|dentifying, tabulating, and

J. Kozloski
K. Sfyrakis

analyzing contacts between S. Hil

branched neuron
morphologies

F. Schirmann
C. Peck
H. Markram

Simulating neural tissue requires the construction of models of the
anatomical structure and physiological function of neural
microcircuitry. The Blue Brain Project is simulating the
microcircuitry of a neocortical column with very high structural
and physiological precision. This paper describes how we model
anatomical structure by identifying, tabulating, and analyzing
contacts between 10* neurons in a morphologically precise model of
a column. A contact occurs when one element touches another,
providing the opportunity for the subsequent creation of a
simulated synapse. The architecture of our application divides the
problem of detecting and analyzing contacts among thousands of
processors on the IBM Blue Gene/L™ supercomputer. Data
required for contact tabulation is encoded with geometrical data
for contact detection and is exchanged among processors. Each
processor selects a subset of neurons and then iteratively 1) divides
the number of points that represents each neuron among column
subvolumes, 2) detects contacts in a subvolume, 3) tabulates
arbitrary categories of local contacts, 4) aggregates and analyzes
global contacts, and 5) revises the contents of a column to achieve a
statistical objective. Computing, analyzing, and optimizing local
data in parallel across distributed global data objects involve
problems common to other domains (such as three-dimensional
image processing and registration). Thus, we discuss the generic

nature of the application architecture.

Introduction

Building neural tissue: The neocortical column
Since the late nineteenth century, researchers have
observed biological tissue at the microscopic scale. Their
studies have revealed tremendous complexity, especially
in the structure and composition of neural tissue [1]. At
the scale revealed by light microscopy (1-100 pum at 5- to
100-fold magnification), neural tissue is composed of two
primary cell types: glia and neurons. Both glia and
neurons are branched structures whose morphologies are
varied and categorized by many clear subtypes [2].

In the early 1950s, studies began to elucidate the
electrical dynamics of neural tissue at this same
microscopic scale [3]. Glial cells exhibit simple electrical
dynamics and provide a supporting matrix into which
neurons grow, develop, and live. Neurons, on the other

hand, produce rich electrical dynamics, whose properties
also provide a basis for categorization [4]. When neurons
form neural microcircuits, these dynamics in turn yield
the emergent electrical and computational properties of
neural tissue. Hodgkin and Huxley’s studies of single-
neuron electrophysiology yielded the first formal,
predictive model of the dynamics of a simple isopotential
neuron [5]. Researchers elaborated on this model
beginning in the 1970s in order to accommodate the
branching, spatially extended structure present in most
neurons [6, 7]. These methods include compartmental
modeling, or the practice of modeling neurons as
branched graphs of isopotential compartments [8]
(Figure 1).

Neurons communicate via two types of connections
known as synapses. Electrical synapses provide a resistive
electrical coupling between the interiors of compartments

©Copyright 2008 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/08/$5.00 © 2008 IBM

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

J. KOZLOSKI ET AL.

43



44

Y

Figure 1

Neuron modeling. An anatomist captures points using online
microscopy in order to describe segments (left) of a neuron (right;
scale bar is 100 um). The points are used to construct a model of a
branching graph of equipotential compartments coupled by
resistors (center). The term “segment” refers to two points and the
line that joins them.

from different neurons. Chemical synapses provide a
means by which electrical activity in a compartment that
precedes a synapse (i.e., a presynaptic compartment)
causes the release of neurotransmitter chemicals. Through
diffusion and a complex series of molecular mechanisms,
neurotransmitter release causes electrical activity in a
compartment following the synapse (i.e., in a postsynaptic
compartment). Hence, electrical synapses are
bidirectional, while chemical synapses are always
unidirectional.

Simulations of compartmental neuron models typically
examine single neurons for which synapses may be
modeled as a set of parameterized current sources [8]. In
the 1980s, some researchers began composing simulated
neural microcircuits from compartmental neuron models,
thereby representing at least a portion of the synapses of a
neuron as logical inputs from other neuron models [9].
Synapse locations specified in lists of connections between
neuron compartments were used to create either arbitrary
circuits or approximations of real circuits.

A great diversity of neurons exist in the neocortex and
create what is known as the neocortical microcircuit. (The
neocortex refers to the outermost layer of the cerebral
hemispheres in mammals.) The Blue Brain Project, based
on widely accepted neuron categories [10], classifies
neocortical neurons into 21 morphological types and 20
electrophysiological types, with 32 combined electro-
morphological types (Figure 2). The neocortical tissue is a
six-layered sheet, from 1 to 4 mm in thickness and 1 to
10,000 cm? in lateral extent. This sheet is divided laterally
into columns, each about 0.5 mm in diameter with a radial
axis oriented normal to the plane of the sheet. We assemble

J. KOZLOSKI ET AL.

each column using approximately 10,000 neurons that are
sampled from all of the varying morphological and
electrophysiological types according to neuron density
functions that vary along the radial axis of the column. It is
this variation that creates the layered appearance of the
sheet. Packed densely into the volume of the column
(which is comparable to the volume of a toothbrush
bristle), these diverse branching structures are woven
tightly into what Ramon y Cajal colorfully described as the
“jungle ... impenetrable and indefinable” [1].

Accurately specifying connections between all 10,000
neurons in a column is both an opportunity to map known
circuit parameters into an accurate connection list and a
challenging simulation task. While analytic approaches
exist for estimating circuit statistics from neuron
morphologies [11], precisely modeling the neocortical
column allows us to derive specific circuits from real
neuron morphologies. This approach is desirable both
because neuron morphology data is easier to collect and,
therefore, more complete than precise circuit connectivity
data, and because the observed specificity in the circuit
likely derives from known regularities in tissue
composition. As with any endeavor in computational
neuroscience, the goal involves a compromise between
unknown and known parameters, as well as an attempt to
derive rules and principles from biological observations
that can be used to refine existing models.

BlueBuilder: The neocortical column structural
modeler
To build the column, the Blue Brain Project has
implemented the BlueBuilder Structural Modeler [12].
This tool provides interfaces between a database of
single-neuron morphologies and a model of the
neocortical tissue, as well as between the model tissue and
a column specification file. A user builds the tissue by
loading single-neuron morphologies from the database
and distributing these neurons within a column
visualization either manually or by application of various
density functions. After the desired tissue composition
has been crafted, the software creates a column
specification file that includes the three-dimensional (3D)
location of every point describing each neuron in the
column, as well as information about the identity of each
neuron and its parts (see Figure 2).

