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Important scientific problems can be treated via ab initio-based
molecular modeling approaches, wherein atomic forces are derived
from an energy function that explicitly considers the electrons. The
Car–Parrinello ab initio molecular dynamics (CPAIMD) method
is widely used to study small systems containing on the order of 10
to 103 atoms. However, the impact of CPAIMD has been limited
until recently because of difficulties inherent to scaling the
technique beyond processor numbers about equal to the number of
electronic states. CPAIMD computations involve a large number
of interdependent phases with high interprocessor communication
overhead. These phases require the evaluation of various
transforms and non-square matrix multiplications that require
large interprocessor data movement when efficiently parallelized.
Using the Charmþþ parallel programming language and runtime
system, the phases are discretized into a large number of virtual
processors, which are, in turn, mapped flexibly onto physical
processors, thereby allowing interleaving of work. Algorithmic and
IBM Blue Gene/Le system-specific optimizations are employed to
scale the CPAIMD method to at least 30 times the number of
electronic states in small systems consisting of 24 to 768 atoms (32
to 1,024 electronic states) in order to demonstrate fine-grained
parallelism. The largest systems studied scaled well across the
entire machine (20,480 nodes).

Introduction

As the computational power of large parallel computers

increases [1], the efficiency of modeling methods

improves correspondingly, placing increasing demands

on parallel programming techniques. Therefore, it is

important to develop strategies capable of scaling the

algorithmically complex, multiphase methods of

important scientific applications to large numbers of

processors. Here, we present a description of a fine-

grained parallel implementation of the Car–Parrinello

ab initio molecular dynamics (CPAIMD) algorithm

[2–6] in a form suitable for nonexperts. This algorithm

has been used to study key chemical and biological

processes as well as to examine important problems in

materials science, biophysics, nanotechnology, and solid-

state physics [7–16]. (The term fine grained indicates that

the implementation decomposes the computational work

into small parts so that small systems can scale to numerous

processors.) This study highlights the ability of synergistic

research in parallel algorithm, hardware design, and

methodological development to generate fast applications

that allow new scientific insights to be garnered.

CPAIMD can be intuitively understood as numerically

solving Newton’s equations of motion using forces

derived from electronic structure or ab initio calculations

performed as the simulation proceeds, thereby permitting

the examination of phenomena that require a model

containing a representation of the electronic states to
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describe the phenomena. Typically, CPAIMD

implementations employ an (in principle) exact ab initio

technique known as the Kohn–Sham (KS) density

functional theory [17, 18], the practical implementation of

which requires the use of an approximate functional

[19–21] and a finite basis set, such as plane-waves [2–6].

However, it should be noted that the quality of both the

basis sets [22–25] and the functionals [26] employed are

continuously improving.

From a computational point of view, the CPAIMD

method involves many phases, including multiple

concurrent sparse three-dimensional (3D) fast Fourier

transforms (FFTs), non-square matrix multiplications,

and several concurrent dense 3D-FFT computations that

possess nontrivial dependencies that are quite different

from those found in a classical molecular dynamics

computation [27]. The parallel 3D FFTs are themselves

communication intensive because of all-to-all

interprocessor communication patterns inherent in their

computation. For example, all of the processors that have

a portion of the dataset to be transformed must

communicate. The efficient concurrent execution of

hundreds of parallel 3D FFTs introduces another

challenge. In order to switch between phases, movement

of a large amount of data must be orchestrated between

processors that generate relatively little computation. In

general, parallelization of the phases of CPAIMD

necessitates complex trade-offs between memory use, load

balance of work across processors, and interprocessor

communication costs. Basic MPI (Message Passing

Interface)-based implementations of CPAIMD, such as

the implementation developed by two of the authors

several years ago [28], exhibit limited scalability, thus

restricting the number of processors that can be

effectively employed to roughly the same number of

electronic states in the system. In contrast, recent efforts

by us and others have overcome the states-equal-

processors barrier [29–31].

In this paper, we show parallel scaling on processor

numbers more than 30 times the number of electronic

states in small systems consisting of 24 to 768 atoms

(32 to 1,024 electronic states). The 768-atom and

1,024-state system scaled well on all 20,480 nodes of the

IBM Blue Gene=L* (BG/L) torus network supercomputer

located at the IBM T. J. Watson Research Center. (In

other words, CPU times continued to diminish with

increasing processor numbers.) Our implementation

employs the Charmþþ parallel programming language

and runtime system [32]. Charmþþ offers the benefits of

overpartitioning via migratable objects, a concept whose

implementation involves decomposing the problem into

many more discretizations than available processors and

mapping these parallel objects to processors at startup.

Charmþþ also allows the runtime system the freedom to

adjust the location of objects with respect to processors as

the system evolves. This approach allows us to obtain

high scalability and low per-iteration CPU times on the

small problem sizes of interest here. Performance is

notably enhanced by exploiting the ability of Charmþþ
to enable the interleaving of computation and

communication and to simplify the effective topologically

aware mapping of work to processors, which is key to the

efficient use of the BG/L torus network architecture. This

case study illustrates the competing objectives that must

be balanced in the parallelization of a complex

multiphasic application and demonstrates a series of

useful strategies and techniques that can be applied to

optimize a wider class of problems on large parallel

supercomputers, with or without a torus network.

This paper is organized as follows. We briefly review

the basic CPAIMD algorithm [2–6] for completeness so

that the reader can understand its parallelization. We

highlight new approaches to basic elements [33, 34] of the

CPAIMD technique that are based on the Euler

exponential spline (EES). These approaches are key to

our parallel scaling, allow improved scalar performance,

and have not been described in previous reviews [2–6, 29].

We stress that the adoption of a CPAIMD method that is

based on the work in Reference [35] permits the use of

many highly efficient routines and, furthermore, allows

our nonstandard, but effective, CPAIMD equations of

motion to be derived from a simple Hamiltonian

formalism. Next, we present the parallelization of the

serial algorithm following the approach outlined in an

earlier paper [29] that led to scaling on 1,024 processors of

a 32-water-molecule system. We discuss significant

extensions of our earlier work, including the use and

parallelization of EES-based techniques and the

improved parallelization of many of the other phases of

the computation, in particular the 3D FFTs and matrix

multiplications under Charmþþ. We then describe the

architecture of the BG/L system, followed by a discussion

of the CPAIMD optimizations motivated by the BG/L

design. Next, we present the mapping of the parallel

objects of CPAIMD to physical processors in the 3D

torus network. Established Charmþþ techniques that

have been proven to be effective in scaling classical

molecular dynamics on BG/L systems have been applied

where appropriate [36]. Finally, we present scaling results

for liquid water in system sizes consisting of 8 to 256

molecules under 3D periodic boundary conditions using

standard parameters and a generalized gradient

approximate (GGA) functional, specifically, the BLYP

(Becke–Lee–Yang–Parr) functional [19, 20].

The computation
The ground-state electronic energy can be calculated by

minimizing a functional of the electron density following
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the principles of density functional theory (DFT), a

formally exact theory [17, 18]. In the KS formulation of

DFT used here, which is also formally exact, the electron

density, q(r)¼ q(x,y,z) (i.e., a probability density in three

spatial dimensions), is expressed as the sum of the

modulus square of a set of single-particle KS electronic

states (hereafter referred to simply as states). Typically,

two electrons are considered to occupy each state.

