A massively parallel H. Calandra

F. Bothorel

implementation of the P. Vezolle

common azimuth pre-stack
depth migration

When accompanied by the appropriate algorithmic approach,
seismic imaging is an application that can take advantage of
massively parallel computer systems. Three-dimensional (3D) pre-
stack time migration (PSTM) and pre-stack depth migration
(PSDM) are key components of seismic imaging and require very
large computing resources. In this paper, we show that execution of
these algorithms can be dramatically accelerated by massive
parallelism. Many oil exploration and service companies purchase
supercomputing clusters for performing 3D PSTM and PSDM
seismic imaging. The common azimuth migration (CAM)
algorithm, ported to many architectures, is particularly well suited
to offshore marine applications. This paper describes the porting of
the CAM algorithm to the IBM Blue Gene/L™ supercomputer,
which requires introducing a second level of parallelism, building a
parallel 3D-FFT (fast Fourier transform) routine, optimizing a tri-

diagonal solver for SIMD (single-instruction, multiple-data)
floating-point units, and addressing various I/O concerns. We
present results obtained by using up to 16,368 processors for actual
data provided from a marine seismic acquisition. Finally, we
provide recommendations for porting other pre-stack algorithms to

a massively parallel environment.

Introduction

The extraordinary challenges that the oil industry must
face in hydrocarbon research require the development of
leading-edge technologies. The use of seismic-reflection
technology is currently an essential and strategic method
to reconstitute the three-dimensional (3D) structure of
portions of the earth. This reconstruction is a key
function of seismic exploration because it is the basis on
which geologists search for new oil deposits. Today, this
analysis is possible because of the extraordinary
revolution in deep-imaging techniques over the last 20
years. The industry has experienced a very large leap in
the ability to process seismic data and to build an
increasingly accurate image of the structure of the earth.
One of the key components of this revolution is high-
performance computing. Indeed, the fast evolution of
computers has enabled the development of specialized
algorithms that address the steadily increasing volumes of
data generated by seismic acquisitions.

The pre-stack depth migration (PSDM) technique is
currently the most preferred method used for 3D seismic
imaging. The common azimuth migration (CAM)
technique refers to a PSDM algorithm that is particularly
suitable for the treatment of marine data acquisition
because of its speed and the quality of its results. The
characteristics of this method make its implementation
effective in symmetric multiprocessor clusters. Using the
computing and communications capabilities of the IBM
Blue Gene/L* (BG/L) system, we show that it is possible
to modify the CAM algorithm to obtain a massively
parallel version of this algorithm.

In this paper, we first outline the seismic-reflection
method for oil exploration and its challenges. Next, we
present the PSDM and describe in detail the CAM
technique and its algorithms. Then, we discuss how to
take advantage of some of the features in the IBM BG/L
system in order to implement a massively parallel version
of the CAM algorithm, which can scale up to tens of

©Copyright 2008 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/08/$5.00 © 2008 IBM

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

H. CALANDRA ET AL.

83

84

Figure 1

Different features that are part of the depth imaging process: (a)
the definition of the geological structure; (b) the migration (or
reflectivity) profile; (c) the velocity model profile.

thousands of processors with great throughput and

performance. Finally, we present results for the BG/L
supercomputer with up to 16,368 processors, achieved
with data provided from a marine seismic acquisition.

The challenge of oil exploration by the seismic-
reflection method
The search for hydrocarbons by using seismic-reflection
methods can be considered as a scan of a portion of the
earth. Seismic reflection is an indirect measurement
technique that involves recordings on the surface of the
earth produced by the echoes of a detonated explosion
that propagate in the subsurface. Each signal is emitted by
a source and is recorded by many hydrophones in the case
of a marine acquisition. Each explosion for a given source
generates a collection of reflected waves that are recorded
by all the seismic sensors belonging to the acquisition
device. A collection of recordings is called a shot point.
In order to illuminate the various geological layers as
effectively as possible and to obtain the most consistent
coverage possible, tens of thousands of shot points are
produced during a seismic survey. The size of acquisition
surveys has been steadily increasing from a few hundred
square kilometers in the beginning of the 1990s to several
thousand square kilometers today. The latest generation of
seismic acquisition ships records several thousand shot
points by using a large number of hydrophones placed in a
dozen parallel casings that are 6 to 8 km in length and
positioned behind the ship. These giant acquisitions
generate an enormous amount of data (up to several tens of
terabytes) that has been increasing dramatically since 2000.
Thus, the oil industry needs powerful algorithms to
precisely and rapidly process these large amounts of data in

H. CALANDRA ET AL.

a global setting in which the search for hydrocarbons is
extremely competitive.

