
IBM POWER6
reliability

M. J. Mack
W. M. Sauer

S. B. Swaney
B. G. Mealey

This paper describes the state-of-the art reliability features of the
IBM POWER6e microprocessor. The POWER6 microprocessor
includes a high degree of detection of soft and hard errors in both
dataflow and control logic, as well as a feature—instruction retry
recovery (IRR)—usually available only on mainframe systems.
IRR provides full hardware error recovery of those registers that
are defined by the instruction set architecture. This is accomplished
by taking a checkpoint of the defined state for both of the core
threads and recovering the machine state back to a known good
point. To allow changing memory accessibility without using
different page table entries, the POWER6 microprocessor
implements virtual page class keys, a new architectural extension
that enables the OS (operating system) to manage eight classes of
memory with efficiently modifiable access authority for each class.
With this feature, malfunctioning kernel extensions can be
prevented from destroying OS data that may, in turn, bring an OS
down.

Introduction
As both software and hardware become more complex in

server designs, increased investment in reliability has

become necessary to keep systems running despite

intermittent hardware error conditions or badly behaving

or malicious software. The design of the IBM POWER6*

microprocessor has added a higher level of tolerance for

these conditions through several features. One is the

virtual page class key protection architecture extensions

that aid OS software to effectively manage memory

accesses across applications, OS kernels, and kernel

extensions; another is an extensive hardware investment

in error detection and recovery through the use of

instruction retry recovery (IRR).

This paper first presents the virtual page class key

protection architecture and its initial implementation in

the POWER6 processor design. The paper then describes

the hardware facilities implemented in the POWER6

processor to tolerate soft and hard errors occurring in the

system.

Virtual storage protection
IBM Power Architecture* technology [1] provides a

mechanism for virtual storage protection, which is based

on the MSR(PR) (machine-state register problem-state)

bit; the problem-state storage key (KP) and the

supervisor-state storage key (KS) bits in the segment

look-aside buffer (SLB) entry; and the page protection

(PP) bits in the page table entry (PTE). This mechanism

controls load- and store-type accesses when address

translation is enabled. There is an additional mechanism

to prohibit instruction execution from a storage page.

The mechanism used in the POWER5* processor

requires a very small amount of resources and is,

therefore, very efficient. However, its function is limited

because there is no easy way to maintain different access

rights for software that uses common SLB entries and a

common page table. For example, the IBM AIX* OS

kernel and kernel extensions use the same page table and,

therefore, have the same access rights. Most kernel data is

contained in a flat address space that includes many

memory classes, such as cached files, network buffers,

application data, and core kernel data. Kernel-mode

programming errors can result in the corruption of any

memory class. Applications face similar problems with

protecting their large address spaces.

Changing access rights in this context would require

using a different page table or at least invalidating

sensitive PTEs, both of which are costly actions, since

translation look-aside buffer (TLB) entries would have to

be invalidated, and new translations would have to be

loaded via page fault interrupts and subsequent lookups

of PTEs that reside in main memory.

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 M. J. MACK ET AL.

763

0018-8646/07/$5.00 ª 2007 IBM

The virtual page class key protection extension to the

Power Architecture instruction set is a lightweight

mechanism that allows altering access rights to storage

without changing the page table or invalidating cached

translation entries. This mechanism defines access rights

on the basis of a page granularity for flexibility in

assigning data pages to memory classes with common

access rights.

As indicated in Figure 1, the mechanism operates as

follows: The PTE contains a new 5-bit virtual storage key

(the drawing simplifies the real situation, because the key

is actually split in two parts—one 2-bit and one 3-bit

portion to maintain compatibility with the existing

architecture). The virtual storage key is used to index the

access mask register (AMR), which is a new special-

purpose register (SPR). The AMR consists of 32 2-bit

access keys (access masks). One bit controls write access,

and the other controls read access, allowing the

combinations shown in Table 1.

The AMR is a privileged register that can be set by the

OS to any desired value. Changing the value is fast and

does not require a PTE change or the invalidation of

cached translation entries.

Software uses the AMR to limit access to memory

classes. Programmers determine the memory classes that

a software component was designed to access. The 5-bit

storage key in the PTE defines membership in one of 32

memory classes for the virtual page. A memory class set

(the collection of virtual memory pages with the same

storage key, and thus in the same memory class) is

maintained in the AMR to protect against invalid

memory references. There are several examples in the

AIX kernel. For example, one AIX kernel memory class

is application data. Under the AIX OS, only a small

amount of code requires direct access to application data,

so when software components that require application

data access are entered, they enable the memory classes in

the AMR. Most code in the AIX kernel runs without an

application data class, i.e., without a key, and is

prevented from making accidental references to user-

mode data. Another example is that the core kernel

protects its critical data with a memory class that is not in

the AMR when running kernel extensions.

In the AIX kernel, the AMR is normally loaded on

module entry and restored when a module returns. This

will not protect against malicious kernel extensions

running in privileged mode, since they can manipulate the

AMR and gain access to protected pages. Kernel

extensions are generally much better controlled and are

trusted. Virtual storage keys are used exclusively to

improve OS reliability in this environment.

Applications can also use the AMR to limit memory

accessibility. The kernel provides fast system calls to

allow applications to alter their user-mode AMR.

Applications can use keys to define user-mode memory

classes. For example, plans for the IBM DB2* relational

database management software system call for limiting

accessibility to its buffer pool when it makes callouts to

user-defined functions (customer code dynamically

loaded into the database). Other independent software

vendors are interested in segregating memory into classes

similar to the AIX kernel.

The architecture allows up to 32 virtual storage keys.

