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When accompanied by the appropriate algorithmic approach,
seismic imaging is an application that can take advantage of
massively parallel computer systems. Three-dimensional (3D) pre-
stack time migration (PSTM) and pre-stack depth migration
(PSDM) are key components of seismic imaging and require very
large computing resources. In this paper, we show that execution of
these algorithms can be dramatically accelerated by massive
parallelism. Many oil exploration and service companies purchase
supercomputing clusters for performing 3D PSTM and PSDM
seismic imaging. The common azimuth migration (CAM)
algorithm, ported to many architectures, is particularly well suited
to offshore marine applications. This paper describes the porting of
the CAM algorithm to the IBM Blue Gene/Le supercomputer,
which requires introducing a second level of parallelism, building a
parallel 3D-FFT (fast Fourier transform) routine, optimizing a tri-
diagonal solver for SIMD (single-instruction, multiple-data)
floating-point units, and addressing various I/O concerns. We
present results obtained by using up to 16,368 processors for actual
data provided from a marine seismic acquisition. Finally, we
provide recommendations for porting other pre-stack algorithms to
a massively parallel environment.

Introduction

The extraordinary challenges that the oil industry must

face in hydrocarbon research require the development of

leading-edge technologies. The use of seismic-reflection

technology is currently an essential and strategic method

to reconstitute the three-dimensional (3D) structure of

portions of the earth. This reconstruction is a key

function of seismic exploration because it is the basis on

which geologists search for new oil deposits. Today, this

analysis is possible because of the extraordinary

revolution in deep-imaging techniques over the last 20

years. The industry has experienced a very large leap in

the ability to process seismic data and to build an

increasingly accurate image of the structure of the earth.

One of the key components of this revolution is high-

performance computing. Indeed, the fast evolution of

computers has enabled the development of specialized

algorithms that address the steadily increasing volumes of

data generated by seismic acquisitions.

The pre-stack depth migration (PSDM) technique is

currently the most preferred method used for 3D seismic

imaging. The common azimuth migration (CAM)

technique refers to a PSDM algorithm that is particularly

suitable for the treatment of marine data acquisition

because of its speed and the quality of its results. The

characteristics of this method make its implementation

effective in symmetric multiprocessor clusters. Using the

computing and communications capabilities of the IBM

Blue Gene/L* (BG/L) system, we show that it is possible

to modify the CAM algorithm to obtain a massively

parallel version of this algorithm.

In this paper, we first outline the seismic-reflection

method for oil exploration and its challenges. Next, we

present the PSDM and describe in detail the CAM

technique and its algorithms. Then, we discuss how to

take advantage of some of the features in the IBM BG/L

system in order to implement a massively parallel version

of the CAM algorithm, which can scale up to tens of
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thousands of processors with great throughput and

performance. Finally, we present results for the BG/L

supercomputer with up to 16,368 processors, achieved

with data provided from a marine seismic acquisition.

The challenge of oil exploration by the seismic-
reflection method
The search for hydrocarbons by using seismic-reflection

methods can be considered as a scan of a portion of the

earth. Seismic reflection is an indirect measurement

technique that involves recordings on the surface of the

earth produced by the echoes of a detonated explosion

that propagate in the subsurface. Each signal is emitted by

a source and is recorded by many hydrophones in the case

of a marine acquisition. Each explosion for a given source

generates a collection of reflected waves that are recorded

by all the seismic sensors belonging to the acquisition

device. A collection of recordings is called a shot point.

In order to illuminate the various geological layers as

effectively as possible and to obtain the most consistent

coverage possible, tens of thousands of shot points are

produced during a seismic survey. The size of acquisition

surveys has been steadily increasing from a few hundred

square kilometers in the beginning of the 1990s to several

thousand square kilometers today. The latest generation of

seismic acquisition ships records several thousand shot

points by using a large number of hydrophones placed in a

dozen parallel casings that are 6 to 8 km in length and

positioned behind the ship. These giant acquisitions

generate an enormous amount of data (up to several tens of

terabytes) that has been increasing dramatically since 2000.