Depth migration is the processing step in which
reflections in seismic data are moved to their correct
spatial locations, for example, relative to shot points, in
areas where there are significant and rapid changes in
wave-propagation velocity that distort the image. The
accurate reconstruction of the subsurface is key in
prospecting for hydrocarbon deposits. The migration
process can be assimilated into an inverse problem, which
consists of finding the geological structure that explains
the data as accurately as possible. Figure 1 illustrates three
different stages of seismic reflection: the definition of the
geological structure, the depth migration (or reflectivity)
processing, and the construction of a velocity model.

The overall reconstruction process is iterative. After
each depth migration, the resulting image is analyzed, the
velocity model is modified, and a new depth migration is
realized until process convergence is achieved. In this
iterative process, the depth migration is the fundamental
and the most computation-intensive stage.

Depth migration based on the common azimuth
method

The oil industry has invented many methods of PSDM.
Among these methods, the CAM method is particularly
interesting for narrow azimuth marine acquisitions. Before
describing the CAM method, we outline the principle of
depth migration. Let us start by presenting the imaging
principle as formulated by John Claerbout [1] in the early
1970s: “In any point on the reflectors, the up-going wave
field is equal to the down-going field multiplied by the
reflection coefficient.” Thus, by calculating two wave
fields, one up-going from measurements and the other
down-going starting from the source, we can define the
reflectors (the coefficient of reflection) at their intersection
points. In practice, this consists of summing the
contribution of all the shot points for all the subsurface
points. The source field is propagated, whereas the
receiving field is reverse propagated. The correlation of
these two fields gives the image reflectors at #=0. The basic
tool for depth migration is the wave equation. The wave
equation differential operator is recursively applied to
propagate the different wave fields in the depth direction.
It is possible to distinguish two families of recursive
methods by the wave equation:

* The shot-point method (also referred to as shot profile
migration), in which the propagation is independently
realized to each shot point.

® The method based on the principle of “survey
sinking,” or “double square root” (DSR) [1], which
propagates the overall acquisition information at the
same time. Biondi and Palacharla [2] developed the

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

CAM approach from this formulation, which is also
known as the DSR PSDM method.

The wave equation in DSR formulation in real space
can be expressed as

Pl @) G o

and in Fourier space, P(t,5,g) — P(w,kk,), as

2 2
P » 2 0} 2

Here, (s5,g) represent the surface localization of the
sources and hydrophones; ¢ is the time; V is the velocity of
propagation; w is the pulsation frequency; (k,.k,) are the
wave numbers; and P is the wave field. These equations
represent the simultaneous propagation in the z direction
of seismic device sources and hydrophones.

We may apply the change of variables in the two-
dimensional (2D) horizontal plane (s,g) — (m,h), where
(m,h) represents the midpoint offset coordinate system
defined by

_s—|—g _g—s

and in Fourier space by

kg —k; kg +k,
km = 2 ’ kh = 2 : (4)

Here, m, h, k,,,, and k;, are 2D vectors in the horizontal
plane: i.e., (m,my), (hy,h,), (kyx.ky), and (kyykpy).

Finally, the DSR Equation (2) in the midpoint offset
coordinate system is

2
apP w1 2 2
9z = < 2 Z {(kmx - khx) + (kmy - klly) i|)

v

2
+ (‘; Tt <km}+k,u>}> P (5)

where (mx, my) are the 2D spatial dimensions, and (hx, hy)
correspond to the offset. A solution to Equation (5) is

“P(2) (6)

P(z+ Az) = M

w 1 2 2
kz - <V2 - Z [(kmx - khx) + (kmy - k/zy) })

N (“’_2 - % [k + 1) + (K, +) D S

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

Equations (6) and (7) clearly illustrate the recursive
process of DSR migration. The formulas concern a five-
dimensional space (K,x, Ky Kix, kpy, @), making this
algorithm computationally intensive for large-acquisition
datasets. In marine acquisition, the azimuth variation is
small, and with suitable data pretreatment, the
acquisition allows a constant azimuth. The application of
the stationary phase in the /4y direction is used to reduce
the overall problem size by one dimension. This reduction
corresponds to DSR migration with constant azimuth
and is referred to as CAM. Using the principle of the
stationary phase, we obtain a new equation [Equation (8)]
that is comparable to a series of 2D pre-stack migrations
in the in-line direction and post-stack migration in the
cross-line direction [2]. In particular, we have