Eight virtual storage keys are implemented in POWER6

processor-based hardware. The AIX 5.3 OS with the

POWER6 processor update supports the application use

of keys. It is planned to implement kernel usage in AIX

5.4 OS.

Hardware recovery
Because of particle emissions from the decay of

radioactive atoms and from cosmic rays, soft errors occur

in microprocessors [2], SRAM (static RAM), register

Figure 1

Page table entry (PTE) and access mask register (AMR).

Bit 0 1 2 3 4 5 . . . 62 63

Key0 Key1 Key2 Key31

. . . 1 0 1 1

PTE 5-bit key

0 0 AMR

1 0

Allow loads from this page

Prohibit stores to this page

Table 1 Access mask encoding for virtual storage key k.

AMR value Effect on loads and stores

AMR2k, AMR2k þ 1 ¼ 0, 0 Store access permitted;

load access permitted

AMR2k, AMR2k þ 1 ¼ 0, 1 Store access permitted;

load access not permitted

AMR2k, AMR2k þ 1 ¼ 1, 0 Store access not

permitted; load access

permitted

AMR2k, AMR2k þ 1 ¼ 1, 1 Store access not

permitted; load access

not permitted

M. J. MACK ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

764

files, and even in latches. At current design lithographies

(65-nm technology is used for the POWER6 processor),

soft-error rates are increasing, and attempts to harden

latches to be impervious to particle emissions are less

successful because of their small size and the need to

avoid having them be excessively large structures.

Strategies are required to detect such errors, correct

them if possible, and if not, recover from them. For

example, in the SPARC64** processor, which has an out-

of-order execution design described in [3], instruction

results that report errors and any subsequent instructions

are canceled before being committed. The youngest

instruction not to be committed is retried, i.e., reissued

singly, and if successful, normal superscalar operation

continues. To isolate these occurrences, error-detection

circuits in both the execution units and the datapaths

were added to the SPARC64 architecture.

In IBM zSeries* processors [4], to achieve robust

instruction retry, two copies of each execution unit are

included, and their results are compared at the completion

of every instruction. If they differ, the result is not

committed to the recovery unit (RU), which contains the

facilities defined by the instruction set architecture (ISA)

and is protected from single- and double-bit errors by

error-correction code (ECC). The RU sends its data to the

copies in the execution units and retries the instruction.

Previous generations of POWER* processors were able

to tolerate failures in large arrays, such as the level 1 (L1)

and level 2 (L2) caches, by using inline correction

techniques, but failures in latches or combinatorial logic

were rare enough that no significant investment was made

to tolerate them or even directly detect them. Thus,

failures in the nonarray logic typically resulted in a

system checkstop or system hang. The POWER6

processor has a much greater investment in detecting and

tolerating failures in both arrays and logic.

In the POWER4* and POWER5 processor designs,

error recovery was limited to using the machine-check

interrupt handler to recover from correctable and

uncorrectable errors (UEs) in SRAMs. Error checkers in

the control flow and the dataflow produced checkstop

conditions and recorded occurrences for fault isolation

[5].

The POWER6 processor design added error-detection

logic to all dataflow and most control flow, achieving a

much higher degree of soft- and hard-error recovery than

previous POWER processor designs. In contrast to the

zSeries processor design approach, the area consumed by

the recovery function is far less than that required to

duplicate each execution unit in the design, while both

designs contain an RU to hold the ECC-hardened copy of

facilities defined by the ISA.

The POWER6 processor approach—which uses a

separate RU rather than embedding the function in the

completion logic, as is the case in the SPARC64 design—

allows for a lesser degree of coupling between error events

and the halting of checkpointing,1 and it also

decentralizes their synchronization between functional

execution units.

Checkpointing and recovery

The POWER6 processor implements IRR, which is the

same concept that has been used in zSeries processors for

several generations. The fundamental concept of IRR is

to maintain an architectural checkpoint on hardware

instruction boundaries. The checkpoint can be restored in

the event of an error so that processing can be retried and,

hopefully, resumed from the last instruction checkpoint.

Instruction checkpointing has dependencies on the logic

throughout the processor:

� A means of preserving the entire state of the processor

in a hardened checkpoint (protected by ECC).
� Protecting the integrity of the checkpoint with robust

error detection throughout the processor.
� A means of resetting noncheckpointed logic to

attempt to remove the error.
� A means of restoring the checkpoint.

The register checkpoint is implemented using an RU.

All registers for both threads are captured in the RU with

the checkpoint maintained on instruction group

boundaries. The RU has a pipeline for capturing register

results so that the checkpointing lags execution, which is

important so that errors can be detected in time to block

bad results from being included in the checkpoint.

Error detection throughout the processor core is

essential to protecting the checkpoint. Errors must be

reported from all areas of the processor, and logically

ORed together to block checkpoint updates. Errors that

are detected too late to be reported in time to block

checkpointing must be escalated to a processor

checkstop. Errors that affect the restoration of the

checkpoint must also be escalated to a processor

checkstop, but as long as the checkpoint is intact,

restoration on an alternate processor may be possible.

Recovery is performed on a processor-core basis, not

on an instruction or thread basis. Reported errors do not

have to be associated with an instruction boundary as

long as they are reported early enough to block

checkpointing. IRR may back up to a checkpoint that

occurred earlier than the instruction that encountered the

error. Both threads will be restored from the most recent

1Checkpointing is the action of capturing a known good state (i.e., checkpoint) of the
registers defined by the ISA and sorting it for possible future use. While many
sequential checkpoints may be retained as part of a checkpointing process, the
POWER6 processor maintains only one checkpoint at a time; a newly created
checkpoint overwrites the previous one.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 M. J. MACK ET AL.

765

checkpoint regardless of the error that was detected or the

thread on which it occurred.

To make IRR more effective for functional errors, the

execution flow through the processor core is simplified

(i.e., single dispatch, nonpipelined) for some short

amount of time after recovery. Recovery is considered

successful when enough instructions execute successfully

for the checkpoint to advance beyond the simplified

execution mode and full-speed execution is resumed

without error.