Data in the neuron database are derived from
three sources, collected in the following order: 1)
electrophysiological measurements of the neurons, 2)
morphological reconstructions of the neurons, and 3)
morphological measurements of the reconstructions.
First, an experimenter accesses a neuron in the actual
cortical tissue using a microelectrode. This electrode
allows the experimenter to record and assign the electrical
dynamics of the neuron to a category such as “classical

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008



e-type

¢AD bAD dAD cFS bFS dFS c¢ST bST dST cIS bIS IBS rBS tBS cAL dAL bAL cNA bNA dNA

L2PC
L3PC
L4PC
L4SP
L4SS
Lscsec
L5CHPC ¢
2 LeCTPC:
2 L6CCPC
£ L6€SPC
HC
“'CRC
MC I
BTC
DBC

Contact category:
([e-type & m-type], [e-type & m-type])

Contact count: 12

A

— R ¢

J

A pair of touching neurons are categorized by their e-type (electrophysiological category) and m-type (morphological category), resulting in
a unique identifier in a “neuron-space” (scale bar is 100 um). These identifiers are concatenated to give rise to a unique contact identity key
for the tabulation of detected contacts. The expression “([e-type & m-type], [e-type & m-type])” refers to a category of touches formed by
considering contacts between neurons that fall into the intersection of two neuron categories denoted “e-type & m-type.”

accommodating” (cAD) or “classical fast spiking” (cFS).
(The terms cAD and cFS describe the sequence of action
potentials, or “spikes”—e.g., for cAD neurons, spike
frequency decreases during the sequence, whereas for cFS
neurons, spike frequency is high and constant.) This
electrophysiological category (or “e-type”) is associated
with the neuron in the neuron database. The electrode
contains a biological agent that darkly stains the neuron.
The anatomist views the stained neuron through a
microscope and uses an apparatus to digitize the
morphology of the neuron by recording the 3D location
of points representing branch points or transitions in the
direction or diameter of a neural fiber (or neurite) [13].
The anatomist identifies each neurite as either an axon
(i.e., a presynaptic output fiber) or a dendrite (i.e., a
postsynaptic input fiber) and estimates each neurite
diameter at each point collected. A “reconstruction” in
the database comprises all of the approximately 4,000
points from a single neuron, and each reconstruction is
analyzed and assigned to a morphological category, or
“m-type,” such as “layer 5 cortico-subcortical pyramidal

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

cell” (L5CSPC) or “Martinotti cell” (MC), which is then
associated with the neuron in the neuron database (see
Figure 2).

Circuit building: Problem description and
requirements

The column specification file contains approximately 40
million points, each comprising three coordinates, a
diameter, and a pre-computed distance between each
point and each subsequent point in a segment. The
problem then is to calculate the location of all contacts
between segments in this model of the tissue. Points
comprising neurons form sets, to which each contact must
ultimately be related. Thus, neuron identity (i.e., layer,
e-type, and m-type), branch identity (axon or dendrite,
branch order), and the identity of branch points are also
present for each relevant set. Set data are derived from
individual measurements of individual neurons in the
database, usually taken from different animals and often
on different days. The Blue Brain Project has limited its

J. KOZLOSKI ET AL.

45



46

studies to a particular area of the neocortex (the
somatosensory area) of the albino Wistar rat. Circuit
building is challenging because sets typically span the
entire data space (i.e., the entire volume of the column),
while the principal calculation of contacts between
segments must occur over all points within a local space.
Circuit statistics are derived from many experimental
sources. Anatomical studies at a variety of scales (e.g.,
light microscopic and electron microscopic scales) yield
distributions of neurons and synapses in the column.
Electrophysiological studies using simultaneous
recordings from more than one neuron [14] yield
probabilities of connectivity between neurons of
particular categories (e.g., e-type to e-type, m-type to
m-type). Optical methods are also used to probe
connections in parallel [15]. Because circuit tracing and
measurement techniques have undergone rapid
development only recently, these data at present are
heterogeneous, incomplete, and changing. Nevertheless,
they represent the target for any validation of the
structural simulation of the column, described above.
We attempted to create a system for rapidly identifying
contacts between all 40,000,000 neurite segments (defined
by two points) present in the column specification file.
The geometrical problem of calculating the distance
between cylindrical objects is well understood [16]. The
scale of our calculation, however, motivated us to target
our application for the massively parallel architecture of
the IBM Blue Gene/L* (BG/L) supercomputer [17]. We
require the maximum possible speed for calculating these
contacts because the observed contact statistics in the
column must fit experimental observations from any and
all sources. We expected that the initial column specified
in BlueBuilder would not fit these statistics. Thus,
requirements emerged that 1) the column specification
must be revisable within the current application such that
the precise neuron position and rotation about the radial
axis are modifiable, and 2) column revision must occur
iteratively on the basis of some comparison between
observed and simulated circuit statistics. Because we
anticipated that many thousands of iterations would be
necessary to fit the simulated tissue to observed circuit
statistics, we recognized that contact detection and
tabulation for the full column must be accomplished in
approximately 1 minute by the full 8,192-processor BG/L
supercomputer used for the Blue Brain Project.

Parallel algorithm overview
Ilterative architecture
Design philosophy: Collective equality

The parallel software architecture that we pursued avoids
master/slave relationships between the processors of

J. KOZLOSKI ET AL.

the BG/L system. We use the phrase master/slave to refer
to a communication protocol in which one process (the
master) controls one or more other processes (the slaves),
such that the direction of control is always from the
master to the slaves. Our goal was to minimize /O and
communication and create a compute-bound application
whose performance would, therefore, scale linearly with
respect to the number of processors. We recognized that
the column specification file could be read once into
memory, given its size of 1.73 GB and given that the
amount of memory available was 2.1 TB. Because the
computational work involved with contact detection is
inherently local (the relationship between two neurites is
localized to a point in the 3D column), we also recognized
that the work of each processor could be derived from a
specific location in the column. However, assigning the
work from these locations could not be performed by a
single master processor without multiple accesses to a file,
since each processor has access to only 256 MB of
memory. Therefore, we recognized that the calculation
needed for distributing work for contact detection itself
had be distributed. For this reason, processes in the
current architecture are collectively equal: Each performs
precisely the same operations on data read from a single
file. This property has many additional benefits that we
address below, including 1) a logical data structure for
neuron data read from a file, 2) exclusive use of the
collective communication functions of the Message
Passing Interface (MPI), the functions of which have been
optimized on the BG/L system for rapid data exchange
among all processors [18], and 3) a simple interface to design
and extend the parallel algorithm.

