into multiple

synapses (e.g., in cases in which the neurites are parallel).

While these issues have been addressed using the current

iterative architecture, the specifics of these technical

solutions are beyond the scope of this paper. Initially, we

designed a simple two-phase algorithm that distributes

the work of contact detection (by means of the process of

slicing neurons) and performs contact detection within a

column subvolume (i.e., between neuron fragments in the

subvolume). These phases are separated by a single

communication boundary using MPI collective

communication. In addition, in order to realize an

iterative algorithm, one more communication boundary

is traversed to complete the process loop and aggregate

circuit statistics. In addition, in order to implement these

steps, the initial software architecture also permits an

arbitrary number of additional steps with arbitrary

collective communication on step boundaries, using

generic interfaces to incorporate and specify each step.

The only assumption in our design is that communication

on the boundaries is performed using a communication

function wrapped in a standard interface.

The central agent in this architecture is the Director.

(Note that programming objects, such as Director, are

capitalized by convention.) A Director generically

implements a single iteration of the algorithm as a list of

pairs of generic object interfaces known as Senders and

Receivers. The list defines the algorithm and is constructed

during the parameterization of the Director (Figure 3).

Parameterization is performed during compile time and

involves constructing the Sender and Receiver objects

necessary to implement a desired algorithm and then

adding Sender–Receiver pairs (or Communication

Couples) to the Director. The Director also has a

reference to a Communicator object that implements all

of the communication functions necessary for

communication between Senders and Receivers. A single

iteration then occurs as the Director iterates over its list

of Communication Couples.

Collective communication

Senders and Receivers are implemented to support a

generic interface that specifies a set of communications.

Figure 3
The role of the Director in the iterative algorithm. Using interfaces on algorithm objects that implement the abstract Sender and Receiver

interfaces, an algorithm designer composes these objects into an algorithm by adding Sender–Receiver couples to the Director object.

Algorithm execution then consists of the Director initiating computation (by executing prepareToSend and prepareToReceive methods) and

communication (by executing function pointers from the Communicator object) for each couple. The specific algorithm described in this

paper is depicted (bottom). (cc1: Communication Couple 1; dashed arrows: collective communication between Senders and Receivers.)

list<CommunicationCouple> CC;

for each CommunicationCouple, cc

{

 senderCycle = senderCycleCounter[cc.sender];

 receiverCycle = receiverCycleCounter[cc.receiver];

 comFunPtr = cc.sender.prepareToSend(cycle);

 comFunPtr = cc.receiver.prepareToReceive(cycle);

 nPhases = cc.sender.getNumPhases(cycle);

 nPhases = cc.receiver.getNumPhases(cycle);

 for each phase

 (*comFunPtr)(cc.sender, cc.receiver,

 senderCycle, receiverCycle, phase)

 ++senderCycleCount[sender];

 ++receiverCycleCount[receiver];

}

Senders Receivers

prepareToSend()

prepareToSend()

prepareToReceive()

prepareToReceive()

getSendBuffer()
getSendCounts()
getSendDispls()
getSendTypes()

cc1

cc2

getReceiveBuffer()
getReceiveCounts()
getReceiveDispls()
getReceiveTypes()

getSendBuffer()
getSendCounts()
getSendDispls()
getSendTypes()

getReceiveBuffer()
getReceiveCounts()
getReceiveDispls()
getReceiveTypes()

A
lg

o
ri

th
m

 d
es

ig
n

allToAll(sndr, rcvr,…)

{

 MPI_alltoall(

 sndr.getSendBuffer(),
 sndr.getSendCounts(),
 sndr.getSendDispls(),
 sndr.getSendTypes(),
 rcvr.getReceiveBuffer(),
 rcvr.getReceiverCounts(),
 rcvr.getReceiverDispls(),
 rcvr.getReceiverTypes()
)

}

Specific algorithm implementation

Sender Receiver Sender Receiver

Director Communication CouplesCommunicator

Divide neurons

among subvolumes

Detect contacts

within subvolumes

Tabulate arbitrary

categories locally

Aggregate/analyze

global contacts

Revise column

towards objective

Column slicer Contact detector Contact tables Contact analyzer Column modifier

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 J. KOZLOSKI ET AL.

47

The specified communications are decomposed into

cycles, and within a cycle, phases. Cycles allow a single

Sender or Receiver object to specify different

communication events and, thus, participate in an

arbitrary number of independent Communication

Couples. A user composes an algorithm by placing

Communication Couples in an order (see Figure 3, top

right). For any given Sender or Receiver that appears

multiple times in the order, an internal cycle mapping will

specify what communication is attempted and in what

order for any single iteration. For this reason, Senders

and Receivers provide to the Director the number of

cycles they implement, and the Director maintains for

each iteration independent cycle counts for each Sender

and Receiver. These counts allow the Director to access

cycle-dependent interfaces on each Sender and Receiver

(see Figure 3, top left).

