
Architecture of
Qbox: A scalable
first-principles
molecular
dynamics code

F. Gygi

We describe the architecture of Qbox, a parallel, scalable first-
principles molecular dynamics (FPMD) code. Qbox is a Cþþ/
Message Passing Interface implementation of FPMD based on the
plane-wave, pseudopotential method for electronic structure
calculations. It is built upon well-optimized parallel numerical
libraries, such as Basic Linear Algebra Communication
Subprograms (BLACS) and Scalable Linear Algebra Package
(ScaLAPACK), and also features an Extensible Markup
Language (XML) interface built on the Apache Xerces-C library.
We describe various choices made in the design of Qbox that led to
excellent scalability on large parallel computers. In particular, we
discuss the case of the IBM Blue Gene/Le platform on which
Qbox was run using up to 65,536 nodes. Future design challenges
for upcoming petascale computers are also discussed. Examples of
applications of Qbox to a variety of first-principles simulations of
solids, liquids, and nanostructures are briefly described.

Introduction

First-principles molecular dynamics (FPMD) is an

atomistic simulation method that combines an accurate

description of electronic structure with the capability to

describe dynamical properties by means of molecular

dynamics (MD) simulations. This approach has met with

tremendous success since its introduction by Car and

Parrinello in 1985 [1]. Because of its unique combination

of accuracy and generality, it is widely used to investigate

the properties of solids, liquids, biomolecules, and, more

recently, nanoparticles. Corresponding with this success,

FPMD has also become one of the most important

consumers of computer cycles in many supercomputing

centers. This, in turn, has motivated research on the

optimization of the algorithms used in FPMD. The

success of FPMD can be partially attributed to the fact

that, in its original implementation, which was based on

Fourier representations of solutions, the method readily

benefited from mature and well-optimized numerical

algorithms, such as the fast Fourier transform (FFT) and

dense linear algebra. In the late 1980s, early

implementations of FPMD on vector computers

consistently achieved a sustained performance of about

50% of peak performance.

As a result of the need for simulations of increasing size

and the availability of parallel computers, FPMD code

design has been moving toward parallel implementations.

In the 1990s and early 2000s, the FPMD community

adapted to the change in computer architecture by

developing code that scaled to a few hundred processors

and maintained a similar ratio of peak performance. With

the advent of larger, massively parallel computers, such as

the IBM Blue Gene* supercomputer, the need to redesign

FPMD applications for large-scale parallelism grew

strong.

The Qbox project [2] was started in anticipation of the

first Blue Gene machine, the IBM Blue Gene/L* platform

[3], which was to be installed at the Lawrence Livermore

National Laboratory. With 65,536 nodes and 131,072

processors, the Blue Gene/L architecture required a

complete redesign of existing FPMD codes. The design of

Qbox was carried out with specific attention paid to the

requirement to distribute nearly all data structures on a

platform as large as the Blue Gene/L platform. A careful

�Copyright 2008 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 F. GYGI

137

0018-8646/08/$5.00 ª 2008 IBM

distribution of tasks on subpartitions of the machine,

coupled with the use of highly optimized numerical

kernels and libraries, eventually led to excellent scaling on

the Blue Gene/L platform. This allowed Qbox to achieve

an exceptionally high floating-point performance

(207 Tflops, or 57% of peak) on the Blue Gene/L

supercomputer [3], for which the Qbox team was awarded

the 2006 Gordon Bell Prize for Peak Performance [4].

In this paper, we focus on the software architecture of

the Qbox code. After a brief description of the electronic

structure problem, we present the high-level software

abstractions used to solve it. We then discuss the

parallelization approach and provide some examples of

recent applications.

