Architecture of
Qbox: A scalable
first-principles
molecular
dynamics code

We describe the architecture of Qbox, a parallel, scalable first-
principles molecular dynamics (FPMD) code. Qbox is a C++/
Message Passing Interface implementation of FPMD based on the
plane-wave, pseudopotential method for electronic structure
calculations. It is built upon well-optimized parallel numerical
libraries, such as Basic Linear Algebra Communication
Subprograms (BLACS) and Scalable Linear Algebra Package
(ScaLAPACK), and also features an Extensible Markup
Language (XML) interface built on the Apache Xerces-C library.
We describe various choices made in the design of Qbox that led to
excellent scalability on large parallel computers. In particular, we
discuss the case of the IBM Blue Gene/L™ platform on which
Qbox was run using up to 65,536 nodes. Future design challenges
for upcoming petascale computers are also discussed. Examples of
applications of Qbox to a variety of first-principles simulations of
solids, liquids, and nanostructures are briefly described.

Introduction

First-principles molecular dynamics (FPMD) is an
atomistic simulation method that combines an accurate
description of electronic structure with the capability to
describe dynamical properties by means of molecular
dynamics (MD) simulations. This approach has met with
tremendous success since its introduction by Car and
Parrinello in 1985 [1]. Because of its unique combination
of accuracy and generality, it is widely used to investigate
the properties of solids, liquids, biomolecules, and, more
recently, nanoparticles. Corresponding with this success,
FPMD has also become one of the most important
consumers of computer cycles in many supercomputing
centers. This, in turn, has motivated research on the
optimization of the algorithms used in FPMD. The
success of FPMD can be partially attributed to the fact
that, in its original implementation, which was based on
Fourier representations of solutions, the method readily
benefited from mature and well-optimized numerical
algorithms, such as the fast Fourier transform (FFT) and
dense linear algebra. In the late 1980s, early
implementations of FPMD on vector computers

consistently achieved a sustained performance of about
50% of peak performance.

As a result of the need for simulations of increasing size
and the availability of parallel computers, FPMD code
design has been moving toward parallel implementations.
In the 1990s and early 2000s, the FPMD community
adapted to the change in computer architecture by
developing code that scaled to a few hundred processors
and maintained a similar ratio of peak performance. With
the advent of larger, massively parallel computers, such as
the IBM Blue Gene* supercomputer, the need to redesign
FPMD applications for large-scale parallelism grew
strong.

The Qbox project [2] was started in anticipation of the
first Blue Gene machine, the IBM Blue Gene/L* platform
[3], which was to be installed at the Lawrence Livermore
National Laboratory. With 65,536 nodes and 131,072
processors, the Blue Gene/L architecture required a
complete redesign of existing FPMD codes. The design of
Qbox was carried out with specific attention paid to the
requirement to distribute nearly all data structures on a
platform as large as the Blue Gene/L platform. A careful

©Copyright 2008 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/08/$5.00 © 2008 IBM

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

F. GYGI

137

138

distribution of tasks on subpartitions of the machine,
coupled with the use of highly optimized numerical
kernels and libraries, eventually led to excellent scaling on
the Blue Gene/L platform. This allowed Qbox to achieve
an exceptionally high floating-point performance
(207 Tflops, or 57% of peak) on the Blue Gene/L
supercomputer [3], for which the Qbox team was awarded
the 2006 Gordon Bell Prize for Peak Performance [4].
In this paper, we focus on the software architecture of
the Qbox code. After a brief description of the electronic
structure problem, we present the high-level software
abstractions used to solve it. We then discuss the
parallelization approach and provide some examples of
recent applications.

