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Important scientific problems can be treated via ab initio-based
molecular modeling approaches, wherein atomic forces are derived
from an energy function that explicitly considers the electrons. The
Car—Parrinello ab initio molecular dynamics (CPAIMD) method
is widely used to study small systems containing on the order of 10
to 10° atoms. However, the impact of CPAIMD has been limited
until recently because of difficulties inherent to scaling the
technique beyond processor numbers about equal to the number of
electronic states. CPAIMD computations involve a large number
of interdependent phases with high interprocessor communication
overhead. These phases require the evaluation of various
transforms and non-square matrix multiplications that require
large interprocessor data movement when efficiently parallelized.
Using the Charm++ parallel programming language and runtime
system, the phases are discretized into a large number of virtual
processors, which are, in turn, mapped flexibly onto physical
processors, thereby allowing interleaving of work. Algorithmic and
IBM Blue Gene[L™ system-specific optimizations are employed to
scale the CPAIMD method to at least 30 times the number of
electronic states in small systems consisting of 24 to 768 atoms (32
to 1,024 electronic states) in order to demonstrate fine-grained
parallelism. The largest systems studied scaled well across the
entire machine (20,480 nodes).

materials science, biophysics, nanotechnology, and solid-

As the computational power of large parallel computers
increases [1], the efficiency of modeling methods
improves correspondingly, placing increasing demands
on parallel programming techniques. Therefore, it is
important to develop strategies capable of scaling the
algorithmically complex, multiphase methods of
important scientific applications to large numbers of
processors. Here, we present a description of a fine-
grained parallel implementation of the Car—Parrinello
ab initio molecular dynamics (CPAIMD) algorithm
[2-6] in a form suitable for nonexperts. This algorithm
has been used to study key chemical and biological
processes as well as to examine important problems in

state physics [7-16]. (The term fine grained indicates that
the implementation decomposes the computational work
into small parts so that small systems can scale to numerous
processors.) This study highlights the ability of synergistic
research in parallel algorithm, hardware design, and
methodological development to generate fast applications
that allow new scientific insights to be garnered.
CPAIMD can be intuitively understood as numerically
solving Newton’s equations of motion using forces
derived from electronic structure or ab initio calculations
performed as the simulation proceeds, thereby permitting
the examination of phenomena that require a model
containing a representation of the electronic states to
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describe the phenomena. Typically, CPAIMD
implementations employ an (in principle) exact ab initio
technique known as the Kohn—Sham (KS) density
Sfunctional theory [17, 18], the practical implementation of
which requires the use of an approximate functional
[19-21] and a finite basis set, such as plane-waves [2—-6].
However, it should be noted that the quality of both the
basis sets [22-25] and the functionals [26] employed are
continuously improving.

From a computational point of view, the CPAIMD
method involves many phases, including multiple
concurrent sparse three-dimensional (3D) fast Fourier
transforms (FFTs), non-square matrix multiplications,
and several concurrent dense 3D-FFT computations that
possess nontrivial dependencies that are quite different
from those found in a classical molecular dynamics
computation [27]. The parallel 3D FFTs are themselves
communication intensive because of all-to-all
interprocessor communication patterns inherent in their
computation. For example, all of the processors that have
a portion of the dataset to be transformed must
communicate. The efficient concurrent execution of
hundreds of parallel 3D FFTs introduces another
challenge. In order to switch between phases, movement
of a large amount of data must be orchestrated between
processors that generate relatively little computation. In
general, parallelization of the phases of CPAIMD
necessitates complex trade-offs between memory use, load
balance of work across processors, and interprocessor
communication costs. Basic MPI (Message Passing
Interface)-based implementations of CPAIMD, such as
the implementation developed by two of the authors
several years ago [28], exhibit limited scalability, thus
restricting the number of processors that can be
effectively employed to roughly the same number of
electronic states in the system. In contrast, recent efforts
by us and others have overcome the states-equal-
processors barrier [29-31].

In this paper, we show parallel scaling on processor
numbers more than 30 times the number of electronic
states in small systems consisting of 24 to 768 atoms
(32 to 1,024 electronic states). The 768-atom and
1,024-state system scaled well on all 20,480 nodes of the
IBM Blue Gene/L* (BG/L) torus network supercomputer
located at the IBM T. J. Watson Research Center. (In
other words, CPU times continued to diminish with
increasing processor numbers.) Our implementation
employs the Charm++ parallel programming language
and runtime system [32]. Charm++ offers the benefits of
overpartitioning via migratable objects, a concept whose
implementation involves decomposing the problem into
many more discretizations than available processors and
mapping these parallel objects to processors at startup.
Charm++ also allows the runtime system the freedom to
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adjust the location of objects with respect to processors as
the system evolves. This approach allows us to obtain
high scalability and low per-iteration CPU times on the
small problem sizes of interest here. Performance is
notably enhanced by exploiting the ability of Charm-++
to enable the interleaving of computation and
communication and to simplify the effective topologically
aware mapping of work to processors, which is key to the
efficient use of the BG/L torus network architecture. This
case study illustrates the competing objectives that must
be balanced in the parallelization of a complex
multiphasic application and demonstrates a series of
useful strategies and techniques that can be applied to
optimize a wider class of problems on large parallel
supercomputers, with or without a torus network.

This paper is organized as follows. We briefly review
the basic CPAIMD algorithm [2-6] for completeness so
that the reader can understand its parallelization. We
highlight new approaches to basic elements [33, 34] of the
CPAIMD technique that are based on the Euler
exponential spline (EES). These approaches are key to
our parallel scaling, allow improved scalar performance,
and have not been described in previous reviews [2—6, 29].
We stress that the adoption of a CPAIMD method that is
based on the work in Reference [35] permits the use of
many highly efficient routines and, furthermore, allows
our nonstandard, but effective, CPAIMD equations of
motion to be derived from a simple Hamiltonian
formalism. Next, we present the parallelization of the
serial algorithm following the approach outlined in an
earlier paper [29] that led to scaling on 1,024 processors of
a 32-water-molecule system. We discuss significant
extensions of our earlier work, including the use and
parallelization of EES-based techniques and the
improved parallelization of many of the other phases of
the computation, in particular the 3D FFTs and matrix
multiplications under Charm++. We then describe the
architecture of the BG/L system, followed by a discussion
of the CPAIMD optimizations motivated by the BG/L
design. Next, we present the mapping of the parallel
objects of CPAIMD to physical processors in the 3D
torus network. Established Charm-++ techniques that
have been proven to be effective in scaling classical
molecular dynamics on BG/L systems have been applied
where appropriate [36]. Finally, we present scaling results
for liquid water in system sizes consisting of 8 to 256
molecules under 3D periodic boundary conditions using
standard parameters and a generalized gradient
approximate (GGA) functional, specifically, the BLYP
(Becke—Lee—Yang—Parr) functional [19, 20].