The use of phases allows an implementer to divide a

single cycle into a series of independent collective

communications. One important use of phases derives

from the MPI requirement that collectives (i.e., collective

communications) have access on both the send and the

receive side to the amount of data communicated.

Therefore, for certain communication cycles, the amount

of data to be sent must be communicated in one phase,

followed by the data itself in a second phase. Senders and

Receivers provide the Director with the number of phases

per cycle that they implement, and the Director then

loops through the execution of each phase, thus executing

a single cycle of a Sender and Receiver, and thus

completing communication for a single Communication

Couple in the Director algorithm list (see Figure 3,

bottom and upper right). The Director also checks for

compatibility within a Communication Couple by

ensuring that the number of phases specified by its Sender

and Receiver is identical for each Sender and Receiver.

Senders and Receivers map cycle and phase numbers to

data references necessary for MPI collective execution.

These references may include pointers to a buffer,

an array of data counts, an array of data

displacements, and an array of MPI data types. In

addition, Senders and Receivers use abstract interfaces to

map cycle and phase numbers to function pointers on the

Communicator object, thus specifying for each cycle and

each phase which Communicator function is necessary to

execute communication between Senders and Receivers

(upper middle part of Figure 3). The Director checks for

compatibility within a Communication Couple by

ensuring that the specified function pointers are identical.

Communicator functions provide wrappers for MPI

collectives so that they can be referenced using the same

function pointer type. Wrapping of MPI collective

functionality is naturally accomplished by requiring that

these functions take only Sender and Receiver references,

Sender and Receiver cycle numbers, and a phase number

as arguments. The Communicator implements these

functions by requesting the appropriate data references

from the Sender and Receiver, and then composing these

data into arguments for MPI collectives. Because of

isomorphism in the design of all MPI collectives, in some

cases, this amounts to passing the references directly to

the MPI, while in others, passing the de-referenced

pointers to the MPI.

Computation: Preparing to communicate

The Director has a list of Communication Couples that

allows a developer to conceive of and implement an

algorithm as a series of MPI collective communication

events. These communication events occur after each

cycle of distributed computation performed over the data

in distributed memory. Computation is initiated prior to

communication for each Communication Couple by

means of abstract Sender and Receiver interfaces. The

names of these interfaces, prepareToSend and

prepareToReceive, are intended to remind a developer

that in this architecture, all computation is viewed as a

preparation for communicating. Thus, all computation

required to implement the parallel algorithm, as well as

all computation required to support communication

Figure 4

Neuron representations. The hierarchical Neuron object data

structure (left). Assignment of neurons to the Neuron Partition

object is performed by using an adaptive algorithm (right) to

ensure adequate load balancing of the work of neuron slicing.

(Slicing is discussed further in the section “Data decomposition:

The 3D slicing metaphor.” Variable d refers to the diameter of a

segment. Variable l refers to the length of a segment.)

x y z d l

Points

Partition 1

Neuron 1
Points:

1,590

Neuron 2
Points:

3,245

Total segments: 2.22M

Processors: 512

Target size: 4,336

Total segments: 2.21M

Processors: 512

Target size: 4,327

Neuron partition

Neurons

Branches

Segments

J. KOZLOSKI ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

48

interfaces described above, is initiated by the Director

executing these two interfaces. Just as cycle and phase

numbers are mapped to the communication interfaces

described above, they are mapped to the appropriate

communication preparation interface for each Sender or

Receiver (see Figure 3, left). Each phase of a

Communication Couple then consists of a preparation to

send, a preparation to receive, and an execution of the

Communicator function pointer returned by these two

interfaces.

Parallel algorithm implementation

BlueBuilder tissue data format

Neuron data

The tissue specification file produced by BlueBuilder

provides the number of neurons in the tissue, followed by

an array representing the number of segments per neuron,

and an array of offsets into the file from which each

neuron can be read. To conserve memory, specific neuron

data is accessed by reading an offset from the tissue

specification file, seeking a new position in the file, and

then reading that neuron data alone. The anatomical

location of the center of the neuron, the layer of

neocortex from which it was collected, its e-type, and its

m-type are each read at this location. Neurons are then

described by a number of branches, for which each

branch is a contiguous set of points (Figure 4). (The terms

‘‘target’’ and ‘‘partition’’ in this figure are explained in the

‘‘Partitioning algorithm’’ section.)

Segment data

Branches are identified by a branch type (e.g., axon or

dendrite) and branch order, and they are described by a

number of segments, each of which consists of two points.

Because segments in a branch are contiguous, points of a

branch are represented uniquely in the file. Branches,

however, have independent endpoints such that each

branch is represented independently in the column

specification file.

