Brain-scale

simulation of the
neocortex on the
IBM Blue Gene/L

supercomputer

Biologically detailed large-scale models of the brain can now be
simulated thanks to increasingly powerful massively parallel
supercomputers. We present an overview, for the general technical
reader, of a neuronal network model of layers II/III of the
neocortex built with biophysical model neurons. These simulations,
carried out on an IBM Blue Gene/L™ supercomputer, comprise up
to 22 million neurons and 11 billion synapses, which makes them
the largest simulations of this type ever performed. Such model
sizes correspond to the cortex of a small mammal. The SPLIT
library, used for these simulations, runs on single-processor as well
as massively parallel machines. Performance measurements show
good scaling behavior on the Blue Gene/L supercomputer up to
8,192 processors. Several key phenomena seen in the living brain
appear as emergent phenomena in the simulations. We discuss the
role of this kind of model in neuroscience and note that full-scale
models may be necessary to preserve natural dynamics. We also
discuss the need for software tools for the specification of models as
well as for analysis and visualization of output data. Combining
models that range from abstract connectionist type to biophysically
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detailed will help us unravel the basic principles underlying

neocortical function.

Introduction

Within a volume of 1,400 cm?, the human brain provides
a computing capacity vastly surpassing that of today’s
supercomputers while consuming only 20 W of power.
The 20 billion neurons in our cerebral cortex, together
with the connectivity supplied by the millions of
kilometers of axons in the underlying white matter [1], are
thought to subserve most of our higher functions, such as
emotion, planning, thought, and memory. While a
century of intense study has produced a huge body of
hard scientific facts about neurons, their interactions, and
the cortical architecture, the principles of cortical
information processing remain enigmatic.

One of the reasons for this is that while experimental
techniques have provided data at a brain-scale level and
at the single-cell level, data at the intermediate network
level is still scarce. Improvements in existing methodology

and novel techniques, such as multielectrode recordings
and calcium imaging [2], are beginning to fill this gap.
This development must be paralleled by the strong
development of hypotheses and quantitative models of
cortical network function in order to guide experiments
and the interpretation of experimental data.

The aim of this paper is to show the general technical
reader how large-scale simulation of brain networks on
supercomputers can bridge a range of spatial scales of
brain organization and work as an interface between
functional hypotheses of network computation and
empirical data. The models used in the simulations we
present are substantially upscaled versions of the model in
Lundquvist et al. [3]. In order to be able to run simulations
of this size, we have made a series of adaptations to our
simulation software [4]. Novel results include the
description of a dynamic ground state (the state when not

©Copyright 2008 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/08/$5.00 © 2008 IBM

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

M. DJURFELDT ET AL.

31



32

actively recalling a memory) showing alpha-like
oscillations and the presentation of an artificial voltage-
sensitive dye signal [5].

Large-scale models of the brain

The structure of the nervous system has several spatial
scales with substructures such as molecules, synapses,
neurons, microcircuits, networks, regions, and systems
(see, e.g., Churchland and Sejnowski [6]). Models are
often formulated on a single or a few of these scales. In
simulations of brain imaging data, the state variables of
the model often correspond to regions or groups of
neurons [7]. When simulating a neuron, the state variables
can be variables gating ionic currents of the excitable
membrane.

When addressing questions concerning areas where
dynamics at the level of the neuron and at the synapse
have an effect at the network level, the model must span
all of these levels. As a consequence, we get a large set of
state variables, i.e., a large-scale model [8]. In this paper,
we report a model with 22 million neurons, 11 billion
synapses, and on the order of 40 billion state variables. It
should be noted, though, that a large number of state
variables does not necessarily imply a large number of
parameters. For example, members of a specific cell type
may share a basic set of parameters across an entire
neuronal population.

It is difficult to understand a global brain network from
modeling only a local network of some hundred cells,
such as a cortical minicolumn (see the section
“Minicolumns in the cerebral cortex” below), or from
dramatically subsampling the global network by letting
one model neuron represent an entire cortical column or
area. One reason is that using small or subsampled
network models leads to unnatural connectivity and
dynamics.