The computation

The ground-state electronic energy can be calculated by
minimizing a functional of the electron density following
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the principles of density functional theory (DFT), a
formally exact theory [17, 18]. In the KS formulation of
DFT used here, which is also formally exact, the electron
density, p(r) = p(x,y,z) (i.e., a probability density in three
spatial dimensions), is expressed as the sum of the
modulus square of a set of single-particle KS electronic
states (hereafter referred to simply as states). Typically,
two electrons are considered to occupy each state.
Unfortunately, the exact functional is not known, and
an approximate functional must be employed. In this
work, we provide for an arbitrary generalized gradient-
corrected approximate functional of the type given in
References [19-21]. Furthermore, a finite set of plane-
waves is used to describe the single-particle states of the
theory, as described in more detail below. Additionally,
only the valence electrons of the atoms are treated. Thus,
a single water molecule or H,O—which contains 10
electrons of total charge —10e, an oxygen ion of

charge +8e, and two hydrogen ions of charge +le—is
treated as an eight-electron system of total charge —8e.
The value —8e arises because the oxygen moiety carries
valence charge +6e (this is often referred to as an ion
core), and the two hydrogen ions each carry a charge +le.
Thus, eight electrons are needed to neutralize the system.
Rather than use the tedious nomenclature ion core
throughout this paper, we will sometimes simply use the
term atom (e.g., in subscripts), allowing the reader to
determine the ion core (i.e., valence charge) by context.

Because KS DFT is a theory for noninteracting
electrons in an effective self-consistent potential that
yields the same ground state as the physical interacting
electron system, the KS density functional contains
several terms: the quantum mechanical kinetic energy of
noninteracting electrons, the Coulomb repulsion or
Hartree energy between negative charge clouds p(r) and
p(r’) (or simply the Hartree term), the correction of the
Hartree energy to account for the quantum nature of the
electrons (or the exchange-correlation energy), and the
interaction of the electrons with the atoms (ion cores) in
the system (or the external energy). In the last term, the
interaction of the valence electrons with the atoms (ion
cores) is treated explicitly, and the core electrons are
mathematically removed, resulting in the electron—atom
(ion-core) nonlocal energy. This term should not be
confused with nonlocal electron—electron interactions
that are not of interest here. The form of the exchange-
correlation energy is not known and must be
approximated, as discussed above.

Once the functional is minimized, the forces acting on
the atoms can be computed from the functional and the
atom-atom (ion-core-ion-core) Coulomb interaction, and
the positions and velocities of the atoms evolved in time
according to a finite difference solution of Newton’s
equations of motion. The CPAIMD method is elegant
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because it avoids this discontinuous process and allows
the two elements to occur simultaneously, enabled by a
classical adiabatic principle [2, 37]. Using a variant of the
nonorthogonal state dynamics in Reference [35], which is
different from the standard CPAIMD technique,
momenta are introduced conjugate to the plane-wave
basis set coefficients and a fictitious classical kinetic energy
introduced to form a fictitious classical Hamiltonian
(Hfict-tot = Hatom + Hpctelectron) from which simple
equations of motion naturally arise. Orthogonality
constraints are absent because of the use of the
nonorthogonal state-based approach [35]. As long as the
plane-wave coefficients move rapidly compared to the
atoms and exhibit small-amplitude oscillations around the
minimum of the functional at the current (slowly evolving)
atom positions, the method works well. The basic
algorithm is summarized in its essential details in Figure 1.
More-complete reviews with many details are given in
References [2—6]. The new EES-based methods are
described in more technical detail in References [33, 34].

A set of n, electronic states is introduced that are
represented as a set of (complex) Fourier coefficients,
W(s,g+.8y-8-), on a regular 3D g-space (or reciprocal
Fourier space) of side N, where s is the state index and
gx.8,-8- index the Fourier coefficients. The array is not
dense, but a sphere of radius g..., proportional to N/4,
defines the n, non-zero elements. The number of
electronic states (n,) and the number of points in g-space
(ng) both increase linearly with the number of atoms,
Natom, and the memory requirement is ~ mem.

In the course of the computation, each state switches
between its g-space and its real-space representation via
3D FFTs of size N X N X N (Phases I and VII; sce
Figure 1). As there are many states, this requires the
computation of multiple simultaneous 3D FFTs. The
real-space representation of the states, ¥(s,x,y,2), is a
dense 3D array of real numbers of size N X N X N.
(Recent improvements [38-40] that are based on localized
states [41] are beyond the scope of this paper.) The real-
space representation of the electron density, p(x,y,z), is
computed by squaring the real-space representation of
each state and then summing over all states, p(x,y,z) =
S P(s, X, y,2))* (Phase II). The density in its real-space
representation is, in any case, a dense N X N X N array of
real numbers.

The scalar work employed to generate the density scales
as Njom log Naom» dominated by the computational cost of
the 3D FFTs used to generate the real-space
representation of the states. The (complex) Fourier
coefficients of the density, p(g,.g,.g-), are obtained from a
single 3D FFT of p(x,y,z), which scales as N,om 10g Natom-
Note that this 3D FFT cannot be launched until
the reduction is complete (Phase II). The g-space
representation of the density is a single array in a g-space 161
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Structure of our implementation. Phases are in Roman numerals. RhoGHart refers to the chare array assigned to compute the g-space Hartree
and external energy computations. RhoG is the chare array assigned to help compute gradients of the electron density. RhoRHart is the chare
assigned to compute the real-space (r-space) Hartree and external energy computations. RhoR is the chare array assigned to compute the
exchange correlation energy. Lambda and Ortho are the chare arrays assigned to handle post-processing of overlap matrices. Pair calculator
is the four-dimensional chare array assigned to compute the overlap matrices. The small white squares emphasize that the overlap matrices
are partitioned into blocks, here shown as a 4 X 4 array. The cubes represent the three-dimensional r-space and g-space datasets handled by

the chare arrays.

of size N X N X N that has non-zero values inside a sphere
of radius N/2. The memory required to store the density in
both real-space and g-space scales as Nyom-

Phases III and IV compute the Hartree, the external,
and the exchange-correlation energies, as well as the KS
potential, vi(x,y,z). The approximate exchange-
correlation functionals of interest here and their
associated KS potential depend on both the density
p(x,y,z) and its spatial gradient Vp(x,y,z), the latter
requiring the computation of additional 3D FFTs. The
external energy is computed via 2(Natom-type + 1) 3D FFTs
within an EES formalism analogous to those in
References [33, 34]. Here, Naiom-type 1S the number of
atom types present in the system (e.g., if only carbon,
hydrogen, and nitrogen atoms are present, then there are
three atom types). These 3D FFTs are 1.4 times larger on
edge (i.e., 1.4N) than those used to compute the
exchange-correlation energy. Using the EES-based
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method, the computation of the external potential energy
scales exactly as the computation of the exchange-
correlation energy with system size Nyom 10€ Nagom- The
KS potential, a portion of which is related to each energy
term, is computed via several more 3D FFTs and then
sent (i.e., multicast) back to the states in the real space
(Phase V). The derivative of the three energy terms with
respect to the Fourier coefficients, ¥(s,g.g,.g-), 18
computed by multiplying each state in real space by the
KS potential and performing an inverse FFT (Phase VI).
The negative derivative of an energy term with respect to
a Fourier coeflicient of a given state is referred to as a

force. The forces on the states are denoted Fy(s,2+.8,.8-)-

The electron—atom (ion-core) nonlocal energy and the
kinetic energy of noninteracting electrons (Phase IX) can
be computed independently from the above work, as
depicted in Figure 1. The nonlocal energy and forces are
computed using the EES technique described in
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Reference [33]. Briefly, each state object performs
2Ngtom-type 3D FFTs if, for example, only s-wave
nonlocality is considered. The FFTs are smaller on edge
(~0.7N) than those employed to compute the density.
The required scalar work scales as N2 10g Nyom, While
the memory requirement scales as N2 .. The 3D FFTs
are performed concurrently because the nonlocal energy
does not couple the states together but couples each state
individually to all the atoms. The kinetic energy of
noninteracting electrons is expressed (in computer science
parlance) as a point-by-point multiply and reduction
operation whose computation scales as ~ N2

atom

o2 (7/200) Sy i wson Soufi8 P05, 26,81, )
where 7 is Planck’s constant, 4, divided by 2z, and m, is
the mass of the electron].