Electronic structure problem

The main computational task of FPMD is the calculation
of the electronic structure [5]. In Qbox, this is done within
the density functional theory formalism [6] by solving
the Kohn—Sham (KS) equations [7]. The KS equations
are a set of coupled partial differential equations whose
solutions are the electronic orbitals. The electronic charge
density depends on the electronic orbitals and, in turn,
enters the definition of the potential acting on the
electrons in a nonlinear way. This feedback mechanism
therefore requires a self-consistent approach in order to
reach a solution in which the electronic charge density is
consistent with the electronic potential. This is achieved
by solving the KS equations repeatedly, starting from an
initial guess of the electronic charge density and then
recomputing the electronic potential until it is unchanged
by further iterations.

The discretization of the KS equations using a plane-
wave basis results in a large eigenvalue problem. (A full
description of the plane-wave method is given in [5]).
Although the matrix representing the KS Hamiltonian
operator is dense in the Fourier basis, the calculation of a
matrix-vector product can be performed efficiently by
noting that the KS Hamiltonian is a sum of two operators
(the kinetic energy and the potential energy), which are,
respectively, sparse in Fourier space and in real space.
This property can be used to implement efficient iterative
eigensolvers for the KS equations. As a consequence, the
KS solutions must be transformed frequently between a
Fourier representation and a real-space representation.
This requires an efficient implementation of three-
dimensional (3D) FFTs. The solutions of the KS
equations must also be kept orthonormal during the
simulation. This constraint is enforced using a variety of
algorithms including the Gram-Schmidt procedure.' The
orthogonal constraints require an efficient

!Although the modified Gram-Schmidt algorithm is known to have better numerical
properties than the Gram-Schmidt algorithm, it is not needed here since the solutions
of the KS equations are always kept nearly orthogonal during the simulation.

F. GYGI

implementation of dense linear algebra operations for
large matrices. Qbox relies on the Scalable Linear
Algebra Package (ScaLAPACK) library [8] for the
implementation of parallel linear algebra operations.
ScaLAPACK is a parallel library of linear algebra
functions written in Fortran. It relies on the Basic Linear
Algebra Communication Subsystem (BLACS) library to
implement communication between processes.’

High-level abstractions and design

The high-level software components used in Qbox fall
into three main categories. The first category consists of
components providing a simulation infrastructure, such
as a command interpreter and a suitable user interface.
The second category (the Samp1e class hierarchy) includes
components describing the physical system being
simulated. A third category (the algorithm class
hierarchy) consists of various algorithms that allow the
user to modify and compute the time evolution of the
physical system. Efforts were made in the design of Qbox
to keep these categories as weakly coupled as possible.
For example, the user interface infrastructure is
independent of the problem of FPMD simulations and
could be reused for other applications. Well-established
guidelines of C4+ software design (e.g., [10]) were
adhered to as much as possible, in particular, in the goal
of limiting dependencies between components and
eliminating cyclic dependencies. Polymorphism was used
to ensure flexibility and extensibility of the main code
features, as illustrated in the next section. Multiple
inheritance was avoided, however, because of its
potential complexity [11]. C++ templates were not used in
Qbox except in the context of the Standard Template
Library (STL). This choice was the result of insufficient
support from compilers during the initial phase of the
design. Attempts were also made to use C++ exceptions
in some simple situations in which error recovery is
manageable.

Simulation infrastructure

At the core of the Qbox simulation infrastructure is a
command interpreter object (class UserInterface) that
reads commands from a C++ stream (standard input or
an input script) and executes them sequentially [12]. The
functionality of Qbox is defined by a collection of
command objects derived from an abstract Cmd base class.
User-defined parameters (e.g., the simulation timestep or
the wavefunction energy cutoff) are represented by a
collection of objects (or variables) derived from an
abstract Var class. The possibility of adding any number
of commands and variables to the user interface facilitates
the extension of Qbox to include new functionality. The

2Both ScaLAPACK and BLACS are available at [9].

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

Cmd class has a pure virtual action () member function
that defines the functionality of the command. Similarly,
the Var class has a pure virtual set () member function
that defines how a variable should be initialized by a user.
This use of polymorphism allows for a complete
decoupling of the user interface from the set of
commands and variables. The ability of the user interface
to read commands from a stream makes it possible to use
Qbox interactively, in batch mode, or in client-server
mode using UNIX**-named pipes.