A network model comprises neurons modeled after
empirical data. Just like their real counterparts, these
model neurons require sufficient synaptic input current to
become activated. In a small network, model neurons are
bound to have very few presynaptic neurons. Thus, it is
necessary to exaggerate either connection density or
synaptic conductance, and most of the time, both are
necessary.

This results in a network with a few but strong signals
circulating—a stark contrast to the real cortical network
in which many weak signals interact. Such differences
tend to significantly distort the network dynamics. For
example, artificial synchronization can easily arise,
which is a problem, especially as synchronization is one
of the more important phenomena one might want to
study. By modeling the full network with a one-to-one
correspondence between real and model neurons, such
problems are avoided.
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Bottom-up and top-down

The bottom-up approach to modeling means using the
level of physical realization as a starting point with the
hope of capturing function as an emergent phenomenon.
What does the anatomy of the cerebral cortex mean? If
we can, from the physical level of synapses, dendrites,
neurons, and networks, identify computational primitives
of the cortex, such primitives can be abstracted, and

we can move up one level of analysis. This strategy is
currently pursued in ambitious modeling projects,

such as the Blue Brain Project [9, 10], which has as one of
its goals the building of a model cortical column on an
IBM Blue Gene/L* (BG/L) supercomputer. The growing
availability of detailed experimental data will make this
type of model increasingly worthwhile, especially since we
are now awaiting the results of an industrial-scale
dissection of the cortical column at the nanoscale level
[11].

However, when modeling the complex and intricate
structure of the cortex, it turns out that we may need
information from additional sources. Some model
parameters are well constrained by experiment, while
others (e.g., the structure of long-range connectivity) are
still largely unknown. Hypotheses of cortical function, as
expressed in more abstract models, can guide model
development in selecting which elements to include, in
giving additional constraints, and in filling in where
empirical data is still missing. This is the rop-down
approach to modeling.

In practice, the approach of the modeler is usually
neither purely top-down nor purely bottom-up. The
model described here is the result of an integration of
functional constraints given by a theoretical view of the
neocortex as an associative attractor memory network
and empirical constraints given by cortical anatomy and
physiology. (Attractor is a concept in the theory of
dynamic systems; see the next section.)

Cell assemblies and attractor networks

The view of the cortex as an attractor network originated
more than 50 years ago in Hebb’s cell assembly theory
[12] (see, e.g., Fuster [13] for a review). Hebb suggested
that the functional unit of the cortex is a subset of
neurons that are repeatedly active together, and that such
a cell assembly is the basis of mental representation. The
thought of an apple would invoke one cell assembly, and
the thought of an orange another. The theory has since
been mathematically instantiated in the form of the
Willshaw—Palm [14, 15] and Little-Hopfield models [16]
and has subsequently been elaborated on and analyzed in
great detail [17, 18]. This has resulted in the view of the
persistent firing of cell assemblies as attractors in a
dynamical system.
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Table 1 Estimates of the number of minicolumns and hypercolumns for a selection of mammals.

Human Macaque Cat Rat Mouse
Minicolumns 2.0-10% 2.0 - 107 6.1-10° 5.0-10° 1.6 - 10°
Hypercolumns 2.0-10° 2.0-10° 6.1-10* 5.0-10° 1.6 - 10°

An attractor is a set of points in the phase space such
that a trajectory that gets close enough will remain close.
Activating enough cells of a cell assembly will cause more
and more of the assembly to become activated—the
system evolves toward the attractor. Because of
nonlinearity, a memory network can have multiple
attractors, each representing one memory. The
connections in the network form the landscape of
attractors. When the state of the system evolves into the
attractor, the memory has been recalled. If a memory is a
conjunction of attributes, activating a subset of attributes
will put the system close to the attractor representing the
memory, leading to the recall of the full conjunction—the
network has made an association.