P(z+ Az) = M

with

P(2),

e >])

k o+ khx)z} > 7
=/ f (8)

This equation holds in the case of a homogeneous
propagation domain. In the general case, with lateral
velocity variation, we introduce the Fourier finite
difference (FFD) [3] approximation of k.:

_ 1 1 2
k_,%kzOer(—Jr—f—)

Cl)
2

-Jkl'd

VS VG VO
1 2 1 2
_ mAlkax _ mAlixkhx
2
l_ﬁBlﬁkmx 1_ ZB ﬁkhx
2(JA ock my
- 9)
1 - LBk,

my

Vy is the velocity of propagation in the reference
environment. The first term (k.o) is called phase shift
correction, the second term is called thin lens correction,
and the last three terms represent the wide-angle
correction constants 4, B, and « and f.

Massively parallel implementation of CAM
The implementation of CAM is an iterative process over
the depth and it consists of two steps. In the first step, the
wave field is propagated using Equations (6) and (8). In
the second step, the image is computed and stored.

The main data structures used by the algorithm are as
follows:

H. CALANDRA ET AL.

85

86

Parameters initialization
Allocation of arrays and frequency distribution

v

Compute the wave field P at first depth

v

Migration loop over the depth

Propagation of the wave field
Loop over frequencies, iw = 1, nw

A

—P[Read and compute the velocity slab for this

3D FFT forward

Phase shift correction

3D FFT backward

Thin lens correction

Wide-angle correction

Compute the image at current depth

Build image
image(mx,nph,my)=
3, P(mx,my,nph,io),io =1, nw

Save image to disk

I S

R (R A

Flow diagram for the CAM code. The wide-angle correction block
is discussed further in the section “Parallel domain decomposition
of the wide-angle correction on the BG/L system.”

e The complex wave field array P of size (mx, my, hx,
nw), where mx and my are the 2D spatial dimensions,
hx is the number of offsets, and nw is the number of
frequencies. This array is initialized with the frequency
files from acquisition and updated at every depth.

* The real image array of size (mx, nph, my), where nph
is the offset ray parameter.

* The real velocity array of size (mx_velo, my_velo).
This array is computed at every depth using data from
velocity files.

The global structure of the CAM implementation is

illustrated in Figure 2. The typical dimensions for a real
acquisition are mx > 2,000, my > 1,500, hx < 128, and

H. CALANDRA ET AL.

200 < nw < 500. The dimensions are extended to match
FFT (fast Fourier transform) nearest values.

The natural way to parallelize this algorithm is to
distribute the frequencies accross Message Passing
Interface (MPI) tasks, because the propagation step is
fully independent of the frequencies. The compute-image
step requires a global reduction in the number of
frequencies and, therefore, in the number of MPI tasks.
This current implementation of CAM in production,
mainly on SMP clusters, has only one level of parallelism
over the frequencies. In this standard cluster
implementation, the number of tasks is limited by the
number of frequencies. Shared memory parallelism has
been applied to the low-level loops using multithreaded
libraries and OpenMP** (Open Multiprocessing)
directives. This new level of parallelism provides the
opportunity to increase the number of processors
involved in a single migration. We cannot expect to use
more than four threads per task because the program
efficiency starts to drop beyond this number. Even in the
optimal configuration with one frequency per MPI task,
we are limited to a relatively small number of processors
(e.g., ~2,500 processors) and cannot take advantage of
the large number of processors available on the Blue
Gene/L system.

Moreover, this implementation requires a high memory
footprint per process. The computation is globally
dimensioned by the size of wave field array P (which
depends on the 2D size of the surface, the number of
offsets, and the number of frequencies per MPI task). For
real data, this complex array contains more than 1.5 GB
per frequency and per process. Thus, the memory per
node of the Blue Gene/L system is too small to fit the
required storage.