Initialization

The work performed by each process in the MPI
application we describe here differs only in its starting
data and is, thus, a single-program, multiple-data
(SPMD) application. Initialization allows processor rank
to determine which data is read from a file and ensures
that the amount of data read is nearly equal for each
processor. In this way, distributing the work of contact
detection is nearly load balanced with respect to
computation and communication loads. The scheme for
distributing the work of contact detection is also
calculated during initialization and ensures adequate load
balancing during this more computationally intensive
second phase of the algorithm.

The role of the Director

We observed a need to incorporate arbitrary circuit
analysis steps into the algorithm in order to allow for new
refinements to the measurement and fitting of circuit
statistics. We anticipated, for example, the need to correct
for the effect of arbitrary spatial sampling resolution in

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008



Communicator Communication Couples
o — ~N Senders Receivers
list<CommunicationCouple> CC; allToAll(sndr, revr,...) ccl
for each CommunicationCouple, cc { . N N
( MPI_alltoall( prepareToSend( ) prepareToReceive()
senderCycle = senderCycleCounter[cc.sender]; sndr.getSendBuffer(), getSendBuffer() getReceiveBuffer()
receiverCycle = receiverCycleCounter[cc.receiver]; sndr.getSendCounts(), getSendCounts() getReceiveCounts()
comFunPtr = cc.sender.prepareToSend(cycle); sndr.getSendDispls(), getSendDispls( ) getReceiveDispls()
comFunPtr = cc.receiver.prepare ToReceive(cycle); sndr.getSendTypes(), @etSend@pes( ) Y, getReceiveTypes( ) =
nPhases = cc.sender.getNumPhases(cycle); revr.getReceiveBuffer(), 2
nPhases = cc.receiver.getNumPhases(cycle); revr.getReceiverCounts(), cc2 S
for each phase revr.getReceiverDispls(), . N A N\ E
(*comFunPtr)(cc.sender, cc.receiver, revr.getReceiverTypes() prepareToSend() prepareToReceive() %
senderCycle, receiverCycle, phase) ) getSendBuffer() getReceiveBuffer() gn
++senderCycleCount[sender]; } getSendCounts() getReceiveCounts() | <
++receiverCycleCount[receiver]; . getSendDispls() getReceiveDispls() 0
: etSendTypes etReceiveTypes =
\} )L \& ipes() )& ipes() v
.
L]
Specific algorithm implementation
Divide neurons Detect contacts Tabulate arbitrary Aggregate/analyze Revise column
> >

among subvolumes

within subvolumes

categories locally

global contacts

towards objective

Sender

Receiver

Sender

Receiver

’ Column slicer ‘- - ->{

Contact detector H

Contact tables

‘- - >’ Contact analyzer ‘4‘ Column modifier ‘

The role of the Director in the iterative algorithm. Using interfaces on algorithm objects that implement the abstract Sender and Receiver
interfaces, an algorithm designer composes these objects into an algorithm by adding Sender—Receiver couples to the Director object.
Algorithm execution then consists of the Director initiating computation (by executing prepareToSend and prepareToReceive methods) and
communication (by executing function pointers from the Communicator object) for each couple. The specific algorithm described in this
paper is depicted (bottom). (cc1: Communication Couple 1; dashed arrows: collective communication between Senders and Receivers.)

the neuron digitization method [13] on contact
distributions, as well as the need, at times, to transform
individual contacts between neurites into multiple
synapses (e.g., in cases in which the neurites are parallel).
While these issues have been addressed using the current
iterative architecture, the specifics of these technical
solutions are beyond the scope of this paper. Initially, we
designed a simple two-phase algorithm that distributes
the work of contact detection (by means of the process of
slicing neurons) and performs contact detection within a
column subvolume (i.e., between neuron fragments in the
subvolume). These phases are separated by a single
communication boundary using MPI collective
communication. In addition, in order to realize an
iterative algorithm, one more communication boundary
is traversed to complete the process loop and aggregate
circuit statistics. In addition, in order to implement these
steps, the initial software architecture also permits an
arbitrary number of additional steps with arbitrary
collective communication on step boundaries, using
generic interfaces to incorporate and specify each step.
The only assumption in our design is that communication

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

on the boundaries is performed using a communication
function wrapped in a standard interface.

The central agent in this architecture is the Director.
(Note that programming objects, such as Director, are
capitalized by convention.) A Director generically
implements a single iteration of the algorithm as a list of
pairs of generic object interfaces known as Senders and
Receivers. The list defines the algorithm and is constructed
during the parameterization of the Director (Figure 3).
Parameterization is performed during compile time and
involves constructing the Sender and Receiver objects
necessary to implement a desired algorithm and then
adding Sender—Receiver pairs (or Communication
Couples) to the Director. The Director also has a
reference to a Communicator object that implements all
of the communication functions necessary for
communication between Senders and Receivers. A single
iteration then occurs as the Director iterates over its list
of Communication Couples.

Collective communication

Senders and Receivers are implemented to support a
generic interface that specifies a set of communications.

J. KOZLOSKI ET AL.

47



48

Total segments: 2.22M
Processors: 512

Points Target size: 4,336
N e xyzdl S
euron partition 3 Newont
T 0 Points:
Neurons o0 1,590
Branches °
%l e by Neuron 2
Segments A Points:
i 3,245
i
Partition 1

Total segments: 2.21M
Processors: 512
Target size: 4,327

Neuron representations. The hierarchical Neuron object data
structure (left). Assignment of neurons to the Neuron Partition
object is performed by using an adaptive algorithm (right) to
ensure adequate load balancing of the work of neuron slicing.
(Slicing is discussed further in the section “Data decomposition:
The 3D slicing metaphor.” Variable d refers to the diameter of a
segment. Variable / refers to the length of a segment.)

The specified communications are decomposed into
cycles, and within a cycle, phases. Cycles allow a single
Sender or Receiver object to specify different
communication events and, thus, participate in an
arbitrary number of independent Communication
Couples. A user composes an algorithm by placing
Communication Couples in an order (see Figure 3, top
right). For any given Sender or Receiver that appears
multiple times in the order, an internal cycle mapping will
specify what communication is attempted and in what
order for any single iteration. For this reason, Senders
and Receivers provide to the Director the number of
cycles they implement, and the Director maintains for
each iteration independent cycle counts for each Sender
and Receiver. These counts allow the Director to access
cycle-dependent interfaces on each Sender and Receiver
(see Figure 3, top left).