Electronic structure problem
The main computational task of FPMD is the calculation

of the electronic structure [5]. In Qbox, this is done within

the density functional theory formalism [6] by solving

the Kohn–Sham (KS) equations [7]. The KS equations

are a set of coupled partial differential equations whose

solutions are the electronic orbitals. The electronic charge

density depends on the electronic orbitals and, in turn,

enters the definition of the potential acting on the

electrons in a nonlinear way. This feedback mechanism

therefore requires a self-consistent approach in order to

reach a solution in which the electronic charge density is

consistent with the electronic potential. This is achieved

by solving the KS equations repeatedly, starting from an

initial guess of the electronic charge density and then

recomputing the electronic potential until it is unchanged

by further iterations.

The discretization of the KS equations using a plane-

wave basis results in a large eigenvalue problem. (A full

description of the plane-wave method is given in [5]).

Although the matrix representing the KS Hamiltonian

operator is dense in the Fourier basis, the calculation of a

matrix-vector product can be performed efficiently by

noting that the KS Hamiltonian is a sum of two operators

(the kinetic energy and the potential energy), which are,

respectively, sparse in Fourier space and in real space.

This property can be used to implement efficient iterative

eigensolvers for the KS equations. As a consequence, the

KS solutions must be transformed frequently between a

Fourier representation and a real-space representation.

This requires an efficient implementation of three-

dimensional (3D) FFTs. The solutions of the KS

equations must also be kept orthonormal during the

simulation. This constraint is enforced using a variety of

algorithms including the Gram–Schmidt procedure.1 The

orthogonal constraints require an efficient

implementation of dense linear algebra operations for

large matrices. Qbox relies on the Scalable Linear

Algebra Package (ScaLAPACK) library [8] for the

implementation of parallel linear algebra operations.

ScaLAPACK is a parallel library of linear algebra

functions written in Fortran. It relies on the Basic Linear

Algebra Communication Subsystem (BLACS) library to

implement communication between processes.2

High-level abstractions and design
The high-level software components used in Qbox fall

into three main categories. The first category consists of

components providing a simulation infrastructure, such

as a command interpreter and a suitable user interface.

The second category (the Sample class hierarchy) includes

components describing the physical system being

simulated. A third category (the algorithm class

hierarchy) consists of various algorithms that allow the

user to modify and compute the time evolution of the

physical system. Efforts were made in the design of Qbox

to keep these categories as weakly coupled as possible.

For example, the user interface infrastructure is

independent of the problem of FPMD simulations and

could be reused for other applications. Well-established

guidelines of Cþþ software design (e.g., [10]) were

adhered to as much as possible, in particular, in the goal

of limiting dependencies between components and

eliminating cyclic dependencies. Polymorphism was used

to ensure flexibility and extensibility of the main code

features, as illustrated in the next section. Multiple

inheritance was avoided, however, because of its

potential complexity [11]. Cþþ templates were not used in

Qbox except in the context of the Standard Template

Library (STL). This choice was the result of insufficient

support from compilers during the initial phase of the

design. Attempts were also made to use Cþþ exceptions

in some simple situations in which error recovery is

manageable.

Simulation infrastructure

At the core of the Qbox simulation infrastructure is a

command interpreter object (class UserInterface) that

reads commands from a Cþþ stream (standard input or

an input script) and executes them sequentially [12]. The

functionality of Qbox is defined by a collection of

command objects derived from an abstract Cmd base class.

User-defined parameters (e.g., the simulation timestep or

the wavefunction energy cutoff) are represented by a

collection of objects (or variables) derived from an

abstract Var class. The possibility of adding any number

of commands and variables to the user interface facilitates

the extension of Qbox to include new functionality. The
1Although the modified Gram–Schmidt algorithm is known to have better numerical
properties than the Gram–Schmidt algorithm, it is not needed here since the solutions
of the KS equations are always kept nearly orthogonal during the simulation. 2Both ScaLAPACK and BLACS are available at [9].

F. GYGI IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

138

Cmd class has a pure virtual action () member function

that defines the functionality of the command. Similarly,

the Var class has a pure virtual set () member function

that defines how a variable should be initialized by a user.

This use of polymorphism allows for a complete

decoupling of the user interface from the set of

commands and variables. The ability of the user interface

to read commands from a stream makes it possible to use

Qbox interactively, in batch mode, or in client–server

mode using UNIX**-named pipes.