Column histogram

Because the work of contact detection is localized to

specific regions within the tissue, a means of estimating

the amount of contact-detection work that is present in

an arbitrary tissue volume is required. Therefore, in

addition to neuron description and structural data,

BlueBuilder also exports a representation of the

composition of the tissue per unit volume. This

representation is read from files as three histograms

representing the number of points projected onto each

axis of the column per unit length (see Figure 5 for a

depiction of the axes). The bin width of the histogram is

set by BlueBuilder and equals the mean segment length

projected onto each of the three axes, thus ensuring that

the point count is a reasonable estimate of segment

density along each axis. Bin width, therefore, represents

the minimum granularity possible for dividing the work

of contact detection.

Column partitioning

Trade-off: Load balancing vs. simple local data structures

The initial problem of load balancing involves dividing

the work of data distribution among the processors of the

system. Ideally, each processor would read an equal

number of segments from file. Several additional factors

caused us to consider a less precise load-balancing scheme

for this stage of computation. A primary factor was the

observation that the logical neuron data structure is

useful for performing many neuro-scientific analyses and

is best maintained in a single memory space. For example,

modifications to the tissue for the purpose of circuit

fitting are performed on a whole neuron in our current

tissue revision scheme and, therefore, would require

additional communication steps if neurons were divided

among processors when loaded from a file. Also, for

certain modifications, whole branches must be examined

together, making the task of marshalling data for these

calculations much simpler if the neuron data structure is

maintained locally.

Partitioning algorithm

Partitioning the work of data distribution for contact

detection requires that each processor load unique

Figure 5

Column slice planes are determined by histogram equalization in

each of three dimensions (left). Resulting voxels (middle) receive

messages containing segments that pass through the voxel, as

determined by the slicing algorithm. Contact detection proceeds

on the basis of three criteria that are schematically illustrated

(right).

Dendrite

Axon

2. Sphere-to-sphere

 distance

3. Segment-to-

 segment distance

1. Segment pair

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 J. KOZLOSKI ET AL.

49

neurons from file such that each processor has roughly an

equal number of total segments to distribute. The array of

segment counts for each neuron found at the beginning of

the column specification file provides a means of

partitioning the system without loading data from every

neuron. We devised an adaptive partitioning algorithm

that computes the total number of points in the column

divided by the number of processors (see Figure 4). This

value becomes a target number of segments for the

partition of the first processor. Every partition is

calculated in every processor. The partitioner traverses

the segment count array until its running total of points

exceeds the target minus one-half the number of points in

the next neuron in the file. The partitioner then stores the

first and last neuron in the partition, recalculates the

optimum number of remaining segments for each

remaining processor, and resets its running total to zero.

If at any point the number of remaining neurons equals

the number of remaining processors, one remaining

neuron is assigned to each remaining processor. This

continues in parallel for each processor until all neuron

segment counts have been traversed and all partitions

calculated.

Dividing neurons among column subvolumes

Logical structure: Neurons, branches, segments

On the basis of the calculated partition for each processor

rank, neurons are loaded from file into a hierarchical data

structure. The Neuron Partition object provides access to

an array of Neurons. Neurons provide information

concerning e-type, m-type, number of branches, and a

reference back to the Neuron Partition. Branches are

allocated and maintained by the Neuron, which provides

access to its array of Branches. Branches provide access

to the branch type, number of segments, a reference

back to the parent Neuron object, and a pointer into an

array of Segments. Segments are represented by the x, y,

and z coordinates of two points, as well as the diameter of

the segment, a segment descriptor, the segment index

within the branch, and the offset of the segment into the

partition. Thus, the hierarchical data structure provides

access to all aspects of a neuron, regardless of which level

of the hierarchy a piece of code can access (see Figure 4).

Segment data allocation

In our architecture, Segments could easily be allocated by

Branches, just as Branches are allocated by Neurons.

However, we identified an additional requirement for

Segment allocation based on our strategy for data

distribution using MPI collectives. This requirement

states that whenever possible, all data to be

communicated must be allocated within a contiguous

region of memory in order to simplify the use of MPI

collectives and MPI data types, and to avoid wasting time

and memory copying data into a user-defined message

buffer. Since the number of Segments in a partition is

known before it is loaded from file, we were able to satisfy

this requirement while maintaining the logical

relationship between Neurons, Branches, and Segments.

The contiguity of Segments in memory is implemented so

as not to affect the logical data access hierarchy described

above, thus keeping the system both simple to use and

memory efficient.

Data decomposition: The 3D slicing metaphor

We have named the task of data distribution for contact

detection ‘‘3D slicing,’’ since the column itself is sliced

into volumes as segments are sorted and sent to

processors responsible for contact detection in each

resulting volume. All processors in the system are

responsible for both slicing neurons in a partition and

performing contact detection in a volume. A user

parameterizes a slicing scheme by setting the number of

slices per dimension used to create volumes. The slices in

each dimension are then equalized over the corresponding

histogram so that slice boundaries create slices containing

equal numbers of points. Linear interpolation allows

slice planes to fall within a bin. By performing this

equalization for each dimension, the volumes are

themselves equalized to include approximately the same

number of segments (see Figure 5).