In order to take advantage of massively parallel
systems, and especially those with low-latency networks,
we introduce a new level of parallelism using domain
decomposition. This decomposition is done in a single
dimension, and when coupled with the frequency
distribution, it allows us to utilize numerous processors
(e.g., >100,000) while linearly reducing the per-processor
memory footprint. This new level of parallelism is fully
compatible with the multithreading layer already
implemented. The spatial partitioning can be done in the
y (i.e., my) direction. Most of the changes are independent
of the decomposition direction, and the domain
decomposition can be extended easily to the mx direction.
To implement this new level of parallelism, the processes
are distributed in frequency groups of size nb_cluster.
Each group is assigned a set of frequencies.

The wave field array is globally distributed throughout
the frequency groups and within a group locally
partitioned along the y (my) direction. The local wave
field array is defined by P(mx, myL = my/nb_cluster, hx,

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

nw/nb_group), where nb_group is the number of frequency
groups, and the letter L denotes “local.” Thus, the local
data storage required is divided by the group size. The
maximum number of processors involved in a migration
is nb_cluster times nb_group. A distributed memory
version of the 3D-FFT and wide-angle-corrections
procedures is required in the propagation algorithm.

Parallel one-dimensional decomposition 3D FFT
on the BG/L system

One of the most computationally intensive components of
the common azimuth method is the volumetric FFT.
Several studies have demonstrated that the most scalable
and natural implementation of the 3D FFT on a BG/L
system is based on a volume domain decomposition [4].
This method achieves scalability to a larger number

of nodes (up to 16,368 nodes) because it allows the
distribution of work for an N X N X N FFT over the
natural torus topology of the BG/L system.

Such a method cannot be applied within the CAM
because of the natural parallelism over the frequencies
and the limited size of the FFT. Note that we do not have
to compute one large FFT but nb_group-independent 3D
FFTs. For each frequency, a 3D FFT is computed by a
limited number of processors (nb_cluster). Our aim is to
create the most efficient and scalable 3D-FFT
implementation for 128 through 256 processors. In order
to minimize any change in the overall application, we
have implemented a 3D FFT that is based on the slab
decomposition in which the input data is partitioned in
one direction in accordance with the general data
decomposition.

We have developed two parallel versions of the 3D
FFT depending on the input and output decompositions.
In the first version, called homogeneous I/O partitioning,
the output array has the same decomposition as the input
array. This version always assumes that data is
partitioned in the y direction. Each process stores the
local array, P(mx, myL = my/nb_cluster, hx). The one-
dimensional (1D) FFTs in the x and z directions are
performed by multiple sequences of 1D FFTs. The 1D
FFT in the y direction is realized in three steps: a global
all-to-all communication to perform a decomposition in
the x direction with storage in the array P(mxL = mx/
nb_cluster, my, hx), multiple sequences of 1D FFTs in the
y direction, and the inverse all-to-all communication to
return to the original decomposition. In order to optimize
the communication (via the use of mpi_alltoall or
mpi_alltoallv), the last stage is realized iteratively over the
z dimension. (The mpi_alltoall routine sends data from all
processes to all processes. The mpi_alltoallv routine adds
flexibility to mpi_alltoall in that the location of data for
the send is specified and the location of the placement of
the data on the receive side is specified.)

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

100
90 | B | core/node, 2 mpi_alltoall
[J 2 cores/node, 2 mpi_alltoall
Bl 2 cores/node, 1 mpi_alltoall

Communication (%)
W
S

8 16 32 64 128 256
Number of processors

Percentage of overall time devoted to communications on the
BG/L system for an FFT of size 2,304 X 1,680 X 64 using one-
dimensional data decomposition. Shown here is the dependence
on the number of cores per compute node, with homogeneous and
nonhomogeneous output partitioning. The yellow and red bars
differ in the number of mpi_alltoall steps in the FFT. Red indicates
nonhomogeneous and yellow indicates homogeneous /O
partitioning.

Our measurements for relevant problem size for seismic
migration show a communication cost that is more than
50% of the overall time, which dramatically limits the
scalability of our application. It is important to note that
our implementation of the volumetric FFT uses the ESSL
(Engineering Scientific Subroutine Library) 1D serial
FFT, which is specially tuned for the POWER* processor
but increases the communication load.