It is desirable to have a single recovery mechanism

regardless of the error that is detected. However, certain

complexities and environments require special

consideration. These include the following:

� L1 cache and its associated directories and look-aside

buffers.
� The timing facility, which includes the timebase (TB),

decrementer (DEC), hypervisor decrementer

(HDEC), processor utilization of resources register

(PURR), and scaled PURR (SPURR).
� Cache-inhibited loads.
� Store conditional instructions (stwcx and stdcx),

which are used along with the load and reserve

instructions to permit atomic update of a storage

location.
� Memory barrier instructions, such as synchronize.
� TLB management instructions, such as TLB

invalidate entry (tlbie), that affect multiple

processors in a system.
� Cache and memory UEs.
� Data aborts.
� The segment look-aside buffer (SLB).
� Noncheckpointed SPRs.
� Store-related errors.
� Thermal events.
� System-level firmware support.

Many of these special considerations require host

firmware support. The reporting of recovery and status to

the hypervisor is handled by the new hypervisor

maintenance interrupt (HMI).

This IRR strategy is very effective for soft errors

(transient errors induced by radioactive particles striking

latches), but not for permanent errors. Permanent errors

that do not allow the processor to make forward progress

are escalated to a processor checkstop. However, a

processor checkstop does not take down the entire

system, but rather invokes higher-level system recovery.

RU checkpoint

Instructions are checkpointed on group boundaries

within each thread. At the time of dispatch, for each

thread, a group tag (GTag) is sent along with the

instructions to denote the age of the group relative to

each instruction tag (ITag) and is used to determine when

a group can be checkpointed. A group can be

checkpointed when the next-to-complete ITag is equal to

or greater than the GTag. When a group is partially

flushed because of branch misprediction or load/store

reject, or when an instruction causes an exception, a new

GTag must be recalculated and saved by the RU. This

information is used to allow the RU to partially

checkpoint the original dispatch group while discarding

the data of the flushed instructions.

The fixed-point unit (FXU) and load/store unit (LSU)

data must wait at the RU for the floating-point unit

(FPU) or vector multimedia extension (VMX) unit

instructions in the same dispatch group to be completed

before the whole dispatch group can be checkpointed.

This is because the FPU and VMX instructions take more

cycles to execute than fixed-point, load/store, or branch

instructions. The FPU and VMX instruction results are

kept in separate queues from the fixed-point instruction

results. At dispatch time, information from the dispatch

group about the expected number of results of FPU

instructions and whether VMX instruction results are

expected is sent, along with the dispatching instructions,

to the checkpoint queues in the RU. The group can be

checkpointed only when all FPU or VMX data for that

group is available. When a group is checkpointed, the RU

indicates to the store queue that any stores from that

group can be released to the L2 cache.

Recoverable errors are ORed together to block further

checkpointing. In order for an error to be recoverable, it

must be reported to the RU in time to block the

checkpointing of any instructions possibly affected by the

error. For some errors, the latency to report them through

the fault isolation register (FIR) structure would make

them unrecoverable, so they are sent directly from each

functional unit to the RU. After the recovery state

machine completes the reset to clear the error, the RU

restores the checkpointed register values to the functional

units. The RU has separate buses to the FXU, FPU, and

VMX for sending the checkpointed register values, which

the functional units wrap back onto the normal functional

update buses to restore the values to the working copies.

Recovery sequence

When an error or minirefresh (see the following section)

request is active on the chip, the recovery state machine

sequences through the necessary operations:

1. First, the machine waits a programmable amount of

time to determine whether the error must be

escalated to a checkstop, as the first reporting of an

error may not indicate that a checkstop is required.

M. J. MACK ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

766

A cascading error or an error that arrives after the

first report may require a checkstop.

2. A lookup is done on the GTag in the RU to resolve

its mapping to the instruction address that will be

executed next upon completion of IRR. The result

is stored in the RU for subsequent refresh.

3. The L2 is instructed to be quiescent, as the core

cannot respond to snoop requests and will not

generate further traffic.

4. A fence signal is raised to the L2 to indicate that it

should ignore all signals coming from the core, as

the process of IRR may generate random signal

transitions on its interface.

5. All SRAMs in the core go through array built-in

self test (ABIST) to clear any existing state

information. Because the L1 cache is a store-

through design, no castouts to the L2 are required.

In the case of a minirefresh, this step is omitted.

6. All registers defined by the ISA are refreshed to the

core from the checkpointed state in the RU. Fixed-

point, floating-point, and vector registers are routed

through separate buses to their respective units in a

defined order. All SPRs are routed through the

FXU via the normal functional path used for a

move to SPR instructions.

7. A hardware reset signal is sent to all units to clear

any required state that could be corrupted or hung

by the error event. The state machine then waits for

a signal that ABIST has completed, as this

operation requires much more time than the register

refresh and hardware reset functions.

8. All FIR bits are reset.

9. All registers are refreshed again, as in step 6, to

ensure that all existent errors are reset and that the

ABIST and hardware reset operations did not cause

any error conditions in those registers.

10. The fence signal to the L2 cache is dropped, and the

L1–L2 interface now operates normally.

11. Instruction execution resumes from the restored

checkpoint state in a reduced execution mode, e.g.,

single-instruction dispatch, nonoverlapped FPU

execution. This state continues until a hardware

programmable number of instructions have

completed successfully in order to ensure that the

instruction that caused the original error has been

executed. For IRR, the HMI handler is invoked

first to log the event and perform any necessary

software assistance, such as SLB restoration. Thus,

the number of instructions executed in this state

includes the HMI handler itself plus a sufficient

number of instructions to ensure that the error-

causing instruction is repeated.

12. Once the successful instruction completion

threshold is exceeded, normal operation resumes.