The forces from the nonlocal energy and the kinetic
energy of noninteracting electrons are added to those
obtained from the Hartree, the external, and the
exchange-correlation energies to complete the force
computation. In order to proceed further, we note that
the states satisfy an orthogonality condition expressed as
a matrix multiplication

* 7
Z ql(svnggy:gz)‘{l (S 7gv\-7gyvgz) :~fs65,y” (l)

28,8 €18l <gyy

where f; is the occupation of each state and the indices are
as above. § is a Kronecker delta. Equation (1) fixes the
normalization of the total wave function, and hence, the
number of electrons, and ensures that the Pauli exclusion
principle is satisfied. Typically, f; =2 and there are two
electrons per state, one spin up and one spin down. The
number of allowed points in g-space, ng, is much larger
than the number of states, and hence, the matrix
multiplication is non-square. Enforcing the orthogonality
constraints requires ~N_J . operations.

If the Fourier coefficients were naively updated using
the coefficient forces alluded to above, the states would
deviate wildly from the orthogonality constraint of
Equation (1). Therefore, two orthonormalization steps
are performed (Phases VII and VIII). The first step
regularizes the forces that are then used to evolve the
states. The second step corrects the small deviations of
the new states from orthogonality and normalization
constraints. Both steps scale as ~NJ . The order of
operations given above is appropriate for functional
minimization. Implementing the nonorthogonal state
CPAIMD method employed in our software, which is
based on Reference [35], simply requires a change in the
order of operations and an additional matrix multiply, as
described in more detail in Reference [35].

In summary, the memory requirement corresponds to
~Nazwm. The computational cost is ~Nyom 10g Nyom for

log Nyom for state-related

density-related work, ~N2,
work, and ~log N3 for the orthogonality-related work.

atom
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log Nyom Work is dominant,
work becomes the slow

In small systems, the ~N2__

while in large systems the ~NJ3
step.

Parallelization: Parallel operations and data
decomposition

The processor virtualization approach [42] embodied in
the Charm++ parallel programming system [32] forms the
backbone of our CPAIMD application. Work is divided
into a large number of objects or virtual processors (VPs)
and the computation is initially expressed only in terms of
VPs. Either the runtime system or the user can specify or
change the mapping of VPs to physical processors at
startup or during the execution of the application. The
VPs are C++ objects (called chares), which communicate
with each other via asynchronous method invocations or
messages. Chares are organized into indexed collections,
called chare arrays. In this way, Charm++ separates the
issues of decomposition and mapping.

CPAIMD parallel operations and data decomposition
are now described. The analysis is based on earlier work
[29] that led to scaling on 1,024 processors of a 32-water-
molecule system. Here, we highlight opportunities for
interleaving communication and computation and reveal
bottlenecks relevant to the BG/L system. The description
of the data decomposition that follows shows how these
opportunities can be exploited on a torus network
architecture, such as the BG/L architecture, to generate
scaling to a large number of processors. Nontrivial
extensions of our earlier work include the use and
parallelization of EES-based techniques, the improved
parallelization of the orthogonality work (matrix
multiplications), and the 3D-FFT work related to
density-based computations.

Parallel operations

In this section, we review the phases from a perspective of
parallelization and discuss certain novel features. As
mentioned, in Phase I, the electronic states are
transformed from their g-space representation to their
real-space state representation. The parallel 3D FFTs
employed to effect this change of representation are
implemented using a transpose-based method [43]. Our
parallel 3D FFT is performed in three stages. First, a set
of one-dimensional (1D) FFTs are computed to yield
W(s,8v, & &) — Y(s,8x. &y, 2). Second, a transpose is
performed. Third, two sets of 1D FFTs are computed to
generate (s, gv, gy, 2z) — W(s,x,»,2) as a result of our
planewise decomposition of W (s, x, y,z) (see the section
“Data decomposition: Enabling parallelism and
interleaving”). Because the states have a sparse spherical
distribution within their 3D g-space grid but are dense in
real space, this order of operations reduces the
communication cost. The spherical cutoff and the real-to-
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complex nature of the state 3D FFT reduce both
computation and communication by approximately a
factor of 4 compared to a full complex-to-complex 3D-
FFT computation. On the BG/L system, the required
serial 1D FFTs were performed using the ESSL
(Engineering Scientific Subroutine Library). The ratio of
computation to communication, defined as the ratio of
the number of floating-point operations required to
compute the quantity of interest in scalar mode to the
number of bytes that must be communicated to compute
the quantity of interest in parallel, is ~log Naiom-

The CPAIMD algorithm requires n,, multiple,
concurrent 3D FFTs to be performed. The computation
phase of one 3D FFT is typically interleaved with the
communication phase of several other 3D FFTs. In this
way, the Charm++ programming model can effectively
interleave computation and communication on the BG/L
system.

The reduction to form the probability density in real
space occurs in Phase II. As mentioned, once the states
are available in real space, the electronic density can be
computed via p(x,y,z) = > |P(s, x,y,z)\z. While the
states in real space are decomposed into N-planes, the
density in real space is decomposed into N, N subplanes
(see also the section “Data decomposition: Enabling
parallelism and interleaving”). In other words, each of the
N-planes is further subdivided into N, parts. Therefore,
the density construction requires spawning (N,N)
simultaneous reductions involving large datasets (~10°
real numbers). The ratio of computation to
communication is roughly unity.

In Phases II-VI, the electron density is processed. The
electron density in real space is immediately used to
compute a portion of the exchange-correlation energy
upon arrival. The Fourier components of the density are
then created by subjecting a copy of the density in real
space to a 3D FFT (Phase 1V), which requires two
transposes due to the subplane decomposition described
in the section “Data decomposition: Enabling parallelism
and interleaving.” Earlier in this paper, we discussed how
once in g-space, the Fourier coefficients of the density are
used to compute the Hartree and external energies via
2(Natom-type + 1) 3D FFTs, which can be performed
independently. In addition, we note that the gradient of
the electron density in real space is created by making
three copies of the Fourier coefficients of the density,
point by point multiplying each appropriately, and
performing three 3D FFTs to real space (requiring six
transposes). The electron density and its gradients are
employed to compute a second gradient-dependent
contribution to the exchange-correlation energy. The KS
potential, vy (x,,2), is created by performing five more
3D FFTs (requiring ten transposes) on datasets generated
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during the energy computation. The ratio of computation
to communication in this phase is 10g N,om-

The three energies are reduced across all processors
involved, and N, multicasts of degree n; are performed in
order to send each of the N, N subplanes of the KS
potential to the matching plane of each of the ny states.
This operation is a bottleneck and is, therefore,
interleaved with the nonlocal energy computation.