Given the frequent use of dense linear algebra

operations in plane-wave electronic structure

calculations, we have developed auxiliary components to

facilitate such operations. The matrix classes

ComplexMatrix and DoubleMatrix encapsulate the

functionality of the ScaLAPACK parallel linear algebra

library. These matrix classes form a simple

implementation of a façade design pattern [13] for the

ScaLAPACK library. No effort was made to overload

algebraic operators for matrix operations. The

complexity of operator overloading for matrices and the

corresponding difficulties in managing hidden temporary

objects have been described by Stroustrup [14]. The use

of Cþþ templates to parameterize matrix types (complex

or double) was also avoided. Finally, the possibility of

using a DoubleMatrix as a proxy for a ComplexMatrix

(and the reverse) is provided in the form of special

constructors for each matrix type.

Sample class hierarchy

Sample is a structure encapsulating all of the information

needed to describe the physical system being simulated

with Qbox. This includes the list of atomic species used

(e.g., carbon and oxygen) and their associated

pseudopotentials, the list of atomic positions and

velocities, the definition of the electronic wavefunction,

and the dimensions of the periodic unit cell. This

information is broken into separate components. Figure 1

shows the main components of the Sample class in

Unified Modeling Language** (UML**) notation [15].

The AtomSet component encapsulates information

about the set of atoms currently defined in the simulation,

as well as a list of defined species. The Wavefunction

component can include multiple Slater determinants

(represented by the SlaterDet class) in order to represent

the electronic structure at multiple k-points in the

Brillouin zone. Each SlaterDet includes its own plane-

wave Basis object defined at the relevant k-point in the

Brillouin zone. The Fourier coefficients of the one-

particle wavefunctions are arranged into a rectangular

ComplexMatrix object that encapsulates the functionality

of a ScaLAPACK distributed matrix of complex, double-

precision numbers.

Stepper class hierarchy

The algorithms used to modify the state of a Sample

during successive timesteps are generically called steppers

and are defined in a separate class hierarchy. This

separation effectively decouples the representation of a

sample from the methods used to describe its evolution.

The base class of all steppers is the abstract

SampleStepper class (Figure 2). Qbox currently includes

two types of steppers that encapsulate the algorithms for

Car–Parrinello [1] and Born–Oppenheimer [5] MD.

Algorithms for the modification of wavefunctions are

further described by classes derived from the abstract

WavefunctionStepper class. Similarly, algorithms for

the modification of atomic positions are encapsulated in

Figure 1

UML diagram of the main components of the Sample class

hierarchy.

Sample

WavefunctionAtomSet

SlaterDet

Basis

Atom Species

ComplexMatrix

1 1

1

1

1

1 1

1

1

1

1

UnitCell

1

1 1

Figure 2

UML diagrams of the SampleStepper hierarchy. Abstract classes

are specified using italic typeface.

SampleStepper

WavefunctionStepper

IonicStepper

MDWavefunctionStepper

1

1

1

1

BOSampleStepperCPSampleStepper

1 1

1 1

MDIonicStepper

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 F. GYGI

139

classes derived from IonicStepper. This use of

polymorphism allows the possibility of extending the set

of algorithms by derivation of additional stepper classes.

It also allows for the development of prototype

algorithms (i.e., new derived stepper classes) while

keeping the implementation of existing algorithms

unchanged.

Examples of classes derived from IonicStepper

include those that implement the Verlet algorithm for

MD [16] or a steepest descent geometry optimization

algorithm. Similarly, a number of wavefunction

modification algorithms are implemented, including the

constrained Verlet algorithm for wavefunctions used in

Car–Parrinello dynamics [1] or variants of the steepest

descent optimization with preconditioning, Anderson

acceleration, or both [17].