The olfactory cortex [19] and the hippocampal CA3
field [20] have previously been perceived and modeled as
prototypical neuronal autoassociative attractor memory
networks. More recently, sustained activity in an
attractor memory of a similar kind has been proposed to
underlie prefrontal working memory [21].

Minicolumns in the cerebral cortex

If cell assemblies or attractor states are the basis of
cortical function, how do they relate to cortical anatomy?
In a classic work on the visual system, Hubel and Wiesel
[22] penetrated the primary visual cortex with a recording
electrode. They found that cells responded most strongly
to a specific orientation of an oblong bar in the visual
field and that the preferred angle seemed to shift
discretely as the electrode moved tangentially to the
cortical surface while cells along a line normal to the
surface tended to have similar response properties. They
deduced that the basic unit of cortical organization must
be what they called a functional column and suggested
that the cortex is a lattice of such columns. They also
suggested that sets of such columns are grouped into
larger entities, hypercolumns, that together form a
complete representation of all possible attribute values
within each region of retinotopic space.

Later, Mountcastle [23] suggested the concept of
anatomical minicolumns. These were described in detail by
Peters and Sethares [24]. Could such a minicolumn,
consisting of some hundred neurons, be the basic
functional unit of the cortex? If so, a Hebbian cell
assembly may consist of a set of such columns, and the
activation of these columns would correspond to entering
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a dynamic attractor of the cortical network. Here, we
note that the same cortical tissue can have multiple,
overlapping maps of different stimulus attributes, such as
orientation, direction, and ocular dominance. Also, the
spatial organization of stimulus attributes in sensory
cortices varies across species, and the fact that there is still
no firm evidence connecting functional with anatomical
columns means that the hypothesis of the column as the
basic functional unit of the cortex remains controversial.
An alternative possibility would be that a local cluster of
interconnected anatomical minicolumns serves as a
functional unit.

The organization of the visual cortex into minicolumns
and hypercolumns has inspired our view of cortical
associative memory, which has been expressed in the form
of an abstract neural network model [25-27] and in
biophysically detailed models [3, 28].

The work of Johansson and Lansner [29] presents
hypothetical estimates of the number of available
minicolumns and hypercolumns in the brains of a number
of mammals (Table 1). Their data is based on the
assumption of an average minicolumn diameter of 40 um
and a hypercolumn diameter of 400 um.

The model

On the basis of anatomical criteria, the cerebral cortex is
divided into six layers ranging from the cortical surface to
the gray matter to white matter border. The pattern of
connections suggests different roles for these layers. For
example, incoming connections typically contact layer IV,
while layers II/III send outgoing connections to areas
further down a processing stream. The simulations in this
paper are based upon a model of layers II/III of the
association cortex of the rat. It is an upscaled version of
the model presented by Lundquvist et al. [3].

The overall architecture of our model is shown in
Figure 1. Figure 1(a) illustrates the geometric layout of a
subset of 100 hypercolumns in the plane of the cortical
sheet, each marked with a distinct color. Each
hypercolumn consists of 100 minicolumns. Figure 1(b)
shows the schematic connectivity of the model. Each
minicolumn contains 30 pyramidal cells that excite each
other through short-range axons. Pyramidal cells project
locally as well as to pyramidal cells in other minicolumns
that belong to the same cell assembly and to regular-
spiking nonpyramidal (RSNP) cells in minicolumns
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Model architecture: (a) the geometric layout of 100 hypercolumns
consisting of 100 minicolumns each; (b) schematic connectivity of
the model.

belonging to other assemblies. The basket cell normalizes
activity in the local hypercolumn. RSNP cells provide
local inhibition of pyramidal cells.

The long-range projection between distant minicolumns
constitutes the memory matrix of the attractor memory
and defines the cell assemblies: Only minicolumns
belonging to the same memory pattern or cell assembly
excite each other.