Thus, the oil industry needs powerful algorithms to

precisely and rapidly process these large amounts of data in

a global setting in which the search for hydrocarbons is

extremely competitive.

Depth migration is the processing step in which

reflections in seismic data are moved to their correct

spatial locations, for example, relative to shot points, in

areas where there are significant and rapid changes in

wave-propagation velocity that distort the image. The

accurate reconstruction of the subsurface is key in

prospecting for hydrocarbon deposits. The migration

process can be assimilated into an inverse problem, which

consists of finding the geological structure that explains

the data as accurately as possible. Figure 1 illustrates three

different stages of seismic reflection: the definition of the

geological structure, the depth migration (or reflectivity)

processing, and the construction of a velocity model.

The overall reconstruction process is iterative. After

each depth migration, the resulting image is analyzed, the

velocity model is modified, and a new depth migration is

realized until process convergence is achieved. In this

iterative process, the depth migration is the fundamental

and the most computation-intensive stage.

Depth migration based on the common azimuth
method
The oil industry has invented many methods of PSDM.

Among these methods, the CAM method is particularly

interesting for narrow azimuthmarine acquisitions. Before

describing the CAM method, we outline the principle of

depth migration. Let us start by presenting the imaging

principle as formulated by John Claerbout [1] in the early

1970s: ‘‘In any point on the reflectors, the up-going wave

field is equal to the down-going field multiplied by the

reflection coefficient.’’ Thus, by calculating two wave

fields, one up-going from measurements and the other

down-going starting from the source, we can define the

reflectors (the coefficient of reflection) at their intersection

points. In practice, this consists of summing the

contribution of all the shot points for all the subsurface

points. The source field is propagated, whereas the

receiving field is reverse propagated. The correlation of

these two fields gives the image reflectors at t¼0. The basic
tool for depth migration is the wave equation. The wave

equation differential operator is recursively applied to

propagate the different wave fields in the depth direction.

It is possible to distinguish two families of recursive

methods by the wave equation:

� The shot-point method (also referred to as shot profile

migration), in which the propagation is independently

realized to each shot point.
� The method based on the principle of ‘‘survey

sinking,’’ or ‘‘double square root’’ (DSR) [1], which

propagates the overall acquisition information at the

same time. Biondi and Palacharla [2] developed the

Figure 1

Different features that are part of the depth imaging process: (a) 

the definition of the geological structure; (b) the migration (or 

reflectivity) profile; (c) the velocity model profile.

(c)(c)

(a)(a)

(b)(b)
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CAM approach from this formulation, which is also

known as the DSR PSDM method.

The wave equation in DSR formulation in real space

can be expressed as
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Here, (s,g) represent the surface localization of the

sources and hydrophones; t is the time; V is the velocity of

propagation; x is the pulsation frequency; (ks,kg) are the

wave numbers; and P is the wave field. These equations

represent the simultaneous propagation in the z direction

of seismic device sources and hydrophones.

We may apply the change of variables in the two-

dimensional (2D) horizontal plane (s,g)! (m,h), where

(m,h) represents the midpoint offset coordinate system

defined by
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Here, m, h, km, and kh are 2D vectors in the horizontal

plane: i.e., (mx,my), (hx,hy), (kmx,kmy), and (khx,khy).

Finally, the DSR Equation (2) in the midpoint offset

coordinate system is
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where (mx,my) are the 2D spatial dimensions, and (hx, hy)

correspond to the offset. A solution to Equation (5) is
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Equations (6) and (7) clearly illustrate the recursive

process of DSR migration. The formulas concern a five-

dimensional space (kmx, kmy, khx, khy, x), making this

algorithm computationally intensive for large-acquisition

datasets. In marine acquisition, the azimuth variation is

small, and with suitable data pretreatment, the

acquisition allows a constant azimuth. The application of

the stationary phase in the hy direction is used to reduce

the overall problem size by one dimension. This reduction

corresponds to DSR migration with constant azimuth

and is referred to as CAM. Using the principle of the

stationary phase, we obtain a new equation [Equation (8)]

that is comparable to a series of 2D pre-stack migrations

in the in-line direction and post-stack migration in the

cross-line direction [2]. In particular, we have
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This equation holds in the case of a homogeneous

propagation domain. In the general case, with lateral

velocity variation, we introduce the Fourier finite

difference (FFD) [3] approximation of k̄z:
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V0 is the velocity of propagation in the reference

environment. The first term (kz0) is called phase shift

correction, the second term is called thin lens correction,

and the last three terms represent the wide-angle

correction constants A, B, and a and b.