Minirefresh

The minirefresh function is used to implement hardware

work-arounds during early hardware bringup and to aid

the performance of two functions. Logic exists in the core

to detect certain conditions based on debug facilities that

can cause a minirefresh. The minirefresh allows the

offending instruction to be executed in a reduced

execution mode, which will avoid the problematic case.

Additionally, because of timing requirements, early

hardware implementations required trap instructions to

be dispatched in a single instruction group to resolve the

trap condition. This posed a performance problem for

certain code streams, as the incidence of taken trap

instructions is relatively low compared to the number of

trap instructions inserted in the stream.

To assist in this case, the FXU signals a minirefresh

request when a taken trap is detected in a multiple

instruction group. The minirefresh request blocks the

checkpointing of the dispatch group that contains the

trap instruction as well as all subsequent dispatch groups.

A minirefresh that does not include the ABIST step is

executed, and execution resumes prior to the trap

instruction in single-instruction dispatch mode, thus

avoiding the timing issue arising from multiple

instruction groups containing traps.

Also, precise floating-point exception mode is

implemented in the POWER6 processor by operating in

single-instruction dispatch, non-floating-point pipelined

mode. For certain applications that require precise

interrupt execution, this penalty is too high. A fast

floating-point precise mode was added that uses the

minirefresh function.

When in fast floating-point precise mode, any floating-

point exception signals a minirefresh request to the RU

and stops the checkpointing of data associated with the

excepting instruction. As with the trap function, a

minirefresh is executed, and the offending instruction

reexecutes in single-instruction dispatch mode with

floating-point pipelining disabled, allowing the interrupt

to be reported precisely.

For both operations, a minirefresh requires of the order

of 300 processor cycles, so the penalty for this function is

low as long as the incidence of taken traps and floating-

point exceptions is low relative to the instruction stream.

Thus, it provides a performance boost compared with not

using these mechanisms.

Special cases for recovery

L1 cache and associated facilities

The IRR mechanism is effective for soft failures, but hard

failures that prevent the processor from making forward

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 M. J. MACK ET AL.

767

progress are not recoverable with IRR. However, because

of the high number of circuits in the POWER6 processor,

large SRAMs, such as the L1 cache (and its directory),

support delete mechanisms to work around hard failures.

The L1 cache implements the delete on a set boundary. (A

cache set is one of n locations where a cache line may be

placed when it is loaded from the next level in the

memory hierarchy. Each cache line in the real memory

space of the processor can be loaded into any one of the n

sets. The POWER6 processor L1 instruction cache

contains four sets, and the L1 data cache contains eight

sets.)

Because healthy SRAMs will experience soft errors due

to normal ambient radiation, a thresholding mechanism

is implemented to distinguish hard errors from soft errors

in order to invoke a set delete. When an L1 cache (or

directory) parity error is detected, the set identification

number is trapped, and a bit is set to indicate that an

error was detected. If a new error is then detected and the

error bit is already active, and if the set identification

matches the trapped set identification from the prior

error, then it is assumed to be a hard error and the

corresponding set is deleted (marked as unusable).

Periodically (every few seconds), the error indication bit is

cleared so that a newly detected error will be assumed to

be an independent soft error. Because it may be several

cycles from the reporting of a parity error until cache

accesses cease, the threshold is set so that it does not

overindicate as a result of multiple parity errors from the

same event. When a parity error is detected, indication of

a new parity error is blocked until the IRR process.

The set delete lines for associated arrays (data,

directory, and set predict) are activated together. When a

set is deleted, the LSU or instruction fetch unit (IFU)

must indicate that a set was deleted, which set it was, and

which array contained the error that caused the deletion.

Errors from separate arrays set separate FIR bits. The

delete indication and set identification are explicitly

reported to the core pervasives unit and held in a recovery

status register.

Because a hard error must be detected twice before the

set delete is invoked, it is possible to detect the error a

second time without forward progress having been made

after IRR. The IRR logic makes this possible by

implementing a programmable no-forward-progress

threshold. Each time an IRR is executed but no forward

progress of instruction execution is achieved, a counter is

incremented. IRR will be repeated until forward progress

is achieved or the counter exceeds the programmable

threshold value, resulting in a processor checkstop.

Timing facility (TB, DECR/HDECR, PURR/SPURR)

A dedicated time-of-day (TOD) oscillator, which is not

subject to spread-spectrum or dynamic frequency

variation, is used to step the TB and DEC registers. Thus,

these registers are not associated solely with processor

frequency; they are able to keep real time regardless of

processor frequency. Because the timing facility registers

are updated in real time, they are not tied to instruction

boundaries, as are registers checkpointed in the RU.

Thus, these registers cannot be recovered by IRR; they

require assistance from firmware.

Each processor chip has a TOD register that is

synchronized peer to peer with all other processor chips in

the system. The chip TOD has an interface to each

processor core TB, enabling all processor cores to have

synchronized TB registers. The initial time setting

requires a firmware-driven sequence that uses the move-

to-SPR instruction (mtspr) to the TB and a new timer

facilities management register (TFMR) SPR.

The same TOD value exists across all chips, and this

redundancy is used for restoring individual TB values in

the event of failures. DEC/HDEC or PURR/SPURR

failures, if corrupted, must be restored by host firmware.

Errors in the timer facilities are reported to the hypervisor

via HMI. A bit in the hypervisor maintenance exception

register (HMER) indicates a timing facility error, and bits

in the TFMR provide more information about the state

and health of the various timer facilities.

Cache-inhibited loads

Some cache-inhibited (CI) loads cause coherent storage

locations to be modified, so they have the same affect as

stores. However, because a CI load cannot complete until

after the data returns and is written back to the general-

purpose register, the store is done prior to the checkpoint

of the CI load. This creates a special case for recovery, as

IRR cannot back up to a checkpoint prior to the CI load

and retry it, because the storage has already been

modified.