The use of phases allows an implementer to divide a
single cycle into a series of independent collective
communications. One important use of phases derives
from the MPI requirement that collectives (i.e., collective
communications) have access on both the send and the
receive side to the amount of data communicated.
Therefore, for certain communication cycles, the amount
of data to be sent must be communicated in one phase,

J. KOZLOSKI ET AL.

followed by the data itself in a second phase. Senders and
Receivers provide the Director with the number of phases
per cycle that they implement, and the Director then
loops through the execution of each phase, thus executing
a single cycle of a Sender and Receiver, and thus
completing communication for a single Communication
Couple in the Director algorithm list (see Figure 3,
bottom and upper right). The Director also checks for
compatibility within a Communication Couple by
ensuring that the number of phases specified by its Sender
and Receiver is identical for each Sender and Receiver.
Senders and Receivers map cycle and phase numbers to
data references necessary for MPI collective execution.
These references may include pointers to a buffer,
an array of data counts, an array of data
displacements, and an array of MPI data types. In
addition, Senders and Receivers use abstract interfaces to
map cycle and phase numbers to function pointers on the
Communicator object, thus specifying for each cycle and
each phase which Communicator function is necessary to
execute communication between Senders and Receivers
(upper middle part of Figure 3). The Director checks for
compatibility within a Communication Couple by
ensuring that the specified function pointers are identical.
Communicator functions provide wrappers for MPI
collectives so that they can be referenced using the same
function pointer type. Wrapping of MPI collective
functionality is naturally accomplished by requiring that
these functions take only Sender and Receiver references,
Sender and Receiver cycle numbers, and a phase number
as arguments. The Communicator implements these
functions by requesting the appropriate data references
from the Sender and Receiver, and then composing these
data into arguments for MPI collectives. Because of
isomorphism in the design of all MPI collectives, in some
cases, this amounts to passing the references directly to
the MPI, while in others, passing the de-referenced
pointers to the MPI.

Computation: Preparing to communicate

The Director has a list of Communication Couples that
allows a developer to conceive of and implement an
algorithm as a series of MPI collective communication
events. These communication events occur after each
cycle of distributed computation performed over the data
in distributed memory. Computation is initiated prior to
communication for each Communication Couple by
means of abstract Sender and Receiver interfaces. The
names of these interfaces, prepareToSend and
prepareToReceive, are intended to remind a developer
that in this architecture, all computation is viewed as a
preparation for communicating. Thus, all computation
required to implement the parallel algorithm, as well as
all computation required to support communication

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008



interfaces described above, is initiated by the Director
executing these two interfaces. Just as cycle and phase
numbers are mapped to the communication interfaces
described above, they are mapped to the appropriate
communication preparation interface for each Sender or
Receiver (see Figure 3, left). Each phase of a
Communication Couple then consists of a preparation to
send, a preparation to receive, and an execution of the
Communicator function pointer returned by these two
interfaces.

Parallel algorithm implementation
BlueBuilder tissue data format

Neuron data

The tissue specification file produced by BlueBuilder
provides the number of neurons in the tissue, followed by
an array representing the number of segments per neuron,
and an array of offsets into the file from which each
neuron can be read. To conserve memory, specific neuron
data is accessed by reading an offset from the tissue
specification file, seeking a new position in the file, and
then reading that neuron data alone. The anatomical
location of the center of the neuron, the layer of
neocortex from which it was collected, its e-type, and its
m-type are each read at this location. Neurons are then
described by a number of branches, for which each
branch is a contiguous set of points (Figure 4). (The terms
“target” and “partition” in this figure are explained in the
“Partitioning algorithm” section.)

Segment data

Branches are identified by a branch type (e.g., axon or
dendrite) and branch order, and they are described by a
number of segments, each of which consists of two points.
Because segments in a branch are contiguous, points of a
branch are represented uniquely in the file. Branches,
however, have independent endpoints such that each
branch is represented independently in the column
specification file.

Column histogram

Because the work of contact detection is localized to
specific regions within the tissue, a means of estimating
the amount of contact-detection work that is present in
an arbitrary tissue volume is required. Therefore, in
addition to neuron description and structural data,
BlueBuilder also exports a representation of the
composition of the tissue per unit volume. This
representation is read from files as three histograms
representing the number of points projected onto each
axis of the column per unit length (see Figure 5 for a
depiction of the axes). The bin width of the histogram is
set by BlueBuilder and equals the mean segment length

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

1. Segment pair

Dendrite
-

= Axon

2. Sphere-to-sphere
distance

3. Segment-to-
segment distance

“

Column slice planes are determined by histogram equalization in
each of three dimensions (left). Resulting voxels (middle) receive
messages containing segments that pass through the voxel, as
determined by the slicing algorithm. Contact detection proceeds
on the basis of three criteria that are schematically illustrated

(right).

Figure 5

projected onto each of the three axes, thus ensuring that
the point count is a reasonable estimate of segment
density along each axis. Bin width, therefore, represents
the minimum granularity possible for dividing the work
of contact detection.

Column partitioning

Trade-off: Load balancing vs. simple local data structures
The initial problem of load balancing involves dividing
the work of data distribution among the processors of the
system. Ideally, each processor would read an equal
number of segments from file. Several additional factors
caused us to consider a less precise load-balancing scheme
for this stage of computation. A primary factor was the
observation that the logical neuron data structure is
useful for performing many neuro-scientific analyses and
is best maintained in a single memory space. For example,
modifications to the tissue for the purpose of circuit
fitting are performed on a whole neuron in our current
tissue revision scheme and, therefore, would require
additional communication steps if neurons were divided
among processors when loaded from a file. Also, for
certain modifications, whole branches must be examined
together, making the task of marshalling data for these
calculations much simpler if the neuron data structure is
maintained locally.

Partitioning algorithm

Partitioning the work of data distribution for contact
detection requires that each processor load unique

J. KOZLOSKI ET AL.

49



50

neurons from file such that each processor has roughly an
equal number of total segments to distribute. The array of
segment counts for each neuron found at the beginning of
the column specification file provides a means of
partitioning the system without loading data from every
neuron. We devised an adaptive partitioning algorithm
that computes the total number of points in the column
divided by the number of processors (see Figure 4). This
value becomes a target number of segments for the
partition of the first processor. Every partition is
calculated in every processor. The partitioner traverses
the segment count array until its running total of points
exceeds the target minus one-half the number of points in
the next neuron in the file. The partitioner then stores the
first and last neuron in the partition, recalculates the
optimum number of remaining segments for each
remaining processor, and resets its running total to zero.
If at any point the number of remaining neurons equals
the number of remaining processors, one remaining
neuron is assigned to each remaining processor. This
continues in parallel for each processor until all neuron
segment counts have been traversed and all partitions
calculated.

