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Biologically detailed large-scale models of the brain can now be
simulated thanks to increasingly powerful massively parallel
supercomputers. We present an overview, for the general technical
reader, of a neuronal network model of layers II/III of the
neocortex built with biophysical model neurons. These simulations,
carried out on an IBM Blue Gene/Le supercomputer, comprise up
to 22 million neurons and 11 billion synapses, which makes them
the largest simulations of this type ever performed. Such model
sizes correspond to the cortex of a small mammal. The SPLIT
library, used for these simulations, runs on single-processor as well
as massively parallel machines. Performance measurements show
good scaling behavior on the Blue Gene/L supercomputer up to
8,192 processors. Several key phenomena seen in the living brain
appear as emergent phenomena in the simulations. We discuss the
role of this kind of model in neuroscience and note that full-scale
models may be necessary to preserve natural dynamics. We also
discuss the need for software tools for the specification of models as
well as for analysis and visualization of output data. Combining
models that range from abstract connectionist type to biophysically
detailed will help us unravel the basic principles underlying
neocortical function.

Introduction

Within a volume of 1,400 cm3, the human brain provides

a computing capacity vastly surpassing that of today’s

supercomputers while consuming only 20 W of power.

The 20 billion neurons in our cerebral cortex, together

with the connectivity supplied by the millions of

kilometers of axons in the underlying white matter [1], are

thought to subserve most of our higher functions, such as

emotion, planning, thought, and memory. While a

century of intense study has produced a huge body of

hard scientific facts about neurons, their interactions, and

the cortical architecture, the principles of cortical

information processing remain enigmatic.

One of the reasons for this is that while experimental

techniques have provided data at a brain-scale level and

at the single-cell level, data at the intermediate network

level is still scarce. Improvements in existing methodology

and novel techniques, such as multielectrode recordings

and calcium imaging [2], are beginning to fill this gap.

This development must be paralleled by the strong

development of hypotheses and quantitative models of

cortical network function in order to guide experiments

and the interpretation of experimental data.

The aim of this paper is to show the general technical

reader how large-scale simulation of brain networks on

supercomputers can bridge a range of spatial scales of

brain organization and work as an interface between

functional hypotheses of network computation and

empirical data. The models used in the simulations we

present are substantially upscaled versions of the model in

Lundqvist et al. [3]. In order to be able to run simulations

of this size, we have made a series of adaptations to our

simulation software [4]. Novel results include the

description of a dynamic ground state (the state when not
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actively recalling a memory) showing alpha-like

oscillations and the presentation of an artificial voltage-

sensitive dye signal [5].

Large-scale models of the brain

The structure of the nervous system has several spatial

scales with substructures such as molecules, synapses,

neurons, microcircuits, networks, regions, and systems

(see, e.g., Churchland and Sejnowski [6]). Models are

often formulated on a single or a few of these scales. In

simulations of brain imaging data, the state variables of

the model often correspond to regions or groups of

neurons [7]. When simulating a neuron, the state variables

can be variables gating ionic currents of the excitable

membrane.

When addressing questions concerning areas where

dynamics at the level of the neuron and at the synapse

have an effect at the network level, the model must span

all of these levels. As a consequence, we get a large set of

state variables, i.e., a large-scale model [8]. In this paper,

we report a model with 22 million neurons, 11 billion

synapses, and on the order of 40 billion state variables. It

should be noted, though, that a large number of state

variables does not necessarily imply a large number of

parameters. For example, members of a specific cell type

may share a basic set of parameters across an entire

neuronal population.

It is difficult to understand a global brain network from

modeling only a local network of some hundred cells,

such as a cortical minicolumn (see the section

‘‘Minicolumns in the cerebral cortex’’ below), or from

dramatically subsampling the global network by letting

one model neuron represent an entire cortical column or

area. One reason is that using small or subsampled

network models leads to unnatural connectivity and

dynamics.

A network model comprises neurons modeled after

empirical data. Just like their real counterparts, these

model neurons require sufficient synaptic input current to

become activated. In a small network, model neurons are

bound to have very few presynaptic neurons. Thus, it is

necessary to exaggerate either connection density or

synaptic conductance, and most of the time, both are

necessary.