After performing multiple 3D FFTs (Phase VI) on the
product of the KS potential with each of the states, in a
procedure exactly the reverse of that used to form the
density, the forces Fy(s.gy.g,.g-) are obtained in g-space.
The ratio of computation to communication is again
log Natom-

Phase IX requires the computation of the kinetic
energy of the noninteracting electrons, which can be
computed without interprocessor communication, and
the computation of the nonlocal interaction between the
electrons and the atoms via the new EES method [33].
The latter calculation involves 2N,iom-type 3D FFTs
with a size of ~0.7N on edge and is interleaved with
Phases II-VI. The memory requirement and the ratio of
communication to computation for this phase both scale
as the 3D-FFT phase used to create the density (Phase I).

The force regularization and orthonormalization are
performed in Phases VII-VIII. Once the forces have been
computed, a series of matrix multiplications must be
performed. For functional minimization, an (n, X ng) X
(ng X ng) multiplication of the forces, Fy(s.g.g,.8-), by the
states, W(s",€v,g,-g-), to form the matrix A(s,s") is
followed by a modification of the forces, Fy (s, g\, gy, 8-) «—
Fo(x,gv,8y,8:) — 29 Als, ) (s, 8x, 8, 82)-

Under nonorthogonal state dynamics, the forces are
further multiplied by the precomputed inverse square
root matrix, which is available because of the change in
the order of operations required by the dynamics method
[35]. The modified forces are then employed to evolve the
states in both cases.

Under functional optimization, the evolved states
are slightly nonorthogonal and must be “reorthogonalized”
by matrix transformation. This requires the computation
of the overlap matrix, S(s,s") = >, ¥(s,8v,8.8:)
Y(s', g, &y, &). Next, the inverse square root of the
S-matrix 7(s,s') = S~'/2(s,s’) is computed and the
orthonormal states W™ (s, g, g,,2.) = 3., T(s,5)
Y(s',gv, gy, &) are constructed. The matrix
multiplications are non-square because the number of
non-zero points in g-space, n,, is much larger than the
number of states, n,. For the nonorthogonal state
dynamics, the input nonorthogonal states are
diagonalized using the same transformation,

\{J(OﬂhO) (_3‘7 gxagy,gz) _ Zs T(&S/)\P(non—onho) (S,7gx,gy7gz)7
and the inverse square matrix is stored for use later.
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Our multiplication scheme has a novel feature, namely
that the resultant matrix is used in a backward path in
order to compute the necessary modification to the input
data. The input data, ¥(s,g.g,.g-), is modified by the
computed matrix 7(s,s’) so that ¥ (s g, 8,8-) =
> T(s,s")P(s', gx, gy, &-), while the input data,

Fy (5,8..8,.8-), is modified by the computed matrix A(s,s")
so that Fy(s,gx,8y,8-) < Fu(s,8x,8,8:) — Dy A(s,5)
W(s", gx, &y, &-) for functional minimization. Hence, the
Charm-++ chare arrays assigned to perform the multiply
do not destroy their input data. After summing
contributions from all of the g-space to form S or A
matrices and post-processing if necessary (e.g., to form
the T-matrix), the result of the matrix multiplication is
simply applied in place for each block. A reduction over
rows, s’, is then performed to generate the desired result.
The procedure required by the new nonorthogonal state
CPAIMD method that is based on Reference [35] is not
significantly different.

In summary, under functional minimization, an
iteration starts with a set of orthogonal input states that are
used to compute forces. After force regularization, the
states are evolved, and slightly nonorthogonal states are
generated. These states are in turn orthogonalized and the
entire procedure is repeated. Under nonorthogonal state
dynamics, a set of input nonorthogonal states are first
orthogonalized and the inverse square root matrix is
stored. Forces are computed on the orthonormal states,
and the forces on the orthonormal states are transformed
to forces on the nonorthonormal states as described above.
The nonorthonormal states are then evolved to the next
step using the forces, and the procedure is repeated. This
summary omits some of the details described elsewhere [35].

Note that the orthogonalization phase forms a barrier
to further progress. The forces must be completed before
orthogonalization starts, and new forces cannot be
computed until the orthogonalization phase ends. Thus,
the communication into and out of this phase is critical,
as is its implementation within a data-driven model that
allows the orthogonalization work to proceed (as far as
possible) as data arrives and as data is sent on the
outward path.

Data decomposition: Enabling parallelism and
interleaving

The nine phases of CPAIMD are parallelized by
decomposing the system into 14 indexed collections of
objects, each implemented as a chare array. The g-space
and r-space representations of the electronic states are
decomposed into two 2D chare arrays of size (state times
g-space collection) and (state times r-space collection),
respectively. These are written as G(s.,p)[n; X N,] and
R(s,p)[ny X NJ, respectively, where the dimension sizes are
inside the square brackets. The g-space and r-space
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Computing the entries of the S matrix. Each chare-array element
P (s,s',p,p"), s = s' provides a contribution to an sgrain X sgrain tile
of the S matrix (sgrain = N/2) for its section of g-space indexed by
p,p' after receiving data from the state g-space chares. After compu-
tation, the g-space contributions are added together by summing
over p,p' at fixed s,s' (a “section reduction”) in order to produce the
desired sgrain X sgrain tile of S. Here, 0 = p < 1, p' = 0.

representations required for the external/Hartree energy
work decomposed as the density but with an additional
atom type of indeX, Gug(p,a), [Nene X Matom-type] and
RHE(p’p/’a)[(l 4N/Ny) X Ny X natom-typc] with Natom-type <
Natom-type- and the g-space and real-space representations
required for the nonlocal work decomposed as the states,
Gri(s,p)[ngX Ngland Ry (s,p)[ns X 0.7N]. The orthogonality-
related computation is decomposed into two 4D g-space-
based arrays (called pair calculators) and a 2D auxiliary
chare (called ortho). The computational work and memory
are always well balanced within density and state chares.
Orthogonality is inherently more expensive, with respect to
computation and data movement, than all other elements
in large systems.

