IBM POWERG
reliability

This paper describes the state-of-the art reliability features of the
IBM POWERG™ microprocessor. The POWERG microprocessor
includes a high degree of detection of soft and hard errors in both
dataflow and control logic, as well as a feature—instruction retry
recovery (IRR)—usually available only on mainframe systems.
IRR provides full hardware error recovery of those registers that
are defined by the instruction set architecture. This is accomplished
by taking a checkpoint of the defined state for both of the core
threads and recovering the machine state back to a known good
point. To allow changing memory accessibility without using
different page table entries, the POWERG microprocessor
implements virtual page class keys, a new architectural extension
that enables the OS (operating system) to manage eight classes of
memory with efficiently modifiable access authority for each class.
With this feature, malfunctioning kernel extensions can be
prevented from destroying OS data that may, in turn, bring an OS

=

w P

<

)

©)

<o

. Mack
. Sauer
Swaney
. Mealey

down.

Introduction

As both software and hardware become more complex in
server designs, increased investment in reliability has
become necessary to keep systems running despite
intermittent hardware error conditions or badly behaving
or malicious software. The design of the IBM POWERG6*
microprocessor has added a higher level of tolerance for
these conditions through several features. One is the
virtual page class key protection architecture extensions
that aid OS software to effectively manage memory
accesses across applications, OS kernels, and kernel
extensions; another is an extensive hardware investment
in error detection and recovery through the use of
instruction retry recovery (IRR).

This paper first presents the virtual page class key
protection architecture and its initial implementation in
the POWERG processor design. The paper then describes
the hardware facilities implemented in the POWERG6
processor to tolerate soft and hard errors occurring in the
system.

Virtual storage protection

IBM Power Architecture* technology [1] provides a
mechanism for virtual storage protection, which is based
on the MSR(PR) (machine-state register problem-state)
bit; the problem-state storage key (KP) and the
supervisor-state storage key (KS) bits in the segment

look-aside buffer (SLB) entry; and the page protection
(PP) bits in the page table entry (PTE). This mechanism
controls load- and store-type accesses when address
translation is enabled. There is an additional mechanism
to prohibit instruction execution from a storage page.

The mechanism used in the POWERS* processor
requires a very small amount of resources and is,
therefore, very efficient. However, its function is limited
because there is no easy way to maintain different access
rights for software that uses common SLB entries and a
common page table. For example, the IBM AIX* OS
kernel and kernel extensions use the same page table and,
therefore, have the same access rights. Most kernel data is
contained in a flat address space that includes many
memory classes, such as cached files, network buffers,
application data, and core kernel data. Kernel-mode
programming errors can result in the corruption of any
memory class. Applications face similar problems with
protecting their large address spaces.

Changing access rights in this context would require
using a different page table or at least invalidating
sensitive PTEs, both of which are costly actions, since
translation look-aside buffer (TLB) entries would have to
be invalidated, and new translations would have to be
loaded via page fault interrupts and subsequent lookups
of PTEs that reside in main memory.

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

M. J. MACK ET AL.

763

764

PTE ‘ 5-bit key ‘

Key0 Keyl Key2 Key31
14

s [ooliito] . []

Bit 01 23 4|5 62 63

1 ‘ 0
Allow loads from this page

Prohibit stores to this page

Page table entry (PTE) and access mask register (AMR).

Table 1 Access mask encoding for virtual storage key k.

AMR value Effect on loads and stores

AMRy;, AMRy, +1=10,0 Store access permitted;

load access permitted

AMRy,, AMRy, + 1 =0, 1 Store access permitted;

load access not permitted

AMR,,, AMR,, + 1 =1,0 Store access not
permitted; load access

permitted

AMR,, AMR,, + 1 =1, 1 Store access not
permitted; load access

not permitted

The virtual page class key protection extension to the
Power Architecture instruction set is a lightweight
mechanism that allows altering access rights to storage
without changing the page table or invalidating cached
translation entries. This mechanism defines access rights
on the basis of a page granularity for flexibility in
assigning data pages to memory classes with common
access rights.

As indicated in Figure 1, the mechanism operates as
follows: The PTE contains a new 5-bit virtual storage key
(the drawing simplifies the real situation, because the key
is actually split in two parts—one 2-bit and one 3-bit
portion to maintain compatibility with the existing
architecture). The virtual storage key is used to index the
access mask register (AMR), which is a new special-
purpose register (SPR). The AMR consists of 32 2-bit
access keys (access masks). One bit controls write access,
and the other controls read access, allowing the
combinations shown in Table 1.