Massively parallel implementation of CAM

The implementation of CAM is an iterative process over

the depth and it consists of two steps. In the first step, the

wave field is propagated using Equations (6) and (8). In

the second step, the image is computed and stored.

The main data structures used by the algorithm are as

follows:
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� The complex wave field array P of size (mx, my, hx,

nx), where mx and my are the 2D spatial dimensions,

hx is the number of offsets, and nx is the number of

frequencies. This array is initialized with the frequency

files from acquisition and updated at every depth.

� The real image array of size (mx, nph, my), where nph

is the offset ray parameter.

� The real velocity array of size (mx_velo, my_velo).

This array is computed at every depth using data from

velocity files.

The global structure of the CAM implementation is

illustrated in Figure 2. The typical dimensions for a real

acquisition are mx . 2,000, my . 1,500, hx , 128, and

200 � nx � 500. The dimensions are extended to match

FFT (fast Fourier transform) nearest values.

The natural way to parallelize this algorithm is to

distribute the frequencies accross Message Passing

Interface (MPI) tasks, because the propagation step is

fully independent of the frequencies. The compute-image

step requires a global reduction in the number of

frequencies and, therefore, in the number of MPI tasks.

This current implementation of CAM in production,

mainly on SMP clusters, has only one level of parallelism

over the frequencies. In this standard cluster

implementation, the number of tasks is limited by the

number of frequencies. Shared memory parallelism has

been applied to the low-level loops using multithreaded

libraries and OpenMP** (Open Multiprocessing)

directives. This new level of parallelism provides the

opportunity to increase the number of processors

involved in a single migration. We cannot expect to use

more than four threads per task because the program

efficiency starts to drop beyond this number. Even in the

optimal configuration with one frequency per MPI task,

we are limited to a relatively small number of processors

(e.g., ;2,500 processors) and cannot take advantage of

the large number of processors available on the Blue

Gene/L system.

Moreover, this implementation requires a high memory

footprint per process. The computation is globally

dimensioned by the size of wave field array P (which

depends on the 2D size of the surface, the number of

offsets, and the number of frequencies per MPI task). For

real data, this complex array contains more than 1.5 GB

per frequency and per process. Thus, the memory per

node of the Blue Gene/L system is too small to fit the

required storage.

In order to take advantage of massively parallel

systems, and especially those with low-latency networks,

we introduce a new level of parallelism using domain

decomposition. This decomposition is done in a single

dimension, and when coupled with the frequency

distribution, it allows us to utilize numerous processors

(e.g., .100,000) while linearly reducing the per-processor

memory footprint. This new level of parallelism is fully

compatible with the multithreading layer already

implemented. The spatial partitioning can be done in the

y (i.e., my) direction. Most of the changes are independent

of the decomposition direction, and the domain

decomposition can be extended easily to the mx direction.

To implement this new level of parallelism, the processes

are distributed in frequency groups of size nb_cluster.

Each group is assigned a set of frequencies.

The wave field array is globally distributed throughout

the frequency groups and within a group locally

partitioned along the y (my) direction. The local wave

field array is defined by P(mx, myL¼ my/nb_cluster, hx,

Figure 2

Flow diagram for the CAM code. The wide-angle correction block 

is discussed further in the section “Parallel domain decomposition 

of the wide-angle correction on the BG/L system.”

Build image
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nw/nb_group), where nb_group is the number of frequency

groups, and the letter L denotes ‘‘local.’’ Thus, the local

data storage required is divided by the group size. The

maximum number of processors involved in a migration

is nb_cluster times nb_group. A distributed memory

version of the 3D-FFT and wide-angle-corrections

procedures is required in the propagation algorithm.