This results in a network with a few but strong signals

circulating—a stark contrast to the real cortical network

in which many weak signals interact. Such differences

tend to significantly distort the network dynamics. For

example, artificial synchronization can easily arise,

which is a problem, especially as synchronization is one

of the more important phenomena one might want to

study. By modeling the full network with a one-to-one

correspondence between real and model neurons, such

problems are avoided.

Bottom-up and top-down

The bottom-up approach to modeling means using the

level of physical realization as a starting point with the

hope of capturing function as an emergent phenomenon.

What does the anatomy of the cerebral cortex mean? If

we can, from the physical level of synapses, dendrites,

neurons, and networks, identify computational primitives

of the cortex, such primitives can be abstracted, and

we can move up one level of analysis. This strategy is

currently pursued in ambitious modeling projects,

such as the Blue Brain Project [9, 10], which has as one of

its goals the building of a model cortical column on an

IBM Blue Gene/L* (BG/L) supercomputer. The growing

availability of detailed experimental data will make this

type of model increasingly worthwhile, especially since we

are now awaiting the results of an industrial-scale

dissection of the cortical column at the nanoscale level

[11].

However, when modeling the complex and intricate

structure of the cortex, it turns out that we may need

information from additional sources. Some model

parameters are well constrained by experiment, while

others (e.g., the structure of long-range connectivity) are

still largely unknown. Hypotheses of cortical function, as

expressed in more abstract models, can guide model

development in selecting which elements to include, in

giving additional constraints, and in filling in where

empirical data is still missing. This is the top-down

approach to modeling.

In practice, the approach of the modeler is usually

neither purely top-down nor purely bottom-up. The

model described here is the result of an integration of

functional constraints given by a theoretical view of the

neocortex as an associative attractor memory network

and empirical constraints given by cortical anatomy and

physiology. (Attractor is a concept in the theory of

dynamic systems; see the next section.)

Cell assemblies and attractor networks

The view of the cortex as an attractor network originated

more than 50 years ago in Hebb’s cell assembly theory

[12] (see, e.g., Fuster [13] for a review). Hebb suggested

that the functional unit of the cortex is a subset of

neurons that are repeatedly active together, and that such

a cell assembly is the basis of mental representation. The

thought of an apple would invoke one cell assembly, and

the thought of an orange another. The theory has since

been mathematically instantiated in the form of the

Willshaw–Palm [14, 15] and Little–Hopfield models [16]

and has subsequently been elaborated on and analyzed in

great detail [17, 18]. This has resulted in the view of the

persistent firing of cell assemblies as attractors in a

dynamical system.

M. DJURFELDT ET AL. IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

32



An attractor is a set of points in the phase space such

that a trajectory that gets close enough will remain close.

Activating enough cells of a cell assembly will cause more

and more of the assembly to become activated—the

system evolves toward the attractor. Because of

nonlinearity, a memory network can have multiple

attractors, each representing one memory. The

connections in the network form the landscape of

attractors. When the state of the system evolves into the

attractor, the memory has been recalled. If a memory is a

conjunction of attributes, activating a subset of attributes

will put the system close to the attractor representing the

memory, leading to the recall of the full conjunction—the

network has made an association.

The olfactory cortex [19] and the hippocampal CA3

field [20] have previously been perceived and modeled as

prototypical neuronal autoassociative attractor memory

networks. More recently, sustained activity in an

attractor memory of a similar kind has been proposed to

underlie prefrontal working memory [21].

Minicolumns in the cerebral cortex

If cell assemblies or attractor states are the basis of

cortical function, how do they relate to cortical anatomy?

In a classic work on the visual system, Hubel and Wiesel

[22] penetrated the primary visual cortex with a recording

electrode. They found that cells responded most strongly

to a specific orientation of an oblong bar in the visual

field and that the preferred angle seemed to shift

discretely as the electrode moved tangentially to the

cortical surface while cells along a line normal to the

surface tended to have similar response properties. They

deduced that the basic unit of cortical organization must

be what they called a functional column and suggested

that the cortex is a lattice of such columns. They also

suggested that sets of such columns are grouped into

larger entities, hypercolumns, that together form a

complete representation of all possible attribute values

within each region of retinotopic space.