M. J. MACK ET AL.

The AMR is a privileged register that can be set by the
OS to any desired value. Changing the value is fast and
does not require a PTE change or the invalidation of
cached translation entries.

Software uses the AMR to limit access to memory
classes. Programmers determine the memory classes that
a software component was designed to access. The 5-bit
storage key in the PTE defines membership in one of 32
memory classes for the virtual page. A memory class set
(the collection of virtual memory pages with the same
storage key, and thus in the same memory class) is
maintained in the AMR to protect against invalid
memory references. There are several examples in the
AIX kernel. For example, one AIX kernel memory class
is application data. Under the AIX OS, only a small
amount of code requires direct access to application data,
so when software components that require application
data access are entered, they enable the memory classes in
the AMR. Most code in the AIX kernel runs without an
application data class, i.e., without a key, and is
prevented from making accidental references to user-
mode data. Another example is that the core kernel
protects its critical data with a memory class that is not in
the AMR when running kernel extensions.

In the AIX kernel, the AMR is normally loaded on
module entry and restored when a module returns. This
will not protect against malicious kernel extensions
running in privileged mode, since they can manipulate the
AMR and gain access to protected pages. Kernel
extensions are generally much better controlled and are
trusted. Virtual storage keys are used exclusively to
improve OS reliability in this environment.

Applications can also use the AMR to limit memory
accessibility. The kernel provides fast system calls to
allow applications to alter their user-mode AMR.
Applications can use keys to define user-mode memory
classes. For example, plans for the IBM DB2* relational
database management software system call for limiting
accessibility to its buffer pool when it makes callouts to
user-defined functions (customer code dynamically
loaded into the database). Other independent software
vendors are interested in segregating memory into classes
similar to the AIX kernel.

The architecture allows up to 32 virtual storage keys.
Eight virtual storage keys are implemented in POWERG6
processor-based hardware. The AIX 5.3 OS with the
POWERG6 processor update supports the application use
of keys. It is planned to implement kernel usage in AIX
5.4 OS.

Hardware recovery

Because of particle emissions from the decay of
radioactive atoms and from cosmic rays, soft errors occur
in microprocessors [2], SRAM (static RAM), register

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

files, and even in latches. At current design lithographies
(65-nm technology is used for the POWERG6 processor),
soft-error rates are increasing, and attempts to harden
latches to be impervious to particle emissions are less
successful because of their small size and the need to
avoid having them be excessively large structures.

Strategies are required to detect such errors, correct
them if possible, and if not, recover from them. For
example, in the SPARC64** processor, which has an out-
of-order execution design described in [3], instruction
results that report errors and any subsequent instructions
are canceled before being committed. The youngest
instruction not to be committed is retried, i.e., reissued
singly, and if successful, normal superscalar operation
continues. To isolate these occurrences, error-detection
circuits in both the execution units and the datapaths
were added to the SPARC64 architecture.

In IBM zSeries* processors [4], to achieve robust
instruction retry, two copies of each execution unit are
included, and their results are compared at the completion
of every instruction. If they differ, the result is not
committed to the recovery unit (RU), which contains the
facilities defined by the instruction set architecture (ISA)
and is protected from single- and double-bit errors by
error-correction code (ECC). The RU sends its data to the
copies in the execution units and retries the instruction.

Previous generations of POWER™ processors were able
to tolerate failures in large arrays, such as the level 1 (L1)
and level 2 (L2) caches, by using inline correction
techniques, but failures in latches or combinatorial logic
were rare enough that no significant investment was made
to tolerate them or even directly detect them. Thus,
failures in the nonarray logic typically resulted in a
system checkstop or system hang. The POWERG6
processor has a much greater investment in detecting and
tolerating failures in both arrays and logic.

In the POWER4* and POWERS5 processor designs,
error recovery was limited to using the machine-check
interrupt handler to recover from correctable and
uncorrectable errors (UEs) in SRAMs. Error checkers in
the control flow and the dataflow produced checkstop
conditions and recorded occurrences for fault isolation
[5].