The orthogonality phase presented in Figure 2 is
performed by a set of four index pair calculator chare
arrays, P.(s,s',p,p’), of size Ny X Ny X Ny X N,. These
arrays are designed to compute the matrix multiplications
(ny X ng) X (ng X ng) that generate the overlap matrices of
size (ng X ng). The 5,5 indices control the decomposition
of the (ny X ny) overlap matrices into chunks (i.e.,
portions) of size sgrain X sgrain, where sgrain = (ny/Ny).
The p and p’ indices control the decomposition of
g-space, while the sgrain X sgrain portions of the overlap
matrix are indexed by (s,s’). Therefore, an sgrain X sgrain
portion of the overlap matrix assigned to pair calculator
chare with indices s,s’ is generated by performing a
reduction over the (p,p’) indices of P.(s,s",p,p’). Here, N,
is exactly the same as above, and N, allows for a finer
decomposition of g-space, for example, splitting n, into
chunks of size ng/(NyN,).
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Postprocessing of the overlap matrices, forming the
T matrix from the S matrix, is performed by the ortho
array, O(s,8") [Nyo X Nyol], whose decomposition is
generally finer than that of P., N, > N,. Communication
from the pair calculator chares to the ortho chares and
back forms a bottleneck that requires careful attention.
The time consumed in this bottleneck is minimized
by the adoption of a data-driven model that enables
interleaving, as described in the section “Interleaving
communication and computation.” The reduction to
form the S and A matrices and multicasts of the 7 and A
matrices back to the P, chare arrays (from O) can create
contention and imbalance within root and intermediate
nodes in the spanning tree, particularly across N,, unless
these are balanced by shifting the roots for each N,.
Network contention is mitigated via the topology-aware
mapping described in the section “Mapping challenges.”
In particular, the matrix multicasts can be further
optimized using a rectangular multicast scheme enabled
by topologically aware mapping described later in the
section “Mapping challenges.”

We note that the memory requirement of CPAIMD
scales as ~N2_  in scalar mode. In the parallel
implementation given above, the memory requirement
scales like ~Nazl(/,?n per processor because of the planewise
decomposition. This assumes that we permit the number
of processors used in the computation to increase as
~N3{,§n. At a fixed problem size, the memory requirement
per processor decreases until the number of processors,
Nproc €xceeds Nng (Nproe > Nny). This is also the point at
which our decomposition would have to be further
refined to continue scaling. For the largest system studied
here, 256 water molecules, the total memory requirement
in scalar mode is approximately 100 GB using the
nonlocal EES method, a computation that barely fits
onto 512 BG/L processors but is easily accommodated on
Nproc > 1,024 in coprocessor mode.

In order to judge the scale of the computation, consider
a 32-water-molecule system under a 70-Rydberg spherical
g-space cutoff. The system contains n; = 128 states, N =
100-state r-space planes, and about n, = 64,000 non-zero
g-space points per state. The computation is decomposed
into 12,800 VPs to represent the states in real-space, and
about as many VPs to hold the non-zero points in
g-space. In addition, there are 500 VPs representing
density in real-space and reciprocal space (see Figure 1).
Older MPI-based applications, such as those by two
of the authors [28], scale this benchmark to 128
processors (~y).

The Blue Gene/L architecture

The BG/L system that we used herein to test performance
[44] is a low-power massively parallel supercomputer with
a 20,480-node installation at the IBM T. J. Watson
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Research Center. Each node has two PowerPC* 440 cores
running at a low clock speed of 700 MHz. The
performance of each BG/L core is enhanced through a
second floating-point unit (FPU), called the double
hummer [45], resulting in a peak performance of

2.8 Gflops per core. The second FPU is usable only with
16-byte aligned inputs. Linear algebra libraries such as
Basic Linear Algebra Subprograms (BLAS) can use the
double-hummer unit, and optimized sequential libraries
are utilized as much as possible by our application.

The BG/L system has a 3D torus interconnection
network [46] for messaging with a favorable ratio of
network bytes to flops. The network has low messaging
latency and good performance for short messages. Because
the torus network has limited bisection bandwidth,
localizing communication improves performance.

Message passing on the BG/L system is performed
by the core itself. Packets are sent by writing
application data to memory mapped to a FIFO (first-in,
first-out) queue. Therefore, overlap of computation
and communication is limited, although optimizations
can be achieved by interleaving computation and
communication given a data-driven programming model
such as Charm-++. Because the PowerPC 440 core can
have three outstanding loads and three outstanding
stores, packet throughput is limited, and each core can
barely keep the entire network busy. Thus, each CPU is
kept occupied during phases in which it sends messages to
near neighbors. However, during phases in which
messages are sent to far neighbors, the data rate is
restricted by the torus or at the torus bisection, and
communication can be overlapped with computation.

Parallelization: Techniques and trade-offs

In order to interleave communication and computation
not only within the individual phases but also among
phases that occur simultaneously and at the boundaries
of phases that form natural barriers to progress,
synergistic optimization of the following elements is
required: 1) the 3D-FFT phase used to create the density
by interleaving computation and communication of the
many 3D FFTs, 2) the multicast or reduction of real-
space state chares to the real-space density chares and the
multicast from the density chares back to the state chares,
3) the interleaving of the nonlocal-related computation
and communication with the density multicasts to and
from the states, and intradensity chare communication
and computational work, 4) the few 3D FFTs required to
perform the density work, 5) the many simultaneous 3D
FFTs required to perform the nonlocal computation, 6)
the communication into and out of the pair-calculator
chares to and from the g-space state chares in

order to mitigate the natural barrier formed by the
orthogonalization work, and 7) the communication into
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and out of the pair-calculator chares to and from the
ortho chares that post-process the overlap matrices. In
order to accomplish these seven tasks, the following were
all systematically improved: 1) the scalar performance,
2) the decomposition of work to chare array elements,
3) the topologically aware mapping of chare array elements
to processors, and 4) interprocessor communication
through use of the BG/L machine layer. In this process,
we quite naturally borrowed any applicable general
optimizations from previous work by the University of
Illinois authors [47].

Scalar optimization

The scaling of the nonlocal energy computation with
system size was reduced from N2 to N2 10g Nyom via
the new EES nonlocal energy method [33]. The scaling of
the external local energy computation with system size
was similarly reduced from Nazle t0 Natom 10€ Nyom Via an
EES method. The use of EES techniques is unique to our
CPAIMD implementation.

The orthogonalization scheme for functional
optimization and nonorthogonal state dynamics [35]
employed herein requires the computation of an inverse
matrix square root. A second-order iterative method
involving three (n; X ny) matrix multiplications per cycle
was implemented [48], which has a lower scalar
computational work overhead than the standard

technique and is easier to parallelize.

Decomposition optimization

Three important decomposition optimizations were
developed. The first simultaneously balances the
communication—from the g-space state chares, G(s,p), to
the pair-calculator orthogonality chares, P.(s,s’,p,p’)—
and the 3D-FFT work and communication. Briefly, the
spherical truncation of g-space, which is key to obtaining
high scalar efficiency and reducing communication in
both the state 3D-FFT phase and the orthogonality
phase, can lead to unbalanced chare array elements if a
naive decomposition is employed. Creating sets of
complete g.-lines of state Fourier coefficients in order to
balance the number of points and lines in each G(s,p)
chare array element leads to substantial performance
improvement. It also permits the introduction of a free
parameter, N,, that can be used to tune the granularity of
G(s,p).

The second optimization increases the degree of
parallelism of the orthogonality phase. Rather than
keeping the collection of g-space points assigned to each
G(s,p) intact, and simply communicating them to
appropriate P.(s,s', p) calculators, the collections were
further split. This was implemented by simply adding
another index to the pair-calculator chare array, P.(s,s’,
p,p'). Increasing the degree of parallelism increases the
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number of messages sent, but each message is smaller.
The total amount of data to be reduced in the formation
of the overlap matrices is also increased. However, the
trade-off results in efficiency gains.