Unfortunately, the exact functional is not known, and

an approximate functional must be employed. In this

work, we provide for an arbitrary generalized gradient-

corrected approximate functional of the type given in

References [19–21]. Furthermore, a finite set of plane-

waves is used to describe the single-particle states of the

theory, as described in more detail below. Additionally,

only the valence electrons of the atoms are treated. Thus,

a single water molecule or H2O—which contains 10

electrons of total charge �10e, an oxygen ion of

charge þ8e, and two hydrogen ions of charge þ1e—is

treated as an eight-electron system of total charge �8e.
The value �8e arises because the oxygen moiety carries

valence charge þ6e (this is often referred to as an ion

core), and the two hydrogen ions each carry a chargeþ1e.
Thus, eight electrons are needed to neutralize the system.

Rather than use the tedious nomenclature ion core

throughout this paper, we will sometimes simply use the

term atom (e.g., in subscripts), allowing the reader to

determine the ion core (i.e., valence charge) by context.

Because KS DFT is a theory for noninteracting

electrons in an effective self-consistent potential that

yields the same ground state as the physical interacting

electron system, the KS density functional contains

several terms: the quantum mechanical kinetic energy of

noninteracting electrons, the Coulomb repulsion or

Hartree energy between negative charge clouds q(r) and
q(r0) (or simply the Hartree term), the correction of the

Hartree energy to account for the quantum nature of the

electrons (or the exchange-correlation energy), and the

interaction of the electrons with the atoms (ion cores) in

the system (or the external energy). In the last term, the

interaction of the valence electrons with the atoms (ion

cores) is treated explicitly, and the core electrons are

mathematically removed, resulting in the electron–atom

(ion-core) nonlocal energy. This term should not be

confused with nonlocal electron–electron interactions

that are not of interest here. The form of the exchange-

correlation energy is not known and must be

approximated, as discussed above.

Once the functional is minimized, the forces acting on

the atoms can be computed from the functional and the

atom–atom (ion-core–ion-core) Coulomb interaction, and

the positions and velocities of the atoms evolved in time

according to a finite difference solution of Newton’s

equations of motion. The CPAIMD method is elegant

because it avoids this discontinuous process and allows

the two elements to occur simultaneously, enabled by a

classical adiabatic principle [2, 37]. Using a variant of the

nonorthogonal state dynamics in Reference [35], which is

different from the standard CPAIMD technique,

momenta are introduced conjugate to the plane-wave

basis set coefficients and a fictitious classical kinetic energy

introduced to form a fictitious classical Hamiltonian

(Hfict-tot¼HatomþHfict-electron) from which simple

equations of motion naturally arise. Orthogonality

constraints are absent because of the use of the

nonorthogonal state-based approach [35]. As long as the

plane-wave coefficients move rapidly compared to the

atoms and exhibit small-amplitude oscillations around the

minimum of the functional at the current (slowly evolving)

atom positions, the method works well. The basic

algorithm is summarized in its essential details in Figure 1.

More-complete reviews with many details are given in

References [2–6]. The new EES-based methods are

described in more technical detail in References [33, 34].

A set of ns electronic states is introduced that are

represented as a set of (complex) Fourier coefficients,

W(s,gx,gy,gz), on a regular 3D g-space (or reciprocal

Fourier space) of side N, where s is the state index and

gx,gy,gz index the Fourier coefficients. The array is not

dense, but a sphere of radius gcut, proportional to N/4,

defines the ng non-zero elements. The number of

electronic states (ns) and the number of points in g-space

(ng) both increase linearly with the number of atoms,

Natom, and the memory requirement is ;N 2
atom:

In the course of the computation, each state switches

between its g-space and its real-space representation via

3D FFTs of size N 3 N 3 N (Phases I and VII; see

Figure 1). As there are many states, this requires the

computation of multiple simultaneous 3D FFTs. The

real-space representation of the states, W(s,x,y,z), is a

dense 3D array of real numbers of size N 3 N 3 N.

(Recent improvements [38–40] that are based on localized

states [41] are beyond the scope of this paper.) The real-

space representation of the electron density, q(x,y,z), is
computed by squaring the real-space representation of

each state and then summing over all states, qðx; y; zÞ ¼P
s jWðs; x; y; zÞj

2 (Phase II). The density in its real-space

representation is, in any case, a dense N3N3N array of

real numbers.

The scalar work employed to generate the density scales

as N 2
atom log Natom, dominated by the computational cost of

the 3D FFTs used to generate the real-space

representation of the states. The (complex) Fourier

coefficients of the density, q(gx,gy,gz), are obtained from a

single 3D FFT of q(x,y,z), which scales asNatom logNatom.

Note that this 3D FFT cannot be launched until

the reduction is complete (Phase II). The g-space

representation of the density is a single array in a g-space
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of size N3N3N that has non-zero values inside a sphere

of radiusN/2. The memory required to store the density in

both real-space and g-space scales as Natom.

Phases III and IV compute the Hartree, the external,

and the exchange-correlation energies, as well as the KS

potential, vks(x,y,z). The approximate exchange-

correlation functionals of interest here and their

associated KS potential depend on both the density

q(x,y,z) and its spatial gradient rq(x,y,z), the latter

requiring the computation of additional 3D FFTs. The

external energy is computed via 2(Natom-typeþ1) 3D FFTs

within an EES formalism analogous to those in

References [33, 34]. Here, Natom-type is the number of

atom types present in the system (e.g., if only carbon,

hydrogen, and nitrogen atoms are present, then there are

three atom types). These 3D FFTs are 1.4 times larger on

edge (i.e., 1.4N) than those used to compute the

exchange-correlation energy. Using the EES-based

method, the computation of the external potential energy

scales exactly as the computation of the exchange-

correlation energy with system size Natom log Natom. The

KS potential, a portion of which is related to each energy

term, is computed via several more 3D FFTs and then

sent (i.e., multicast) back to the states in the real space

(Phase V). The derivative of the three energy terms with

respect to the Fourier coefficients, W(s,gx,gy,gz), is

computed by multiplying each state in real space by the

KS potential and performing an inverse FFT (Phase VI).

The negative derivative of an energy term with respect to

a Fourier coefficient of a given state is referred to as a

force. The forces on the states are denoted FW(s,gx,gy,gz).

The electron–atom (ion-core) nonlocal energy and the

kinetic energy of noninteracting electrons (Phase IX) can

be computed independently from the above work, as

depicted in Figure 1. The nonlocal energy and forces are

computed using the EES technique described in

Figure 1
Structure of our implementation. Phases are in Roman numerals. RhoGHart refers to the chare array assigned to compute the g-space Hartree 

and external energy computations. RhoG is the chare array assigned to help compute gradients of the electron density. RhoRHart is the chare 

assigned to compute the real-space (r-space) Hartree and external energy computations. RhoR is the chare array assigned to compute the 

exchange correlation energy. Lambda and Ortho are the chare arrays assigned to handle post-processing of overlap matrices. Pair calculator 

is the four-dimensional chare array assigned to compute the overlap matrices. The small white squares emphasize that the overlap matrices 

are partitioned into blocks, here shown as a 4 � 4 array. The cubes represent the three-dimensional r-space and g-space datasets handled by 

the chare arrays.
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Reference [33]. Briefly, each state object performs

2Natom-type 3D FFTs if, for example, only s-wave

nonlocality is considered. The FFTs are smaller on edge

(;0.7N) than those employed to compute the density.