Parallel one-dimensional decomposition 3D FFT
on the BG/L system
One of the most computationally intensive components of

the common azimuth method is the volumetric FFT.

Several studies have demonstrated that the most scalable

and natural implementation of the 3D FFT on a BG/L

system is based on a volume domain decomposition [4].

This method achieves scalability to a larger number

of nodes (up to 16,368 nodes) because it allows the

distribution of work for an N 3 N 3 N FFT over the

natural torus topology of the BG/L system.

Such a method cannot be applied within the CAM

because of the natural parallelism over the frequencies

and the limited size of the FFT. Note that we do not have

to compute one large FFT but nb_group-independent 3D

FFTs. For each frequency, a 3D FFT is computed by a

limited number of processors (nb_cluster). Our aim is to

create the most efficient and scalable 3D-FFT

implementation for 128 through 256 processors. In order

to minimize any change in the overall application, we

have implemented a 3D FFT that is based on the slab

decomposition in which the input data is partitioned in

one direction in accordance with the general data

decomposition.

We have developed two parallel versions of the 3D

FFT depending on the input and output decompositions.

In the first version, called homogeneous I/O partitioning,

the output array has the same decomposition as the input

array. This version always assumes that data is

partitioned in the y direction. Each process stores the

local array, P(mx, myL¼ my/nb_cluster, hx). The one-

dimensional (1D) FFTs in the x and z directions are

performed by multiple sequences of 1D FFTs. The 1D

FFT in the y direction is realized in three steps: a global

all-to-all communication to perform a decomposition in

the x direction with storage in the array P(mxL ¼ mx/

nb_cluster, my, hx), multiple sequences of 1D FFTs in the

y direction, and the inverse all-to-all communication to

return to the original decomposition. In order to optimize

the communication (via the use of mpi_alltoall or

mpi_alltoallv), the last stage is realized iteratively over the

z dimension. (The mpi_alltoall routine sends data from all

processes to all processes. The mpi_alltoallv routine adds

flexibility to mpi_alltoall in that the location of data for

the send is specified and the location of the placement of

the data on the receive side is specified.)

Our measurements for relevant problem size for seismic

migration show a communication cost that is more than

50% of the overall time, which dramatically limits the

scalability of our application. It is important to note that

our implementation of the volumetric FFT uses the ESSL

(Engineering Scientific Subroutine Library) 1D serial

FFT, which is specially tuned for the POWER* processor

but increases the communication load.

In the second version of the 3D FFT, we have removed

the last transformation, allowing us to return to the

original y decomposition. This version, called

nonhomogeneous I/O partitioning, accepts an input array

with decomposition in the x or y direction and delivers

results in the opposite decomposition. For instance, if the

local input array is P(mx, myL, hx), the resulting FFT is

stored in an array P(mxL, my, hx). This method divides

the overall communications by a factor of 2. In order to

limit the memory footprint, the implementation uses

input and output arrays that are located at the same

address.

Figure 3 shows the percentage of overall time devoted

to communications on the BG/L system for a 3D FFT of

size 2,304 3 1,680 3 64 for a varying number of

processors in configurations with one or two cores per

node. The BG/L ASIC (application-specific integrated

circuit) node has two cores (or processors) [5]. The figure

indicates the impact of the number of cores per node. The

program runs that use two cores per node increase the

ratio of computation to communication time compared

to runs using one core per node, where MPI bandwidth

Figure 3

Percentage of overall time devoted to communications on the 

BG/L system for an FFT of size 2,304 � 1,680 � 64 using one- 

dimensional data decomposition. Shown here is the dependence 

on the number of cores per compute node, with homogeneous and 

nonhomogeneous output partitioning. The yellow and red bars 

differ in the number of mpi_alltoall steps in the FFT. Red indicates 

nonhomogeneous and yellow indicates homogeneous I/O 

partitioning. 
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is completely dedicated to a single core. This clearly

emphasizes the utility of increasing the number of cores

per node while keeping the network bandwidth constant.