Each hypercolumn also contains a population of
100 inhibitory basket cells, which are excited by the
pyramidal cells of that hypercolumn. The basket cells, in
turn, inhibit the pyramidal cells of that hypercolumn,
thereby providing a mechanism for normalization of
activity. This enables the hypercolumn to operate like a
winner-take-all module in which different patterns can
compete. Each minicolumn also contains two inhibitory
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RSNP cells, which contact the local pyramidal cells. The
abstract neural network model upon which the long-
range connectivity of the present model is based suggests
an additional way in which cell assemblies can compete.
This competition has been realized through long-range
axons from pyramidal cells to RSNP cells of minicolumns
that belong to other cell assemblies. Since RSNP cells
inhibit pyramidal cells within the local minicolumn, the
activity of targeted assemblies will be suppressed. Such
connections have not yet been identified anatomically.
Connectivity is otherwise compatible with experimental
data, to the extent that it is available. However, for
simplicity, we have made the borders of minicolumns and
hypercolumns sharp, in contrast to the local
approximately Gaussian structure observed
experimentally (see, e.g., Buzas et al. [30]). For details, see
Lundgquvist et al. [3]. A separate set of cells model cortical
layer IV, which provides input to the pyramidal cells
described above. External input to the attractor memory
is provided as simulated synaptic events in these cells.

Cells are modeled using the Hodgkin—Huxley
formalism [31, 32] in which the cell membrane potential
V(1) of a neural compartment is expressed as the
differential equation

dv

m E = Icomp + Icond + Isyn’ (1)
where Cy, is the membrane capacitance, I.omp the sum of
currents from adjacent compartments, I.onq the sum of
ionic currents through channels in the cell membrane, and
Isyn the sum of synaptic currents. The electrical behavior
of the cell is determined by the ionic currents that are
described through activation and inactivation variables.
For example, the delayed rectifier current, carried by
potassium ions, is described by

1

= (B — V(1) G, )

K

Here, n is an activation function described by

& ()~ B 3)
where o, and f3,, depend nonlinearly on 7(z). A pyramidal
cell in our model consists of six compartments. Each
compartment has one state variable representing the
membrane potential and carries up to five ionic currents,
with one to two state variables per current. Some
compartments have a flow of calcium into an intracellular
store, which is represented by an additional state variable.
Furthermore, some synapses carry a separate flow of
calcium with yet another associated state variable.
Synapses are generally governed by three state variables,
one for the degree of opening and two for short-term
changes in synapse strength (facilitation and depression).
For the simulations in Lundquvist et al. [3] and here,
an orthogonal set of nonoverlapping memory patterns
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was formed. One minicolumn was selected from each
hypercolumn to form one pattern. A long-range connection
between two distant minicolumns was formed
stochastically if the two minicolumns belonged to the
same pattern. Thus, each pyramidal cell received long-
range excitation from only a subset of the cells in the
pattern. Similarly, each RSNP cell received excitation
from a subset of pyramidal cells belonging to
minicolumns of foreign patterns.

SPLIT simulator

The development of parallel simulation in computational
neuroscience has been relatively slow. Today, there are
few publicly available parallel simulators, and they are
not nearly as general, flexible, and well documented as the
more commonly used serial simulators, such as Neuron
[33, 34] and Genesis [35, 36]. However, there is some
ongoing development. For Genesis there is PGenesis, and
the parallel version of Neuron has just been released. In
addition, there exists simulators such as NeoCortical
Simulation (NCS) [37], Neural Simulation Toolbox
(NEST) [38], and our own parallelizing simulator SPLIT
[39]. However, they are in many ways still in the
experimental and developmental stage.

The SPLIT simulator [39] was developed in the mid-
1990s with the aim of exploring how to efficiently use the
resources of various parallel computer architectures for
large-scale biophysically detailed neuronal-network
simulations. The simulator has also served as a platform
for experiments with communication algorithms.