Dividing neurons among column subvolumes

Logical structure: Neurons, branches, segments

On the basis of the calculated partition for each processor
rank, neurons are loaded from file into a hierarchical data
structure. The Neuron Partition object provides access to
an array of Neurons. Neurons provide information
concerning e-type, m-type, number of branches, and a
reference back to the Neuron Partition. Branches are
allocated and maintained by the Neuron, which provides
access to its array of Branches. Branches provide access
to the branch type, number of segments, a reference
back to the parent Neuron object, and a pointer into an
array of Segments. Segments are represented by the x, y,
and z coordinates of two points, as well as the diameter of
the segment, a segment descriptor, the segment index
within the branch, and the offset of the segment into the
partition. Thus, the hierarchical data structure provides
access to all aspects of a neuron, regardless of which level

of the hierarchy a piece of code can access (see Figure 4).

Segment data allocation

In our architecture, Segments could easily be allocated by
Branches, just as Branches are allocated by Neurons.
However, we identified an additional requirement for
Segment allocation based on our strategy for data
distribution using MPI collectives. This requirement
states that whenever possible, all data to be
communicated must be allocated within a contiguous
region of memory in order to simplify the use of MPI

J. KOZLOSKI ET AL.

collectives and MPI data types, and to avoid wasting time
and memory copying data into a user-defined message
buffer. Since the number of Segments in a partition is
known before it is loaded from file, we were able to satisfy
this requirement while maintaining the logical
relationship between Neurons, Branches, and Segments.
The contiguity of Segments in memory is implemented so
as not to affect the logical data access hierarchy described
above, thus keeping the system both simple to use and
memory efficient.

Data decomposition: The 3D slicing metaphor

We have named the task of data distribution for contact
detection “3D slicing,” since the column itself is sliced
into volumes as segments are sorted and sent to
processors responsible for contact detection in each
resulting volume. All processors in the system are
responsible for both slicing neurons in a partition and
performing contact detection in a volume. A user
parameterizes a slicing scheme by setting the number of
slices per dimension used to create volumes. The slices in
each dimension are then equalized over the corresponding
histogram so that slice boundaries create slices containing
equal numbers of points. Linear interpolation allows
slice planes to fall within a bin. By performing this
equalization for each dimension, the volumes are
themselves equalized to include approximately the same
number of segments (see Figure 5).

Slicing consists of iterating through all segments in a
partition of a processor and associating each partition
with each of the volumes through which it passes. The
association occurs by adding a segment offset within the
partition to the send list of a destination processor. The
method for determining which volumes receive a segment
involves first finding all slice planes through which a
segment passes in each dimension, and then solving a set
of linear equations to determine the points of intersection
between the segment and each of these slice planes.
These points, together with the endpoints of a segment,
provide the centers for a set of bounding cubes whose
sides equal the diameter of the segment. If the
opportunity for contacts between segments extends
beyond the segment radius (e.g., if variable dendrite spine
lengths are included in the tissue model [11]), the sides of
these bounding cubes are extended accordingly. The
volumes in which the bounding cube resides are then
computed, and the indices of the volumes added to a
temporary send list. This list is finally sorted, and its
unique elements are used as indices into an array of send
lists of the destination processors. The offset of the
segment into the partition is then added to each list
indexed in this way. Thus, the slicing algorithm ensures
that each segment is associated with every volume in

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008



which it might have contacts with another segment in the
system.

Sender|[slicer

The Column Slicer object implements the above
algorithm and the Sender interface. It participates in two
phases of communication. The first phase uses
MPI_alltoall to communicate the number of segments to
be sent to each processor. The second phase uses
MPI_alltoallw to communicate the actual segment data.
Segment counts are easily derived from the size of the
send list for each destination processor. Segment data are
read from the contiguous allocation in memory for the
data using derived MPI data types. We chose

MPI _alltoallw so that a different data type could be
defined for each destination processor, representing the
irregular pattern of segments in memory that must be
communicated. Hence, the count and offset of the data
sent are precisely one and zero for every processor
sending segments. A dynamically constructed data type
incorporates only data that needs sending from a
Segment object (i.e., five double-precision floating-point
values: x, y, z, diameter, and a descriptor) and composes
multiple instances of this type into a single type using the
offsets stored during slicing for each destination
processor. The Receiver then receives segment data in a
contiguous block of packed segment data, which can
easily be traversed for the purpose of contact detection.

Detecting contacts in a subvolume

Receiver|detector

The detection of contacts between segments is performed
by a Contact Detector object, which implements the
Receiver interface. Data is received from the Column
Slicer in a different format from the one in which it was
sent. Because the Segment object data structure is useful
only in the context of a complete neuron, the data
received for contact detection within a column subvolume
is received and stored in its primitive type form (in the
context of object-oriented languages) as a contiguous
allocation of double-precision floating-point values.

Segment descriptor, segment spaces

As noted already, segments include an 8-byte value that
constitutes a segment descriptor. We have implemented
a bit mapping for this value and interfaces that allow a
user to access it as either a long integer (for the purpose
of indexing) or a double (for the purpose of simple MPI
communication with other doubles). The bit mapping
allows a segment to maintain a compressed key that
includes its layer (3 bits), m-type (5 bits), e-type (5 bits),
branch type (2 bits), branch order (7 bits), segment index
within its branch (10 bits), branch index within its

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

neuron (13 bits), and neuron index within its class (19
bits). This mapping will suffice for tissues up to
500,000,000 neurons. The descriptor facilitates
communication of user-defined contact categories and,
thus, is the basis for user-defined contact tabulation
categories.

Contact categories

Because contact detection is costly, we aimed to minimize
unnecessary comparisons between segments that cannot
constitute a logical contact. Thus, we allowed a user to
specify an arbitrary contact category specification. For
example, in most cases a user wants to detect only
unidirectional contacts from axons to dendrites. By
parameterizing the Contact Detector object with a
contact category (axon or dendrite), each segment
received by the Contact Detector will be considered with
another only if it is part of an axon, and then only if the
other segment is part of a dendrite. The application of
contact categories at this stage minimizes total
computation but also degrades the load-balancing scheme
for the contact detection described above. The bit
patterns of the segment descriptor are logically masked to
extract its branch-type bits in order for this comparison
to occur.