In the second version of the 3D FFT, we have removed
the last transformation, allowing us to return to the
original y decomposition. This version, called
nonhomogeneous 1/O partitioning, accepts an input array
with decomposition in the x or y direction and delivers
results in the opposite decomposition. For instance, if the
local input array is P(mx, myL, hx), the resulting FFT is
stored in an array P(mxL, my, hx). This method divides
the overall communications by a factor of 2. In order to
limit the memory footprint, the implementation uses
input and output arrays that are located at the same
address.

Figure 3 shows the percentage of overall time devoted
to communications on the BG/L system for a 3D FFT of
size 2,304 X 1,680 X 64 for a varying number of
processors in configurations with one or two cores per
node. The BG/L ASIC (application-specific integrated
circuit) node has two cores (or processors) [5]. The figure
indicates the impact of the number of cores per node. The
program runs that use two cores per node increase the
ratio of computation to communication time compared
to runs using one core per node, where MPI bandwidth

H. CALANDRA ET AL.

87

88

256
224 F —— 1 core/node, 2 mpi_alltoall
1921 —a— 2 cores/node, 2 mpi_alltoall

—4— 2 cores/node, 1 mpi_alltoall

1 1 1 1 1 1 1
0 32 64 96 128 160 192 224 256
Number of processors

Three-dimensional FFT speedup with a size of 2,304 X 1,680 X 64 on
the Blue Gene/L system, depending on the number of cores per compute
node, with homogeneous (red plot) and nonhomogeneous (light blue
plot) output partitioning.

is completely dedicated to a single core. This clearly
emphasizes the utility of increasing the number of cores
per node while keeping the network bandwidth constant.
Our tests show around 35% downturn of the total time on
the BG/L system, essentially due to the communication
part. With the traditional clusters, the increase in the
number of cores will be a significant impediment to a
massively parallel approach for seismic algorithms based
on 3D FFT.

As shown in Figure 4, the speedup on the BG/L system
occurs with up to 256 processors, with a steady efficiency
of greater than 0.8, with one core per node for the
homogeneous version and two cores per node for the
nonhomogeneous version.

In order to integrate the fastest 3D FFT into the
overall algorithm, a phase shift correction routine was
modified to manage data decomposition in an x or y
direction. The communication part, in the sequence of
three steps (FFT, then phase shift correction, followed by
inverse FFT), can be divided by two, with a 30% or
greater improvement in the overall 3D-FFT time.

Parallel domain decomposition of the wide-angle
correction on the BG/L system

The wide-angle correction is the most computationally
intensive component of the CAM. This algorithm is a
correction of the wave field and depends on the lateral
velocity gradient. Within a frequency group, the
correction consists of sequentially applying the
corrections corresponding to the last three terms of
Equation (9), with one correction per direction. These
corrections are achieved by solving a large number of the
linear systems Ap = Bp, of size mx, hx, and myL,
respectively, where 4 and B are two complex tri-diagonal

H. CALANDRA ET AL.

matrices, and p is the corresponding vector in the wave
field array. This algorithm has exactly the same structure
as the volumetric FFT presented above, where the 1D
FFT is replaced by the construction of the linear system
followed by a tri-diagonal complex solver.

The complex tri-diagonal linear systems are solved
by an LU direct solver, an excellent general-purpose
equation solver that is well known in the literature.

The communication functions are shared with the
volumetric FFT. The build image algorithm, which directly
follows the wide-angle correction, has a preferential
decomposition direction in y, allowing it to reach optimal
levels of performance for I/O and communications. Thus,
unlike the 3D FFT, the second set of transformation data
cannot be removed. Nevertheless, the scalability of the
overall algorithm on the BG/L system is slightly higher
than that for the 3D FFT, with efficiency greater than 0.9
for up to 256 processors, because of a better ratio of
computations to communications.

The computation part of the direct tri-diagonal solver
is of critical interest, and it is well known that the actual
performance of a direct tri-diagonal solver is very low
compared to the processor peak performance. Our aim is,
therefore, to achieve the best sequential performance on
the BG/L platform by changing the structure of the
algorithm to address the following points:

1. The computation strongly depends on the memory
latency and bandwidth because of the ratio of loads
and stores per flops.

2. The backward dependency, in which a loop iteration
depends on a previous iteration, does not allow the
compiler to fully optimize the process loops and
penalizes the filling of the floating-point unit (FPU)
pipes.

3. The current version of the compiler for the BG/L
system is not able to generate SIMD (single
instruction, multiple data) for complex operations.