Given the frequent use of dense linear algebra
operations in plane-wave electronic structure
calculations, we have developed auxiliary components to
facilitate such operations. The matrix classes
ComplexMatrix and DoubleMatrix encapsulate the
functionality of the ScaLAPACK parallel linear algebra
library. These matrix classes form a simple
implementation of a fagade design pattern [13] for the
ScaLAPACK library. No effort was made to overload
algebraic operators for matrix operations. The
complexity of operator overloading for matrices and the
corresponding difficulties in managing hidden temporary
objects have been described by Stroustrup [14]. The use
of C++ templates to parameterize matrix types (complex
or double) was also avoided. Finally, the possibility of
using a DoubleMatrix as a proxy for a ComplexMatrix
(and the reverse) is provided in the form of special
constructors for each matrix type.

Sample class hierarchy
Sample is a structure encapsulating all of the information
needed to describe the physical system being simulated
with Qbox. This includes the list of atomic species used
(e.g., carbon and oxygen) and their associated
pseudopotentials, the list of atomic positions and
velocities, the definition of the electronic wavefunction,
and the dimensions of the periodic unit cell. This
information is broken into separate components. Figure 1
shows the main components of the SampTe class in
Unified Modeling Language** (UML**) notation [15].
The AtomSet component encapsulates information
about the set of atoms currently defined in the simulation,
as well as a list of defined species. The Wavefunction
component can include multiple Slater determinants
(represented by the STaterDet class) in order to represent
the electronic structure at multiple k-points in the
Brillouin zone. Each ST1aterDet includes its own plane-
wave Basis object defined at the relevant k-point in the
Brillouin zone. The Fourier coefficients of the one-
particle wavefunctions are arranged into a rectangular
ComplexMatrix object that encapsulates the functionality
of a ScaLAPACK distributed matrix of complex, double-
precision numbers.

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

S1aterDet Un1tCe 1‘

Rackey

’Comp]exMatr1x Basis

Species

Figure 1

UML diagram of the main components of the Sample class
hierarchy.

Stepper class hierarchy

The algorithms used to modify the state of a Sample
during successive timesteps are generically called steppers
and are defined in a separate class hierarchy. This
separation effectively decouples the representation of a
sample from the methods used to describe its evolution.
The base class of all steppers is the abstract
SampleStepper class (Figure 2). Qbox currently includes
two types of steppers that encapsulate the algorithms for
Car—Parrinello [1] and Born—-Oppenheimer [5] MD.
Algorithms for the modification of wavefunctions are
further described by classes derived from the abstract
WavefunctionStepper class. Similarly, algorithms for
the modification of atomic positions are encapsulated in

SampleStepper

>I

CPSampleStepper BOSampleStepper

"

’ IonicStepper

’ MDIonicStepper

vl
’ MDWavefunctionStepper

’ WavefunctionStepper

UML diagrams of the SampleStepper hierarchy. Abstract classes
are specified using italic typeface.

F. GYGI

139

140

EnergyFunctional
1T !

1 1 1
A 4 A

’ XCPotential

NonLocalPotential

’ChargeDensity‘

1

Figure 3

UML diagram of the main components used by the
EnergyFunctional class. Abstract classes are specified using
italic typeface.

classes derived from IonicStepper. This use of
polymorphism allows the possibility of extending the set
of algorithms by derivation of additional stepper classes.
It also allows for the development of prototype
algorithms (i.e., new derived stepper classes) while
keeping the implementation of existing algorithms
unchanged.

Examples of classes derived from ITonicStepper
include those that implement the Verlet algorithm for
MD [16] or a steepest descent geometry optimization
algorithm. Similarly, a number of wavefunction
modification algorithms are implemented, including the
constrained Verlet algorithm for wavefunctions used in
Car—Parrinello dynamics [1] or variants of the steepest
descent optimization with preconditioning, Anderson
acceleration, or both [17].