Geometry of segment capsule distances

We also minimize computation of contacts by testing
whether candidate segments are within range for a
contact to occur. Again, while total computation is
decreased, load balancing is also degraded. Each segment
is first enclosed in a sphere, and pairs of spheres are tested
for overlap. If they intersect, the final calculation of
segment-to-segment distance is made (see Figure 5). If
this distance is less than the sum of the radii of segments,
we accept this pair as having a contact. Additionally, we
may relax this criterion by some amount specified for a
particular neuron or branch combination, as may be
useful for modeling specific axons contacting specific
dendrites having spines of a particular length. This
method of distance comparison treats segments as a
cylinder with equal-diameter half-spheres on each end
(which together are called “capsules”) [16]. We accept this
geometrical representation of a segment because it
creates a reasonable approximation of the real neurite,
and because use of it considerably simplifies the segment-
to-segment distance calculation.

Local elimination of globally redundant contacts

Once all contacts within a volume are calculated, we
identify those contacts that may also be detected in
another volume on another processor. This situation
occurs when both segments traverse a volume boundary
together. We created a consistent method that examines

J. KOZLOSKI ET AL.

51



52

in which volume the contact point actually resides in
order to prevent globally redundant contacts.

Tabulation, aggregation, analysis, revision

Global tables

Recall that circuit statistics, to which we aim to fit the
contact data collected from our simulated tissue, derive
from a variety of data collection methods that measure
various rates of connectivity in the circuit. We have
captured the current categories of these circuit statistics in
the segment descriptors that are sent with each segment.
By masking bit patterns in these 8-byte values for each
pair of touching segments, we dynamically create generic
keys into a local database where contact counts are
accumulated. In this way, tables in the database can
represent, for example, the number of contacts between
particular e-types, particular m-types, or particular
layers. Furthermore, descriptor categories can be masked
together, for example, to yield a table comprising all
unique touches by combining segment, branch, and
neuron index bit-fields into a single key. The tables, thus,
provide a powerful means for analyzing the tissue. In
order for analysis and revision to proceed, however, these
tables must be combined through another collective
communication so that each processor aggregates global
statistics from tables created locally.

Analyses and required tables
In addition to user-specified tables, a particular Analysis
object may itself require specific tables of particular
contact categories. Because tables are costly in terms of
memory usage, a global table of all unique contacts, for
example, often cannot be aggregated into a single
memory space once a tissue reaches a particular size.
Thus, we have allowed several unique tables to exist
simultaneously in the system in order to provide a variety
of descriptions of the contacts. If a user or Analysis object
requests identical tables, only one is constructed and then
shared between them. Users must carefully choose which
tables to construct to ensure that memory usage does not
exceed a maximum value after tables are aggregated.
Analysis objects derive from a generic interface. They
implement an analysis generically using the tables that
they require. They also signal when they no longer require
iteration. In this way, circuit refinement can proceed until
one or several Analysis objects meet some set of user-
specified circuit target conditions (which are specified as a
parameterization of an Analysis).

Analyzer implementation of Sender and Receiver interfaces
The Analyzer object comprises Analysis instances
associated by the user and manages the aggregation of
tables on each processor. The Analyzer implements both

J. KOZLOSKI ET AL.

the Sender and the Receiver interface, since after
communication, it replaces locally constructed contact
tables with global aggregations of these tables from all
processors. The tables are packed into a contiguous
memory buffer after their dynamic creation during
contact detection, and they are sent in a two-phase
collection communication. In the first phase, the table
sizes are communicated using M PI_allgather, and in the
second, the actual tables are communicated using

MPI _allgatherv. The Analyzer object also signals the
main execution loop when all analyses are complete and
iteration can be terminated.

Revision

Because analyses are performed on global tables
aggregated on all processors in the system, the results of
analysis are immediately available globally for the
revision of the circuit. The revision currently involves
individually rotating and translating each neuron. As the
Analyzer traverses each Analysis that it contains, it
aggregates rotations and translations produced by each
Analysis for each neuron in the Neuron Partition object
on each processor. In this way, the results of analyses
are directly mapped onto circuit revision. The final
rotations and translations are then used by the Neuron
Partition to perform a rigid-body rotation/translation
transformation on the points that represent each neuron.
In addition to rigid-body transformations, the current
architecture also supports neuron deformation to revise
tissue composition and achieve a target set of circuit
statistics. Neuron deformation could be used, for
example, to recreate the specific relationships between
different neuron branches observed in neurons that
develop near one another in the same tissue, since the
current model is composed of neurons that developed in
different animals.

Example: Monte Carlo

Consider a circuit-fitting task that requires m-types for
synapses based on a matrix of m-type-to-m-type
connection probabilities. The difference between current
contact statistics and the minimum target probability
can easily be calculated by an Analysis object. This
Analysis would require a table that globally aggregates
the contact counts between each m-type-to-m-type pair.
Recall that contacts provide the opportunity for a
synapse to form; thus, in this example, touch counts
within a touch category (divided by the total number of
possible touches within the category) need only equal or
exceed the target probability. Then, given some
parameter that controls the rate of change (i.e., a
“temperature”) and the previous difference measurement,
the Analysis could calculate how much each neuron in the
tissue should be rotated or translated. This calculation

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008



would result in tissue revision, as described above. When
the tissue no longer requires revision, it has achieved
some optimum by means of a Monte Carol simulation.

Performance
The performance of the calculation is measured on the
basis of memory usage, computation time, and
communication time for each step in the algorithm. Our
target tissue for these measurements was a column
comprising 10,000 neurons and 40 million segments. The
average segment radius was 0.23 = 0.24 um, and average
segment length was 3.65 * 3.2 um. The cylindrical
column was constructed in a volume 550 X 1,200 X 550 um,
and the neurites of its neurons extended in a volume
4,400 X 3,300 X 4,300 um. The most complex cell in the
simulation included 19,000 segments. The total time
required to compute 28,456,789 contacts using 8,000
processors of the BG/L system was 55 seconds.
Performance showed supralinear scaling from 216 to
3,375 processors running in the virtual node mode of the
BG/L system [17] [Figure 6(a)]. (When we use the term
supralinear, we refer to the fact that as we added more
processors, we observed a greater proportional increase in
performance than predicted by a linear relationship.) We
compiled the application using the blrts_xlc++ compiler
with —04 and —ghot optimization flags. Good
performance scaling derives from both the amount of
work and the memory footprint decreasing as column
subvolumes become smaller, resulting in fewer operations
and better cache utilization on each node. Each
dimension of the column was divided into an equal
number of slices. We observed that load imbalance also
grew as a function of the number of processors. In
particular, load imbalance grew for the most demanding
step of the algorithm, contact detection [Figure 6(b)], in
which greater than 95% of the computation time of the
algorithm occurs, for reasons discussed above. Finally,
we observed that the maximum percentage of time spent
executing MPI collective communication (minus wait
times) was less than 1% for all numbers of processors less
than 2,744. This percentage grew to 3.5% for 3,375
processors, then rapidly to 20.8% for 8,000 processors,
indicating that the application remains compute bound at
the current scaling.