The stepper algorithms described above use the

EnergyFunctional class (Figure 3), which includes

the algorithms needed to compute the KS energy and

its functional derivatives. EnergyFunctional relies

on a number of auxiliary components, including

ChargeDensity, NonLocalPotential, and XCPotential.

The XCPotential class uses an instance of one of

the classes LDAFunctional, PBEFunctional, or

BLYPFunctional, which are derived from the abstract

base class XCFunctional. These classes implement

various types of density functionals [6] and can be used

interchangeably. EnergyFunctional computes the

energy of a given Sample as well as the derivatives of the

KS energy with respect to its Wavefunction component,

its AtomSet component, or its UnitCell component.

These derivatives are, in turn, used by the various stepper

classes to update the Sample using specific algorithms.

Parallel implementation
Qbox was designed for operation on massively parallel

platforms. Current terascale and future petascale

computers are typically characterized by the relatively

limited amount of memory available on each node. For a

simulation code to run on such platforms, it is necessary

to distribute all significant data structures across

various subparts of the machine. In Qbox, all the data

describing electronic wavefunctions is distributed.

Fourier coefficients of the wavefunctions are distributed

according to both the plane-wave index and the band

index, leading to a two-dimensional (2D) block matrix

distribution. Data structures such as the list of atomic

positions and forces or the list of atomic species use

comparatively little space and are therefore replicated on

each node.

An important consideration in the design of a parallel

electronic structure code is that not all data structures

should be distributed on the entire set of processors. The

electronic structure problem involves tasks of various

sizes. Most tasks cannot be performed on a single

node (for lack of memory) and cannot be performed

efficiently on a large number of nodes (e.g., 16K nodes)

because the computation-to-communication ratio

becomes unfavorable. For intermediate-sized tasks,

distribution on a subset of the nodes is more appropriate

and leads to faster execution. The calculation of the

electronic charge density from wavefunction Fourier

coefficients provides an example of such a task. In that

calculation, the partial contributions to the charge density

from all one-particle wavefunctions must be computed

and then accumulated. The 3D FFT used to compute one

such contribution is too large to fit on a single node, yet

too small to be distributed over many thousands of

processors. Therefore, we adopt a mixed distribution in

which nodes are arranged in a rectangular array, or

process grid. Each column of the process grid hosts a set

of electronic wavefunctions. Thus, 3D FFTs involve

communication within columns of the process grid,

whereas the accumulation of partial charge density

contributions requires communication within rows of

the process grid. This approach avoids, as much as

possible, the use of global communications that involve

all nodes. This arrangement contributes to the

improvement of the scalability of the code.

Contexts and distributed objects

Defining subparts of a set of parallel tasks can be

implemented using Message Passing Interface (MPI)

communicators. However, some libraries, such as

ScaLAPACK, use context abstractions to represent

groups of parallel tasks. ScaLAPACK relies on the

BLACS context structure to define the subset of nodes on

which distributed matrices are defined. BLACS contexts

Figure 3

UML diagram of the main components used by the

EnergyFunctional class. Abstract classes are specified using

italic typeface.

EnergyFunctional

XCPotential

1

1

1

1

NonLocalPotentialChargeDensity

1

1

1

XCFunctional

F. GYGI IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

140

are organized as 2D rectangular process grids, which

facilitate communications used in parallel matrix

operations. In Qbox, a Context class was defined to

encapsulate the concept of a BLACS context. Each Qbox

distributed object holds a reference to a Context object

that effectively determines how the object is distributed.

Communication within a Context is performed using the

BLACS interface, implemented as member functions of

the Context class. The Context class is an example of the

façade design pattern [13]. In order to simplify the

management of distributed objects, it was decided that

the Context on which an object is defined must be chosen

at the time the object is created and cannot change during

the lifetime of the object. Similarly, a Context cannot

change size or shape during its lifetime. Since an instance

of Context can be shared by multiple objects, the issue of

ownership of a Context arises. This is solved by

implementing the Context class as a reference-counted

object. The implementation follows Meyers [18], although

it can be simplified because a Context is logically

immutable after its creation, therefore removing the need

for the copy-on-write mechanisms usually necessary for

reference-counted objects. Context objects provide a

flexible and powerful tool for the design of parallel codes

by allowing one to tailor the part of a computer on which

a particular task is performed. This concept is expected

to remain an important ingredient in future versions of

Qbox for large parallel platforms.