The POWERG6 processor design added error-detection
logic to all dataflow and most control flow, achieving a
much higher degree of soft- and hard-error recovery than
previous POWER processor designs. In contrast to the
zSeries processor design approach, the area consumed by
the recovery function is far less than that required to
duplicate each execution unit in the design, while both
designs contain an RU to hold the ECC-hardened copy of
facilities defined by the ISA.

The POWERG6 processor approach—which uses a
separate RU rather than embedding the function in the

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

completion logic, as is the case in the SPARC64 design—
allows for a lesser degree of coupling between error events
and the halting of checkpointing,' and it also
decentralizes their synchronization between functional
execution units.

Checkpointing and recovery

The POWERG6 processor implements IRR, which is the
same concept that has been used in zSeries processors for
several generations. The fundamental concept of IRR is
to maintain an architectural checkpoint on hardware
instruction boundaries. The checkpoint can be restored in
the event of an error so that processing can be retried and,
hopefully, resumed from the last instruction checkpoint.
Instruction checkpointing has dependencies on the logic
throughout the processor:

¢ A means of preserving the entire state of the processor
in a hardened checkpoint (protected by ECC).

* Protecting the integrity of the checkpoint with robust
error detection throughout the processor.

e A means of resetting noncheckpointed logic to
attempt to remove the error.

* A means of restoring the checkpoint.

The register checkpoint is implemented using an RU.
All registers for both threads are captured in the RU with
the checkpoint maintained on instruction group
boundaries. The RU has a pipeline for capturing register
results so that the checkpointing lags execution, which is
important so that errors can be detected in time to block
bad results from being included in the checkpoint.

Error detection throughout the processor core is
essential to protecting the checkpoint. Errors must be
reported from all areas of the processor, and logically
ORed together to block checkpoint updates. Errors that
are detected too late to be reported in time to block
checkpointing must be escalated to a processor
checkstop. Errors that affect the restoration of the
checkpoint must also be escalated to a processor
checkstop, but as long as the checkpoint is intact,
restoration on an alternate processor may be possible.

Recovery is performed on a processor-core basis, not
on an instruction or thread basis. Reported errors do not
have to be associated with an instruction boundary as
long as they are reported early enough to block
checkpointing. IRR may back up to a checkpoint that
occurred earlier than the instruction that encountered the
error. Both threads will be restored from the most recent

! Checkpointing is the action of capturing a known good state (i.e., checkpoint) of the
registers defined by the ISA and sorting it for possible future use. While many
sequential checkpoints may be retained as part of a checkpointing process, the
POWERG6 processor maintains only one checkpoint at a time; a newly created
checkpoint overwrites the previous one.

M. J. MACK ET AL.

765

766

checkpoint regardless of the error that was detected or the
thread on which it occurred.

To make IRR more effective for functional errors, the
execution flow through the processor core is simplified
(i.e., single dispatch, nonpipelined) for some short
amount of time after recovery. Recovery is considered
successful when enough instructions execute successfully
for the checkpoint to advance beyond the simplified
execution mode and full-speed execution is resumed
without error.

It is desirable to have a single recovery mechanism
regardless of the error that is detected. However, certain
complexities and environments require special
consideration. These include the following:

* L1 cache and its associated directories and look-aside
buffers.

¢ The timing facility, which includes the timebase (TB),
decrementer (DEC), hypervisor decrementer
(HDEC), processor utilization of resources register
(PURR), and scaled PURR (SPURR).

® Cache-inhibited loads.

¢ Store conditional instructions (stwcx and stdcx),
which are used along with the load and reserve
instructions to permit atomic update of a storage
location.

* Memory barrier instructions, such as synchronize.

¢ TLB management instructions, such as TLB
invalidate entry (t1bie), that affect multiple
processors in a system.

e Cache and memory UEs.

¢ Data aborts.

® The segment look-aside buffer (SLB).

* Noncheckpointed SPRs.

e Store-related errors.

* Thermal events.

e System-level firmware support.

Many of these special considerations require host
firmware support. The reporting of recovery and status to
the hypervisor is handled by the new hypervisor
maintenance interrupt (HMI).

This IRR strategy is very effective for soft errors
(transient errors induced by radioactive particles striking
latches), but not for permanent errors. Permanent errors
that do not allow the processor to make forward progress
are escalated to a processor checkstop. However, a
processor checkstop does not take down the entire
system, but rather invokes higher-level system recovery.