Later, Mountcastle [23] suggested the concept of

anatomical minicolumns. These were described in detail by

Peters and Sethares [24]. Could such a minicolumn,

consisting of some hundred neurons, be the basic

functional unit of the cortex? If so, a Hebbian cell

assembly may consist of a set of such columns, and the

activation of these columns would correspond to entering

a dynamic attractor of the cortical network. Here, we

note that the same cortical tissue can have multiple,

overlapping maps of different stimulus attributes, such as

orientation, direction, and ocular dominance. Also, the

spatial organization of stimulus attributes in sensory

cortices varies across species, and the fact that there is still

no firm evidence connecting functional with anatomical

columns means that the hypothesis of the column as the

basic functional unit of the cortex remains controversial.

An alternative possibility would be that a local cluster of

interconnected anatomical minicolumns serves as a

functional unit.

The organization of the visual cortex into minicolumns

and hypercolumns has inspired our view of cortical

associative memory, which has been expressed in the form

of an abstract neural network model [25–27] and in

biophysically detailed models [3, 28].

The work of Johansson and Lansner [29] presents

hypothetical estimates of the number of available

minicolumns and hypercolumns in the brains of a number

of mammals (Table 1). Their data is based on the

assumption of an average minicolumn diameter of 40 lm
and a hypercolumn diameter of 400 lm.

The model
On the basis of anatomical criteria, the cerebral cortex is

divided into six layers ranging from the cortical surface to

the gray matter to white matter border. The pattern of

connections suggests different roles for these layers. For

example, incoming connections typically contact layer IV,

while layers II/III send outgoing connections to areas

further down a processing stream. The simulations in this

paper are based upon a model of layers II/III of the

association cortex of the rat. It is an upscaled version of

the model presented by Lundqvist et al. [3].

The overall architecture of our model is shown in

Figure 1. Figure 1(a) illustrates the geometric layout of a

subset of 100 hypercolumns in the plane of the cortical

sheet, each marked with a distinct color. Each

hypercolumn consists of 100 minicolumns. Figure 1(b)

shows the schematic connectivity of the model. Each

minicolumn contains 30 pyramidal cells that excite each

other through short-range axons. Pyramidal cells project

locally as well as to pyramidal cells in other minicolumns

that belong to the same cell assembly and to regular-

spiking nonpyramidal (RSNP) cells in minicolumns

Table 1 Estimates of the number of minicolumns and hypercolumns for a selection of mammals.

Human Macaque Cat Rat Mouse

Minicolumns 2.0 � 108 2.0 � 107 6.1 � 106 5.0 � 105 1.6 � 105

Hypercolumns 2.0 � 106 2.0 � 105 6.1 � 104 5.0 � 103 1.6 � 103
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belonging to other assemblies. The basket cell normalizes

activity in the local hypercolumn. RSNP cells provide

local inhibition of pyramidal cells.

The long-range projection between distant minicolumns

constitutes the memory matrix of the attractor memory

and defines the cell assemblies: Only minicolumns

belonging to the same memory pattern or cell assembly

excite each other.

Each hypercolumn also contains a population of

100 inhibitory basket cells, which are excited by the

pyramidal cells of that hypercolumn. The basket cells, in

turn, inhibit the pyramidal cells of that hypercolumn,

thereby providing a mechanism for normalization of

activity. This enables the hypercolumn to operate like a

winner-take-all module in which different patterns can

compete. Each minicolumn also contains two inhibitory

RSNP cells, which contact the local pyramidal cells. The

abstract neural network model upon which the long-

range connectivity of the present model is based suggests

an additional way in which cell assemblies can compete.

This competition has been realized through long-range

axons from pyramidal cells to RSNP cells of minicolumns

that belong to other cell assemblies. Since RSNP cells

inhibit pyramidal cells within the local minicolumn, the

activity of targeted assemblies will be suppressed. Such

connections have not yet been identified anatomically.