The third optimization increases the degree of
parallelism of the density work. The g-space
representation of the density has about eight times the
number of non-zero entries as the g-space representation
of a state. Therefore, the computational cost to transform
the density between g-space and real-space is about five
times that required to transform a state. Further
decomposing the density into subplanes, R,(s,p, p’),
resulted in higher efficiency despite the communication
cost of an additional transpose. In addition, the g-space
representation of density was decomposed into sets of
complete g.-lines of density Fourier coefficients in order
to balance the number of points and lines in each chare
array element, G,(p), allowing N,, to become an
adjustable parameter in precisely the manner given above
for the states.

Mapping challenges

The Charm++ system supports a default user-provided
mapping of VPs to real processors. Because of the
complexity of the CPAIMD application, there are
opportunities for intelligent mapping to simultaneously
optimize load balance and communication overhead.
Under CPAIMD, the load on each VP is static, and
therefore, the mapping can be defined at startup.

A simple map that allocates all planes of a state to the
same processor would make all 3D-FFT transpose
messages local, resulting in good performance. This map
is not scalable, because we desire to run the application
on processor configurations much larger than the number
of states. We call this function the state map. In contrast,
the planes of the same rank in all the states could be
placed on the same processor. This mapping would
optimize the KS potential multicast operation (see
Figure 1, Phase V) from the density objects to real-space
plane state objects. Of course, keeping planes together
would make the FFT transpose messages highly nonlocal
(Phases I and VI), thereby increasing the communication
overhead of the application. This mapping function is
referred to as the plane map.

A compromise between the state and plane mapping
would allocate planes of a state partition on a processor
partition. This would result in a smaller fanout for the KS
potential multicast and keep FFT messages local or
restrict them to nearby processors in the network. We
refer to this map as the hybrid map. The mapping
functions, state map and plane map, are two extremes of
the hybrid map. The best scheme depends on the number
of processors and the interconnect message latency and
bandwidth.
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Figure 3

Placement of g-space, real-space, and density objects on the 3D
torus.

Careful topology-aware mapping and relationship
mapping are critical design issues for software that must
run efficiently on a 3D network torus architecture. The
concept of data locality must be extended to consider
placement on neighboring processors. The cost of
communication between processors is affected by their
distance within the torus. The effective bandwidth
consumed by a message is its size multiplied by the
number of links that must be traversed from sender to
destination in the torus, referred to as the hop count.
Network contention resulting from link saturation can
severely damage the performance of a communication-
intensive application such as CPAIMD. The most
efficient use of bandwidth and, therefore, the best
performance for CPAIMD come from minimizing the
distance between objects, which frequently communicate,
while maintaining good load balance.

The key to defining an effective mapping of VPs to
processors in the CPAIMD application lies in placement
of the state g-space VPs, G(s,p), where s is the state index
and p is the plane index. Both the real-space VPs and the
orthonormalization VPs depend on the G(s,p) placement.

In order to localize communication, we used a box
mapping for G(s,p). VPs with the same plane index, p,
were placed in rectangular prisms. These rectangular
prisms were selected such that their long axis spanned one
dimension of the torus and was oriented along whichever
of the X, Y, or Z torus axes that allowed the torus to be
completely tiled by the prisms. The number of prisms is
equal to the number of planes and was always chosen at
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configuration time to be a multiple of at least two torus
dimensions (choices involving power of 2 suffice on
natural BG/L system partitions). Within each prism, the
chares for G(s,p) were allocated in increasing state order
longitudinally along the long axis of the prism. Figure 3
shows the map employed on the BG/L torus network.
The matrix-multiplication/pair-calculator VPs, P (s1,s2,
p,p'), could then be placed starting at the centroid of the
3D object formed by G(s1,p) + ... G(s1 + sgrain,p) + G
(s2,p) + ... + G(s2 + sgrain, p) within the prism for each
plane p, thereby minimizing the hop count for the
orthonormalization input and output. The ortho VPs,
O(sl ... s1 + sgrain,s2 ... s2 + sgrain), can likewise be
placed on the basis of the P.(s1...s1 + sgrain, s2 ... s2 +
sgrain, *, x) processor list, but this led only to an ideal hop
count for elements on the diagonal s1 = 52, motivating
further communication optimizations described in the
section “Interleaving communication and computation.”
In other words, the ortho chare array element O(i,)) is
assigned to the processor selected from the set of all
processors mapped to P. chare arrays that share the same
two indices, or P.(i,j,*,*), which minimizes
communication.

The real-space VPs R(s,p) were placed with one state
per flat prism formed by G(s,*). The previously described
longitudinal statewise placement within G(s,p) resulted in
flat bounding prisms for each state orthogonal to the long
axis of each prism. The R(s,p) chares were placed in
increasing order of plane index along one axis of the flat
bounding prism, thereby providing an orthogonal
localization for the plane indices. The density-related
chares R,(p,*,*) were placed on processors proximal to
state real-space chares, R(s,p), by starting with the
centroid of each R(*,p), then G,(p,*,*) is mapped near,
but not on, the processors used by R,(p,*,*). The
nonlocal g-space EES chares were pinned to the G(s,p),
while its r-space nonlocal EES chares Rggs(s,*) were
mapped on the basis of the placement of G(s,*). If there
were sufficient processors, the Rggs map excluded the
processors used by the density objects to minimize
interference during overlap.

A critical result of the mapping scheme is that it
reduces the maximum hop count for each phase; that is,
phases that might otherwise exhibit communication
patterns spanning the entire torus in a naive mapping
scheme are instead confined to communicate within
prism-shaped subtori. This, in turn, balances the overall
communication load throughout the available torus.
Performance degradation due to network contention and
areas of high network traffic is avoided, while each phase
remains able to exploit the resources of the entire
processor allocation as needed. In more detail, planewise
communications in the orthonormalization chares were
confined to each G(*,p) prism. Statewise communications

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008



G(s,*) <> R(s,*) were confined to planes orthogonal to the
long axis of the G(s,p) prisms. Planewise communications
R(+,p) < R,(p,*,*) were likewise confined to a different set
of prisms. Each of these prism objects spanned one or
more torus dimensions, permitting the torus wraparound
to reduce the maximum hop count within each prism to
approximately half the length of the largest spanned
dimension. The hop count could in many cases be
reduced further via the centroid scheme described above.

Finally, we note that the memory cost of these maps
grows linearly (three integers per VP) in proportion to the
number of VPs, which were a few megabytes in the largest
system studied. The runtime cost of creating the most
complex of these maps is pn’log(n), where 7 is the number
of VPs and p is the number of processors; however, the
constant time is sufficiently small for the largest runs to
require less than a few minutes to map. Nevertheless,
after being created, maps were stored once and reloaded
in subsequent runs in order to minimize restart time. The
offline creation of maps by using even more sophisticated
techniques and by adapting these ideas to other topologies
is an area of future work.