Our tests show around 35% downturn of the total time on

the BG/L system, essentially due to the communication

part. With the traditional clusters, the increase in the

number of cores will be a significant impediment to a

massively parallel approach for seismic algorithms based

on 3D FFT.

As shown in Figure 4, the speedup on the BG/L system

occurs with up to 256 processors, with a steady efficiency

of greater than 0.8, with one core per node for the

homogeneous version and two cores per node for the

nonhomogeneous version.

In order to integrate the fastest 3D FFT into the

overall algorithm, a phase shift correction routine was

modified to manage data decomposition in an x or y

direction. The communication part, in the sequence of

three steps (FFT, then phase shift correction, followed by

inverse FFT), can be divided by two, with a 30% or

greater improvement in the overall 3D-FFT time.

Parallel domain decomposition of the wide-angle
correction on the BG/L system

The wide-angle correction is the most computationally

intensive component of the CAM. This algorithm is a

correction of the wave field and depends on the lateral

velocity gradient. Within a frequency group, the

correction consists of sequentially applying the

corrections corresponding to the last three terms of

Equation (9), with one correction per direction. These

corrections are achieved by solving a large number of the

linear systems Ap ¼ Bp, of size mx, hx, and myL,

respectively, where A and B are two complex tri-diagonal

matrices, and p is the corresponding vector in the wave

field array. This algorithm has exactly the same structure

as the volumetric FFT presented above, where the 1D

FFT is replaced by the construction of the linear system

followed by a tri-diagonal complex solver.

The complex tri-diagonal linear systems are solved

by an LU direct solver, an excellent general-purpose

equation solver that is well known in the literature.

The communication functions are shared with the

volumetric FFT. The build image algorithm, which directly

follows the wide-angle correction, has a preferential

decomposition direction in y, allowing it to reach optimal

levels of performance for I/O and communications. Thus,

unlike the 3D FFT, the second set of transformation data

cannot be removed. Nevertheless, the scalability of the

overall algorithm on the BG/L system is slightly higher

than that for the 3D FFT, with efficiency greater than 0.9

for up to 256 processors, because of a better ratio of

computations to communications.

The computation part of the direct tri-diagonal solver

is of critical interest, and it is well known that the actual

performance of a direct tri-diagonal solver is very low

compared to the processor peak performance. Our aim is,

therefore, to achieve the best sequential performance on

the BG/L platform by changing the structure of the

algorithm to address the following points:

1. The computation strongly depends on the memory

latency and bandwidth because of the ratio of loads

and stores per flops.

2. The backward dependency, in which a loop iteration

depends on a previous iteration, does not allow the

compiler to fully optimize the process loops and

penalizes the filling of the floating-point unit (FPU)

pipes.

3. The current version of the compiler for the BG/L

system is not able to generate SIMD (single

instruction, multiple data) for complex operations.

4. The weight (i.e., the cost) of the division operations is

significant.

Points 1 and 2 are significantly improved by

introducing a block solver that solves several linear

systems at the same time. The matrices and the solution

originally stored in 1D arrays are gathered by block in 2D

arrays in which the first dimension is the block size

(number of systems solved simultaneously), and the

second dimension is the corresponding size of the

problem. This data structure allows us to unroll the main

loop while reducing the impact of the memory accesses on

overall runtime. (When we use the phrase ‘‘unroll the

loop,’’ we mean the process in which the instructions that

are called in multiple iterations of the loop are combined

into a single iteration.)