Connectivity is otherwise compatible with experimental

data, to the extent that it is available. However, for

simplicity, we have made the borders of minicolumns and

hypercolumns sharp, in contrast to the local

approximately Gaussian structure observed

experimentally (see, e.g., Buzás et al. [30]). For details, see

Lundqvist et al. [3]. A separate set of cells model cortical

layer IV, which provides input to the pyramidal cells

described above. External input to the attractor memory

is provided as simulated synaptic events in these cells.

Cells are modeled using the Hodgkin–Huxley

formalism [31, 32] in which the cell membrane potential

V(t) of a neural compartment is expressed as the

differential equation

C
m

dV

dt
¼ I

comp
þ I

cond
þ I

syn
; ð1Þ

where Cm is the membrane capacitance, Icomp the sum of

currents from adjacent compartments, Icond the sum of

ionic currents through channels in the cell membrane, and

Isyn the sum of synaptic currents. The electrical behavior

of the cell is determined by the ionic currents that are

described through activation and inactivation variables.

For example, the delayed rectifier current, carried by

potassium ions, is described by

I
Kr
¼ ðE

Kr
� VðtÞÞG

Kr
n
4
: ð2Þ

Here, n is an activation function described by

dn

dt
¼ a

n
ð1� nÞ � b

n
n; ð3Þ

where an and bn depend nonlinearly on V(t). A pyramidal

cell in our model consists of six compartments. Each

compartment has one state variable representing the

membrane potential and carries up to five ionic currents,

with one to two state variables per current. Some

compartments have a flow of calcium into an intracellular

store, which is represented by an additional state variable.

Furthermore, some synapses carry a separate flow of

calcium with yet another associated state variable.

Synapses are generally governed by three state variables,

one for the degree of opening and two for short-term

changes in synapse strength (facilitation and depression).

For the simulations in Lundqvist et al. [3] and here,

an orthogonal set of nonoverlapping memory patterns

Figure 1

Model architecture: (a) the geometric layout of 100 hypercolumns 

consisting of 100 minicolumns each; (b) schematic connectivity of 

the model. 
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was formed. One minicolumn was selected from each

hypercolumn to form one pattern. A long-range connection

between two distant minicolumns was formed

stochastically if the two minicolumns belonged to the

same pattern. Thus, each pyramidal cell received long-

range excitation from only a subset of the cells in the

pattern. Similarly, each RSNP cell received excitation

from a subset of pyramidal cells belonging to

minicolumns of foreign patterns.

SPLIT simulator
The development of parallel simulation in computational

neuroscience has been relatively slow. Today, there are

few publicly available parallel simulators, and they are

not nearly as general, flexible, and well documented as the

more commonly used serial simulators, such as Neuron

[33, 34] and Genesis [35, 36]. However, there is some

ongoing development. For Genesis there is PGenesis, and

the parallel version of Neuron has just been released. In

addition, there exists simulators such as NeoCortical

Simulation (NCS) [37], Neural Simulation Toolbox

(NEST) [38], and our own parallelizing simulator SPLIT

[39]. However, they are in many ways still in the

experimental and developmental stage.

The SPLIT simulator [39] was developed in the mid-

1990s with the aim of exploring how to efficiently use the

resources of various parallel computer architectures for

large-scale biophysically detailed neuronal-network

simulations. The simulator has also served as a platform

for experiments with communication algorithms.

SPLIT takes the form of a Cþþ library that is linked

into the user program. The SPLIT application

programming interface is provided by an object of the

class split, which is the only means of communicating

with the library. The user program specifies the model

using method calls on the split object. The user program

is serial and can be linked with a serial or parallel version

of the library. Parallelism is thus completely hidden from

the user. In the parallel case, the serial user program runs

in a master process that communicates, through

mechanisms internal to the SPLIT library, with a set of

slave processes. On clusters, SPLIT uses Message Passing

Interface (MPI).

The library exploits data locality for better cache-based

performance. To benefit from vector architectures, state

variables are stored in sequence. It uses adjacency lists for

compact representation of the neural projections and

address event representation (AER) for spike events [40].