Conclusion

The architecture described in this paper succeeds in
rapidly detecting contacts between branched neuron
morphologies using the BG/L supercomputer.
Understanding the microcircuitry of neural tissue, such as
the neocortical column, is a necessary step toward
understanding the computation it performs and the
contribution it makes to global brain function. In
addition, detailed models of neural tissue can one day

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

100
80 -
5
£ 60
=
g
o)
S 40
a
n
20 |
o le ] ] ]
0 10 20 30 40
Processor multiplier
(a)
10,000
1,000 |-
g 100 [
o
=
o, -
g 10
5]
O
1 =
0.1 |
100 1,000 10,000
Number of processors
(b)

Scaling and load balancing. The iterative algorithm shows (a)
supralinear speedup from 216 to 3,375 processors despite growing
load imbalance in the (b) compute-bound step of the iterative
algorithm involving contact detection. (In the bottom graph, the
solid line indicates the mean. Bars indicate standard deviation. The
dashed lines show maximum and minimum values. A total of
10,000 neurons were used for both graphs.)

help to model diseases that target the physical integrity of
these tissues.

The architecture discussed here was specifically
designed for the communications and memory
architecture of the BG/L platform and, thus, made
extensive use of MPI collectives, since the BG/L
supercomputer is optimized for efficient use of these
collectives [18]. The use of a generic set of interfaces for
specifying steps in the algorithm and communication on
step boundaries has allowed rapid development and
extension of the current algorithm to accommodate
additional circuit-fitting exercises.

We note that additional uses for this architecture
include memory-intensive applications that require local
analysis of globally distributed data structures. One
such application is 3D image segmentation. Stacks of

J. KOZLOSKI ET AL.

53



images are generated in many areas of biology, including 18. G. Almasi, C. J. Archer, C. C. Erway, P. Heidelberger, X.

, , : Al 4 Martorell, J. E. Moreira, B. Steinmacher-Burow, and Y.
antomated microscopy of neural tissue [19]. Often, Zheng, “Optimization of MPI Collective Communication on

structures in the tissue must be traced through many Blue Gene/L Systems,” Proceedings of the 19th Annual
images in a stack. The process of identifying, aligning, International conference on Supercomputing, ACM Press, 2005,
. . . pp. 253-262.

fcmd re'constructm'g these structures is computationally 19. A. Can. H. Shen, J. N. Turner, H. L. Tanenbaum, and B.
intensive [20]. Using the BG/L platform and the current Roysam, “Rapid Automated Tracing and Feature Extraction
generic application interfaces to process image stack data from Retinal Fundus Images Using Direct Exploratory
. . . Algorithm,” IEEE Trans. Inform. Technol. Biomed. 3, No. 2,
in parallel for rapid reconstruction of 3D structures 125-138 (1999)
observed in microscopic images of neural tissue is, 20. K. A. Al-Kofahi, S. Lasek, D. H. Szarowski, C. J. Pace, G.
therefore, another domain for application of this Nagy, J. N. Turner, and B. Roysam, “Rapid Automated

hi Three-Dimensional Tracing of Neurons from Confocal Image
architecture. Stacks,” IEEE Trans. Inform. Technol. Biomed. 6, No. 2,

171-187 (2002).
*Trademark, service mark, or registered trademark of

International Business Machines Corporation in the United States, Received March 15, 2007; accepted for publication
other countries, or both. April 10, 2007; Internet publication December 11, 2007
References

1. S. Ramoén y Cajal, Recuerdos de Mi Vida: Historia de Mi
Labor Cientifica, Alianza Editorial, Madrid, 1923.

2. S. Ramoén y Cajal, La Textura del Sistema Nerviosa del
Hombre y los Vertebrados, Moya, Madrid, 1904.

3. A. L. Hodgkin, A. F. Huxley, and B. Katz, “Measurement of
Current—Voltage Relations in the Membrane of Giant Axons
of Loligo,” J. Physiol. 116, 424-448 (1952).

4. A. Gupta, Y. Wang, and H. Markram, “Organizing Principles
for a Diversity of GABAergic Interneurons and Synapses in
the Neocortex,” Science 287, No. 5451, 273-278 (2000).

S. A. L. Hodgkin and A. F. Huxley, “A Quantitative Description
of Membrane Current and Its Application to Conduction and
Excitation in Nerve,” J. Physiol. 117, 500-544 (1952).

6. F. A. Dodge, Jr. and J. W. Cooley, “Action Potential of the
Motorneuron,” IBM J. Res. & Dev. 17, No. 3, 219-229 (1973).

7. M. Hines, “Efficient Computation of Branched Nerve
Equations,” Int. J. Biomed. Comput. 15, No. 1, 69-76 (1984).

8. C. Koch and 1. Segev, Eds., Methods in Neuronal Modeling,
MIT Press, Cambridge, MA, 2001.

9. R.D. Traub and R. K. Wong, “Synchronized Burst Discharge
in Disinhibited Hippocampal Slice. II. Model of Cellular
Mechanism,” J. Neurophysiol. 49, 459-471 (1983).

10. L. Alonso-Nanclares, S. Anderson, G. Ascoli, R. Benavides-
Piccione, A. Burkhalter, G. Buzsaki, B. Cauli, et al., “Petilla
2005: Nomenclature of Features of GABAergic Interneurons
of the Cerebral Cortex”; see http://www.columbia.edu/cu/
biology|/faculty[yuste|petilla/petilla-webpages/Nomenclature|
PetillaNomenclaturefinal pdyf.

11. A. Stepanyants and D. B. Chklovskii, “Neurogeometry and
Potential Synaptic Connectivity,” Trends Neurosci. 28,
387-394 (2005).

12. K. Sfyrakis, F. Schuermann, A. Jan, and H. Markram,
“BlueBuilder: Building the Neocortical Column According to
Recipe,” FENS Forum 2006—Abstracts, A037.16, 2006.