Charm++ native layer for the BG/L system

The MPI communication software stack on the BG/L
system [49] has two messaging protocols, eager and
rendezvous. Because MPI requires message ordering,
eager protocol [49] packets are routed deterministically,
but this protocol works well only for short messages. For
long messages, the rendezvous protocol is used, in which
a rendezvous packet is sent to the destination, where the
MPI tags are matched and an acknowledgment is sent
back. Upon receiving the acknowledgment, the source
sends the packets to the destination with adaptive routing
for higher network throughput. The performance of the
rendezvous protocol is affected when the rendezvous
packets are delayed by other packets. This approach
prevents some sources from making progress on their
message processing.

In contrast, Charm++ does not require message
ordering. This allows different components of an
application to make progress independently, thereby
enabling the effective interleaving of computation and
communication. Ordering and synchronization are
handled at the application and runtime levels. All
messages are unexpected and are not required to carry
additional tag information. Handling of this messaging
scheme within MPI requires frequent calls to MPI Test()
and MPI_Probe() in order to drive network buffer
progress, which introduces undesirable overhead. The
flexibility of Charm++ allows it to be built on top of a
message layer that is lower than MPI; the Charm-++
native layer is built on the BG/L system message layer
[50], which reduces message overhead and permitted the
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development of the new, more efficient protocol described
in the following section. A comparison of the
performance of the MPI-based layer and the native layer
is given in the section “Results.”

Finally, we note that the per-node memory of the
Charm++ runtime system on the BG/L system does not
increase with processor number at fixed system size.

The adaptive eager communication protocol

Since Charm-++ does not require message ordering and all
messages are received as unexpected messages, it can take
advantage of the adaptive eager protocol [36]. Here,
messages are sent on the network as eager messages
without handshakes and with adaptive routing. Hence,
this protocol has low message overhead and good network
throughput. Messages sent with adaptive-routing packets
could arrive out of order, which would violate MPI
semantics, but this is not a problem for Charm-++.
However, each packet must carry the size of the message
in order to allocate a buffer for the entire message. The
packet must also carry the source rank, offset in the
message, and a sequence number to uniquely identify it at
the receiver. Fortunately, the software header for a torus
packet has space for up to 1-MB messages and a 4-bit
sequence number. This allows each processor to send 16
messages to every other processor in the partition. After a
processor receives 16 messages from a given source, it
sends an acknowledgment message back to the source to
send the next 16 messages. We have observed that this
protocol significantly improves performance of Charm-++
applications on the BG/L system.

Optimized multicasts

Several multicast operations exist in CPAIMD. In
Figure 1, Phases V and VIII involve each-to-many
communication operations with large messages. Two
techniques are used to optimize this communication. For
the randomized direct multicast, each of the NN, subplanes
of the density in Phase V of the computation sends 7,
messages to the corresponding state real-space planes.
These are sent as point-to-point messages using the
adaptive eager protocol with adaptive routing. They are
also randomized to saturate the links at the core bisection
of the BG/L torus [46]. For the rectangular multicast on
the BG/L system, the destination objects of a multicast
can sometimes be mapped onto a rectangular prism, such
as in the orthonormalization phases. Here, we exploit the
deposit-bit broadcast capabilities of the network
hardware, in which each packet can be sent to all the
destinations on a line, thereby reducing message overhead.

Optimizing parallel 3D FFTs by message combining

The overhead of sending several short messages during
3D-FFT phases was optimized using a streaming
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communication strategy. These messages are sorted into
buckets on the basis of the destination processor rank.
When the bucket for a particular destination reaches full
capacity, the messages are combined and sent to the
destination as one message, resulting in a lower per-
message overhead. A bucket size of five messages was
found to be optimal.

Interleaving communication and computation

The density (Phases IIT and 1V) and nonlocal (Phase IX)
computations can be interleaved because these phases
involve 3D FFTs and, hence, all-to-all communication.
Again, on the BG/L system, the processor itself must
packetize messages, and overlap between computation
and communication is not achieved easily. However, with
all-to-all communication, the rate at which the data
arrives at the processors is limited by the bisection
bandwidth of the torus and gains from the overlap of
computation and communication are possible. Effective
overlap allows involved VPs (here, nonlocal and density
chares) to share the same physical processor on smaller
machines.

In order to enable interleaving, network progress calls
are inserted into the core compute loop of an application
every tens of thousands of processor cycles [47]. On the
receiver side, progress calls ensure that arriving packets
are processed while the lag time is used to perform
computation. On the sender side, progress calls fill up the
24 network FIFOs, thereby allowing the application to
compute while messages drain from the network. This
approach was borrowed from other work by the
University of Illinois authors [47].

The application of the 7 or A matrices in the backward
path of the pair-calculator chares described previously
provides further opportunity for overlap using a data-
driven programming model. As the construction of tiles
of T or A are completed and communicated back from
the ortho chares, O, to the pair-calculator chares, P,
these can be multiplied by the original data as they arrive.
(The granularity in the state indices of O is typically finer
than that of the P., Ny,o > N,.) Furthermore, the resulting
components can be returned to appropriate G chare array
elements as soon as possible, and the reduction performed
in the G chare array as messages arrive. In this way,
interleaving computation and communication is achieved
while reducing peak bandwidth usage.

Results

The efficiency of the Charm-++based implementation of
CPAIMD was investigated by using liquid water as a test
case because of the importance of aqueous solutions in
biophysics [51]. A single water molecule, H,O, has three
atoms per molecule and two atom types, and it possesses
four doubly occupied valence electron states. All the
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computations described in this section were performed
using the standard g-space spherical cutoff radius on the
states of |g|§ul =70 Ry (i.e., Rydberg) at the I" point (1
k-point), 3D periodic boundary conditions, the BLYP
generalized gradient-corrected density functional [19, 20],
and Martins—Troullier type of pseudopotentials [52]. [The
I' point refers to the condition of k& = (0,0,0).] More-
complex systems with up to five atom types are currently
running using our framework and will be discussed in a
later publication. The framework is not limited to five
atom types, but this is simply the maximum number
attempted to date.

We note that water is an extremely common CPAIMD
simulation target [10-12]. Other groups that are now
developing fine-grained parallel CPAIMD software
[30, 31] have not yet provided recent scaling data on water
with standard parameters, and we would be hesitant to
estimate timings for software other than our own. Here,
we publish a set of unambiguous timings for a well-
studied system, liquid water, using standard parameters
and a well-known architecture so that other groups can
compare their results to ours. We note that 2-year-old
scaling data on 32 water molecules using the nonstandard
cutoff, |g|2, = 100 Ry, on small processors numbers,
Nproc < 512, has been presented elsewhere [30]. The one
published data point for the 32-molecule water system
(using standard parameters, |g\§m =70 Ry) is 0.35 s/step
on 512 processors [30]. This likely does not represent the
current status of their project.