The RU always allows a CI load to checkpoint, even if

checkpointing is blocked because of a reported error.

Dispatch restrictions on CI loads ensure that a CI load

will be the only instruction in the group for that thread,

so only the CI load is allowed to checkpoint past an error

and no other instructions.

Therefore, in the presence of an error somewhere in the

core, the dispatch and LSU dataflow logic still operate

correctly in order to complete a CI load and advance the

checkpoint. Thus, errors in this logic while a CI load is in

progress escalate to a processor checkstop (with unique

FIR bits to identify this window).

The mechanism of requiring CI loads to checkpoint

after an error is detected reduces the recoverability of soft

errors in the dispatch and LSU dataflow logic by

approximately 2%, as it is expected that CI loads will be

outstanding approximately 2% of the time. It still allows

full SRAM soft-error recovery.

M. J. MACK ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

768

STCX

Store conditional doubleword indexed (stdcx) and store

conditional word indexed (stwcx) instructions are

collectively referred to as STCX. Along with the load and

reserve instructions, STCX is used to perform atomic

update operations. STCX is similar to CI load in that it

modifies coherent memory prior to being checkpointed

using the same approach as for CI load. The only

difference is that STCX is held in execution until

completion, so it does not need to be redispatched when

the data for the condition register (CR) and the fixed-

point exception register (XER) is available.

STCX is the only instruction in a dispatch group for a

thread. The LSU informs the RU when a STCX is

executing on a per-thread basis. If an error is detected

while a STCX is in progress for a thread, the checkpoint

for that thread must be allowed to advance to the point

that includes the STCX.

Therefore, in the presence of an error somewhere in the

core, the logic that is updated by the STCX must still

operate correctly in order to complete the instruction and

advance the checkpoint. Thus, errors in this logic while a

STCX is in progress must escalate to a processor

checkstop.

Also, similar to CI loads, if the L2 detects a normally

recoverable interface error on a STCX and squashes the

STCX, it indicates to the core that the instruction was

canceled. This is to prevent the core from hanging while it

waits for an attempted recovery to complete.

SYNC (HWSync), PTESync, and TLBIE
(TLBI-Remote)

The hardware barrier/TLB invalidate entry and heavy-

weight barrier (HWBarrier) instructions use a

barrier_done flag to ensure that only a single

HWBarrier is outstanding to the storage interface. These

operations must be completed, i.e., the barrier_done

pulsed back to the core before the IRR can proceed.

HWBarrier instructions are always the only

instructions in a dispatch group for a thread. The LSU

does not send a barrier operation to the memory

subsystem until the RU advances the GTag past the

instruction, i.e., it is checkpointed. If an error is detected

while an HWBarrier is in progress (released to storage)

for a thread, IRR cannot proceed until barrier_done is

received.

Thus, in the presence of an error somewhere in the

processor core, the barrier_done logic must still operate

correctly in order to complete the HWBarrier. Thus,

errors in this logic must escalate to a processor checkstop.

Cache and memory uncorrectable errors

UEs may originate from memory, the cache hierarchy, or

interface failures. The IBM Power Architecture includes a

synchronous UE machine-check interrupt function. The

processor hardware is responsible for trapping the failing

storage address for the hypervisor machine-check

handler, and the hypervisor is responsible for containing

the damage to the affected workload and utilizing

available OS recovery. For instruction fetch UEs, the

hardware traps the effective address in the machine status

save and restore register 0 (SRR0) and the reason in the

machine status save and restore register 1 (SRR1). For

data fetches, the hardware holds the effective address in

the data address register (DAR) and the reason in the

data storage interrupt status register (DSISR).

UEs are often quite damaging because of the

limitations of the machine-check handler, depending on

the address affected. Some transient UEs from the cache

hierarchy have been observed in POWER processor-

based systems, which suggests a failure mode in the

memory subsystem, where a transient event affects

persistent state, causing multiple UEs from main

memory. This experience warranted an investment in

improved UE handling.

For L2 UEs, the objective is to allow the L2 purge and

delete (implemented in hardware) to eliminate UEs in

unmodified data. The processor goes through normal

IRR on the first occurrence of a UE on the chance that it

will be removed with the purge and delete. While the

processor is in IRR, the L2 purges the line containing the

UE and deletes the line. Unmodified data is simply

invalidated, and modified data will cause a special UE

(SUE) to be cast out to memory. If the UE was in

unchanged data, it should disappear altogether, and if the

UE was in modified data, it will return (as a SUE) when

refetched from memory after IRR, and the processor will

take a machine-check interrupt.

In order to avoid the latency for inline ECC correction,

the processor nest interface implements a level of retry

below IRR. Non-safe mode implies that inline ECC

correction is bypassed, while safe mode implies that inline

ECC correction is enabled and UEs will be stamped as

SUEs to the processor. When a UE is encountered in

non-safe mode, the load instruction is rejected by the

LSU and the data is re-sent in safe mode by the L2 cache.

The instruction will be rejected by the LSU until the data

arrives without error from the L2 after passing through

inline ECC correction. If the data still contains a UE after

ECC correction, IRR is entered to correct the error.

SLB

Because of the size of the SLB, it is prohibitively

expensive in terms of area and power to maintain a

separate SLB checkpoint. Therefore, SLB entries are

backed up in a shadow memory buffer that the OS can

use to restore the SLB contents, if required.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 M. J. MACK ET AL.