The required scalar work scales as N 2
atom log Natom, while

the memory requirement scales as N 2
atom: The 3D FFTs

are performed concurrently because the nonlocal energy

does not couple the states together but couples each state

individually to all the atoms. The kinetic energy of

noninteracting electrons is expressed (in computer science

parlance) as a point-by-point multiply and reduction

operation whose computation scales as ;N 2
atom

[e.g., ðH2=2meÞ
P

gx;gy;gz2jgj, gcut

P
s fsg

2jWðs; gx; gy; gzÞj2
where H is Planck’s constant, h, divided by 2p, and me is

the mass of the electron].

The forces from the nonlocal energy and the kinetic

energy of noninteracting electrons are added to those

obtained from the Hartree, the external, and the

exchange-correlation energies to complete the force

computation. In order to proceed further, we note that

the states satisfy an orthogonality condition expressed as

a matrix multiplication

X

g
x
;g

y
;g

z
2jgj, g

cut

Wðs; g
x
; g

y
; g

z
ÞW�ðs0; g

x
; g

y
; g

z
Þ ¼ f

s
d
ss

0 ; ð1Þ

where fs is the occupation of each state and the indices are

as above. d is a Kronecker delta. Equation (1) fixes the

normalization of the total wave function, and hence, the

number of electrons, and ensures that the Pauli exclusion

principle is satisfied. Typically, fs ¼ 2 and there are two

electrons per state, one spin up and one spin down. The

number of allowed points in g-space, ng, is much larger

than the number of states, and hence, the matrix

multiplication is non-square. Enforcing the orthogonality

constraints requires ;N 3
atom operations.

If the Fourier coefficients were naively updated using

the coefficient forces alluded to above, the states would

deviate wildly from the orthogonality constraint of

Equation (1). Therefore, two orthonormalization steps

are performed (Phases VII and VIII). The first step

regularizes the forces that are then used to evolve the

states. The second step corrects the small deviations of

the new states from orthogonality and normalization

constraints. Both steps scale as ;N 3
atom. The order of

operations given above is appropriate for functional

minimization. Implementing the nonorthogonal state

CPAIMD method employed in our software, which is

based on Reference [35], simply requires a change in the

order of operations and an additional matrix multiply, as

described in more detail in Reference [35].

In summary, the memory requirement corresponds to

;N 2
atom: The computational cost is ;Natom log Natom for

density-related work, ;N 2
atom log Natom for state-related

work, and ; log N 3
atom for the orthogonality-related work.

In small systems, the ;N 2
atom log Natom work is dominant,

while in large systems the ;N 3
atom work becomes the slow

step.

Parallelization: Parallel operations and data
decomposition
The processor virtualization approach [42] embodied in

the Charmþþ parallel programming system [32] forms the

backbone of our CPAIMD application. Work is divided

into a large number of objects or virtual processors (VPs)

and the computation is initially expressed only in terms of

VPs. Either the runtime system or the user can specify or

change the mapping of VPs to physical processors at

startup or during the execution of the application. The

VPs are Cþþ objects (called chares), which communicate

with each other via asynchronous method invocations or

messages. Chares are organized into indexed collections,

called chare arrays. In this way, Charmþþ separates the

issues of decomposition and mapping.

CPAIMD parallel operations and data decomposition

are now described. The analysis is based on earlier work

[29] that led to scaling on 1,024 processors of a 32-water-

molecule system. Here, we highlight opportunities for

interleaving communication and computation and reveal

bottlenecks relevant to the BG/L system. The description

of the data decomposition that follows shows how these

opportunities can be exploited on a torus network

architecture, such as the BG/L architecture, to generate

scaling to a large number of processors. Nontrivial

extensions of our earlier work include the use and

parallelization of EES-based techniques, the improved

parallelization of the orthogonality work (matrix

multiplications), and the 3D-FFT work related to

density-based computations.

Parallel operations

In this section, we review the phases from a perspective of

parallelization and discuss certain novel features. As

mentioned, in Phase I, the electronic states are

transformed from their g-space representation to their

real-space state representation. The parallel 3D FFTs

employed to effect this change of representation are

implemented using a transpose-based method [43]. Our

parallel 3D FFT is performed in three stages. First, a set

of one-dimensional (1D) FFTs are computed to yield

Wðs; gx; gy; gzÞ ! Wðs; gx; gy; zÞ: Second, a transpose is

performed. Third, two sets of 1D FFTs are computed to

generate Wðs; gx; gy; zÞ ! Wðs;x; y; zÞ as a result of our

planewise decomposition of Wðs;x; y; zÞ (see the section

‘‘Data decomposition: Enabling parallelism and

interleaving’’). Because the states have a sparse spherical

distribution within their 3D g-space grid but are dense in

real space, this order of operations reduces the

communication cost. The spherical cutoff and the real-to-
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complex nature of the state 3D FFT reduce both

computation and communication by approximately a

factor of 4 compared to a full complex-to-complex 3D-

FFT computation. On the BG/L system, the required

serial 1D FFTs were performed using the ESSL

(Engineering Scientific Subroutine Library). The ratio of

computation to communication, defined as the ratio of

the number of floating-point operations required to

compute the quantity of interest in scalar mode to the

number of bytes that must be communicated to compute

the quantity of interest in parallel, is ;log Natom.

The CPAIMD algorithm requires ns, multiple,

concurrent 3D FFTs to be performed. The computation

phase of one 3D FFT is typically interleaved with the

communication phase of several other 3D FFTs. In this

way, the Charmþþ programming model can effectively

interleave computation and communication on the BG/L

system.

The reduction to form the probability density in real

space occurs in Phase II. As mentioned, once the states

are available in real space, the electronic density can be

computed via qðx; y; zÞ ¼
P

s jWðs;x; y; zÞj
2: While the

states in real space are decomposed into N-planes, the

density in real space is decomposed into NyN subplanes

(see also the section ‘‘Data decomposition: Enabling

parallelism and interleaving’’). In other words, each of the

N-planes is further subdivided into Ny parts. Therefore,

the density construction requires spawning (NyN)

simultaneous reductions involving large datasets (;106

real numbers). The ratio of computation to

communication is roughly unity.

In Phases II–VI, the electron density is processed. The

electron density in real space is immediately used to

compute a portion of the exchange-correlation energy

upon arrival. The Fourier components of the density are

then created by subjecting a copy of the density in real

space to a 3D FFT (Phase IV), which requires two

transposes due to the subplane decomposition described

in the section ‘‘Data decomposition: Enabling parallelism

and interleaving.’’ Earlier in this paper, we discussed how

once in g-space, the Fourier coefficients of the density are

used to compute the Hartree and external energies via

2(Natom-type þ 1) 3D FFTs, which can be performed

independently. In addition, we note that the gradient of

the electron density in real space is created by making

three copies of the Fourier coefficients of the density,

point by point multiplying each appropriately, and

performing three 3D FFTs to real space (requiring six

transposes). The electron density and its gradients are

employed to compute a second gradient-dependent

contribution to the exchange-correlation energy. The KS

potential, mks (x,y,z), is created by performing five more

3D FFTs (requiring ten transposes) on datasets generated

during the energy computation. The ratio of computation

to communication in this phase is log Natom.