Slicing consists of iterating through all segments in a

partition of a processor and associating each partition

with each of the volumes through which it passes. The

association occurs by adding a segment offset within the

partition to the send list of a destination processor. The

method for determining which volumes receive a segment

involves first finding all slice planes through which a

segment passes in each dimension, and then solving a set

of linear equations to determine the points of intersection

between the segment and each of these slice planes.

These points, together with the endpoints of a segment,

provide the centers for a set of bounding cubes whose

sides equal the diameter of the segment. If the

opportunity for contacts between segments extends

beyond the segment radius (e.g., if variable dendrite spine

lengths are included in the tissue model [11]), the sides of

these bounding cubes are extended accordingly. The

volumes in which the bounding cube resides are then

computed, and the indices of the volumes added to a

temporary send list. This list is finally sorted, and its

unique elements are used as indices into an array of send

lists of the destination processors. The offset of the

segment into the partition is then added to each list

indexed in this way. Thus, the slicing algorithm ensures

that each segment is associated with every volume in

J. KOZLOSKI ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

50

which it might have contacts with another segment in the

system.

Sender/slicer

The Column Slicer object implements the above

algorithm and the Sender interface. It participates in two

phases of communication. The first phase uses

MPI_alltoall to communicate the number of segments to

be sent to each processor. The second phase uses

MPI_alltoallw to communicate the actual segment data.

Segment counts are easily derived from the size of the

send list for each destination processor. Segment data are

read from the contiguous allocation in memory for the

data using derived MPI data types. We chose

MPI_alltoallw so that a different data type could be

defined for each destination processor, representing the

irregular pattern of segments in memory that must be

communicated. Hence, the count and offset of the data

sent are precisely one and zero for every processor

sending segments. A dynamically constructed data type

incorporates only data that needs sending from a

Segment object (i.e., five double-precision floating-point

values: x, y, z, diameter, and a descriptor) and composes

multiple instances of this type into a single type using the

offsets stored during slicing for each destination

processor. The Receiver then receives segment data in a

contiguous block of packed segment data, which can

easily be traversed for the purpose of contact detection.

Detecting contacts in a subvolume

Receiver/detector

The detection of contacts between segments is performed

by a Contact Detector object, which implements the

Receiver interface. Data is received from the Column

Slicer in a different format from the one in which it was

sent. Because the Segment object data structure is useful

only in the context of a complete neuron, the data

received for contact detection within a column subvolume

is received and stored in its primitive type form (in the

context of object-oriented languages) as a contiguous

allocation of double-precision floating-point values.

Segment descriptor, segment spaces

As noted already, segments include an 8-byte value that

constitutes a segment descriptor. We have implemented

a bit mapping for this value and interfaces that allow a

user to access it as either a long integer (for the purpose

of indexing) or a double (for the purpose of simple MPI

communication with other doubles). The bit mapping

allows a segment to maintain a compressed key that

includes its layer (3 bits), m-type (5 bits), e-type (5 bits),

branch type (2 bits), branch order (7 bits), segment index

within its branch (10 bits), branch index within its

neuron (13 bits), and neuron index within its class (19

bits). This mapping will suffice for tissues up to

500,000,000 neurons. The descriptor facilitates

communication of user-defined contact categories and,

thus, is the basis for user-defined contact tabulation

categories.

Contact categories

Because contact detection is costly, we aimed to minimize

unnecessary comparisons between segments that cannot

constitute a logical contact. Thus, we allowed a user to

specify an arbitrary contact category specification. For

example, in most cases a user wants to detect only

unidirectional contacts from axons to dendrites. By

parameterizing the Contact Detector object with a

contact category (axon or dendrite), each segment

received by the Contact Detector will be considered with

another only if it is part of an axon, and then only if the

other segment is part of a dendrite. The application of

contact categories at this stage minimizes total

computation but also degrades the load-balancing scheme

for the contact detection described above. The bit

patterns of the segment descriptor are logically masked to

extract its branch-type bits in order for this comparison

to occur.

Geometry of segment capsule distances

We also minimize computation of contacts by testing

whether candidate segments are within range for a

contact to occur. Again, while total computation is

decreased, load balancing is also degraded. Each segment

is first enclosed in a sphere, and pairs of spheres are tested

for overlap. If they intersect, the final calculation of

segment-to-segment distance is made (see Figure 5). If

this distance is less than the sum of the radii of segments,

we accept this pair as having a contact. Additionally, we

may relax this criterion by some amount specified for a

particular neuron or branch combination, as may be

useful for modeling specific axons contacting specific

dendrites having spines of a particular length. This

method of distance comparison treats segments as a

cylinder with equal-diameter half-spheres on each end

(which together are called ‘‘capsules’’) [16]. We accept this

geometrical representation of a segment because it

creates a reasonable approximation of the real neurite,

and because use of it considerably simplifies the segment-

to-segment distance calculation.