The neurons in the model can be distributed arbitrarily

over the set of slaves. This gives great freedom in

optimizing communication so that densely connected

neurons reside on the same CPU and so that axonal

delays between neurons simulated on different slaves are

maximized. This way, CPUs do not have to communicate

as often, giving higher efficiency.

SPLIT also makes use of a novel abstraction, the

connection-set algebra, which implements an efficient

domain decomposition of the connectivity metadata.

With connection-set algebra, network connectivity

structure can be described in a modular way. It provides a

set of basic types of connectivity structure and a set of

operators by which it is possible to describe new types of

connectivity as combinations of existing types [4].

Figure 2

Speedup for a simulation of a model with 4 million cells and 2 

billion synapses on the BG/L platform. Data points up to 2,048 

processors were collected on the Rochester BG/L system, while 

the last data point was obtained on the Watson Research BG/L 

system. (t: time; P: number of tasks.)
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Raster plot for a simulation of 49 hypercolumns with 100 minicol-

umns per hypercolumn. 
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We ran our simulations on the BG/L system

installations at IBM Rochester, Minnesota, at the IBM

Thomas J. Watson Research Center, Yorktown Heights,

New York, and at The Royal Institute of Technology

(KTH), Stockholm. Figure 2 shows the speedup for a

model with 4 million cells and 2 billion synapses on the

BG/L platform up to 4,096 processors. Data points up to

2,048 processors were collected on the Rochester BG/L

platform, while the last data point was obtained on the

Watson Research BG/L platform. Results are given for 1

second of simulated time. The last run (4,096 processors)

took 1,205 seconds.

Simulation results
Figure 3 shows the spiking activity of a simulation of 49

hypercolumns (100 minicolumns each). Each row of the

raster plot shows the spikes of one neuron. The lower

portion of the raster (the first 9,800 cells) shows activity in

all RSNP cells, the mid-portion (147,000 cells) shows the

pyramidal cells, and the upper portion (4,900 cells) shows

the basket cells. The long-range pyramidal–pyramidal

and pyramidal–RSNP synapses store orthogonal

memories. As a consequence of stimulation of the cells in

layer IV between 0.5 seconds and 0.64 seconds and

between 1.5 seconds and 1.64 seconds, the network state

can be seen switching from a ground state to an active

memory state. Only cells in layer IV representing a part of

one of the memory patterns stored in the inter-

hypercolumnar memory matrix are stimulated. This

partial pattern is quickly completed to the full memory

pattern. This behavior was robust for all memories

stored, and it shows that on a population level (although

each pyramidal cell connects only to a random subset of

cells in the pattern), the cells have formed a cell assembly

corresponding to the pattern. Apart from pattern

completion, the model is capable of all the functionality

usually ascribed to attractor networks, such as noise

reduction and resolution of ambiguity.

One of the experimental techniques used to study

activity in populations of real neurons is to record changes

in the color of a voltage-sensitive dye (VSD). Figure 4

shows a synthesized VSD signal for a model network with

49 hypercolumns during three phases of activity. The

signal was computed as the low-pass filtered sum of the

membrane potentials of all cells in each minicolumn.

Figure 4(a) shows the ground state condition, and

Figure 4(b) shows the VSD signal just after stimulation of

a partial pattern. In Figure 4(c), the network has

completed the shift to the active memory state.

In the present version of the model, the ground state is

characterized by oscillations at a frequency of

approximately 15 Hz [Figure 5(a)], where the oscillations

of individual minicolumns are phase-locked to other

minicolumns in the hypercolumn. The coexistence of a

stable ground state with active memory states was first

Figure 4

Simulated VSD signal of 4,900 minicolumns in a simulated 

cortical patch of size 3 � 3 mm: (a) the ground state with waves of 

hypercolumnar activity; (b) a part of a memory pattern is 

stimulated through layer IV; (c) the network has attained an 

attractor memory state.
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shown in a model of delay period activity in the

prefrontal cortex [41] and has been further analyzed in,

e.g., [42]. In the ground state of our model, pyramidal

cells fire at about 0.1 Hz. The 15-Hz rhythm thus emerges

as a collective network-level phenomenon. The fact that it

appears only when there is no input to the network and

the network is not in one of its active memory states is

suggestive of the class of alpha rhythms, which has been

proposed to reflect cortical idling [43]. This frequency lies

close to the alpha band and is consistent with the cat mu

rhythm [44].