The three energies are reduced across all processors

involved, and Ny multicasts of degree ns are performed in

order to send each of the NyN subplanes of the KS

potential to the matching plane of each of the ns states.

This operation is a bottleneck and is, therefore,

interleaved with the nonlocal energy computation.

After performing multiple 3D FFTs (Phase VI) on the

product of the KS potential with each of the states, in a

procedure exactly the reverse of that used to form the

density, the forces FW(s,gx,gy,gz) are obtained in g-space.

The ratio of computation to communication is again

log Natom.

Phase IX requires the computation of the kinetic

energy of the noninteracting electrons, which can be

computed without interprocessor communication, and

the computation of the nonlocal interaction between the

electrons and the atoms via the new EES method [33].

The latter calculation involves 2Natom-type 3D FFTs

with a size of ;0.7N on edge and is interleaved with

Phases II–VI. The memory requirement and the ratio of

communication to computation for this phase both scale

as the 3D-FFT phase used to create the density (Phase I).

The force regularization and orthonormalization are

performed in Phases VII–VIII. Once the forces have been

computed, a series of matrix multiplications must be

performed. For functional minimization, an (ns 3 ng) 3

(ng3ns) multiplication of the forces, FW(s,gx,gy,gz), by the

states, W(s0,gx,gy,gz), to form the matrix K(s,s0) is

followed by amodification of the forces,FWðs; gx; gy; gzÞ  
FWðx; gx; gy; gzÞ �

P
s 0 Kðs; s0ÞWðs0; gx; gy; gzÞ:

Under nonorthogonal state dynamics, the forces are

further multiplied by the precomputed inverse square

root matrix, which is available because of the change in

the order of operations required by the dynamics method

[35]. The modified forces are then employed to evolve the

states in both cases.

Under functional optimization, the evolved states

are slightlynonorthogonal andmustbe ‘‘reorthogonalized’’

by matrix transformation. This requires the computation

of the overlap matrix, Sðs; s0Þ ¼
P

g Wðs; gx; gy; gzÞ
Wðs0; gx; gy; gzÞ: Next, the inverse square root of the

S-matrix Tðs; s0Þ ¼ S�1=2ðs; s0Þ is computed and the

orthonormal states WðnewÞðs; gx; gy; gzÞ ¼
P

s Tðs; s0Þ
Wðs0; gx; gy; gzÞ are constructed. The matrix

multiplications are non-square because the number of

non-zero points in g-space, ng, is much larger than the

number of states, ns. For the nonorthogonal state

dynamics, the input nonorthogonal states are

diagonalized using the same transformation,

WðorthoÞðs; gx; gy; gzÞ ¼
P

s Tðs; s0ÞWðnon-orthoÞðs0; gx; gy; gzÞ;
and the inverse square matrix is stored for use later.
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Our multiplication scheme has a novel feature, namely

that the resultant matrix is used in a backward path in

order to compute the necessary modification to the input

data. The input data, W(s,gx,gy,gz), is modified by the

computed matrix T(s,s0) so that WðnewÞðs; gx; gy; gzÞ ¼P
s Tðs; s0ÞWðs0; gx; gy; gzÞ; while the input data,

FW (s,gx,gy,gz), is modified by the computed matrix K(s,s0)

so that FWðs; gx; gy; gzÞ  FWðs; gx; gy; gzÞ �
P

s 0 Kðs; s0Þ
Wðs0; gx; gy; gzÞ for functional minimization. Hence, the

Charmþþ chare arrays assigned to perform the multiply

do not destroy their input data. After summing

contributions from all of the g-space to form S or K
matrices and post-processing if necessary (e.g., to form

the T-matrix), the result of the matrix multiplication is

simply applied in place for each block. A reduction over

rows, s0, is then performed to generate the desired result.

The procedure required by the new nonorthogonal state

CPAIMD method that is based on Reference [35] is not

significantly different.

In summary, under functional minimization, an

iteration starts with a set of orthogonal input states that are

used to compute forces. After force regularization, the

states are evolved, and slightly nonorthogonal states are

generated. These states are in turn orthogonalized and the

entire procedure is repeated. Under nonorthogonal state

dynamics, a set of input nonorthogonal states are first

orthogonalized and the inverse square root matrix is

stored. Forces are computed on the orthonormal states,

and the forces on the orthonormal states are transformed

to forces on the nonorthonormal states as described above.

The nonorthonormal states are then evolved to the next

step using the forces, and the procedure is repeated. This

summaryomits someof thedetails described elsewhere [35].

Note that the orthogonalization phase forms a barrier

to further progress. The forces must be completed before

orthogonalization starts, and new forces cannot be

computed until the orthogonalization phase ends. Thus,

the communication into and out of this phase is critical,

as is its implementation within a data-driven model that

allows the orthogonalization work to proceed (as far as

possible) as data arrives and as data is sent on the

outward path.

Data decomposition: Enabling parallelism and

interleaving

The nine phases of CPAIMD are parallelized by

decomposing the system into 14 indexed collections of

objects, each implemented as a chare array. The g-space

and r-space representations of the electronic states are

decomposed into two 2D chare arrays of size (state times

g-space collection) and (state times r-space collection),

respectively. These are written as G(s,p)[ns3Ng] and

R(s,p)[ns3N], respectively, where the dimension sizes are

inside the square brackets. The g-space and r-space

representations required for the external/Hartree energy

work decomposed as the density but with an additional

atom type of index, GHE(p,a), [NgHE3 natom-type] and

RHE( p,p
0,a)[(1.4N/Ny)3Ny3 natom-type] with natom-type �

Natom-type, and the g-space and real-space representations

required for the nonlocal work decomposed as the states,

Gnl(s,p)[ns3Ng] andRnl(s,p)[ns30.7N]. The orthogonality-

related computation is decomposed into two 4D g-space-

based arrays (called pair calculators) and a 2D auxiliary

chare (called ortho). The computational work andmemory

are always well balanced within density and state chares.

Orthogonality is inherentlymore expensive, with respect to

computation and data movement, than all other elements

in large systems.

The orthogonality phase presented in Figure 2 is

performed by a set of four index pair calculator chare

arrays, Pc(s,s
0,p,p0), of size Ns 3 Ns 3 Ng 3 Ng. These

arrays are designed to compute the matrix multiplications

(ns 3 ng) 3 (ns 3 ng) that generate the overlap matrices of

size ðns 3 nsÞ. The s,s0 indices control the decomposition

of the (ns 3 ns) overlap matrices into chunks (i.e.,

portions) of size sgrain 3 sgrain, where sgrain ¼ (ns/Ns).

The p and p0 indices control the decomposition of

g-space, while the sgrain 3 sgrain portions of the overlap

matrix are indexed by (s,s0). Therefore, an sgrain3 sgrain

portion of the overlap matrix assigned to pair calculator

chare with indices s,s0 is generated by performing a

reduction over the ( p,p0) indices of Pc(s,s
0,p,p0). Here, Ng

is exactly the same as above, and Ng allows for a finer

decomposition of g-space, for example, splitting ng into

chunks of size ng/(NgNg).