The stepper algorithms described above use the
EnergyFunctional class (Figure 3), which includes
the algorithms needed to compute the KS energy and
its functional derivatives. EnergyFunctional relies
on a number of auxiliary components, including
ChargeDensity, NonLocalPotential, and XCPotential.
The XCPotential class uses an instance of one of
the classes LDAFunctional, PBEFunctional, or
BLYPFunctional, which are derived from the abstract
base class XCFunctional. These classes implement
various types of density functionals [6] and can be used
interchangeably. EnergyFunctional computes the
energy of a given Sample as well as the derivatives of the
KS energy with respect to its Wavefunction component,
its AtomSet component, or its UnitCell component.
These derivatives are, in turn, used by the various stepper
classes to update the Sample using specific algorithms.

F. GYGI

Parallel implementation

Qbox was designed for operation on massively parallel
platforms. Current terascale and future petascale
computers are typically characterized by the relatively
limited amount of memory available on each node. For a
simulation code to run on such platforms, it is necessary
to distribute all significant data structures across
various subparts of the machine. In Qbox, all the data
describing electronic wavefunctions is distributed.
Fourier coefficients of the wavefunctions are distributed
according to both the plane-wave index and the band
index, leading to a two-dimensional (2D) block matrix
distribution. Data structures such as the list of atomic
positions and forces or the list of atomic species use
comparatively little space and are therefore replicated on
each node.

An important consideration in the design of a parallel
electronic structure code is that not all data structures
should be distributed on the entire set of processors. The
electronic structure problem involves tasks of various
sizes. Most tasks cannot be performed on a single
node (for lack of memory) and cannot be performed
efficiently on a large number of nodes (e.g., 16K nodes)
because the computation-to-communication ratio
becomes unfavorable. For intermediate-sized tasks,
distribution on a subset of the nodes is more appropriate
and leads to faster execution. The calculation of the
electronic charge density from wavefunction Fourier
coeflicients provides an example of such a task. In that
calculation, the partial contributions to the charge density
from all one-particle wavefunctions must be computed
and then accumulated. The 3D FFT used to compute one
such contribution is too large to fit on a single node, yet
too small to be distributed over many thousands of
processors. Therefore, we adopt a mixed distribution in
which nodes are arranged in a rectangular array, or
process grid. Each column of the process grid hosts a set
of electronic wavefunctions. Thus, 3D FFTs involve
communication within columns of the process grid,
whereas the accumulation of partial charge density
contributions requires communication within rows of
the process grid. This approach avoids, as much as
possible, the use of global communications that involve
all nodes. This arrangement contributes to the
improvement of the scalability of the code.

Contexts and distributed objects

Defining subparts of a set of parallel tasks can be
implemented using Message Passing Interface (MPI)
communicators. However, some libraries, such as
ScaLAPACK, use context abstractions to represent
groups of parallel tasks. ScaLAPACK relies on the
BLACS context structure to define the subset of nodes on
which distributed matrices are defined. BLACS contexts

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

are organized as 2D rectangular process grids, which
facilitate communications used in parallel matrix
operations. In Qbox, a Context class was defined to
encapsulate the concept of a BLACS context. Each Qbox
distributed object holds a reference to a Context object
that effectively determines how the object is distributed.
Communication within a Context is performed using the
BLACS interface, implemented as member functions of
the Context class. The Context class is an example of the
facade design pattern [13]. In order to simplify the
management of distributed objects, it was decided that
the Context on which an object is defined must be chosen
at the time the object is created and cannot change during
the lifetime of the object. Similarly, a Context cannot
change size or shape during its lifetime. Since an instance
of Context can be shared by multiple objects, the issue of
ownership of a Context arises. This is solved by
implementing the Context class as a reference-counted
object. The implementation follows Meyers [18], although
it can be simplified because a Context is logically
immutable after its creation, therefore removing the need
for the copy-on-write mechanisms usually necessary for
reference-counted objects. Context objects provide a
flexible and powerful tool for the design of parallel codes
by allowing one to tailor the part of a computer on which
a particular task is performed. This concept is expected
to remain an important ingredient in future versions of
Qbox for large parallel platforms.