SPLIT takes the form of a C++ library that is linked
into the user program. The SPLIT application
programming interface is provided by an object of the
class sp1it, which is the only means of communicating
with the library. The user program specifies the model
using method calls on the sp1it object. The user program
is serial and can be linked with a serial or parallel version
of the library. Parallelism is thus completely hidden from
the user. In the parallel case, the serial user program runs
in a master process that communicates, through
mechanisms internal to the SPLIT library, with a set of
slave processes. On clusters, SPLIT uses Message Passing
Interface (MPI).

The library exploits data locality for better cache-based
performance. To benefit from vector architectures, state
variables are stored in sequence. It uses adjacency lists for
compact representation of the neural projections and
address event representation (AER) for spike events [40].

The neurons in the model can be distributed arbitrarily
over the set of slaves. This gives great freedom in
optimizing communication so that densely connected
neurons reside on the same CPU and so that axonal
delays between neurons simulated on different slaves are
maximized. This way, CPUs do not have to communicate
as often, giving higher efficiency.
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SPLIT also makes use of a novel abstraction, the
connection-set algebra, which implements an efficient
domain decomposition of the connectivity metadata.
With connection-set algebra, network connectivity
structure can be described in a modular way. It provides a
set of basic types of connectivity structure and a set of
operators by which it is possible to describe new types of
connectivity as combinations of existing types [4].
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(b)

Simulated VSD signal of 4,900 minicolumns in a simulated
cortical patch of size 3 X 3 mm: (a) the ground state with waves of
hypercolumnar activity; (b) a part of a memory pattern is
stimulated through layer IV; (c) the network has attained an
attractor memory state.
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We ran our simulations on the BG/L system
installations at IBM Rochester, Minnesota, at the IBM
Thomas J. Watson Research Center, Yorktown Heights,
New York, and at The Royal Institute of Technology
(KTH), Stockholm. Figure 2 shows the speedup for a
model with 4 million cells and 2 billion synapses on the
BG/L platform up to 4,096 processors. Data points up to
2,048 processors were collected on the Rochester BG/L
platform, while the last data point was obtained on the
Watson Research BG/L platform. Results are given for 1
second of simulated time. The last run (4,096 processors)
took 1,205 seconds.

Simulation results

Figure 3 shows the spiking activity of a simulation of 49
hypercolumns (100 minicolumns each). Each row of the
raster plot shows the spikes of one neuron. The lower
portion of the raster (the first 9,800 cells) shows activity in
all RSNP cells, the mid-portion (147,000 cells) shows the
pyramidal cells, and the upper portion (4,900 cells) shows
the basket cells. The long-range pyramidal-pyramidal
and pyramidal-RSNP synapses store orthogonal
memories. As a consequence of stimulation of the cells in
layer IV between 0.5 seconds and 0.64 seconds and
between 1.5 seconds and 1.64 seconds, the network state
can be seen switching from a ground state to an active
memory state. Only cells in layer IV representing a part of
one of the memory patterns stored in the inter-
hypercolumnar memory matrix are stimulated. This
partial pattern is quickly completed to the full memory
pattern. This behavior was robust for all memories
stored, and it shows that on a population level (although
each pyramidal cell connects only to a random subset of
cells in the pattern), the cells have formed a cell assembly
corresponding to the pattern. Apart from pattern
completion, the model is capable of all the functionality
usually ascribed to attractor networks, such as noise
reduction and resolution of ambiguity.

One of the experimental techniques used to study
activity in populations of real neurons is to record changes
in the color of a voltage-sensitive dye (VSD). Figure 4
shows a synthesized VSD signal for a model network with
49 hypercolumns during three phases of activity. The
signal was computed as the low-pass filtered sum of the
membrane potentials of all cells in each minicolumn.
Figure 4(a) shows the ground state condition, and
Figure 4(b) shows the VSD signal just after stimulation of
a partial pattern. In Figure 4(c), the network has
completed the shift to the active memory state.