In the active state, only the pyramidal cells of a single

minicolumn are active in each hypercolumn. In this state,

pyramidal cells fire at 10–15 Hz, basket cells at 50 Hz, and

RSNP cells at 25–35 Hz. One particularly interesting

phenomenon, which consistently arises in our simulations

for a broad range of parameters and all model sizes, is a

rhythmic modulation of pyramidal cell activity with a

frequency of 25–40 Hz [Figure 5(a)]. It occurs only during

active states and is reminiscent of the gamma-band

activity observed in working memory tasks [45].

Our model exhibits some emergent phenomena that

have also been observed in the brain. When the network

attains an active memory state, pyramidal cells

participating in the active cell assembly are bombarded

with synaptic events. This elevates their membrane

potential so that the global shift of dynamic state is

reflected in a shift of their membrane potential from a

hyperpolarized state to a more depolarized state.

Figure 5(b) shows a model pyramidal neuron undergoing

Figure 5
Characterization of dynamic states of the model: (a) normalized power spectrum for a VSD signal from one minicolumn; (b) a model 

pyramidal neuron switching from a hyperpolarized state (similar to a down state) to a more depolarized state (similar to an up state) and back; 

(c) membrane potential histogram; (d) exponentially distributed activity of pyramidal cells in the depolarized state in a network with 25 

hypercolumns.
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such a shift. The mean membrane potential becomes

elevated at t ¼ 2.5 s as a result of network activity when

the neuron starts participating in an active attractor state.

The attractor state was activated through simulated

electrical stimulation of other member neurons.

These states are very similar, respectively, to the down

and up states that have been observed physiologically [46,

47]. These shifts cause many cells to have a bimodal

distribution of membrane potentials [Figure 5(c)], also

consistent with physiology [48]. Despite the regularities

seen on a network level, the firing of individual pyramidal

cells is Poisson distributed in the active state [Figure 5(d)],

which shows exponentially distributed activity of

pyramidal cells in the depolarized state in a network with

25 hypercolumns. Inter-spike intervals (ISIs) (9,443

spikes) were collected from all pyramidal cells during a

total of 2 seconds of simulated time when the network

was in a globally active state, i.e., one in which a subset of

cells shows up-state activity. The logarithm of the

distribution of ISI was plotted as a function of ISI length.

An exponential distribution was fitted to the data and is

shown as a straight line (r2 was 0.98 for the exponential fit

and 0.86 for a power-law distribution [not shown]).

Again, this result is consistent with physiology [see, e.g.,

Bédard et al. [49]). One particularly attractive feature of

the model is that it is robust to the perturbation of

parameters [3], which is to be expected from a biological

system.

At the Thomas J. Watson Research Center, we had the

opportunity to perform a run on 8,192 processors on the

BG/L system. The model chosen for that run is the largest

full-scale Hodgkin–Huxley type of model of a cortical

patch ever simulated. The simulation, running in

coprocessor mode, occupied 336 MB of memory at each

node, giving a total of 2.8 TB. We simulated 22 million

neurons and 11 billon synapses, which corresponds to a

cortical surface area of 16 cm2, comparable to the cortex

of a small mammal. While real pyramidal cells have

10,000 synapses, the average number of synapses per

neuron is only 500 in our model because of both the

orthogonality of the memory matrix and the lack of

connections to other cortical areas. One answer we sought

was whether such a large patch of cortex could maintain a

stable attractor state despite the significant propagation

delays caused by axonal conduction time. The simulation

showed that this is indeed the case.

Discussion
Real vertebrate neuronal networks typically comprise

millions of neurons and billions of synaptic connections.