RU checkpoint

Instructions are checkpointed on group boundaries
within each thread. At the time of dispatch, for each

M. J. MACK ET AL.

thread, a group tag (GTag) is sent along with the
instructions to denote the age of the group relative to
each instruction tag (ITag) and is used to determine when
a group can be checkpointed. A group can be
checkpointed when the next-to-complete ITag is equal to
or greater than the GTag. When a group is partially
flushed because of branch misprediction or load/store
reject, or when an instruction causes an exception, a new
GTag must be recalculated and saved by the RU. This
information is used to allow the RU to partially
checkpoint the original dispatch group while discarding
the data of the flushed instructions.

The fixed-point unit (FXU) and load/store unit (LSU)
data must wait at the RU for the floating-point unit
(FPU) or vector multimedia extension (VMX) unit
instructions in the same dispatch group to be completed
before the whole dispatch group can be checkpointed.
This is because the FPU and VM X instructions take more
cycles to execute than fixed-point, load/store, or branch
instructions. The FPU and VMX instruction results are
kept in separate queues from the fixed-point instruction
results. At dispatch time, information from the dispatch
group about the expected number of results of FPU
instructions and whether VMX instruction results are
expected is sent, along with the dispatching instructions,
to the checkpoint queues in the RU. The group can be
checkpointed only when all FPU or VMX data for that
group is available. When a group is checkpointed, the RU
indicates to the store queue that any stores from that
group can be released to the L2 cache.

Recoverable errors are ORed together to block further
checkpointing. In order for an error to be recoverable, it
must be reported to the RU in time to block the
checkpointing of any instructions possibly affected by the
error. For some errors, the latency to report them through
the fault isolation register (FIR) structure would make
them unrecoverable, so they are sent directly from each
functional unit to the RU. After the recovery state
machine completes the reset to clear the error, the RU
restores the checkpointed register values to the functional
units. The RU has separate buses to the FXU, FPU, and
VMX for sending the checkpointed register values, which
the functional units wrap back onto the normal functional
update buses to restore the values to the working copies.

Recovery sequence

When an error or minirefresh (see the following section)
request is active on the chip, the recovery state machine
sequences through the necessary operations:

1. First, the machine waits a programmable amount of
time to determine whether the error must be
escalated to a checkstop, as the first reporting of an
error may not indicate that a checkstop is required.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

A cascading error or an error that arrives after the
first report may require a checkstop.

2. A lookup is done on the GTag in the RU to resolve
its mapping to the instruction address that will be
executed next upon completion of IRR. The result
is stored in the RU for subsequent refresh.

3. The L2 is instructed to be quiescent, as the core
cannot respond to snoop requests and will not
generate further traffic.

4. A fence signal is raised to the L2 to indicate that it
should ignore all signals coming from the core, as
the process of IRR may generate random signal
transitions on its interface.

5. All SRAMs in the core go through array built-in
self test (ABIST) to clear any existing state
information. Because the L1 cache is a store-
through design, no castouts to the L2 are required.
In the case of a minirefresh, this step is omitted.

6. All registers defined by the ISA are refreshed to the
core from the checkpointed state in the RU. Fixed-
point, floating-point, and vector registers are routed
through separate buses to their respective units in a
defined order. All SPRs are routed through the
FXU via the normal functional path used for a
move to SPR instructions.

7. A hardware reset signal is sent to all units to clear
any required state that could be corrupted or hung
by the error event. The state machine then waits for
a signal that ABIST has completed, as this
operation requires much more time than the register
refresh and hardware reset functions.

8. All FIR bits are reset.

9. All registers are refreshed again, as in step 6, to
ensure that all existent errors are reset and that the
ABIST and hardware reset operations did not cause
any error conditions in those registers.

10. The fence signal to the L2 cache is dropped, and the
L1-L2 interface now operates normally.

11. Instruction execution resumes from the restored
checkpoint state in a reduced execution mode, e.g.,
single-instruction dispatch, nonoverlapped FPU
execution. This state continues until a hardware
programmable number of instructions have
completed successfully in order to ensure that the
instruction that caused the original error has been
executed. For IRR, the HMI handler is invoked
first to log the event and perform any necessary
software assistance, such as SLB restoration. Thus,
the number of instructions executed in this state
includes the HMI handler itself plus a sufficient
number of instructions to ensure that the error-
causing instruction is repeated.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

12. Once the successful instruction completion
threshold is exceeded, normal operation resumes.

Minirefresh

The minirefresh function is used to implement hardware
work-arounds during early hardware bringup and to aid
the performance of two functions. Logic exists in the core
to detect certain conditions based on debug facilities that
can cause a minirefresh. The minirefresh allows the
offending instruction to be executed in a reduced
execution mode, which will avoid the problematic case.