769

The SLB is preserved (not reset) during IRR, but some

error conditions may compromise its integrity. These

include parity or multihit errors and update windows in

which the SLB was updated but the instruction that

caused the update did not reach the checkpoint before an

unrelated error was detected. The integrity of the SLB is

indicated to the hypervisor via the HMI or HMER, or via

a machine check, and the hypervisor notifies the OS to

restore the SLB. A hardware failure in the SLB will

normally cause a parity error, but it could also cause a

multihit error. A software bug that causes duplicate

entries will cause a multihit error, but because a multihit

error ORs the data from the multiple entries, it may or

may not also indicate a parity error. An SLB update

window error is due to an unrelated error, not specific to

the SLB, that hit at a bad time. In general, it is assumed

that a multihit error is a software bug, and a parity error

without a multihit error is a hardware failure. Update

window errors, i.e., errors that occur in the processor

while an SLB entry is being updated, are due to hardware

failures outside the SLB.

As SLB restoration or recovery is not guaranteed

(particularly for software bugs), information is provided

to the hypervisor about the cause of the SLB corruption

so that it can isolate it to a single thread. The SLB does

not get reset by hardware during recovery, even when it is

corrupted.

The first step is to detect and report the three possible

conditions for each thread: parity errors, multihit errors,

and update window errors. The LSU reports parity and

multihit errors, and the RU reports update window errors

for each thread. Because the hypervisor could encounter

SLB parity errors during a save and restore operation,

which is a window not enabled for HMI, a machine check

is required to break the program flow and circumvent the

error. Since this specific case of a parity error requires a

machine check, a machine-check interrupt is used to

report all parity and multihit errors (all SLB errors

detected by the LSU). The RU-detected window error

does not persist (like a parity error), so it will not prevent

the hypervisor from making forward progress after

recovery; thus, an HMI is adequate to support them.

Noncheckpointed SPRs

Noncheckpointed SPRs have a window similar to the

SLB-modified window in which an SPR is modified, but

the mtspr instruction did not checkpoint because of an

error condition or a minirefresh trigger. The hardware

will detect the SPR-modified window and report it to host

firmware via HMI very similarly to how the SLB-

modified window is detected. The SPR-modified

condition is indicated in the HMER.

The SPR-modified window is almost identical to the

SLB-modified window and requires no special handling

for successful IRR, except to clear the SPR-modified bit

in the HMER. The process to handle errors that occur

during an SPR-modified window consists of the following

steps:

� mtspr instructions are not to be dispatched until the

RU write queue is empty, meaning the only active

instruction is the mtspr.
� Asynchronous machine checks are not blocked.
� HMI is blocked until the core is not in hypervisor

state or is not making forward progress after IRR in

hypervisor state, which guarantees that if the

hypervisor performed an mtspr, it will be retried

before taking the HMI.
� Asynchronous interrupts (non-HMI, non-machine

check) are blocked until forward progress is achieved

in the same hypervisor state as the one in which the

error was encountered. If the original error occurred

while in hypervisor mode, then waiting for the mtspr

to be reexecuted before taking the HMI will also wait

to take any other asynchronous interrupt (non-

machine check). If not in hypervisor mode at the time

of the error, the core will take the HMI but will block

other asynchronous interrupts until the mtspr is

reexecuted in nonhypervisor mode after the HMI.

This guarantees that if there is no asynchronous

machine check, then the mtspr will be reexecuted prior to

any further access to the SPR.

Because the mtspr executes by itself, there are no

synchronous machine-check conditions that could cause

the SPR-modified window to be hit. The exposure to

asynchronous machine-check conditions is also negligibly

small, though not impossible. Therefore, the machine-

check handler also checks for the SPR-modified bit in the

HMER. Because the machine-check handler checks for

the bit, the HMI interrupt handler is responsible to clear

the bit.

If an asynchronous machine check does occur during

the SPR-modified window, the hypervisor will checkstop

the processor. Assuming the machine check was

survivable in the first place, the machine-check handler

should indicate ‘‘hypervisor backed up’’ prior to the

checkstop, so that processor sparing may still be

attempted. A processor could also checkstop because of a

permanent fault that hits the SPR-modified window.

The registers affected by the SPR-modified window

control debug and performance-monitoring functions,

which are not preserved when a processor-sparing action

occurs. The performance monitor must be invalidated,

and the user notified to reinitialize the desired setup.

Typically, hardware debug controls are the same on every

processor, so they are not actually lost. The user of

M. J. MACK ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

770

software debug functions should be aware that processor

sparing occurred and that it is necessary to reinitialize the

debug environment.

Store errors

Storage is part of the processor checkpoint. The L1 cache

is store-through, so in general, storage is checkpointed

coherently outside the processor. However, for some

period of time, storage updates reside in buffers only in

the processor. Errors in the store buffers or on store

interfaces prevent the changed data from reaching the

coherent storage checkpoint. Because the store buffers

and interfaces make up a substantial number of circuits,

errors in this logic must be recoverable, or at least

contained as much as possible, to minimize damage to the

system.

The hardware must prevent storage errors from

affecting other processors, which means not allowing

storage errors to propagate to storage owned by other

processors. Any store-related error should prevent the

store from being written to the L2, so that the storage

corruption is confined to a dropped store. The bounds of

the storage corruption then depend on whether the store

was done by the hypervisor, the OS, or a user program. If

the store was done by a user program, the OS may be able

to recover from a software checkpoint. If the store was

done by the OS, the hypervisor may be able to contain the

damage to a single partition. If the store was done by the

hypervisor, it is likely that the entire system will have to

be checkstopped.

The hardware must detect when it has dropped a store

and differentiate whether it was a store by the partition or

by the hypervisor. The core includes the hypervisor state

bit with each store command, and the nest stores it

through the life of the request. The L2 cache implements

separate FIR bits for hypervisor and nonhypervisor state

stores dropped, for each core. (These FIR bits are

independent of address errors, data errors, and command

errors, so that the hypervisor or nonhypervisor versions

of all types are not needed.) The FIR that indicates the

error will always be on the same chip as the core that

issued the dropped store.