Local elimination of globally redundant contacts

Once all contacts within a volume are calculated, we

identify those contacts that may also be detected in

another volume on another processor. This situation

occurs when both segments traverse a volume boundary

together. We created a consistent method that examines

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 J. KOZLOSKI ET AL.

51

in which volume the contact point actually resides in

order to prevent globally redundant contacts.

Tabulation, aggregation, analysis, revision

Global tables

Recall that circuit statistics, to which we aim to fit the

contact data collected from our simulated tissue, derive

from a variety of data collection methods that measure

various rates of connectivity in the circuit. We have

captured the current categories of these circuit statistics in

the segment descriptors that are sent with each segment.

By masking bit patterns in these 8-byte values for each

pair of touching segments, we dynamically create generic

keys into a local database where contact counts are

accumulated. In this way, tables in the database can

represent, for example, the number of contacts between

particular e-types, particular m-types, or particular

layers. Furthermore, descriptor categories can be masked

together, for example, to yield a table comprising all

unique touches by combining segment, branch, and

neuron index bit-fields into a single key. The tables, thus,

provide a powerful means for analyzing the tissue. In

order for analysis and revision to proceed, however, these

tables must be combined through another collective

communication so that each processor aggregates global

statistics from tables created locally.

Analyses and required tables

In addition to user-specified tables, a particular Analysis

object may itself require specific tables of particular

contact categories. Because tables are costly in terms of

memory usage, a global table of all unique contacts, for

example, often cannot be aggregated into a single

memory space once a tissue reaches a particular size.

Thus, we have allowed several unique tables to exist

simultaneously in the system in order to provide a variety

of descriptions of the contacts. If a user or Analysis object

requests identical tables, only one is constructed and then

shared between them. Users must carefully choose which

tables to construct to ensure that memory usage does not

exceed a maximum value after tables are aggregated.

Analysis objects derive from a generic interface. They

implement an analysis generically using the tables that

they require. They also signal when they no longer require

iteration. In this way, circuit refinement can proceed until

one or several Analysis objects meet some set of user-

specified circuit target conditions (which are specified as a

parameterization of an Analysis).

Analyzer implementation of Sender and Receiver interfaces

The Analyzer object comprises Analysis instances

associated by the user and manages the aggregation of

tables on each processor. The Analyzer implements both

the Sender and the Receiver interface, since after

communication, it replaces locally constructed contact

tables with global aggregations of these tables from all

processors. The tables are packed into a contiguous

memory buffer after their dynamic creation during

contact detection, and they are sent in a two-phase

collection communication. In the first phase, the table

sizes are communicated using MPI_allgather, and in the

second, the actual tables are communicated using

MPI_allgatherv. The Analyzer object also signals the

main execution loop when all analyses are complete and

iteration can be terminated.

Revision

Because analyses are performed on global tables

aggregated on all processors in the system, the results of

analysis are immediately available globally for the

revision of the circuit. The revision currently involves

individually rotating and translating each neuron. As the

Analyzer traverses each Analysis that it contains, it

aggregates rotations and translations produced by each

Analysis for each neuron in the Neuron Partition object

on each processor. In this way, the results of analyses

are directly mapped onto circuit revision. The final

rotations and translations are then used by the Neuron

Partition to perform a rigid-body rotation/translation

transformation on the points that represent each neuron.

In addition to rigid-body transformations, the current

architecture also supports neuron deformation to revise

tissue composition and achieve a target set of circuit

statistics. Neuron deformation could be used, for

example, to recreate the specific relationships between

different neuron branches observed in neurons that

develop near one another in the same tissue, since the

current model is composed of neurons that developed in

different animals.

Example: Monte Carlo

Consider a circuit-fitting task that requires m-types for

synapses based on a matrix of m-type-to-m-type

connection probabilities. The difference between current

contact statistics and the minimum target probability

can easily be calculated by an Analysis object. This

Analysis would require a table that globally aggregates

the contact counts between each m-type-to-m-type pair.

Recall that contacts provide the opportunity for a

synapse to form; thus, in this example, touch counts

within a touch category (divided by the total number of

possible touches within the category) need only equal or

exceed the target probability. Then, given some

parameter that controls the rate of change (i.e., a

‘‘temperature’’) and the previous difference measurement,

the Analysis could calculate how much each neuron in the

tissue should be rotated or translated. This calculation

J. KOZLOSKI ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

52

would result in tissue revision, as described above. When

the tissue no longer requires revision, it has achieved

some optimum by means of a Monte Carol simulation.