In the present version of the model, the ground state is
characterized by oscillations at a frequency of
approximately 15 Hz [Figure 5(a)], where the oscillations
of individual minicolumns are phase-locked to other
minicolumns in the hypercolumn. The coexistence of a
stable ground state with active memory states was first
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(c) membrane potential histogram; (d) exponentially distributed activity of pyramidal cells in the depolarized state in a network with 25

hypercolumns.

shown in a model of delay period activity in the
prefrontal cortex [41] and has been further analyzed in,
e.g., [42]. In the ground state of our model, pyramidal
cells fire at about 0.1 Hz. The 15-Hz rhythm thus emerges
as a collective network-level phenomenon. The fact that it
appears only when there is no input to the network and
the network is not in one of its active memory states is
suggestive of the class of alpha rhythms, which has been
proposed to reflect cortical idling [43]. This frequency lies
close to the alpha band and is consistent with the cat mu
rhythm [44].

In the active state, only the pyramidal cells of a single
minicolumn are active in each hypercolumn. In this state,
pyramidal cells fire at 10-15 Hz, basket cells at 50 Hz, and
RSNP cells at 25-35 Hz. One particularly interesting
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phenomenon, which consistently arises in our simulations
for a broad range of parameters and all model sizes, is a
rhythmic modulation of pyramidal cell activity with a
frequency of 25-40 Hz [Figure 5(a)]. It occurs only during
active states and is reminiscent of the gamma-band
activity observed in working memory tasks [45].

Our model exhibits some emergent phenomena that
have also been observed in the brain. When the network
attains an active memory state, pyramidal cells
participating in the active cell assembly are bombarded
with synaptic events. This elevates their membrane
potential so that the global shift of dynamic state is
reflected in a shift of their membrane potential from a
hyperpolarized state to a more depolarized state.

Figure 5(b) shows a model pyramidal neuron undergoing
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such a shift. The mean membrane potential becomes
elevated at 1= 2.5 s as a result of network activity when
the neuron starts participating in an active attractor state.
The attractor state was activated through simulated
electrical stimulation of other member neurons.

These states are very similar, respectively, to the down
and up states that have been observed physiologically [46,
47]. These shifts cause many cells to have a bimodal
distribution of membrane potentials [Figure 5(c)], also
consistent with physiology [48]. Despite the regularities
seen on a network level, the firing of individual pyramidal
cells is Poisson distributed in the active state [Figure 5(d)],
which shows exponentially distributed activity of
pyramidal cells in the depolarized state in a network with
25 hypercolumns. Inter-spike intervals (ISIs) (9,443
spikes) were collected from all pyramidal cells during a
total of 2 seconds of simulated time when the network
was in a globally active state, i.e., one in which a subset of
cells shows up-state activity. The logarithm of the
distribution of IST was plotted as a function of ISI length.
An exponential distribution was fitted to the data and is
shown as a straight line (+* was 0.98 for the exponential fit
and 0.86 for a power-law distribution [not shown]).
Again, this result is consistent with physiology [see, e.g.,
Bédard et al. [49]). One particularly attractive feature of
the model is that it is robust to the perturbation of
parameters [3], which is to be expected from a biological
system.

At the Thomas J. Watson Research Center, we had the
opportunity to perform a run on 8,192 processors on the
BG/L system. The model chosen for that run is the largest
full-scale Hodgkin—Huxley type of model of a cortical
patch ever simulated. The simulation, running in
coprocessor mode, occupied 336 MB of memory at each
node, giving a total of 2.8 TB. We simulated 22 million
neurons and 11 billon synapses, which corresponds to a
cortical surface area of 16 cm?, comparable to the cortex
of a small mammal. While real pyramidal cells have
10,000 synapses, the average number of synapses per
neuron is only 500 in our model because of both the
orthogonality of the memory matrix and the lack of
connections to other cortical areas. One answer we sought
was whether such a large patch of cortex could maintain a
stable attractor state despite the significant propagation
delays caused by axonal conduction time. The simulation
showed that this is indeed the case.