Figure 4

Three-dimensional FFT speedup with a size of 2,304 � 1,680 � 64 on 

the Blue Gene/L system, depending on the number of cores per compute 

node, with homogeneous (red plot) and nonhomogeneous (light blue 

plot) output partitioning.
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The BG/L ASIC processor includes two double-SIMD

64-bit multiply–add FPUs, one for each core, allowing

the chip to deliver up to 4 flops per cycle and per SIMD

FPU. Unlike standard POWER chips, the BG/L

processor chip does not provide two independent FPUs;

the SIMD unit includes parallel primary and secondary

arithmetic pipes, each with its own 32- 3 64-bit floating-

point registers (FPRs). The primary pipe executes the

standard instructions and the SIMD instructions, while

the second pipe executes only the SIMD instructions. The

double FPU implemented on the BG/L chip offers more

capabilities than a pure SIMD unit. Some instructions

cause two different operations to be performed in the two

pipes. For example, the instructions allow efficient

support for complex cross products (for more details, see

[5, 6]). As the Fortran compiler is not able to generate

SIMD instructions for complex operations, we have

developed a complex block tri-diagonal LU direct solver

that solves four systems at the same time, where all the

complex operations are replaced by SIMD intrinsic

functions. The data structures are based on 2D arrays of

dimension (4,n). This data structure requires that each

column be aligned on a 16-byte boundary, and it

generates quadword (16-byte) load and store instructions.

It turns out that solving four systems simultaneously

allows filling the pipes and getting the highest number of

flops per cycle. The computation part for the division

operations is divided by a factor of 5 using the parallel

hardware estimation of the BG/L processor [7]. Our

measurement has shown that the optimal block size is

four with respect to reusing the 32 FPRs; a block of six

generates a register starvation. All the operations are

realized in 64-bit precision, but the input data can be in

single or double precision. The use of single precision is

about 15–20% faster because of the reduction in data for

memory transfers.

All of these optimizations can be applied to

architectures in addition to the architecture of the BG/L

system. For instance, on x86 microprocessor

architectures, the SIMD intrinsic functions can be

replaced by SSE (streaming SIMD extensions) intrinsic

functions.

Optimizing I/O for the BG/L massively parallel
approach
The BG/L system delivers excellent I/O performance by

distributing the I/O through dedicated I/O nodes that are

independent of the compute nodes. Only the I/O nodes

have direct access to the file systems. The compute nodes

cannot directly access storage and must access data

through the I/O nodes. Several compute nodes are

connected to a single and dedicated I/O node using the

tree network [5]. This subset of compute nodes that are

physically connected to a single I/O node is called a pset.

The ratio of compute nodes to I/O nodes depends on the

node configuration, which is from 8 to 128 on the BG/L

platform.

Compared with the standard computing cluster, the

individual performance per I/O node is relatively limited,

and the overall I/O bandwidth is achieved by using the

maximum number of I/O nodes. The CAM

implementation makes use of three types of files:

� Input frequency files—The total size of these files is

typically greater than 300 GB. During the first step of

the migration process, file reads are performed

simultaneously (in parallel) over the frequency

groups.
� Velocity files—Records from these files are taken at

every depth and are performed in parallel over the

frequency groups.
� Image file—This file contains the final image and is

updated at every depth, in parallel.

In a communicator, I/O is done by the master task. In

the BG/L system, the communicators are created to

optimize the number of I/O nodes. The masters in each

communicator are dynamically assigned during the

runtime to a different pset, maximizing the I/O

bandwidth. For the compute-image step, the master

stores a partial image corresponding to the local y in

individual files. This method reduces the overhead of file-

descriptor management and the impact of the General

Parallel File System* (GPFS*) block. The reconstitution

of the global file can be done simultaneously by a

program running on any front-end node.

It is important to note that in order to achieve optimal

performance using this implementation, the I/O

configuration must be optimized as well. In the BG/L

system, this implementation requires a suitable file system

and configuration of the appropriate number of compute

nodes per I/O node.

Results
To validate this massively parallel implementation of

the CAM, and to demonstrate its efficiency, we have

utilized up to eight BG/L racks (corresponding to 16,368

processors) installed at the IBM T. J. Watson Research

Center. These results were obtained in collaboration

with Total, a French oil company, using an actual

production seismic model on a POWER5* 16-way 1.5-GHz

cluster at the E&P (Exploration and Production) division

of Total. The dimension of the dataset was 47 km333.6 km

(;1,580 km2), with 64 offsets and approximately 400 GB

of input data. The simulation was realized with 264

frequencies, from 1,500 m down to 10,000 m in depth, by

10-m steps. The physical grid size of 1,881 3 1,346 3 64
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was modified to 2,304 3 1,6843 64 (the dimension of the

wave field arrays) to fit ESSL FFT requirements.