13. J. R. Glaser and E. M. Glaser, “Neuron Imaging with
Neurolucida—A PC-Based System for Image Combining
Microscopy,” Comput. Med. Imaging. Graph. 14, No. 5,
307-317 (1990).

14. H. Markram, “A Network of Tufted Layer 5 Pyramidal
Neurons,” Cerebral Cortex 7, 523-533 (1997).

15. J. Kozloski, F. Hamzei-Sichani, and R. Yuste, “Stereotyped
Position of Local Synaptic Targets in Neocortex,” Science 293,
No. 5531, 868-872 (2001).

16. D. Eberly, Intersection of Cylinders, Geometric Tools, Inc.
(2000); see http:|lwww.geometrictools.com.

17. N. R. Adiga, G. Almasi, G. S. Almasi, Y. Aridor, R. Barik, D.
Beece, R. Bellofatto, et al., “An Overview of the Blue Gene/L
Supercomputer,” Proceedings of the ACM|IEEE Conference
on Supercomputing, 2002, pp. 1-22.

J. KOZLOSKI ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008



James Kozloski 1BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (kozloski@us.ibm.com). In 1999, Dr. Kozloski received his
Ph.D. degree in neuroscience from the University of Pennsylvania.
He subsequently held a research position at Columbia University
in the lab of Dr. Rafael Yuste, where he discovered stereotyped
positions of local synaptic targets in neocortex. He joined the
research staff of IBM in 2001, and in 2006, he was also named
Adjunct Assistant Professor at Columbia. Dr. Kozloski’s research
interests, primarily in computational biology, include structural
biology, neural system modeling, functional simulations of
neocortex, and molecular biology. He invents in the area of
neurotechnology, and designs parallel computing software
architectures and interfaces for both simulation and data analysis
problems in neuroscience.

Konstantinos Sfyrakis Blue Brain Laboratory, Brain Mind
Institute, Faculté des Sciences de la Vie, Ecole Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
(konstantinos.sfyrakis@epfi.ch). In 2001, Dr. Sfyrakis received his
Ph.D. degree in computational chemistry at Surrey University,
School of Biomedical and Molecular Science, United Kingdom. He
subsequently worked as a postdoctoral fellow at the Bernoulli
Institute of Mathematics, at EPFL, Switzerland, before joining the
Research and Development Group of the Brain Mind Institute at
EPFL. Currently, he designs and writes computing software
applications and interfaces for scientific problems in neuroscience.

Sean Hill 1BM Research Division, Thomas J. Watson Research
Center and the Blue Brain Project, Brain Mind Institute, Ecole
Polytechnique Fédeérale de Lausanne (EPFL), Station 15,

1015 Lausanne, Switzerland (seh@zurich.ibm.com). In 2000, Dr.
Hill received his Ph.D. degree in computational neuroscience from
the University of Lausanne. He subsequently joined the Research
Group of Dr. Giulio Tononi at the Neurosciences Institute in La
Jolla, California, and then moved with Dr. Tononi to the
University of Wisconsin, Madison, in 2001. He has developed
numerous large-scale models of neural systems and is the designer
and developer of the general-purpose neural simulator, Synthesis.
As part of his postdoctoral research, he developed the first large-
scale thalamocortical model that replicates neural activity during
wakefulness and sleep. He joined IBM Research and the Blue Brain
Project in May 2006 and now serves as Project Manager for
computational neuroscience area. His research interests include the
use of large-scale biologically realistic computer models to
understand information processing, network connectivity, and
synaptic plasticity in the brain.

Felix Schiirmann Biue Brain Laboratory, Brain Mind
Institute, Faculté des Sciences de la Vie, Ecole Polytechnique
Fédeérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
(felix.schuermann@epfi.ch). Dr. Schiirmann is the General Project
Manager of the Blue Brain Project and a postdoctoral fellow at the
Brain Mind Institute at the EPFL. He started his studies of physics
at the University of Heidelberg, Germany, supported by the
German National Academic Foundation. He obtained his M.S.
degree in physics from the State University of New York, Buffalo,
under the supervision of Richard Gonsalves. During this time, he
was a Fulbright Scholar. His master’s thesis dealt with the
foundations of computing, including the simulation of quantum
computing. In 2005, he received his Ph.D. degree in physics from
the University of Heidelberg, Germany, under the supervision of
Karlheinz Meier. His work focused on alternative approaches to
computing. Using mixed-signal very-large-scale integration
(VLSI), he co-designed an efficient implementation of a neural

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

network in hardware and was the first to adopt the theory of liquid
computing in hardware.

Charles Peck 1BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (cpeck@us.ibm.com). In 1994, Dr. Peck received his Ph.D.
degree in electrical engineering from the University of Cincinnati.
He currently leads the Biometaphorical Computing Research
Group at IBM, dedicated to analyzing and modeling the brain for
scientific, medical, and technology applications. This work includes
data-driven modeling via the Blue Brain collaboration with Ecole
Polytechnique Fédérale de Lausanne, as well as theory-driven
modeling of global brain function and individual structures, such
as the cortex, cerebellum, and basal ganglia. In 1998, while at the
Lockheed Martin Corporation, Dr. Peck was awarded the NOVA
Award for Technical Excellence, the corporation’s highest honor.
He was also selected by the National Academy of Engineering as
one of America’s top young engineers.

Henry Markram Blue Brain Laboratory, Brain Mind Institute,
Faculaté des Sciences de la Vie, Ecole Polytechnique Fédérale de
Lausanne (EPFL), 1015 Lausanne, Switzerland
(henry.markram@epfi.ch). Project Director of the Blue Brain
Project, Director of the Center for Neuroscience and Technology,
and Co-director of the Brain Mind Institute at EPFL, Dr.
Markram received his Ph.D. degree from the Weizmann Institute
of Science, was a Fulbright Scholar at the National Institutes of
Health, and a Minerva Fellow in the Laboratory of Bert Sakmann
at the Max Planck Institute, Heidelberg, Germany. Dr. Markram’s
many discoveries include being the first to alter the precise
relative timing of single presynaptic and postsynaptic action-
potentials to reveal spike timing-dependent synaptic plasticity. As
an assistant professor at the Weizmann Institute for Science, Israel,
he began systematically analyzing the neocortical column,
discovering novel synaptic learning mechanisms and a spectrum of
new principles governing neocortical microcircuit structure and
function. Together with Wolfgang Maass, he developed the theory
of liquid computing. In 2002, he moved to EPFL as full professor,
founder, and director of the Brain Mind Institute as well as
director of the Center for Neuroscience and Technology.

J. KOZLOSKI ET AL.

55