4. The weight (i.e., the cost) of the division operations is
significant.

Points 1 and 2 are significantly improved by
introducing a block solver that solves several linear
systems at the same time. The matrices and the solution
originally stored in 1D arrays are gathered by block in 2D
arrays in which the first dimension is the block size
(number of systems solved simultaneously), and the
second dimension is the corresponding size of the
problem. This data structure allows us to unroll the main
loop while reducing the impact of the memory accesses on
overall runtime. (When we use the phrase “unroll the
loop,” we mean the process in which the instructions that
are called in multiple iterations of the loop are combined
into a single iteration.)

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

The BG/L ASIC processor includes two double-SIMD
64-bit multiply-add FPUs, one for each core, allowing
the chip to deliver up to 4 flops per cycle and per SIMD
FPU. Unlike standard POWER chips, the BG/L
processor chip does not provide two independent FPUs;
the SIMD unit includes parallel primary and secondary
arithmetic pipes, each with its own 32- X 64-bit floating-
point registers (FPRs). The primary pipe executes the
standard instructions and the SIMD instructions, while
the second pipe executes only the SIMD instructions. The
double FPU implemented on the BG/L chip offers more
capabilities than a pure SIMD unit. Some instructions
cause two different operations to be performed in the two
pipes. For example, the instructions allow efficient
support for complex cross products (for more details, see
[5, 6]). As the Fortran compiler is not able to generate
SIMD instructions for complex operations, we have
developed a complex block tri-diagonal LU direct solver
that solves four systems at the same time, where all the
complex operations are replaced by SIMD intrinsic
functions. The data structures are based on 2D arrays of
dimension (4,n). This data structure requires that each
column be aligned on a 16-byte boundary, and it
generates quadword (16-byte) load and store instructions.
It turns out that solving four systems simultaneously
allows filling the pipes and getting the highest number of
flops per cycle. The computation part for the division
operations is divided by a factor of 5 using the parallel
hardware estimation of the BG/L processor [7]. Our
measurement has shown that the optimal block size is
four with respect to reusing the 32 FPRs; a block of six
generates a register starvation. All the operations are
realized in 64-bit precision, but the input data can be in
single or double precision. The use of single precision is
about 15-20% faster because of the reduction in data for
memory transfers.

All of these optimizations can be applied to
architectures in addition to the architecture of the BG/L
system. For instance, on x86 microprocessor
architectures, the SIMD intrinsic functions can be
replaced by SSE (streaming SIMD extensions) intrinsic
functions.

Optimizing I/O for the BG/L massively parallel
approach

The BG/L system delivers excellent I/O performance by
distributing the I/O through dedicated I/O nodes that are
independent of the compute nodes. Only the I/O nodes
have direct access to the file systems. The compute nodes
cannot directly access storage and must access data
through the I/O nodes. Several compute nodes are
connected to a single and dedicated I/O node using the
tree network [S]. This subset of compute nodes that are
physically connected to a single I/O node is called a pset.

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

The ratio of compute nodes to I/O nodes depends on the
node configuration, which is from 8 to 128 on the BG/L
platform.

Compared with the standard computing cluster, the
individual performance per I/O node is relatively limited,
and the overall I/O bandwidth is achieved by using the
maximum number of I/O nodes. The CAM
implementation makes use of three types of files:

® Input frequency files—The total size of these files is
typically greater than 300 GB. During the first step of
the migration process, file reads are performed
simultaneously (in parallel) over the frequency
groups.

e Velocity files—Records from these files are taken at
every depth and are performed in parallel over the
frequency groups.

® mage file—This file contains the final image and is
updated at every depth, in parallel.

In a communicator, I/O is done by the master task. In
the BG/L system, the communicators are created to
optimize the number of I/O nodes. The masters in each
communicator are dynamically assigned during the
runtime to a different pset, maximizing the I/O
bandwidth. For the compute-image step, the master
stores a partial image corresponding to the local y in
individual files. This method reduces the overhead of file-
descriptor management and the impact of the General
Parallel File System™ (GPFS*) block. The reconstitution
of the global file can be done simultaneously by a
program running on any front-end node.

It is important to note that in order to achieve optimal
performance using this implementation, the I/O
configuration must be optimized as well. In the BG/L
system, this implementation requires a suitable file system
and configuration of the appropriate number of compute
nodes per I/O node.