XML I/O interface

Qbox adheres to the quantum-simulation.org (QSO)

standard for the representation of FPMD simulation data

[19]. The QSO specification provides Extensible Markup

Language (XML) Schema definitions [20] for the

representation of a simulation sample and for the

representation of atomic species. Qbox uses the Apache

Xerces-C Cþþ library [21] to implement the various XML

parsers needed to input simulation data. Using a parser

library, such as Xerces-C, presents a number of

advantages. First, Xerces-C is well supported and

provides a large number of features that reflect the latest

development in the XML standard. Second, Xerces-C

parsers have the capability of validating XML documents

during the parsing process. This feature is used in Qbox

in order to provide an error-checking mechanism and

ensure that input documents conform to the QSO XML

Schema definitions. Third, the Xerces-C library provides

efficient Cþþ implementations of the SAX (Simple API

for XML) and DOM (Document Object Model)

interfaces. This ensures faster execution of the parsing

process than would be obtained with parsers written in

interpreted languages. Finally, the Xerces-C parsers

include various types of network accessors that allow

Qbox to use Web-based XML documents by specifying

their Uniform Resource Identifier (URI) instead of a

filename.3

An XML document describing a sample contains all

the information needed to instantiate a Sample object.

The parsing process is implemented using the Xerces-C

SAX2XMLReader class. A StructuredDocumentHandler

class was defined in Qbox and derives from the SAX2

DefaultHandler class. It allows for a hierarchical

invocation of specialized handlers for each component

of Sample. Thus, the classes SampleHandler,

AtomSetHandler, SpeciesHandler, and

WavefunctionHandler are all derived from a

StructureHandler abstract class and encapsulate the

various phases of XML parsing needed to build the

components of Sample.

The full set of methods needed to read a sample

document is integrated into a SampleReader class, which

can be reused in various postprocessing codes. For

example, a visualization program that produces

isosurface plots of electronic wavefunctions uses instances

of the Sample and SampleReader classes. Keeping these

classes independent from the rest of Qbox simplifies the

development of postprocessing tools.

Keeping all the Sample information in a single XML

document facilitates the management of simulation data,

as there is no need to ensure consistency between separate

files containing parts of the simulation data. However,

this also implies that a sample document can become very

large. Sample files for simulations that include hundreds

of atoms can rapidly grow to sizes of 2 GB to 5 GB or

more. This can lead to unacceptably long parsing times,

since the parsers implemented in the Xerces-C library are

inherently sequential. In order to alleviate this problem,

we have developed a parallel XML parsing strategy

for FPMD sample information. The approach is based

on the observation that the bulk of the data describing an

FPMD sample consists of the representation of the

wavefunctions. It is possible to preprocess this

information in order to reduce the size of the XML

document, which can then be parsed efficiently using the

Xerces-C library. The XML sample document is first

read into memory and then preprocessed to produce a

reduced XML document in a character buffer. The buffer

is then parsed by the Xerces-C parser. The combination

of parallel reading of XML documents and parallel

preprocessing of XML data considerably reduces the time

needed to load a sample file. For example, a sample

document of 8.8 GB can be loaded and parsed in about

50 seconds on 128 nodes of a Blue Gene/L platform.

The I/O performance issue will likely become a

significant problem for FPMD simulations on petascale

computers. Parallelization of the I/O process may

3For example, the document www.quantum-simulation.org/examples/species/
hydrogen_pbe.xml can be used by Qbox to define the species ‘‘hydrogen.’’

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 F. GYGI

141

alleviate the problem. However, it is likely that new

developments, such as application-specific compression

algorithms, will be needed to remove that bottleneck.