Performance
The performance of the calculation is measured on the

basis of memory usage, computation time, and

communication time for each step in the algorithm. Our

target tissue for these measurements was a column

comprising 10,000 neurons and 40 million segments. The

average segment radius was 0.23 6 0.24 lm, and average

segment length was 3.65 6 3.2 lm. The cylindrical

columnwas constructed in a volume 55031,2003550 lm,

and the neurites of its neurons extended in a volume

4,400 3 3,300 3 4,300 lm. The most complex cell in the

simulation included 19,000 segments. The total time

required to compute 28,456,789 contacts using 8,000

processors of the BG/L system was 55 seconds.

Performance showed supralinear scaling from 216 to

3,375 processors running in the virtual node mode of the

BG/L system [17] [Figure 6(a)]. (When we use the term

supralinear, we refer to the fact that as we added more

processors, we observed a greater proportional increase in

performance than predicted by a linear relationship.) We

compiled the application using the blrts_xlcþþ compiler

with �O4 and �qhot optimization flags. Good

performance scaling derives from both the amount of

work and the memory footprint decreasing as column

subvolumes become smaller, resulting in fewer operations

and better cache utilization on each node. Each

dimension of the column was divided into an equal

number of slices. We observed that load imbalance also

grew as a function of the number of processors. In

particular, load imbalance grew for the most demanding

step of the algorithm, contact detection [Figure 6(b)], in

which greater than 95% of the computation time of the

algorithm occurs, for reasons discussed above. Finally,

we observed that the maximum percentage of time spent

executing MPI collective communication (minus wait

times) was less than 1% for all numbers of processors less

than 2,744. This percentage grew to 3.5% for 3,375

processors, then rapidly to 20.8% for 8,000 processors,

indicating that the application remains compute bound at

the current scaling.

Conclusion
The architecture described in this paper succeeds in

rapidly detecting contacts between branched neuron

morphologies using the BG/L supercomputer.

Understanding the microcircuitry of neural tissue, such as

the neocortical column, is a necessary step toward

understanding the computation it performs and the

contribution it makes to global brain function. In

addition, detailed models of neural tissue can one day

help to model diseases that target the physical integrity of

these tissues.

The architecture discussed here was specifically

designed for the communications and memory

architecture of the BG/L platform and, thus, made

extensive use of MPI collectives, since the BG/L

supercomputer is optimized for efficient use of these

collectives [18]. The use of a generic set of interfaces for

specifying steps in the algorithm and communication on

step boundaries has allowed rapid development and

extension of the current algorithm to accommodate

additional circuit-fitting exercises.

We note that additional uses for this architecture

include memory-intensive applications that require local

analysis of globally distributed data structures. One

such application is 3D image segmentation. Stacks of

Figure 6

Scaling and load balancing. The iterative algorithm shows (a)

supralinear speedup from 216 to 3,375 processors despite growing

load imbalance in the (b) compute-bound step of the iterative

algorithm involving contact detection. (In the bottom graph, the

solid line indicates the mean. Bars indicate standard deviation. The

dashed lines show maximum and minimum values. A total of

10,000 neurons were used for both graphs.)

0 10 20 30 40
Processor multiplier

(a)

100 1,000 10,000

Number of processors

(b)

S
p
ee

d
 m

u
lt

ip
li

er
C

o
m

p
u
te

 t
im

e
 (

s)

0

20

40

60

80

100

0.1

1

10

100

1,000

10,000

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 J. KOZLOSKI ET AL.

53

images are generated in many areas of biology, including

automated microscopy of neural tissue [19]. Often,

structures in the tissue must be traced through many

images in a stack. The process of identifying, aligning,

and reconstructing these structures is computationally

intensive [20]. Using the BG/L platform and the current

generic application interfaces to process image stack data

in parallel for rapid reconstruction of 3D structures

observed in microscopic images of neural tissue is,

therefore, another domain for application of this

architecture.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

References
1. S. Ramón y Cajal, Recuerdos de Mi Vida: Historia de Mi

Labor Cientı́fica, Alianza Editorial, Madrid, 1923.
2. S. Ramón y Cajal, La Textura del Sistema Nerviosa del

Hombre y los Vertebrados, Moya, Madrid, 1904.
3. A. L. Hodgkin, A. F. Huxley, and B. Katz, ‘‘Measurement of

Current–Voltage Relations in the Membrane of Giant Axons
of Loligo,’’ J. Physiol. 116, 424–448 (1952).

4. A. Gupta, Y. Wang, and H. Markram, ‘‘Organizing Principles
for a Diversity of GABAergic Interneurons and Synapses in
the Neocortex,’’ Science 287, No. 5451, 273–278 (2000).