Results

To validate this massively parallel implementation of
the CAM, and to demonstrate its efficiency, we have
utilized up to eight BG/L racks (corresponding to 16,368
processors) installed at the IBM T. J. Watson Research
Center. These results were obtained in collaboration
with Total, a French oil company, using an actual
production seismic model on a POWERS* 16-way 1.5-GHz
cluster at the E&P (Exploration and Production) division
of Total. The dimension of the dataset was 47 km X 33.6 km
(~1,580 km?), with 64 offsets and approximately 400 GB
of input data. The simulation was realized with 264
frequencies, from 1,500 m down to 10,000 m in depth, by
10-m steps. The physical grid size of 1,881 X 1,346 X 64

H. CALANDRA ET AL.

89

90

Relative O 8,184 CPUs,
speedup “nb_cluster’=31
read_frequency E 1.8 W 16368 CPUs,
read_velocity_dsr 1.0 “nb_cluster”=62
read_velocity 1.4
wide_angle_correction 1.8

thin_lens_correction
phase_shift_correction
FFT

build_image

compute_image

Relative elapsed time

Time distribution for the test case on 8,184 and 16,368 Blue Gene/L
processors. The label “nb_cluster” indicates the number of cores
(processors) per frequency group.

was modified to 2,304 X 1,684 X 64 (the dimension of the
wave field arrays) to fit ESSL FFT requirements.

Figure 5 presents the elapsed time for the main parts of
the CAM algorithm on 8,184 CPUs (four BG/L racks,
nb_cluster = 31) and 16,368 CPUs (eight BG/L racks,
nb_cluster = 62), as well as the relative speedup between
the two runs. The global efficiency is greater than 0.8. The
figure shows that more than 60% of the overall time is
spent in the FFT and the wide-angle correction.

We also notice that efficiency depends mainly on the
FFT, the overhead of the velocity correction (handled in
a step called read_velocity_dsr), and the global reduction
in the build image phase. The phase shift and thin lens
corrections functions are linear up to 16,368 processors. It
is important to note that we used the homogeneous
version of the FFT; the nonhomogeneous version will be
able to reduce the overall FFT part by about 20% while
providing better scalability.

The performance and parallelism of the I/O steps are
rather good. The velocity initialization at each depth has
two steps: the read_velocity step consists of a parallel read
of the velocity files, and the read_velocity_dsr step, which
is not parallel and interpolates the raw velocity data to
match the domain grid points. The velocity reads can be
improved by taking advantage of the free memory and
the performance of the BG/L network in order to map the
velocity file in memory and replace the standard reads by
parallel communications. Nevertheless, the most
significant part corresponds to the compute-image phase,
which requires a global reduction within the 4y direction.
As we explained in the previous paragraph, the I/O was
optimized depending only on the number of nodes in a
pset. The BG/L system installed at the IBM T. J. Watson

H. CALANDRA ET AL.

Center has one I/O node for 64 compute nodes (the
optimal configuration is eight compute nodes per 1/O
node). Thus, a configuration with more I/O nodes will
significantly reduce the I/O time.

On the basis of the results obtained on the Watson
BG/L system, and using the same version (e.g., code,
implementation, or executable), we can estimate a global
efficiency of 0.75 on 32,736 processors (16 BG/L racks).

Summary

This paper confirms that massively parallel architectures
such as the IBM BG/L system are well suited to solving
wave-equation algorithms and are capable of providing
the computing power necessary for seismic imaging while
also maintaining reasonable infrastructure costs in terms
of square meters of floor space, electricity consumption,
RAS (reliability, availability, and serviceability), and
administration.

By introducing several levels of parallelism, we have
implemented a very efficient version of the CAM method,
which scales to tens of thousands of processors and fits
the memory footprint per processor, with an overall
efficiency of greater than 0.8. The I/O capabilities of the
architecture of the BG/L system, coupled with the GPFS,
are sufficiently large to manage the steadily increasing
data requirements of the PSDM algorithms over the
coming years. Despite the 32-bit nature of the seismic
implementations (single-floating-point precision), the
BG/L ASIC processor achieves excellent performance
results, especially because the SIMD FPU is well suited
to complex data types.

Similar techniques have already been applied to the
shot point algorithm (i.e., shot profile migration) with
similar and even better scalability, in which the first level
of parallelism over the frequency in the CAM algorithm is
replaced by a distribution of the shot points to groups of
processors. Within a group of processors, we have
introduced a spatial decomposition in order to reduce the
memory footprint per processor. The number of shot
points is much greater than the number of frequencies,
which suggests excellent scalability to extremely large
numbers of processors.