Implementation and parallelization
The implementation of Qbox on the Blue Gene/L

platform benefits from highly tuned libraries that were

specially written to exploit the single-instruction,

multiple-data (SIMD) unit of the IBM PowerPC* 440

processor. In particular, single-node, hand-coded matrix

multiplication subroutines achieve more than 95% of the

peak performance [4]. These subroutines are included in

Qbox at link time and allow ScaLAPACK to achieve

near-ideal performance in distributed matrix operations.

Similarly, we use a specially developed version of the

Fastest Fourier Transform in the West (FFTW) library

[22, 23]. Libraries such as ScaLAPACK and BLACS are

deployed on a Blue Gene/L machine in a straightforward

manner. Other libraries such as Xerces-C require a

modified build process in order to be cross-compiled on

the front end of the Blue Gene/L system.

The Qbox parallelization strategy, and in particular the

avoidance of large-volume global communication, is well

suited to the torus network Blue Gene/L architecture.

The organization of communication into separate stages

along columns and rows of the process grid makes it

possible to achieve good performance with a limited

bisection bandwidth. The parallelization strategy consists

of first distributing the electronic wavefunctions

corresponding to different k-points (or boundary

conditions) to separate groups of processors. A

substantial part of the operations needed to update

electronic wavefunctions are performed separately on

different k-points and do not involve communication

between these processor groups. Each processor group

is further divided into a 2D rectangular process grid.

Within a process grid, groups of electronic orbitals are

assigned to each column, while the Fourier coefficients of

the orbitals are grouped by rows. This data layout leads

to a minimum amount of communication between

processors during the computation. For example, Fourier

transforms of electronic orbitals involve communication

with process grid columns only, whereas the calculation

of the total electronic charge density involves

communication within process grid rows and between

processor groups only. Communication involving all

processors simultaneously is avoided. This organization

of communication is a major factor in the excellent

scalability observed with Qbox on the Blue Gene/L

platform. More details about the parallelization strategy

are given in [24].

Performance on the Blue Gene/L supercomputer
The data distribution described above allows Qbox to

scale well to very large numbers of processors. In

particular, on the Blue Gene/L platform, simulations

were run on up to 131,072 processors (65,536 nodes) at

the Lawrence Livermore National Laboratory. In the

largest problem solved using Qbox, the electronic

structure of a sample of 1,000 molybdenum atoms was

computed, including 12,000 electrons described by

electronic wavefunctions at eight separate k-points. The

scalability of Qbox for that application is shown in

Figure 4. The floating-point performance achieved in

that simulation was 207 Tflops, currently the highest

recorded for a scientific application.

The high performance obtained on the Blue Gene/L

machine can be attributed in part to the careful

organization of interprocessor communications and to

the availability of high-performance, hand-coded, single-

node kernels for matrix operations. These kernels are

described in more detail in [4].

Application examples
Because of the generality of density functional theory,

Qbox can be applied to the simulation of a wide variety of

physical systems. We briefly mention a few applications

that illustrate that diversity. FPMD simulations are now

routinely used to explore the properties of materials in

extreme conditions, that is, conditions that are difficult to

reproduce experimentally [25]. Recently, in a study of the

high-pressure properties of carbon, Qbox was used to

perform two-phase simulations [26, 27] that allow one to

pinpoint the location of phase transitions in the pressure–

temperature phase diagram [28]. FPMD simulations are

also used increasingly to complement experiments

performed on nanoparticles. In a recent investigation,

Figure 4

Qbox strong scaling results for 1,000 molybdenum atoms for

various k-points sampling schemes. The eight-k-point calculation

reaches a performance of 207 Tflops on 131,072 processors

(65,536 nodes), or 57% of the peak performance.

0 16,384 32,768 49,152 65,536

Number of nodes

F
lo

at
in

g
-p

o
in

t
p
er

fo
rm

an
ce

(T

fl
o
p
s)

1 k-point

4 k-points

8 k-points

0

50

100

150

200

250

F. GYGI IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

142

Dal Negro et al. used Qbox to compute the electronic and

optical properties of silicon nanocrystals [29]. Qbox has

also been used extensively to explore the properties of

liquid water [30, 31].