XML I/O interface

Qbox adheres to the quantum-simulation.org (QSO)
standard for the representation of FPMD simulation data
[19]. The QSO specification provides Extensible Markup
Language (XML) Schema definitions [20] for the
representation of a simulation sample and for the
representation of atomic species. Qbox uses the Apache
Xerces-C C++ library [21] to implement the various XML
parsers needed to input simulation data. Using a parser
library, such as Xerces-C, presents a number of
advantages. First, Xerces-C is well supported and
provides a large number of features that reflect the latest
development in the XML standard. Second, Xerces-C
parsers have the capability of validating XML documents
during the parsing process. This feature is used in Qbox
in order to provide an error-checking mechanism and
ensure that input documents conform to the QSO XML
Schema definitions. Third, the Xerces-C library provides
efficient C4+ implementations of the SAX (Simple API
for XML) and DOM (Document Object Model)
interfaces. This ensures faster execution of the parsing
process than would be obtained with parsers written in
interpreted languages. Finally, the Xerces-C parsers
include various types of network accessors that allow
Qbox to use Web-based XML documents by specifying

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

their Uniform Resource Identifier (URI) instead of a
filename.?

An XML document describing a sample contains all
the information needed to instantiate a Sample object.
The parsing process is implemented using the Xerces-C
SAX2XMLReader class. A StructuredDocumentHandler
class was defined in Qbox and derives from the SAX2
DefaultHandler class. It allows for a hierarchical
invocation of specialized handlers for each component
of Sample. Thus, the classes SampleHandler,
AtomSetHandler, SpeciesHandler, and
WavefunctionHandler are all derived from a
StructureHandler abstract class and encapsulate the
various phases of XML parsing needed to build the
components of Sample.

The full set of methods needed to read a sample
document is integrated into a SampleReader class, which
can be reused in various postprocessing codes. For
example, a visualization program that produces
isosurface plots of electronic wavefunctions uses instances
of the Sample and SampleReader classes. Keeping these
classes independent from the rest of Qbox simplifies the
development of postprocessing tools.

Keeping all the SampTe information in a single XML
document facilitates the management of simulation data,
as there is no need to ensure consistency between separate
files containing parts of the simulation data. However,
this also implies that a sample document can become very
large. Sample files for simulations that include hundreds
of atoms can rapidly grow to sizes of 2 GB to 5 GB or
more. This can lead to unacceptably long parsing times,
since the parsers implemented in the Xerces-C library are
inherently sequential. In order to alleviate this problem,
we have developed a parallel XML parsing strategy
for FPMD sample information. The approach is based
on the observation that the bulk of the data describing an
FPMD sample consists of the representation of the
wavefunctions. It is possible to preprocess this
information in order to reduce the size of the XML
document, which can then be parsed efficiently using the
Xerces-C library. The XML sample document is first
read into memory and then preprocessed to produce a
reduced XML document in a character buffer. The buffer
is then parsed by the Xerces-C parser. The combination
of parallel reading of XML documents and parallel
preprocessing of XML data considerably reduces the time
needed to load a sample file. For example, a sample
document of 8.8 GB can be loaded and parsed in about
50 seconds on 128 nodes of a Blue Gene/L platform.

The 1/O performance issue will likely become a
significant problem for FPMD simulations on petascale
computers. Parallelization of the 1/O process may

3For example, the document www.quantum-simulation.org/examples|species|
hydrogen_pbe.xml can be used by Qbox to define the species “hydrogen.”