Figure 2

Computing the entries of the S matrix. Each chare-array element 

Pc(s,s',p,p'), s � s' provides a contribution to an sgrain � sgrain tile 

of the S matrix (sgrain � Ns/2) for its section of g-space indexed by 

p,p' after receiving data from the state g-space chares. After compu-

tation, the g-space contributions are added together by summing 

over p,p' at fixed s,s' (a “section reduction”) in order to produce the 

desired sgrain � sgrain tile of S. Here, 0 � p � 1,  p' � 0.

Plane x

NsNN

NsNN

NchunksN

NsNN

NchunksNN

S matrixS
G-space
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Postprocessing of the overlap matrices, forming the

T matrix from the S matrix, is performed by the ortho

array, O(s,s0) [NsO 3 NsO], whose decomposition is

generally finer than that of Pc, NsO � Ns. Communication

from the pair calculator chares to the ortho chares and

back forms a bottleneck that requires careful attention.

The time consumed in this bottleneck is minimized

by the adoption of a data-driven model that enables

interleaving, as described in the section ‘‘Interleaving

communication and computation.’’ The reduction to

form the S and K matrices and multicasts of the T and K
matrices back to the Pc chare arrays (from O) can create

contention and imbalance within root and intermediate

nodes in the spanning tree, particularly across Ng, unless

these are balanced by shifting the roots for each Ng.

Network contention is mitigated via the topology-aware

mapping described in the section ‘‘Mapping challenges.’’

In particular, the matrix multicasts can be further

optimized using a rectangular multicast scheme enabled

by topologically aware mapping described later in the

section ‘‘Mapping challenges.’’

We note that the memory requirement of CPAIMD

scales as ;N 2
atom in scalar mode. In the parallel

implementation given above, the memory requirement

scales like ;N
2=3
atom per processor because of the planewise

decomposition. This assumes that we permit the number

of processors used in the computation to increase as

;N
4=3
atom: At a fixed problem size, the memory requirement

per processor decreases until the number of processors,

Nproc exceeds Nns (Nproc . Nns). This is also the point at

which our decomposition would have to be further

refined to continue scaling. For the largest system studied

here, 256 water molecules, the total memory requirement

in scalar mode is approximately 100 GB using the

nonlocal EES method, a computation that barely fits

onto 512 BG/L processors but is easily accommodated on

Nproc � 1,024 in coprocessor mode.

In order to judge the scale of the computation, consider

a 32-water-molecule system under a 70-Rydberg spherical

g-space cutoff. The system contains ns ¼ 128 states, N ¼
100-state r-space planes, and about ng¼ 64,000 non-zero

g-space points per state. The computation is decomposed

into 12,800 VPs to represent the states in real-space, and

about as many VPs to hold the non-zero points in

g-space. In addition, there are 500 VPs representing

density in real-space and reciprocal space (see Figure 1).

Older MPI-based applications, such as those by two

of the authors [28], scale this benchmark to 128

processors (;ns).

The Blue Gene/L architecture
The BG/L system that we used herein to test performance

[44] is a low-power massively parallel supercomputer with

a 20,480-node installation at the IBM T. J. Watson

Research Center. Each node has two PowerPC* 440 cores

running at a low clock speed of 700 MHz. The

performance of each BG/L core is enhanced through a

second floating-point unit (FPU), called the double

hummer [45], resulting in a peak performance of

2.8 Gflops per core. The second FPU is usable only with

16-byte aligned inputs. Linear algebra libraries such as

Basic Linear Algebra Subprograms (BLAS) can use the

double-hummer unit, and optimized sequential libraries

are utilized as much as possible by our application.

The BG/L system has a 3D torus interconnection

network [46] for messaging with a favorable ratio of

network bytes to flops. The network has low messaging

latency and good performance for short messages. Because

the torus network has limited bisection bandwidth,

localizing communication improves performance.

Message passing on the BG/L system is performed

by the core itself. Packets are sent by writing

application data to memory mapped to a FIFO (first-in,

first-out) queue. Therefore, overlap of computation

and communication is limited, although optimizations

can be achieved by interleaving computation and

communication given a data-driven programming model

such as Charmþþ. Because the PowerPC 440 core can

have three outstanding loads and three outstanding

stores, packet throughput is limited, and each core can

barely keep the entire network busy. Thus, each CPU is

kept occupied during phases in which it sends messages to

near neighbors. However, during phases in which

messages are sent to far neighbors, the data rate is

restricted by the torus or at the torus bisection, and

communication can be overlapped with computation.

Parallelization: Techniques and trade-offs
In order to interleave communication and computation

not only within the individual phases but also among

phases that occur simultaneously and at the boundaries

of phases that form natural barriers to progress,

synergistic optimization of the following elements is

required: 1) the 3D-FFT phase used to create the density

by interleaving computation and communication of the

many 3D FFTs, 2) the multicast or reduction of real-

space state chares to the real-space density chares and the

multicast from the density chares back to the state chares,

3) the interleaving of the nonlocal-related computation

and communication with the density multicasts to and

from the states, and intradensity chare communication

and computational work, 4) the few 3D FFTs required to

perform the density work, 5) the many simultaneous 3D

FFTs required to perform the nonlocal computation, 6)

the communication into and out of the pair-calculator

chares to and from the g-space state chares in

order to mitigate the natural barrier formed by the

orthogonalization work, and 7) the communication into
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and out of the pair-calculator chares to and from the

ortho chares that post-process the overlap matrices. In

order to accomplish these seven tasks, the following were

all systematically improved: 1) the scalar performance,

2) the decomposition of work to chare array elements,

3) the topologically awaremapping of chare array elements

to processors, and 4) interprocessor communication

through use of the BG/L machine layer. In this process,

we quite naturally borrowed any applicable general

optimizations from previous work by the University of

Illinois authors [47].

Scalar optimization

The scaling of the nonlocal energy computation with

system size was reduced from N 3
atom to N 2

atom log Natom via

the new EES nonlocal energy method [33]. The scaling of

the external local energy computation with system size

was similarly reduced from N 2
atom toNatom log Natom via an

EES method. The use of EES techniques is unique to our

CPAIMD implementation.

The orthogonalization scheme for functional

optimization and nonorthogonal state dynamics [35]

employed herein requires the computation of an inverse

matrix square root. A second-order iterative method

involving three (ns 3 ns) matrix multiplications per cycle

was implemented [48], which has a lower scalar

computational work overhead than the standard

technique and is easier to parallelize.

Decomposition optimization

Three important decomposition optimizations were

developed. The first simultaneously balances the

communication—from the g-space state chares, G(s,p), to

the pair-calculator orthogonality chares, Pcðs; s0; p; p0Þ—
and the 3D-FFT work and communication. Briefly, the

spherical truncation of g-space, which is key to obtaining

high scalar efficiency and reducing communication in

both the state 3D-FFT phase and the orthogonality

phase, can lead to unbalanced chare array elements if a

naive decomposition is employed. Creating sets of

complete gz-lines of state Fourier coefficients in order to

balance the number of points and lines in each G(s,p)

chare array element leads to substantial performance

improvement. It also permits the introduction of a free

parameter, Ng, that can be used to tune the granularity of

G(s,p).