Specifically, for our study, we selected six liquid water
systems consisting of 8, 16, 32, 64, 128, and 256 molecules
and 32, 64, 128, 256, 512, and 1,024 doubly occupied
electron states, respectively, in order to probe the
performance of our CPAIMD application at many limits.
In the small systems with 8 and 16 water molecules, the
3D-FFT work is dominant. In large systems with 128 and
256 water molecules, the orthogonalization work is more
dominant. In the intermediate-size systems with 32 and 64
water molecules, the 3D-FFT work and
orthogonalization have more-balanced workloads. In
Reference [31], a 1,000-atom system of solid molybdenum
under 3D periodic boundary conditions was studied using
from 1 to 8 k-points and a cutoff of 44 Ry. Compared to
our largest benchmark, 256 water molecules using 1
k-point (the I'-point), the number of non-zero g-vectors
per state in the previous work is essentially the same, but
the molybdenum system has n, = 6,000 doubly occupied
states and is more strongly dominated by the
orthogonality work than the 256-water-molecule system.
The computational cost of the orthogonality computation
in the 1,000-molybdenum atom system is 36 times that of
the orthogonality computation in the 256-water-molecule
system. There are significantly more nonlocal electron—
atom (ion-core) interactions in molybdenum than in
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Table 1

no Euler exponential spline; WMs: water molecules.)

Parallel performance for liquid water. (CO: coprocessor; VN: virtual node; no topo: no topological or relational maps; no ESS:

CO-mode native layer with optimizations

Nodes 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 20,480
Processors 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 20,480
Time (seconds/step)

8 WMs 022  0.10 0.082  0.071 0.046 0.026 0.020

16 WMs 0.73 040  0.23 0.15 0.106 0.061 0.041 0.035

32 WMs 2.71 .52 095 0.44 0.26 0.15 0.11 0.081 0.063

64 WMs 6.62 3.75 1.88 0.87 0.51 0.31 0.21 0.15

128 WMs 6.9 2.73 1.40 0.91 0.58 0.37 0.3

256 WMs 16.4 8.14 4.83 2.75 1.71 1.54

VN-mode native layer with optimizations

Nodes 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 20,480
Processors 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 40,960
Time (seconds/step)

8 WMs 0.13 0.11 0.08 0.06 0.028 0.021

16 WMs 046  0.28 0.19 0.13 0.08 0.047 0.035

32 WMs 1.99 1.40  0.81 0.43 0.174 0.13 0.082 0.067

64 WMs 9.07 3.38 1.71 0.67 0.38 0.22 0.17 0.15

128 WMs 3.0 1.48 0.90 0.65 0.48 0.40 0.3

256 WMs 5.10 3.48 2.41 1.47 1.2

Performance without selected optimizations for comparison to CO mode

Nodes 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 20,480
Processors 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 40,960
Time (seconds/step)

32 WMs (MPI) 0.33 0.22 0.17 0.12

32 WMs (no topo) 0.21 0.23 0.16 0.18

32 WMs (no EES) 0.22 0.14 0.098 0.082

256 WMs (no topo) 28.8 23.0 134 6.83 3.40

water (i.e., 250 times more interactions), and these were
treated [31] using the standard N3, method (to the best
of our knowledge). Thus, the molybdenum system has
significantly more computational work to parallelize than
the 256-water-molecule system. Scaling results starting at
1,024 nodes are given for the molybdenum system with 1
k-point in Reference [31].

We performed numerical tests to examine the extreme
scaling limit of the CPAIMD application on our
benchmark suite. Table 1 (top) shows the present
performance up to processor numbers that are many
times higher than physical parameter values such as the
number of electronic states.
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Weak scaling is observed in all cases. (Weak scaling
studies generally grow the problem size and the number
of processors together in order to preserve the work per
processor.) Thus, the timing of approximately 0.2 s/step is
observed for 8 water molecules at 32 nodes, for 16 water
molecules at 128 nodes, for 32 water molecules at 512
nodes, and for 64 water molecules at 4,096 nodes in
coprocessor mode, in which the number of nodes equals
the number of processors. For 128 water molecules on
20,480 nodes in coprocessor mode, a rather promising
time of 0.3 s/step is achieved. This is promising in the
sense that this is fairly close to the 0.2-s/step timing
required for strong scaling on 32,768 nodes. However, in
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virtual node mode for 128 water molecules using 16,384
nodes and 32,768 processors, we attain a slower timing
than using 20,480 nodes in coprocessor mode. This
motivates future work optimizing our CPAIMD
application for large systems using large processor
numbers. For example, more scaling tests on the full BG/
L machine are required to analyze and eliminate the
bottleneck for this case. Note that the other systems
studied exhibited quite good performance in virtual node
mode even at high processor numbers. The number of
processors required to reach 0.2 s/step increases as N2
at small system size and as N7 at a large system size, as
expected. Good strong scaling is also observed.
(Experiments that are strong scaling refer to studies in
which researchers fix the problem size and increase the
number of processors.) The CPU time per step is reduced
fairly monotonically as processor number increases at
fixed system size until the scaling limit is reached. The
scaling limit appears at processor numbers much greater
than the number of states in the system (Nproe > 30m).
We also note that our time per step for 32 water
molecules is 0.26 s/step on 512 nodes (and processors) in
coprocessor mode. In the next few paragraphs, we
describe some of the more important elements that led to
these results.

First, Charm++ can be compiled using MPI as its
machine interface or using a BG/L system-customized
machine interface [36] called the native layer. The scaling
of the CPAIMD application on the MPI driver was
limited (see Table 1) because MPI adds a level of
overhead and imposes message ordering, which is not
necessary or pertinent for this application.

Second, because the BG/L system employs a torus
network architecture with a limited bisection bandwidth,
efficiency gains can be achieved by implementing VP
mapping optimizations that improve communication
locality. Table 1 (see rows labeled “no topo” [no
topology]) shows the performance degradation if
topology-specific and relational maps are disabled in the
application. In the simple mapping scheme, the work is
spread over processors without regard for network
locality. As can be seen in the no topo line for the 256-
water-molecule system, the utility of topology mapping
increases with the size of the torus, exceeding a factor-
of-2 reduction in CPU time on most of the 256-water-
molecule data at large processors. The no-topo runs reach
the scaling limit before 8,192 processors for the 32-water-
molecule test case.

Third, we observed that the nonlocal and density
computations had limited parallelism when implemented
using N2 and N2 algorithms rather than the
N2 10g Nyom and Nyeom 10g Nyom EES-based methods. In
Table 1 (labeled “no EES”), results produced using the
standard methods are given for comparison. The EES-
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based methods permit more parallelism using the
decomposition described in the text, as can be seen by the
increasing beneficial effect of EES on processor numbers
higher than 1,000. The standard methods could be made
to scale better if a finer decomposition of the states is
implemented, as described elsewhere [31].

Conclusion

A fine-grained parallel implementation of the CPAIMD
method using the concept of processor virtualization
facilitated scaling of important systems to physical
processor numbers greater than or equal to 30 times the
number of electronic states on the IBM BG/L system.
Virtualization and adaptive interleaving of
communication (automatically engendered by the
Charm++ runtime system), novel topologically aware
mapping of objects to processors, and new scalar
algorithms resulted in improvements both in the number
of processors used and in absolute performance. The
study demonstrates the ability of synergistic research in
hardware, software, and science to generate efficient and
useful applications.
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