They have a complex and intricate structure, including a

modular and layered layout of the neurons at several

levels (e.g., cortical minicolumns, hypercolumns, and

areas). It can still be useful to model a single module or

microcircuit in isolation (e.g., in relation to a

correspondingly reduced experimental in vitro

preparation, such as a cortical slice), but such a module is,

by definition, a component in a much larger network. In a

real nervous system, it is embedded in a mosaic of other

modules and receives afferent input from multiple other

sources. We may therefore need to consider an entire

network of modules.

However, partly because of limited computing

resources, computational studies have often focused on

problems that can be approached at the cellular and

small-network levels (e.g., the emergence and dynamics of

local receptive fields in the primary visual cortex [50]).

Modeling at the large-network level poses specific

challenges, but ultimately we believe that it is necessary to

build models that take global and dynamic network

interactions into account if we are to understand the

functioning of a neuronal system. We have demonstrated

that today’s computing technology makes such

simulations possible.

One application of biologically detailed, large-scale

neuronal network models is to study the network effects

of pharmacological manipulations. This can be done in

great detail to answer such questions as ‘‘Does the

addition of the drug alter the firing patterns of a

particular neuron?’’ and ‘‘What happens to the activity of

a large ensemble of neurons?’’ It might even be possible to

study effects on functional properties, such as memory

function. Other types of manipulations are also possible,

including the addition or removal of different cell types or

the rearrangement of connectivity patterns.

Large-scale network models will help to bridge the

gap between the neuronal and synaptic phenomena and

the phenomenology of global brain states and dynamics,

as observed by such techniques as extracellular

recording, local field potential, electroencephalogram,

magnetoencephalography, VSD, and blood-oxygenation-

level-dependent signal.

Models of working memory and persistent activity (see,

e.g., Tegnér et al. [51] and Compte et al. [21]) usually rely

on local, purely Gaussian connectivity. The model

presented here is unique in that it incorporates the more

long-range, patchy connectivity that is observed

anatomically. In our model, this connectivity stems from

pyramidal cells contacting distant minicolumns. The

model makes use of two types of inhibitory interneurons

to achieve natural firing rates of the ground state and

active states of the cortical network.

Some care is required when comparing the results in

Figure 4 to a real VSD signal. First, the real VSD signal

usually has a somewhat lower spatial resolution. Second,

the visualization in Figure 4 is shaped by some artificial

features of connectivity structure in the present model.

Minicolumn and hypercolumn connectivity is delimited

by sharp boundaries, which is not the case in the

neocortex. While it is likely that this difference does not
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cause a major change in network dynamics, a more

diffuse connectivity would cause a smoother VSD signal.

We will address this issue in future work. Third,

topographical representations of attributes, present in

many areas of the brain, would give rise to denser

connections with nearby minicolumns than those far

away. This is likely to give a more wavelike organization

to the alpha-like oscillations of the ground state shown in

Figure 4(a). In addition, the thalamus, not included in

our model, might be even more important than the cortex

in shaping such rhythms [44].

We are currently working on extending the present

model with a layer V and a more complete model of layer

IV. These extensions will enable modeling of systems

consisting of more than one cortical area. An exciting

possibility is, then, to use information from connectivity

databases, such as the collation of connectivity data on

the macaque brain (CoCoMac) [52], in determining the

architecture of the larger network.

Conclusion
We have presented full-scale, biologically detailed

models of layers II/III of the cerebral cortex at a scale

corresponding to the cortex of a small mammal. These

models combine the functional hypothesis of the cortex

as an attractor memory network with empirical

constraints of known anatomy and physiology. The

models do indeed have the capabilities of an abstract

attractor memory network, such as pattern completion

and resolution of ambiguities, while at the same time

they display some of the phenomenology of the living

brain.

Computational neuroscience will benefit greatly from

the current development of new, affordable, massively

parallel computers likely to enter the market in the next

few years. This development constitutes an enabling

technology for the modeling of complex and large-scale

neuronal networks representing multiple cortical areas

and systems. This kind of model can be used to link

dynamic phenomena at the cellular and synaptic levels to

behavior.
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