The second optimization increases the degree of

parallelism of the orthogonality phase. Rather than

keeping the collection of g-space points assigned to each

G(s,p) intact, and simply communicating them to

appropriate Pcðs; s0; pÞ calculators, the collections were

further split. This was implemented by simply adding

another index to the pair-calculator chare array, Pcðs; s0;
p; p0Þ: Increasing the degree of parallelism increases the

number of messages sent, but each message is smaller.

The total amount of data to be reduced in the formation

of the overlap matrices is also increased. However, the

trade-off results in efficiency gains.

The third optimization increases the degree of

parallelism of the density work. The g-space

representation of the density has about eight times the

number of non-zero entries as the g-space representation

of a state. Therefore, the computational cost to transform

the density between g-space and real-space is about five

times that required to transform a state. Further

decomposing the density into subplanes, Rqðs; p; p0Þ;
resulted in higher efficiency despite the communication

cost of an additional transpose. In addition, the g-space

representation of density was decomposed into sets of

complete gz-lines of density Fourier coefficients in order

to balance the number of points and lines in each chare

array element, Gq( p), allowing Ngq to become an

adjustable parameter in precisely the manner given above

for the states.

Mapping challenges

The Charmþþ system supports a default user-provided

mapping of VPs to real processors. Because of the

complexity of the CPAIMD application, there are

opportunities for intelligent mapping to simultaneously

optimize load balance and communication overhead.

Under CPAIMD, the load on each VP is static, and

therefore, the mapping can be defined at startup.

A simple map that allocates all planes of a state to the

same processor would make all 3D-FFT transpose

messages local, resulting in good performance. This map

is not scalable, because we desire to run the application

on processor configurations much larger than the number

of states. We call this function the state map. In contrast,

the planes of the same rank in all the states could be

placed on the same processor. This mapping would

optimize the KS potential multicast operation (see

Figure 1, Phase V) from the density objects to real-space

plane state objects. Of course, keeping planes together

would make the FFT transpose messages highly nonlocal

(Phases I and VI), thereby increasing the communication

overhead of the application. This mapping function is

referred to as the plane map.

A compromise between the state and plane mapping

would allocate planes of a state partition on a processor

partition. This would result in a smaller fanout for the KS

potential multicast and keep FFT messages local or

restrict them to nearby processors in the network. We

refer to this map as the hybrid map. The mapping

functions, state map and plane map, are two extremes of

the hybrid map. The best scheme depends on the number

of processors and the interconnect message latency and

bandwidth.
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Careful topology-aware mapping and relationship

mapping are critical design issues for software that must

run efficiently on a 3D network torus architecture. The

concept of data locality must be extended to consider

placement on neighboring processors. The cost of

communication between processors is affected by their

distance within the torus. The effective bandwidth

consumed by a message is its size multiplied by the

number of links that must be traversed from sender to

destination in the torus, referred to as the hop count.

Network contention resulting from link saturation can

severely damage the performance of a communication-

intensive application such as CPAIMD. The most

efficient use of bandwidth and, therefore, the best

performance for CPAIMD come from minimizing the

distance between objects, which frequently communicate,

while maintaining good load balance.

The key to defining an effective mapping of VPs to

processors in the CPAIMD application lies in placement

of the state g-space VPs, G(s,p), where s is the state index

and p is the plane index. Both the real-space VPs and the

orthonormalization VPs depend on the G(s,p) placement.

In order to localize communication, we used a box

mapping for G(s,p). VPs with the same plane index, p,

were placed in rectangular prisms. These rectangular

prisms were selected such that their long axis spanned one

dimension of the torus and was oriented along whichever

of the X, Y, or Z torus axes that allowed the torus to be

completely tiled by the prisms. The number of prisms is

equal to the number of planes and was always chosen at

configuration time to be a multiple of at least two torus

dimensions (choices involving power of 2 suffice on

natural BG/L system partitions). Within each prism, the

chares for G(s,p) were allocated in increasing state order

longitudinally along the long axis of the prism. Figure 3

shows the map employed on the BG/L torus network.

The matrix-multiplication/pair-calculator VPs, Pcðs1; s2;
p; p0Þ; could then be placed starting at the centroid of the

3D object formed by Gðs1; pÞ þ ::: Gðs1þ sgrain; pÞ þ G

ðs2; pÞ þ :::þ Gðs2þ sgrain; pÞ within the prism for each

plane p, thereby minimizing the hop count for the

orthonormalization input and output. The ortho VPs,

Oðs1 ::: s1þ sgrain; s2 ::: s2þ sgrainÞ; can likewise be

placed on the basis of the Pcðs1 ::: s1þ sgrain; s2 ::: s2þ
sgrain; �; �Þ processor list, but this led only to an ideal hop

count for elements on the diagonal s1 ¼ s2, motivating

further communication optimizations described in the

section ‘‘Interleaving communication and computation.’’

In other words, the ortho chare array element O(i, j) is

assigned to the processor selected from the set of all

processors mapped to Pc chare arrays that share the same

two indices, or Pc(i, j,*,*), which minimizes

communication.

The real-space VPs R(s,p) were placed with one state

per flat prism formed by G(s,*). The previously described

longitudinal statewise placement within G(s,p) resulted in

flat bounding prisms for each state orthogonal to the long

axis of each prism. The R(s,p) chares were placed in

increasing order of plane index along one axis of the flat

bounding prism, thereby providing an orthogonal

localization for the plane indices. The density-related

chares Rq( p,*,*) were placed on processors proximal to

state real-space chares, R(s,p), by starting with the

centroid of each R(*,p), then Gq( p,*,*) is mapped near,

but not on, the processors used by Rq( p,*,*). The

nonlocal g-space EES chares were pinned to the G(s,p),

while its r-space nonlocal EES chares REES(s,*) were

mapped on the basis of the placement of G(s,*). If there

were sufficient processors, the REES map excluded the

processors used by the density objects to minimize

interference during overlap.

A critical result of the mapping scheme is that it

reduces the maximum hop count for each phase; that is,

phases that might otherwise exhibit communication

patterns spanning the entire torus in a naive mapping

scheme are instead confined to communicate within

prism-shaped subtori. This, in turn, balances the overall

communication load throughout the available torus.

Performance degradation due to network contention and

areas of high network traffic is avoided, while each phase

remains able to exploit the resources of the entire

processor allocation as needed. In more detail, planewise

communications in the orthonormalization chares were

confined to each G(*,p) prism. Statewise communications

Figure 3

Placement of g-space, real-space, and density objects on the 3D 

torus. 
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G(s,*)$ R(s,*) were confined to planes orthogonal to the

long axis of the G(s,p) prisms. Planewise communications

R(*,p)$ Rq(p,*,*) were likewise confined to a different set

of prisms. Each of these prism objects spanned one or

more torus dimensions, permitting the torus wraparound

to reduce the maximum hop count within each prism to

approximately half the length of the largest spanned

dimension. The hop count could in many cases be

reduced further via the centroid scheme described above.

Finally, we note that the memory cost of these maps

grows linearly (three integers per VP) in proportion to the

number of VPs, which were a few megabytes in the largest

system studied. The runtime cost of creating the most

complex of these maps is pn2log(n), where n is the number

of VPs and p is the number of processors; however, the

constant time is sufficiently small for the largest runs to

require less than a few minutes to map. Nevertheless,

after being created, maps were stored once and reloaded

in subsequent runs in order to minimize restart time. The

offline creation of maps by using even more sophisticated

techniques and by adapting these ideas to other topologies

is an area of future work.