System-level firmware support

Functions such as event logging, setting thresholds,

Elastic Interface bit steering, L2 and L3 cache-line

deletes, and frequency and voltage adjustments or

thermal management require firmware help. Hardware

and host firmware are used for any functions that have

real-time requirements.

All successful soft-error recoveries by the POWER6

core are logged. This includes capturing trace-array

information. (The trace array is frozen at the point of the

recovery. The trace is reenabled after the trace data has

been captured for a log.)

A recovery may appear successful to the hardware, but

it is possible that the core is not making progress from the

partition viewpoint (e.g., there may be a hardware defect

in the FPU that causes a recurring error). The firmware

may not be able to react quickly enough to keep up with

the recovery rate of the core. To cover this case, the

hypervisor tracks the rate of error recovery for each core.

If the rate of error recovery exceeds the threshold, the

hypervisor will checkstop the processor. This triggers the

alternate processor recovery flow for the system. Even

though the processor will have checkstopped when in

hypervisor mode, the hypervisor will recognize this as a

special case (a hypervisor-initiated checkstop) and will

not terminate the system. The normal flows for CPU

(central processing unit) sparing, and for policies that are

to be deployed when there is no spare, will be followed.

Hypervisor maintenance interrupt handling

Many of the conditions discussed earlier are reported to

the hypervisor via the HMER and an HMI. The

conditions may be individually masked (enabled) by the

HMER. The HMI is blocked when in hypervisor mode,

and external interrupts are disabled. Normally, host

firmware is responsible for polling the HMER conditions

when in this state, but some special cases have a mode-bit

enablement to escalate to machine check when the HMI is

blocked.

Processor checkstop handling

For processor checkstops, the hypervisor must log out

required fault-isolation information and analyze it to

determine whether CPU sparing is possible, i.e., whether

the checkpoint is intact, or whether the task and partition

running on the failed processor must be terminated.

CPU-sparing support

IRR is effective for transient (soft) errors, but not for

permanent (hard) errors, since a persistent error will

prevent the processor from making any forward progress.

Because the RU checkpoint pipeline lags the execution

pipeline, hard failures that prevent further execution of

instructions usually do not mean that the checkpoint is

corrupted. Thus, the checkpoint could be extracted and

restored on a different processor to continue executing

from the checkpoint. If a spare processor is available in

the configuration, then there is no loss of workload or

capacity. The checkpoint could also be restored on a

previously active processor to recover the workload,

although there would be a loss in overall system capacity,

which the hypervisor communicates to the OS.

In the event that the checkpoint is damaged because of

the error, then the workload cannot be recovered, and the

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 M. J. MACK ET AL.

771

hypervisor must attempt to contain the loss of the

processor to the partition that was running on it at the

time of the checkstop.

In order to restore the checkpoint on an alternate

processor, it must first be extracted from the defective

processor. It is then reestablished by using firmware on

the spare processor.

The integrity of the checkpoint is determined by

analyzing the error-reporting registers for the failed

processor core. If valid, the checkpoint is then loaded into

the spare processor, and instruction execution resumes

from the checkpoint. This process sequence is performed

by the host firmware, similar to a return from a machine

check. If the checkpoint integrity is compromised, then

sparing is aborted and the hypervisor will attempt to

contain the damage to the partition that was running at

the time.

Noncheckpointed facilities

Some SPRs are not included in the RU checkpoint and

are, instead, extracted by software or otherwise dealt with

by the hypervisor in preparation to resume the alternate

processor.

Performance monitor

The performance monitor is dramatically distorted after a

system-level recovery action, such as CPU sparing, so

there would be only very limited value in attempting to

restore the data values from the failed processor. Because

the overhead to provide logout capability is high, the

performance monitor facilities are invalidated instead and

are disabled on the spare processor. If performance

monitoring was active on the failed processor, a message

is posted that it was terminated and should be

reinitialized by the user.

Timing facility

The timing facility (TB register, decrementers, and

utilization registers) remains active during recovery, so it

is not checkpointed in the RU. The TB is synchronized

across all processors, so it does not need to be restored on

the spare. The decrementer and utilization registers are

accessible via a JTAG (IEEE Standard 1149.1) interface

and are transferred to the spare processor. The values

may have to be adjusted to account for the elapsed time,

which can be determined by logging the TB from the

failed processor (close to the decrementer and PURR and

SPURR values) and comparing it with the TB on the

spare processor at the time the timing facility registers are

to be restored.

SLB

The hypervisor must invalidate the SLB on the spare

processor with an SLB invalidate all instruction (slbia)

for both threads and restore the SLB contents from the

shadow buffer, as is done for an SLB parity error or

asynchronous machine check with the SLB-modified bit

active in the HMER.

Error-reporting structure and FIRs

Each error detected is fed through a commonly used

error-report macro. If sufficient area or wiring is not

available to support individual error-report macros for

each specific error, then errors are grouped into classes.

The macro is configurable and contains, at a minimum,

a mask latch and a hold latch. The mask latch can be used

if an error checker is determined to be faulty itself,

especially in early hardware debug. A hold latch is used to

determine which error (or class of errors) caused a

recovery or checkstop event by scanning out of the

processor all error-report state latches. In the typical

configuration, the hold latch is a set-only latch and does

not directly drive the error-output signal of the macro.

There are several possible configurations with the macro,

but the minimal one is most commonly used.

In more complex arrangements, the hold latch can be

inline with the error-output signal if timing requirements

dictate such an arrangement. In this case, a keeper latch

can be used by one or more of these macro types to

provide the memory function usually provided by the

hold latch. If more than one error-report macro shares a

keeper, the error lines from each are ORed together such

that isolation is limited to the class of errors driven by the

multiple macros.