F. GYGI

141

142

2 250
<
15
a .
2 200 ~--=-- 1k-point
2 —@— 4 k-points
g 150 —®— 8k-points
S
|5}
= 100
=
g ~
3 = -
%" 50 |- o
=]
=}
[0 1
0 16,384 32,768 49,152 65,536

Number of nodes

Qbox strong scaling results for 1,000 molybdenum atoms for
various k-points sampling schemes. The eight-k-point calculation
reaches a performance of 207 Tflops on 131,072 processors
(65,536 nodes), or 57% of the peak performance.

alleviate the problem. However, it is likely that new
developments, such as application-specific compression
algorithms, will be needed to remove that bottleneck.

Implementation and parallelization

The implementation of Qbox on the Blue Gene/L
platform benefits from highly tuned libraries that were
specially written to exploit the single-instruction,
multiple-data (SIMD) unit of the IBM PowerPC* 440
processor. In particular, single-node, hand-coded matrix
multiplication subroutines achieve more than 95% of the
peak performance [4]. These subroutines are included in
Qbox at link time and allow ScaLAPACK to achieve
near-ideal performance in distributed matrix operations.
Similarly, we use a specially developed version of the
Fastest Fourier Transform in the West (FFTW) library
[22, 23]. Libraries such as ScaLAPACK and BLACS are
deployed on a Blue Gene/L machine in a straightforward
manner. Other libraries such as Xerces-C require a
modified build process in order to be cross-compiled on
the front end of the Blue Gene/L system.

The Qbox parallelization strategy, and in particular the
avoidance of large-volume global communication, is well
suited to the torus network Blue Gene/L architecture.
The organization of communication into separate stages
along columns and rows of the process grid makes it
possible to achieve good performance with a limited
bisection bandwidth. The parallelization strategy consists
of first distributing the electronic wavefunctions
corresponding to different k-points (or boundary
conditions) to separate groups of processors. A
substantial part of the operations needed to update
electronic wavefunctions are performed separately on

F. GYGI

different k-points and do not involve communication
between these processor groups. Each processor group
is further divided into a 2D rectangular process grid.
Within a process grid, groups of electronic orbitals are
assigned to each column, while the Fourier coefficients of
the orbitals are grouped by rows. This data layout leads
to a minimum amount of communication between
processors during the computation. For example, Fourier
transforms of electronic orbitals involve communication
with process grid columns only, whereas the calculation
of the total electronic charge density involves
communication within process grid rows and between
processor groups only. Communication involving all
processors simultaneously is avoided. This organization
of communication is a major factor in the excellent
scalability observed with Qbox on the Blue Gene/L
platform. More details about the parallelization strategy
are given in [24].

Performance on the Blue Gene/L supercomputer
The data distribution described above allows Qbox to
scale well to very large numbers of processors. In
particular, on the Blue Gene/L platform, simulations
were run on up to 131,072 processors (65,536 nodes) at
the Lawrence Livermore National Laboratory. In the
largest problem solved using Qbox, the electronic
structure of a sample of 1,000 molybdenum atoms was
computed, including 12,000 electrons described by
electronic wavefunctions at eight separate k-points. The
scalability of Qbox for that application is shown in
Figure 4. The floating-point performance achieved in
that simulation was 207 Tflops, currently the highest
recorded for a scientific application.

The high performance obtained on the Blue Gene/L
machine can be attributed in part to the careful
organization of interprocessor communications and to
the availability of high-performance, hand-coded, single-
node kernels for matrix operations. These kernels are
described in more detail in [4].

Application examples

Because of the generality of density functional theory,
Qbox can be applied to the simulation of a wide variety of
physical systems. We briefly mention a few applications
that illustrate that diversity. FPMD simulations are now
routinely used to explore the properties of materials in
extreme conditions, that is, conditions that are difficult to
reproduce experimentally [25]. Recently, in a study of the
high-pressure properties of carbon, Qbox was used to
perform two-phase simulations [26, 27] that allow one to
pinpoint the location of phase transitions in the pressure—
temperature phase diagram [28]. FPMD simulations are
also used increasingly to complement experiments
performed on nanoparticles. In a recent investigation,

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

Dal Negro et al. used Qbox to compute the electronic and
optical properties of silicon nanocrystals [29]. Qbox has
also been used extensively to explore the properties of
liquid water [30, 31].