Charmþþ native layer for the BG/L system

The MPI communication software stack on the BG/L

system [49] has two messaging protocols, eager and

rendezvous. Because MPI requires message ordering,

eager protocol [49] packets are routed deterministically,

but this protocol works well only for short messages. For

long messages, the rendezvous protocol is used, in which

a rendezvous packet is sent to the destination, where the

MPI tags are matched and an acknowledgment is sent

back. Upon receiving the acknowledgment, the source

sends the packets to the destination with adaptive routing

for higher network throughput. The performance of the

rendezvous protocol is affected when the rendezvous

packets are delayed by other packets. This approach

prevents some sources from making progress on their

message processing.

In contrast, Charmþþ does not require message

ordering. This allows different components of an

application to make progress independently, thereby

enabling the effective interleaving of computation and

communication. Ordering and synchronization are

handled at the application and runtime levels. All

messages are unexpected and are not required to carry

additional tag information. Handling of this messaging

scheme within MPI requires frequent calls toMPI_Test()

and MPI_Probe() in order to drive network buffer

progress, which introduces undesirable overhead. The

flexibility of Charmþþ allows it to be built on top of a

message layer that is lower than MPI; the Charmþþ
native layer is built on the BG/L system message layer

[50], which reduces message overhead and permitted the

development of the new, more efficient protocol described

in the following section. A comparison of the

performance of the MPI-based layer and the native layer

is given in the section ‘‘Results.’’

Finally, we note that the per-node memory of the

Charmþþ runtime system on the BG/L system does not

increase with processor number at fixed system size.

The adaptive eager communication protocol

Since Charmþþdoes not require message ordering and all

messages are received as unexpected messages, it can take

advantage of the adaptive eager protocol [36]. Here,

messages are sent on the network as eager messages

without handshakes and with adaptive routing. Hence,

this protocol has lowmessage overhead and good network

throughput. Messages sent with adaptive-routing packets

could arrive out of order, which would violate MPI

semantics, but this is not a problem for Charmþþ.
However, each packet must carry the size of the message

in order to allocate a buffer for the entire message. The

packet must also carry the source rank, offset in the

message, and a sequence number to uniquely identify it at

the receiver. Fortunately, the software header for a torus

packet has space for up to 1-MB messages and a 4-bit

sequence number. This allows each processor to send 16

messages to every other processor in the partition. After a

processor receives 16 messages from a given source, it

sends an acknowledgment message back to the source to

send the next 16 messages. We have observed that this

protocol significantly improves performance of Charmþþ
applications on the BG/L system.

Optimized multicasts

Several multicast operations exist in CPAIMD. In

Figure 1, Phases V and VIII involve each-to-many

communication operations with large messages. Two

techniques are used to optimize this communication. For

the randomized direct multicast, each of theNNy subplanes

of the density in Phase V of the computation sends ns
messages to the corresponding state real-space planes.

These are sent as point-to-point messages using the

adaptive eager protocol with adaptive routing. They are

also randomized to saturate the links at the core bisection

of the BG/L torus [46]. For the rectangular multicast on

the BG/L system, the destination objects of a multicast

can sometimes be mapped onto a rectangular prism, such

as in the orthonormalization phases. Here, we exploit the

deposit-bit broadcast capabilities of the network

hardware, in which each packet can be sent to all the

destinations on a line, thereby reducing message overhead.

Optimizing parallel 3D FFTs by message combining

The overhead of sending several short messages during

3D-FFT phases was optimized using a streaming
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communication strategy. These messages are sorted into

buckets on the basis of the destination processor rank.

When the bucket for a particular destination reaches full

capacity, the messages are combined and sent to the

destination as one message, resulting in a lower per-

message overhead. A bucket size of five messages was

found to be optimal.

Interleaving communication and computation

The density (Phases III and IV) and nonlocal (Phase IX)

computations can be interleaved because these phases

involve 3D FFTs and, hence, all-to-all communication.

Again, on the BG/L system, the processor itself must

packetize messages, and overlap between computation

and communication is not achieved easily. However, with

all-to-all communication, the rate at which the data

arrives at the processors is limited by the bisection

bandwidth of the torus and gains from the overlap of

computation and communication are possible. Effective

overlap allows involved VPs (here, nonlocal and density

chares) to share the same physical processor on smaller

machines.

In order to enable interleaving, network progress calls

are inserted into the core compute loop of an application

every tens of thousands of processor cycles [47]. On the

receiver side, progress calls ensure that arriving packets

are processed while the lag time is used to perform

computation. On the sender side, progress calls fill up the

24 network FIFOs, thereby allowing the application to

compute while messages drain from the network. This

approach was borrowed from other work by the

University of Illinois authors [47].

The application of the T or K matrices in the backward

path of the pair-calculator chares described previously

provides further opportunity for overlap using a data-

driven programming model. As the construction of tiles

of T or K are completed and communicated back from

the ortho chares, O, to the pair-calculator chares, Pc,

these can be multiplied by the original data as they arrive.

(The granularity in the state indices of O is typically finer

than that of the Pc, NsO � Ns.) Furthermore, the resulting

components can be returned to appropriate G chare array

elements as soon as possible, and the reduction performed

in the G chare array as messages arrive. In this way,

interleaving computation and communication is achieved

while reducing peak bandwidth usage.

Results
The efficiency of the Charmþþ-based implementation of

CPAIMD was investigated by using liquid water as a test

case because of the importance of aqueous solutions in

biophysics [51]. A single water molecule, H2O, has three

atoms per molecule and two atom types, and it possesses

four doubly occupied valence electron states. All the

computations described in this section were performed

using the standard g-space spherical cutoff radius on the

states of jgj2cut ¼ 70 Ry (i.e., Rydberg) at the C point (1

k-point), 3D periodic boundary conditions, the BLYP

generalized gradient-corrected density functional [19, 20],

and Martins–Troullier type of pseudopotentials [52]. [The

C point refers to the condition of k ¼ (0,0,0).] More-

complex systems with up to five atom types are currently

running using our framework and will be discussed in a

later publication. The framework is not limited to five

atom types, but this is simply the maximum number

attempted to date.

We note that water is an extremely common CPAIMD

simulation target [10–12]. Other groups that are now

developing fine-grained parallel CPAIMD software

[30, 31] have not yet provided recent scaling data on water

with standard parameters, and we would be hesitant to

estimate timings for software other than our own. Here,

we publish a set of unambiguous timings for a well-

studied system, liquid water, using standard parameters

and a well-known architecture so that other groups can

compare their results to ours. We note that 2-year-old

scaling data on 32 water molecules using the nonstandard

cutoff, jgj2cut ¼ 100 Ry, on small processors numbers,

Nproc � 512, has been presented elsewhere [30]. The one

published data point for the 32-molecule water system

(using standard parameters, jgj2cut ¼ 70 Ry) is 0.35 s/step

on 512 processors [30]. This likely does not represent the

current status of their project.

Specifically, for our study, we selected six liquid water

systems consisting of 8, 16, 32, 64, 128, and 256 molecules

and 32, 64, 128, 256, 512, and 1,024 doubly occupied

electron states, respectively, in order to probe the

performance of our CPAIMD application at many limits.