5. A. L. Hodgkin and A. F. Huxley, ‘‘A Quantitative Description
of Membrane Current and Its Application to Conduction and
Excitation in Nerve,’’ J. Physiol. 117, 500–544 (1952).

6. F. A. Dodge, Jr. and J. W. Cooley, ‘‘Action Potential of the
Motorneuron,’’ IBM J. Res. & Dev. 17, No. 3, 219–229 (1973).

7. M. Hines, ‘‘Efficient Computation of Branched Nerve
Equations,’’ Int. J. Biomed. Comput. 15, No. 1, 69–76 (1984).

8. C. Koch and I. Segev, Eds., Methods in Neuronal Modeling,
MIT Press, Cambridge, MA, 2001.

9. R. D. Traub and R. K. Wong, ‘‘Synchronized Burst Discharge
in Disinhibited Hippocampal Slice. II. Model of Cellular
Mechanism,’’ J. Neurophysiol. 49, 459–471 (1983).

10. L. Alonso-Nanclares, S. Anderson, G. Ascoli, R. Benavides-
Piccione, A. Burkhalter, G. Buzsaki, B. Cauli, et al., ‘‘Petilla
2005: Nomenclature of Features of GABAergic Interneurons
of the Cerebral Cortex’’; see http://www.columbia.edu/cu/
biology/faculty/yuste/petilla/petilla-webpages/Nomenclature/
PetillaNomenclaturefinal.pdf.

11. A. Stepanyants and D. B. Chklovskii, ‘‘Neurogeometry and
Potential Synaptic Connectivity,’’ Trends Neurosci. 28,
387–394 (2005).

12. K. Sfyrakis, F. Schuermann, A. Jan, and H. Markram,
‘‘BlueBuilder: Building the Neocortical Column According to
Recipe,’’ FENS Forum 2006—Abstracts, A037.16, 2006.

13. J. R. Glaser and E. M. Glaser, ‘‘Neuron Imaging with
Neurolucida—A PC-Based System for Image Combining
Microscopy,’’ Comput. Med. Imaging. Graph. 14, No. 5,
307–317 (1990).

14. H. Markram, ‘‘A Network of Tufted Layer 5 Pyramidal
Neurons,’’ Cerebral Cortex 7, 523–533 (1997).

15. J. Kozloski, F. Hamzei-Sichani, and R. Yuste, ‘‘Stereotyped
Position of Local Synaptic Targets in Neocortex,’’ Science 293,
No. 5531, 868–872 (2001).

16. D. Eberly, Intersection of Cylinders, Geometric Tools, Inc.
(2000); see http://www.geometrictools.com.

17. N. R. Adiga, G. Almasi, G. S. Almasi, Y. Aridor, R. Barik, D.
Beece, R. Bellofatto, et al., ‘‘An Overview of the Blue Gene/L
Supercomputer,’’ Proceedings of the ACM/IEEE Conference
on Supercomputing, 2002, pp. 1–22.

18. G. Almási, C. J. Archer, C. C. Erway, P. Heidelberger, X.
Martorell, J. E. Moreira, B. Steinmacher-Burow, and Y.
Zheng, ‘‘Optimization of MPI Collective Communication on
Blue Gene/L Systems,’’ Proceedings of the 19th Annual
International conference on Supercomputing, ACM Press, 2005,
pp. 253–262.

19. A. Can, H. Shen, J. N. Turner, H. L. Tanenbaum, and B.
Roysam, ‘‘Rapid Automated Tracing and Feature Extraction
from Retinal Fundus Images Using Direct Exploratory
Algorithm,’’ IEEE Trans. Inform. Technol. Biomed. 3, No. 2,
125–138 (1999).

20. K. A. Al-Kofahi, S. Lasek, D. H. Szarowski, C. J. Pace, G.
Nagy, J. N. Turner, and B. Roysam, ‘‘Rapid Automated
Three-Dimensional Tracing of Neurons from Confocal Image
Stacks,’’ IEEE Trans. Inform. Technol. Biomed. 6, No. 2,
171–187 (2002).

Received March 15, 2007; accepted for publication

J. KOZLOSKI ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

54

April 10, 2007; Internet publication December 11, 2007

James Kozloski IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (kozloski@us.ibm.com). In 1999, Dr. Kozloski received his
Ph.D. degree in neuroscience from the University of Pennsylvania.
He subsequently held a research position at Columbia University
in the lab of Dr. Rafael Yuste, where he discovered stereotyped
positions of local synaptic targets in neocortex. He joined the
research staff of IBM in 2001, and in 2006, he was also named
Adjunct Assistant Professor at Columbia. Dr. Kozloski’s research
interests, primarily in computational biology, include structural
biology, neural system modeling, functional simulations of
neocortex, and molecular biology. He invents in the area of
neurotechnology, and designs parallel computing software
architectures and interfaces for both simulation and data analysis
problems in neuroscience.