Conclusions and outlook

The architecture of Qbox has made it possible to use tens
of thousands of processors to perform first-principles
simulations. Such large-scale simulations are expected to
greatly enhance our ability to understand matter on the
atomic scale. Future implementations of FPMD on large-
scale parallel computers will provide an even more
powerful tool for detailed explorations of the properties
of materials. New implementations will also have to face
considerable challenges arising from the increasing
complexity of future computer architectures. In
particular, it is becoming apparent that future increases
in computer power will come not from an increase in
processor clock frequency, but rather from the
multiplication of functional units, for example, in the
form of multicore processors. Using such new
architectures efficiently may prove challenging and will
likely require substantial changes in the design of parallel
FPMD codes in the future.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of The Open
Group or Object Management Group, Inc., in the United States,
other countries, or both.

References

1. R. Car and M. Parrinello, “Unified Approach for Molecular
Dynamics and Density-Functional Theory,” Phys. Rev. Lett.
55, 2471-2474 (1985).

2. Qbox, Gygi Research Group, University of California, Davis;
see http:|leslab.ucdavis.edu.

3. N. R. Adiga, G. Almasi, Y. Aridor, R. Barik, D. Beece, R.
Bellofatto, G. Bhanot, et al., “An Overview of the Blue
Gene/L Supercomputer,” Proceedings of the ACM|IEEE 15th
Annual Supercomputing Conference (SC2002), Baltimore, MD,
2002, p. 60.

4. F. Gygi, E. W. Draeger, M. Schulz, B. R. de Supinski, J. A.
Gunnels, V. Austel, J. C. Sexton, et al., “Large-Scale
Electronic Structure Calculations of High-Z Metals on the
Blue Gene/L Platform,” Proceedings of the ACM|IEEE
Conference on Supercomputing, Tampa, FL, 2006;

Gordon Bell Prize for Peak Performance; see
http:|]sc06.supercomputing.org/schedule/pdf]gh104.pdf.

5. R. M. Martin, Electronic Structure: Basic Theory and Practical
Methods, Cambridge University Press, Cambridge, UK, 2004.

6. R. M. Dreizler and E. K. U. Gross, Density Functional Theory,
Springer-Verlag, Berlin, Germany, 1990.

7. W. Kohn and L. J. Sham, “Self-Consistent Equations
Including Exchange and Correlation Effects,” Phys. Rev. 140,
No. 4A, A1133-A1138 (1965).

8. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
1. Dhillon, J. Dongarra, et al., ScaLAPACK Users’ Guide,
Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.

9. The NetLib Repository; see http://www.netlib.org].

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

10. J. Lakos, Large-Scale C4++ Software Design, Addison-Wesley
Professional, Boston, MA, 1996.

11. S. Meyers, Effective C++: 50 Specific Ways to Improve Your
Programs and Design, Second Edition, Addison-Wesley
Professional, Boston, MA, 1997.

12. F. Gygi, Qbox User Guide, V 1.30.1, November 20006; see
http:|eslab.ucdavis.edu/software/Qbox/doc/
QboxUserGuide.pdf.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, Boston, MA, 1995.

14. B. Stroustrup, The C++ Programming Language, Third
Edition, Addison-Wesley Professional, Boston, MA, 1997.

15. M. Fowler and K. Scott, UML Distilled: A Brief Guide to the
Standard Object Modeling Language, Second Edition,
Addison-Wesley Professional, Boston, MA, 1999.

16. D. Frenkel and B. Smit, Understanding Molecular Simulation:
From Algorithms to Applications, Second Edition, Academic
Press, San Diego, CA, 2001.