Figure 5 presents the elapsed time for the main parts of

the CAM algorithm on 8,184 CPUs (four BG/L racks,

nb_cluster ¼ 31) and 16,368 CPUs (eight BG/L racks,

nb_cluster ¼ 62), as well as the relative speedup between

the two runs. The global efficiency is greater than 0.8. The

figure shows that more than 60% of the overall time is

spent in the FFT and the wide-angle correction.

We also notice that efficiency depends mainly on the

FFT, the overhead of the velocity correction (handled in

a step called read_velocity_dsr), and the global reduction

in the build image phase. The phase shift and thin lens

corrections functions are linear up to 16,368 processors. It

is important to note that we used the homogeneous

version of the FFT; the nonhomogeneous version will be

able to reduce the overall FFT part by about 20% while

providing better scalability.

The performance and parallelism of the I/O steps are

rather good. The velocity initialization at each depth has

two steps: the read_velocity step consists of a parallel read

of the velocity files, and the read_velocity_dsr step, which

is not parallel and interpolates the raw velocity data to

match the domain grid points. The velocity reads can be

improved by taking advantage of the free memory and

the performance of the BG/L network in order to map the

velocity file in memory and replace the standard reads by

parallel communications. Nevertheless, the most

significant part corresponds to the compute-image phase,

which requires a global reduction within the hy direction.

As we explained in the previous paragraph, the I/O was

optimized depending only on the number of nodes in a

pset. The BG/L system installed at the IBM T. J. Watson

Center has one I/O node for 64 compute nodes (the

optimal configuration is eight compute nodes per I/O

node). Thus, a configuration with more I/O nodes will

significantly reduce the I/O time.

On the basis of the results obtained on the Watson

BG/L system, and using the same version (e.g., code,

implementation, or executable), we can estimate a global

efficiency of 0.75 on 32,736 processors (16 BG/L racks).

Summary
This paper confirms that massively parallel architectures

such as the IBM BG/L system are well suited to solving

wave-equation algorithms and are capable of providing

the computing power necessary for seismic imaging while

also maintaining reasonable infrastructure costs in terms

of square meters of floor space, electricity consumption,

RAS (reliability, availability, and serviceability), and

administration.

By introducing several levels of parallelism, we have

implemented a very efficient version of the CAM method,

which scales to tens of thousands of processors and fits

the memory footprint per processor, with an overall

efficiency of greater than 0.8. The I/O capabilities of the

architecture of the BG/L system, coupled with the GPFS,

are sufficiently large to manage the steadily increasing

data requirements of the PSDM algorithms over the

coming years. Despite the 32-bit nature of the seismic

implementations (single-floating-point precision), the

BG/L ASIC processor achieves excellent performance

results, especially because the SIMD FPU is well suited

to complex data types.

Similar techniques have already been applied to the

shot point algorithm (i.e., shot profile migration) with

similar and even better scalability, in which the first level

of parallelism over the frequency in the CAM algorithm is

replaced by a distribution of the shot points to groups of

processors. Within a group of processors, we have

introduced a spatial decomposition in order to reduce the

memory footprint per processor. The number of shot

points is much greater than the number of frequencies,

which suggests excellent scalability to extremely large

numbers of processors.

Our current objective is to take advantage of the

memory size available on the massively parallel systems

or to explore global array capabilities, which could be

used to implement algorithms such as the Kirchhoff

algorithm, a well-known approach currently used by

many oil companies. We also aim to study the reverse-

time-migration algorithm, which should be particularly

suitable to the 3D torus topology of the BG/L system.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

Figure 5

Time distribution for the test case on 8,184 and 16,368 Blue Gene/L 

processors. The label “nb_cluster” indicates the number of cores 

(processors) per frequency group.
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**Trademark, service mark, or registered trademark of the
OpenMP Architecture Review Board in the United States, other
countries, or both.
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