Konstantinos Sfyrakis Blue Brain Laboratory, Brain Mind
Institute, Faculté des Sciences de la Vie, Ecole Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
(konstantinos.sfyrakis@epfl.ch). In 2001, Dr. Sfyrakis received his
Ph.D. degree in computational chemistry at Surrey University,
School of Biomedical and Molecular Science, United Kingdom. He
subsequently worked as a postdoctoral fellow at the Bernoulli
Institute of Mathematics, at EPFL, Switzerland, before joining the
Research and Development Group of the Brain Mind Institute at
EPFL. Currently, he designs and writes computing software
applications and interfaces for scientific problems in neuroscience.

Sean Hill IBM Research Division, Thomas J. Watson Research
Center and the Blue Brain Project, Brain Mind Institute, Ecole
Polytechnique Fédérale de Lausanne (EPFL), Station 15,
1015 Lausanne, Switzerland (seh@zurich.ibm.com). In 2000, Dr.
Hill received his Ph.D. degree in computational neuroscience from
the University of Lausanne. He subsequently joined the Research
Group of Dr. Giulio Tononi at the Neurosciences Institute in La
Jolla, California, and then moved with Dr. Tononi to the
University of Wisconsin, Madison, in 2001. He has developed
numerous large-scale models of neural systems and is the designer
and developer of the general-purpose neural simulator, Synthesis.
As part of his postdoctoral research, he developed the first large-
scale thalamocortical model that replicates neural activity during
wakefulness and sleep. He joined IBM Research and the Blue Brain
Project in May 2006 and now serves as Project Manager for
computational neuroscience area. His research interests include the
use of large-scale biologically realistic computer models to
understand information processing, network connectivity, and
synaptic plasticity in the brain.

Felix Schürmann Blue Brain Laboratory, Brain Mind
Institute, Faculté des Sciences de la Vie, Ecole Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
(felix.schuermann@epfl.ch). Dr. Schürmann is the General Project
Manager of the Blue Brain Project and a postdoctoral fellow at the
Brain Mind Institute at the EPFL. He started his studies of physics
at the University of Heidelberg, Germany, supported by the
German National Academic Foundation. He obtained his M.S.
degree in physics from the State University of New York, Buffalo,
under the supervision of Richard Gonsalves. During this time, he
was a Fulbright Scholar. His master’s thesis dealt with the
foundations of computing, including the simulation of quantum
computing. In 2005, he received his Ph.D. degree in physics from
the University of Heidelberg, Germany, under the supervision of
Karlheinz Meier. His work focused on alternative approaches to
computing. Using mixed-signal very-large-scale integration
(VLSI), he co-designed an efficient implementation of a neural

network in hardware and was the first to adopt the theory of liquid
computing in hardware.

Charles Peck IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (cpeck@us.ibm.com). In 1994, Dr. Peck received his Ph.D.
degree in electrical engineering from the University of Cincinnati.
He currently leads the Biometaphorical Computing Research
Group at IBM, dedicated to analyzing and modeling the brain for
scientific, medical, and technology applications. This work includes
data-driven modeling via the Blue Brain collaboration with Ecole
Polytechnique Fédérale de Lausanne, as well as theory-driven
modeling of global brain function and individual structures, such
as the cortex, cerebellum, and basal ganglia. In 1998, while at the
Lockheed Martin Corporation, Dr. Peck was awarded the NOVA
Award for Technical Excellence, the corporation’s highest honor.
He was also selected by the National Academy of Engineering as
one of America’s top young engineers.

Henry Markram Blue Brain Laboratory, Brain Mind Institute,
Faculaté des Sciences de la Vie, Ecole Polytechnique Fédérale de
Lausanne (EPFL), 1015 Lausanne, Switzerland
(henry.markram@epfl.ch). Project Director of the Blue Brain
Project, Director of the Center for Neuroscience and Technology,
and Co-director of the Brain Mind Institute at EPFL, Dr.
Markram received his Ph.D. degree from the Weizmann Institute
of Science, was a Fulbright Scholar at the National Institutes of
Health, and a Minerva Fellow in the Laboratory of Bert Sakmann
at the Max Planck Institute, Heidelberg, Germany. Dr. Markram’s
many discoveries include being the first to alter the precise
relative timing of single presynaptic and postsynaptic action-
potentials to reveal spike timing-dependent synaptic plasticity. As
an assistant professor at the Weizmann Institute for Science, Israel,
he began systematically analyzing the neocortical column,
discovering novel synaptic learning mechanisms and a spectrum of
new principles governing neocortical microcircuit structure and
function. Together with Wolfgang Maass, he developed the theory
of liquid computing. In 2002, he moved to EPFL as full professor,
founder, and director of the Brain Mind Institute as well as
director of the Center for Neuroscience and Technology.

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 J. KOZLOSKI ET AL.

55