Our current objective is to take advantage of the
memory size available on the massively parallel systems
or to explore global array capabilities, which could be
used to implement algorithms such as the Kirchhoff
algorithm, a well-known approach currently used by
many oil companies. We also aim to study the reverse-
time-migration algorithm, which should be particularly
suitable to the 3D torus topology of the BG/L system.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

**Trademark, service mark, or registered trademark of the
OpenMP Architecture Review Board in the United States, other
countries, or both.

References

1. J. F. Claerbout, Imaging the Earth’s Interior, Palo Alto, CA,
Blackwell Scientific Publications, 1985.

2. B. Biondi and G. Palacharla, “3-D Prestack Migration of
Common-Azimuth Data,” Geophysics 61, No 6, 18221832
(1996).

3. D. Ristow and T. Ruhl, “Fourier Finite-Difference Migration,”
Geophysics 59, No. 12, 1882-1893 (1994).

4. M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, T. J. C. Ward,
and R. S. Germain, “Scalable Framework for 3D FFTs on the
Blue Gene/L Supercomputer: Implementation and Early
Performance Measurements,” /BM J. Res. & Dev. 49, No. 2/3,
457-464 (2005).

5. 0. Lascu, N. Allsopp, P. Vezolle, J. Follows, M. Hennecke,
F. Ishibashi, and M. Paolini, et al., “Unfolding the IBM eServer
Blue Gene Solution,” IBM Redbooks, September 2005; see
http:|lwww.redbooks.ibm.com/abstracts/sg246686.htmi.

6. S. Chatterjee, L. R. Bachega, P. Bergner, K. A. Dockser, J. A.
Gunnels, M. Gupta, F. G. Gustavson, et al., “Design and
Exploitation of a High-Performance SIMD Floating-Point Unit
for Blue Gene/L,” IBM J. Res. & Dev. 49, No. 2/3, 377-391
(2005).

7. G. L. Mullen-Schultz and C. Sosa, “IBM System Blue Gene
Solution: Application Development,” IBM Redbooks, June
2007; see http://www.redbooks.ibm.com/abstracts/sg247179.html.

Received March 19, 2007, accepted for publication
April 15, 2007; Internet publication December 18, 2007

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008

Henri Calandra Total Exploration and Production Division,
Avenue Larribau, 6400 Pau, France (henri.calandra@total.com).
In 1984, Dr. Calandra received a Ph.D. degree in mathematics
from the University des Pays de I’Adour, France. He joined Cray
Research France in 1987 and worked on seismic applications for 2
years. He joined the Applied Mathematics Department of the
French Atomic Agency in 1989. In 1990, he started to work for
Total. After 12 years of work in high-performance computing and
as project leader for pre-stack depth migration research, he became
head of the Total USA Geophysics Research Group and now
coordinates depth imaging research for the worldwide group.

Francois Bothorel [BM France, 2 Avenue Gambetta, 92400
Courbevoie, France (francois.bothorel@fr.ibm.com). In 1982,

Mr. Bothorel received an M.Sc. degree in mathematics from the
University Paris XI, Orsay, France. He joined Control Data
Corporation in 1983 where he worked in a service bureau for 3
years. He joined Gould Computer Systems in 1986 and worked on
real-time applications and participated in developing an FFT
package for vector computers. Mr. Bothorel worked for Digital
Equipment Corporation as a specialist on real-time and scientific
applications. In 1999, he joined IBM and is the French Lead
Architect for the high-performance computing market. He is an
IBM IT Certified Specialist and part of the Deep Computing
organization.

Pascal Vezolle IBM France, Rue de la Vielle Poste, BP 1021,
F-34006 Montpellier, France (vezolle@fr.ibm.com). In 1993, Dr.
Vezolle received a Ph.D. degree in applied mathematics from the
University of Bordeaux. From 1993 to 1995, he worked on
distributed parallel computers for the French Atomic Agency. He
joined Saint Gobain Research in 1996 as a computing engineer. He
joined IBM in 2001. He is an IBM IT-certified specialist and part of
Deep Computing organization and Blue Gene™ worldwide team.

H. CALANDRA ET AL.

91