Conclusions and outlook
The architecture of Qbox has made it possible to use tens

of thousands of processors to perform first-principles

simulations. Such large-scale simulations are expected to

greatly enhance our ability to understand matter on the

atomic scale. Future implementations of FPMD on large-

scale parallel computers will provide an even more

powerful tool for detailed explorations of the properties

of materials. New implementations will also have to face

considerable challenges arising from the increasing

complexity of future computer architectures. In

particular, it is becoming apparent that future increases

in computer power will come not from an increase in

processor clock frequency, but rather from the

multiplication of functional units, for example, in the

form of multicore processors. Using such new

architectures efficiently may prove challenging and will

likely require substantial changes in the design of parallel

FPMD codes in the future.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of The Open
Group or Object Management Group, Inc., in the United States,
other countries, or both.

References
1. R. Car and M. Parrinello, ‘‘Unified Approach for Molecular

Dynamics and Density-Functional Theory,’’ Phys. Rev. Lett.
55, 2471–2474 (1985).

2. Qbox, Gygi Research Group, University of California, Davis;
see http://eslab.ucdavis.edu.

3. N. R. Adiga, G. Almási, Y. Aridor, R. Barik, D. Beece, R.
Bellofatto, G. Bhanot, et al., ‘‘An Overview of the Blue
Gene/L Supercomputer,’’ Proceedings of the ACM/IEEE 15th
Annual Supercomputing Conference (SC2002), Baltimore, MD,
2002, p. 60.

4. F. Gygi, E. W. Draeger, M. Schulz, B. R. de Supinski, J. A.
Gunnels, V. Austel, J. C. Sexton, et al., ‘‘Large-Scale
Electronic Structure Calculations of High-Z Metals on the
Blue Gene/L Platform,’’ Proceedings of the ACM/IEEE
Conference on Supercomputing, Tampa, FL, 2006;
Gordon Bell Prize for Peak Performance; see
http://sc06.supercomputing.org/schedule/pdf/gb104.pdf.

5. R. M. Martin, Electronic Structure: Basic Theory and Practical
Methods, Cambridge University Press, Cambridge, UK, 2004.

6. R. M. Dreizler and E. K. U. Gross, Density Functional Theory,
Springer-Verlag, Berlin, Germany, 1990.

7. W. Kohn and L. J. Sham, ‘‘Self-Consistent Equations
Including Exchange and Correlation Effects,’’ Phys. Rev. 140,
No. 4A, A1133–A1138 (1965).

8. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, et al., ScaLAPACK Users’ Guide,
Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.

9. The NetLib Repository; see http://www.netlib.org/.

10. J. Lakos, Large-Scale Cþþ Software Design, Addison-Wesley
Professional, Boston, MA, 1996.

11. S. Meyers, Effective Cþþ: 50 Specific Ways to Improve Your
Programs and Design, Second Edition, Addison-Wesley
Professional, Boston, MA, 1997.

12. F. Gygi, Qbox User Guide, V 1.30.1, November 2006; see
http://eslab.ucdavis.edu/software/Qbox/doc/
QboxUserGuide.pdf.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, Boston, MA, 1995.

14. B. Stroustrup, The Cþþ Programming Language, Third
Edition, Addison-Wesley Professional, Boston, MA, 1997.

15. M. Fowler and K. Scott, UML Distilled: A Brief Guide to the
Standard Object Modeling Language, Second Edition,
Addison-Wesley Professional, Boston, MA, 1999.

16. D. Frenkel and B. Smit, Understanding Molecular Simulation:
From Algorithms to Applications, Second Edition, Academic
Press, San Diego, CA, 2001.