Discussion

Real vertebrate neuronal networks typically comprise
millions of neurons and billions of synaptic connections.
They have a complex and intricate structure, including a
modular and layered layout of the neurons at several
levels (e.g., cortical minicolumns, hypercolumns, and
areas). It can still be useful to model a single module or
microcircuit in isolation (e.g., in relation to a
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correspondingly reduced experimental in vitro
preparation, such as a cortical slice), but such a module is,
by definition, a component in a much larger network. In a
real nervous system, it is embedded in a mosaic of other
modules and receives afferent input from multiple other
sources. We may therefore need to consider an entire
network of modules.

However, partly because of limited computing
resources, computational studies have often focused on
problems that can be approached at the cellular and
small-network levels (e.g., the emergence and dynamics of
local receptive fields in the primary visual cortex [50]).
Modeling at the large-network level poses specific
challenges, but ultimately we believe that it is necessary to
build models that take global and dynamic network
interactions into account if we are to understand the
functioning of a neuronal system. We have demonstrated
that today’s computing technology makes such
simulations possible.

One application of biologically detailed, large-scale
neuronal network models is to study the network effects
of pharmacological manipulations. This can be done in
great detail to answer such questions as “Does the
addition of the drug alter the firing patterns of a
particular neuron?” and “What happens to the activity of
a large ensemble of neurons?” It might even be possible to
study effects on functional properties, such as memory
function. Other types of manipulations are also possible,
including the addition or removal of different cell types or
the rearrangement of connectivity patterns.

Large-scale network models will help to bridge the
gap between the neuronal and synaptic phenomena and
the phenomenology of global brain states and dynamics,
as observed by such techniques as extracellular
recording, local field potential, electroencephalogram,
magnetoencephalography, VSD, and blood-oxygenation-
level-dependent signal.

Models of working memory and persistent activity (see,
e.g., Tegnér et al. [S1] and Compte et al. [21]) usually rely
on local, purely Gaussian connectivity. The model
presented here is unique in that it incorporates the more
long-range, patchy connectivity that is observed
anatomically. In our model, this connectivity stems from
pyramidal cells contacting distant minicolumns. The
model makes use of two types of inhibitory interneurons
to achieve natural firing rates of the ground state and
active states of the cortical network.

Some care is required when comparing the results in
Figure 4 to a real VSD signal. First, the real VSD signal
usually has a somewhat lower spatial resolution. Second,
the visualization in Figure 4 is shaped by some artificial
features of connectivity structure in the present model.
Minicolumn and hypercolumn connectivity is delimited
by sharp boundaries, which is not the case in the
neocortex. While it is likely that this difference does not
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cause a major change in network dynamics, a more
diffuse connectivity would cause a smoother VSD signal.
We will address this issue in future work. Third,
topographical representations of attributes, present in
many areas of the brain, would give rise to denser
connections with nearby minicolumns than those far
away. This is likely to give a more wavelike organization
to the alpha-like oscillations of the ground state shown in
Figure 4(a). In addition, the thalamus, not included in
our model, might be even more important than the cortex
in shaping such rhythms [44].

We are currently working on extending the present
model with a layer V and a more complete model of layer
IV. These extensions will enable modeling of systems
consisting of more than one cortical area. An exciting
possibility is, then, to use information from connectivity
databases, such as the collation of connectivity data on
the macaque brain (CoCoMac) [52], in determining the
architecture of the larger network.

Conclusion

We have presented full-scale, biologically detailed
models of layers II/III of the cerebral cortex at a scale
corresponding to the cortex of a small mammal. These
models combine the functional hypothesis of the cortex
as an attractor memory network with empirical
constraints of known anatomy and physiology. The
models do indeed have the capabilities of an abstract
attractor memory network, such as pattern completion
and resolution of ambiguities, while at the same time
they display some of the phenomenology of the living
brain.

Computational neuroscience will benefit greatly from
the current development of new, affordable, massively
parallel computers likely to enter the market in the next
few years. This development constitutes an enabling
technology for the modeling of complex and large-scale
neuronal networks representing multiple cortical areas
and systems. This kind of model can be used to link
dynamic phenomena at the cellular and synaptic levels to
behavior.
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