This structure is highly effective in debugging early

hardware failures, since generally only one error-report

macro will be active at a time during hardware validation.

In an operational system, however, there will be multiple

error-report hold latches active, as recovery may occur

multiple times in a healthy machine for several valid error

conditions.

The results of the error-report macros are collected

together into classes, ORed together, and sent to the

FIRs. The classes (e.g., dataflow error, register file

correctable error, register file uncorrectable error, and

functional) exist for each functional unit in the FIR

domain. Each FIR bit has an associated mask bit and

action bits that determine what should happen following

any occurrence of the associated error type. Allowed

actions are recovery (IRR), system checkstop, local

checkstop, HMI, or machine check. This allows errors in

a hardware validation environment and in a production

environment to be treated differently, or for a faulty error

class to be completely masked off. In the case of

checkstops, further FIR bits are prevented from being set,

since cascading errors may occur, and their recording

would confuse the isolation of the checkstop-causing

error.

M. J. MACK ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

772

The processor core contains two FIRs, one for

instruction-side events and one for execution-side events.

The nest logic contains multiple FIRs, one for each

logical unit (e.g., the L2 quadrant, L3 directory slice,

external bus controller, fabric bus interfaces, and memory

controller). The FIR bits are cleared in the process of

IRR.

Because a single error may cause multiple cascading

errors, two who’s-on-first (WOF) registers are provided to

capture the source of the first error detected in the

processor. Once any error occurs and is recorded in the

WOF, all subsequent errors are blocked from setting bits

in the WOF. Which WOF is selected toggles when a FIR

reset occurs, making available the two most recent

sources of IRR.

Concluding remarks
The POWER6 processor design includes robust error

checking and facilities for IRR that cover most errors

that can occur. This functionality is accomplished

through checkpointing the execution flow, along with

other mechanisms used for special cases and the L1, L2,

and memory storage structures. The POWER6 processor

design also provides the capability to transfer the working

state of a processor core to another spare core in the

system, when the original core is deemed to have a

persistent error condition. A reduced mode of IRR,

minirefresh, can be used to increase the performance of

certain types of operation and is also used in early

hardware debug workarounds.

Using virtual storage keys to improve OS reliability is

just one application of the virtual page class key

protection function. There are many more, such as

sharing privileged data with an application. Even a

malicious application would not be able to break the

protection, since it does not have access to the AMR. The

hypervisor may use the facility to enable controlled

sharing of data among multiple partitions (especially a

partition and a program providing services to the

partition). More applications of virtual storage keys are

planned to be developed over time.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of SPARC
International, Inc., in the United States, other countries, or both.

References
1. Power.org, Power ISAe Version 2.04; see http://

www.power.org/resources/downloads/PowerISA_203.Public.pdf.
2. J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B.

Chin, M. Nicewicz, C. A. Russell, et al., ‘‘IBM Experiments in
Soft Fails in Computer Electronics (1978–1994),’’ IBM J.
Res. & Dev. 40, No. 1, 3–18 (1996).

3. H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K.
Morita, T. Muta, et al., ‘‘A 1.3-GHz Fifth-Generation
SPARC64 Microprocessor,’’ IEEE J. Solid-State Circuits 38,
No. 11, 1896–1905 (2003).

4. M. Mueller, L. C. Alves, W. Fischer, M. L. Fair, and I. Modi,
‘‘RAS Strategy for IBM S/390 G5 and G6,’’ IBM J. Res. & Dev.
43, No. 5/6, 875–888 (1999).

5. D. C. Bossen, A. Kitamorn, K. F. Reick, and M. S. Floyd,
‘‘Fault-Tolerant Design of the IBM pSeries 690 System Using
POWER4 Processor Technology,’’ IBM J. Res. & Dev. 46, No.
1, 77–86 (2002).

Received January 17, 2007; accepted for publication

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007 M. J. MACK ET AL.

773

May 30, 2007; Internet publication October 23, 2007

Michael J. Mack IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (mjmack@us.ibm.com).
Mr. Mack is a Senior Engineering Manager in processor
development. He received a B.S. degree in computer engineering,
summa cum laude, from Syracuse University. He joined IBM at the
MIT Laboratory for Computer Science, developing hardware for
parallel-processing research. He has worked on processor designs
for System/370*, AS/400* and RS/6000* machines as well as on
various system-on-chip designs for external customers and IBM
standard products. Mr. Mack joined IBM Austin to work on the
POWER6 processor project as the recovery unit lead and later as
the core pervasives unit lead.

Wolfram M. Sauer IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (wsauer@us.ibm.com).
Mr. Sauer is a Senior Technical Staff Member in the processor
development area. He received a diploma degree (‘‘Diplom-
Informatiker’’) in computer science from the University of
Dortmund, Germany, in 1984. He subsequently joined IBM at the
development laboratory in Boeblingen, Germany, and worked on
the S/370* (later S/390* and zSeries) processor design, microcode,
and tools. He joined IBM Austin in 2002 to work on the POWER6
processor project.

Scott B. Swaney IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(sswaney@us.ibm.com). Mr. Swaney received a B.S. degree in
electrical engineering from Pennsylvania State University. He
joined IBM in the Enterprise Systems Division as a VLSI (very-
large-scale integration) design engineer. He is currently a Senior
Technical Staff Member working on hardware and system design
for the IBM eServer*. Mr. Swaney specializes in design for high
availability in microprocessors and holds multiple patents related
to processor recovery.

Bruce G. Mealey IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (mealey@us.ibm.com).
Mr. Mealey is a Senior Technical Staff Member in the OS
development area. He received a B.S. degree in electrical
engineering from the University of Texas. He joined the IBM
Development Laboratory and has worked on system performance,
system bring-up, and OS development. Mr. Mealey is currently
working on OS reliability, serviceability, and availability.

M. J. MACK ET AL. IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

774