17. D. G. Anderson, ‘‘Iterative Procedures for Nonlinear Integral
Equations,’’ J. ACM 12, No. 4, 547–560 (1965).

18. S. Meyers, More Effective Cþþ: 35 New Ways to Improve Your
Programs and Designs, Addison-Wesley Professional, Boston,
MA, 1996.

19. Web standards for first-principles simulations; see
http://www.quantum-simulation.org.

20. XML Schema Part 0: Primer Second Edition, D. C. Fallside
and P. Walmsley, Eds., W3C Recommendation, October 28,
2004; see http://www.w3.org/TR/xmlschema-0/.

21. The Apache XML Project, Xerces-Cþþ, Version 2.7.0; see
http://xml.apache.org/xerces-c/.

22. M. Frigo and S. G. Johnson, ‘‘FFTW: An Adaptive
Software Architecture for the FFT,’’ Proceedings of the
International Conference on Acoustics, Speech, and
Signal Processing, Seattle, WA, 1998; see
http://www.fftw.org/fftw-paper-icassp.pdf.

23. S. Kral, FFTW-GEL; see
http://www.complang.tuwien.ac.at/skral/fftwgel.html.

24. F. Gygi, ‘‘Large-Scale First-Principles Molecular Dynamics:
Moving from Terascale to Petascale Computing,’’ J. Phys.
Conference Series 46, 268–277 (2006).

25. F. Gygi and G. Galli, ‘‘Ab Initio Simulation in Extreme
Conditions,’’ Materials Today 8, No. 11, 26–32 (2005).

26. T. Ogitsu, E. Schwegler, F. Gygi, and G. Galli, ‘‘Melting of
Lithium Hydride Under Pressure,’’ Phys. Rev. Lett. 91, No. 17,
175502–175506 (2003).

27. A. B. Belonoshko and L. S. Dubrovinsky, ‘‘Molecular
Dynamics of NaCl (B1 and B2) and MgO (B1) Melting: Two-
Phase Simulation,’’ American Mineralogist 81, No. 3/4,
303–316 (1996).

28. A. A. Correa, S. Bonev, and G. Galli, ‘‘Carbon under Extreme
Conditions: Phase Boundaries and Electronic Properties from
First-Principles Theory,’’ Proc. Natl. Acad. Sci. 103, No. 5,
1204–1208 (2006).

29. L. Dal Negro, S. Hamel, N. Zaitseva, J. H. Yi, A. Williamson,
M. Stolfi, J. Michel, G. Galli, and L. C. Kimerling, ‘‘Synthesis,
Characterization, and Modeling of Nitrogen-Passivated
Colloidal and Thin Film Silicon Nanocrystals,’’ IEEE J.
Selected Topics Quantum Electr. 12, No. 6, 1151–1163 (2006).

30. E. Schwegler, J. C. Grossman, F. Gygi, and G. Galli,
‘‘Towards an Assessment of the Accuracy of Density
Functional Theory for First Principles Simulations of Water.
II,’’ J. Chem. Phys. 121, No. 11, 5400–5409 (2004).

31. M. Allesch, E. Schwegler, F. Gygi, and G. Galli, ‘‘A First
Principles Simulation of Rigid Water,’’ J. Chem. Phys. 120,
No. 11, 5192–5198 (2004).

Received March 23, 2007; accepted for publication

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 F. GYGI

143

May 25, 2007; Internet publication December 18, 2007

François Gygi University of California at Davis, Department
of Applied Science, 3013 Engineering III, Davis, California 95616
(fgygi@ucdavis.edu). Dr. Gygi is Professor of Applied Science at
the University of California, Davis and is the architect of the
Qbox code. He holds a Ph.D. degree in physics from the Ecole
Polytechnique Fédérale, Lausanne, Switzerland, and he pursued
his research career at AT&T Bell Laboratories, IBM Zurich
Research Laboratory, and the Lawrence Livermore National
Laboratory. Dr. Gygi is the recipient of the 2006 ACM/IEEE
Gordon Bell Prize for Peak Performance for Qbox simulations on
the Blue Gene/L computer.

F. GYGI IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

144