17. D. G. Anderson, “Iterative Procedures for Nonlinear Integral
Equations,” J. ACM 12, No. 4, 547-560 (1965).

18. S. Meyers, More Effective C++: 35 New Ways to Improve Your
Programs and Designs, Addison-Wesley Professional, Boston,
MA, 1996.

19. Web standards for first-principles simulations; see
http:| lwww.quantum-simulation.org.

20. XML Schema Part 0: Primer Second Edition, D. C. Fallside
and P. Walmsley, Eds., W3C Recommendation, October 28,
2004; see http://www.w3.org/TR/xmlschema-0/.

21. The Apache XML Project, Xerces-C++, Version 2.7.0; see
http:||xml.apache.org/xerces-c|.

22. M. Frigo and S. G. Johnson, “FFTW: An Adaptive
Software Architecture for the FFT,” Proceedings of the
International Conference on Acoustics, Speech, and
Signal Processing, Seattle, WA, 1998; see
http:|/www. fftw.org/fftw-paper-icassp.pdf.

23. S. Kral, FFTW-GEL; see
http:|lwww.complang.tuwien.ac.at/skral/fftwgel.html.

24. F. Gygi, “Large-Scale First-Principles Molecular Dynamics:
Moving from Terascale to Petascale Computing,” J. Phys.
Conference Series 46, 268-277 (2000).

25. F. Gygi and G. Galli, “A4b Initio Simulation in Extreme
Conditions,” Materials Today 8, No. 11, 26-32 (2005).

26. T. Ogitsu, E. Schwegler, F. Gygi, and G. Galli, “Melting of
Lithium Hydride Under Pressure,” Phys. Rev. Lett. 91, No. 17,
175502-175506 (2003).

27. A. B. Belonoshko and L. S. Dubrovinsky, “Molecular
Dynamics of NaCl (Bl and B2) and MgO (B1) Melting: Two-
Phase Simulation,” American Mineralogist 81, No. 3/4,
303-316 (1996).

28. A. A. Correa, S. Bonev, and G. Galli, “Carbon under Extreme
Conditions: Phase Boundaries and Electronic Properties from
First-Principles Theory,” Proc. Natl. Acad. Sci. 103, No. 5,
1204-1208 (2000).

29. L. Dal Negro, S. Hamel, N. Zaitseva, J. H. Yi, A. Williamson,
M. Stolfi, J. Michel, G. Galli, and L. C. Kimerling, “Synthesis,
Characterization, and Modeling of Nitrogen-Passivated
Colloidal and Thin Film Silicon Nanocrystals,” IEEE J.
Selected Topics Quantum Electr. 12, No. 6, 1151-1163 (20006).

30. E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli,
“Towards an Assessment of the Accuracy of Density
Functional Theory for First Principles Simulations of Water.
11,” J. Chem. Phys. 121, No. 11, 5400-5409 (2004).

31. M. Allesch, E. Schwegler, F. Gygi, and G. Galli, “A First
Principles Simulation of Rigid Water,” J. Chem. Phys. 120,
No. 11, 5192-5198 (2004).

Received March 23, 2007, accepted for publication
May 25, 2007; Internet publication December 18, 2007

F. GYGI

143

144

Francois Gygi University of California at Davis, Department
of Applied Science, 3013 Engineering III, Davis, California 95616
(fgygi@ucdavis.edu). Dr. Gygi is Professor of Applied Science at
the University of California, Davis and is the architect of the
Qbox code. He holds a Ph.D. degree in physics from the Ecole
Polytechnique Fédérale, Lausanne, Switzerland, and he pursued
his research career at AT&T Bell Laboratories, IBM Zurich
Research Laboratory, and the Lawrence Livermore National
Laboratory. Dr. Gygi is the recipient of the 2006 ACM/IEEE
Gordon Bell Prize for Peak Performance for Qbox simulations on
the Blue Gene/L computer.

F. GYGI

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