In the small systems with 8 and 16 water molecules, the

3D-FFT work is dominant. In large systems with 128 and

256 water molecules, the orthogonalization work is more

dominant. In the intermediate-size systems with 32 and 64

water molecules, the 3D-FFT work and

orthogonalization have more-balanced workloads. In

Reference [31], a 1,000-atom system of solid molybdenum

under 3D periodic boundary conditions was studied using

from 1 to 8 k-points and a cutoff of 44 Ry. Compared to

our largest benchmark, 256 water molecules using 1

k-point (the C-point), the number of non-zero g-vectors

per state in the previous work is essentially the same, but

the molybdenum system has ns ¼ 6,000 doubly occupied

states and is more strongly dominated by the

orthogonality work than the 256-water-molecule system.

The computational cost of the orthogonality computation

in the 1,000-molybdenum atom system is 36 times that of

the orthogonality computation in the 256-water-molecule

system. There are significantly more nonlocal electron–

atom (ion-core) interactions in molybdenum than in
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water (i.e., 250 times more interactions), and these were

treated [31] using the standard N3
atom method (to the best

of our knowledge). Thus, the molybdenum system has

significantly more computational work to parallelize than

the 256-water-molecule system. Scaling results starting at

1,024 nodes are given for the molybdenum system with 1

k-point in Reference [31].

We performed numerical tests to examine the extreme

scaling limit of the CPAIMD application on our

benchmark suite. Table 1 (top) shows the present

performance up to processor numbers that are many

times higher than physical parameter values such as the

number of electronic states.

Weak scaling is observed in all cases. (Weak scaling

studies generally grow the problem size and the number

of processors together in order to preserve the work per

processor.) Thus, the timing of approximately 0.2 s/step is

observed for 8 water molecules at 32 nodes, for 16 water

molecules at 128 nodes, for 32 water molecules at 512

nodes, and for 64 water molecules at 4,096 nodes in

coprocessor mode, in which the number of nodes equals

the number of processors. For 128 water molecules on

20,480 nodes in coprocessor mode, a rather promising

time of 0.3 s/step is achieved. This is promising in the

sense that this is fairly close to the 0.2-s/step timing

required for strong scaling on 32,768 nodes. However, in

Table 1 Parallel performance for liquid water. (CO: coprocessor; VN: virtual node; no topo: no topological or relational maps; no ESS:

no Euler exponential spline; WMs: water molecules.)

CO-mode native layer with optimizations

Nodes 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 20,480

Processors 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 20,480

Time (seconds/step)

8 WMs 0.22 0.10 0.082 0.071 0.046 0.026 0.020

16 WMs 0.73 0.40 0.23 0.15 0.106 0.061 0.041 0.035

32 WMs 2.71 1.52 0.95 0.44 0.26 0.15 0.11 0.081 0.063

64 WMs 6.62 3.75 1.88 0.87 0.51 0.31 0.21 0.15

128 WMs 6.9 2.73 1.40 0.91 0.58 0.37 0.3

256 WMs 16.4 8.14 4.83 2.75 1.71 1.54

VN-mode native layer with optimizations

Nodes 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 20,480

Processors 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 40,960

Time (seconds/step)

8 WMs 0.13 0.11 0.08 0.06 0.028 0.021

16 WMs 0.46 0.28 0.19 0.13 0.08 0.047 0.035

32 WMs 1.99 1.40 0.81 0.43 0.174 0.13 0.082 0.067

64 WMs 9.07 3.38 1.71 0.67 0.38 0.22 0.17 0.15

128 WMs 3.0 1.48 0.90 0.65 0.48 0.40 0.3

256 WMs 5.10 3.48 2.41 1.47 1.2

Performance without selected optimizations for comparison to CO mode

Nodes 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 20,480

Processors 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 40,960

Time (seconds/step)

32 WMs (MPI) 0.33 0.22 0.17 0.12

32 WMs (no topo) 0.21 0.23 0.16 0.18

32 WMs (no EES) 0.22 0.14 0.098 0.082

256 WMs (no topo) 28.8 23.0 13.4 6.83 3.40
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virtual node mode for 128 water molecules using 16,384

nodes and 32,768 processors, we attain a slower timing

than using 20,480 nodes in coprocessor mode. This

motivates future work optimizing our CPAIMD

application for large systems using large processor

numbers. For example, more scaling tests on the full BG/

L machine are required to analyze and eliminate the

bottleneck for this case. Note that the other systems

studied exhibited quite good performance in virtual node

mode even at high processor numbers. The number of

processors required to reach 0.2 s/step increases as N 2
atom

at small system size and as N3
atom at a large system size, as

expected. Good strong scaling is also observed.

(Experiments that are strong scaling refer to studies in

which researchers fix the problem size and increase the

number of processors.) The CPU time per step is reduced

fairly monotonically as processor number increases at

fixed system size until the scaling limit is reached. The

scaling limit appears at processor numbers much greater

than the number of states in the system (Nproc � 30ns).

We also note that our time per step for 32 water

molecules is 0.26 s/step on 512 nodes (and processors) in

coprocessor mode. In the next few paragraphs, we

describe some of the more important elements that led to

these results.

First, Charmþþ can be compiled using MPI as its

machine interface or using a BG/L system-customized

machine interface [36] called the native layer. The scaling

of the CPAIMD application on the MPI driver was

limited (see Table 1) because MPI adds a level of

overhead and imposes message ordering, which is not

necessary or pertinent for this application.

Second, because the BG/L system employs a torus

network architecture with a limited bisection bandwidth,

efficiency gains can be achieved by implementing VP

mapping optimizations that improve communication

locality. Table 1 (see rows labeled ‘‘no topo’’ [no

topology]) shows the performance degradation if

topology-specific and relational maps are disabled in the

application. In the simple mapping scheme, the work is

spread over processors without regard for network

locality. As can be seen in the no topo line for the 256-

water-molecule system, the utility of topology mapping

increases with the size of the torus, exceeding a factor-

of-2 reduction in CPU time on most of the 256-water-

molecule data at large processors. The no-topo runs reach

the scaling limit before 8,192 processors for the 32-water-

molecule test case.

Third, we observed that the nonlocal and density

computations had limited parallelism when implemented

using N 3
atomand N 2

atom algorithms rather than the

N 2
atom log Natom andNatom log Natom EES-based methods. In

Table 1 (labeled ‘‘no EES’’), results produced using the

standard methods are given for comparison. The EES-

based methods permit more parallelism using the

decomposition described in the text, as can be seen by the

increasing beneficial effect of EES on processor numbers

higher than 1,000. The standard methods could be made

to scale better if a finer decomposition of the states is

implemented, as described elsewhere [31].

Conclusion
A fine-grained parallel implementation of the CPAIMD

method using the concept of processor virtualization

facilitated scaling of important systems to physical

processor numbers greater than or equal to 30 times the

number of electronic states on the IBM BG/L system.

Virtualization and adaptive interleaving of

communication (automatically engendered by the

Charmþþ runtime system), novel topologically aware

mapping of objects to processors, and new scalar

algorithms resulted in improvements both in the number

of processors used and in absolute performance. The

study demonstrates the ability of synergistic research in

hardware, software, and science to generate efficient and

useful applications.
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