Additionally, because of timing requirements, early
hardware implementations required trap instructions to
be dispatched in a single instruction group to resolve the
trap condition. This posed a performance problem for
certain code streams, as the incidence of taken trap
instructions is relatively low compared to the number of
trap instructions inserted in the stream.

To assist in this case, the FXU signals a minirefresh
request when a taken trap is detected in a multiple
instruction group. The minirefresh request blocks the
checkpointing of the dispatch group that contains the
trap instruction as well as all subsequent dispatch groups.
A minirefresh that does not include the ABIST step is
executed, and execution resumes prior to the trap
instruction in single-instruction dispatch mode, thus
avoiding the timing issue arising from multiple
instruction groups containing traps.

Also, precise floating-point exception mode is
implemented in the POWERG6 processor by operating in
single-instruction dispatch, non-floating-point pipelined
mode. For certain applications that require precise
interrupt execution, this penalty is too high. A fast
floating-point precise mode was added that uses the
minirefresh function.

When in fast floating-point precise mode, any floating-
point exception signals a minirefresh request to the RU
and stops the checkpointing of data associated with the
excepting instruction. As with the trap function, a
minirefresh is executed, and the offending instruction
reexecutes in single-instruction dispatch mode with
floating-point pipelining disabled, allowing the interrupt
to be reported precisely.

For both operations, a minirefresh requires of the order
of 300 processor cycles, so the penalty for this function is
low as long as the incidence of taken traps and floating-
point exceptions is low relative to the instruction stream.
Thus, it provides a performance boost compared with not
using these mechanisms.

Special cases for recovery
L1 cache and associated facilities

The IRR mechanism is effective for soft failures, but hard
failures that prevent the processor from making forward

M. J. MACK ET AL.

767

768

progress are not recoverable with IRR. However, because
of the high number of circuits in the POWERG6 processor,
large SRAMs, such as the L1 cache (and its directory),
support delete mechanisms to work around hard failures.
The L1 cache implements the delete on a set boundary. (A
cache set is one of n locations where a cache line may be
placed when it is loaded from the next level in the
memory hierarchy. Each cache line in the real memory
space of the processor can be loaded into any one of the n
sets. The POWERG processor L1 instruction cache
contains four sets, and the L1 data cache contains eight
sets.)

Because healthy SRAMs will experience soft errors due
to normal ambient radiation, a thresholding mechanism
is implemented to distinguish hard errors from soft errors
in order to invoke a set delete. When an L1 cache (or
directory) parity error is detected, the set identification
number is trapped, and a bit is set to indicate that an
error was detected. If a new error is then detected and the
error bit is already active, and if the set identification
matches the trapped set identification from the prior
error, then it is assumed to be a hard error and the
corresponding set is deleted (marked as unusable).
Periodically (every few seconds), the error indication bit is
cleared so that a newly detected error will be assumed to
be an independent soft error. Because it may be several
cycles from the reporting of a parity error until cache
accesses cease, the threshold is set so that it does not
overindicate as a result of multiple parity errors from the
same event. When a parity error is detected, indication of
a new parity error is blocked until the IRR process.

The set delete lines for associated arrays (data,
directory, and set predict) are activated together. When a
set is deleted, the LSU or instruction fetch unit (IFU)
must indicate that a set was deleted, which set it was, and
which array contained the error that caused the deletion.
Errors from separate arrays set separate FIR bits. The
delete indication and set identification are explicitly
reported to the core pervasives unit and held in a recovery
status register.

Because a hard error must be detected twice before the
set delete is invoked, it is possible to detect the error a
second time without forward progress having been made
after IRR. The IRR logic makes this possible by
implementing a programmable no-forward-progress
threshold. Each time an IRR is executed but no forward
progress of instruction execution is achieved, a counter is
incremented. IRR will be repeated until forward progress
is achieved or the counter exceeds the programmable
threshold value, resulting in a processor checkstop.

Timing facility (TB, DECR/HDECR, PURR|SPURR)

A dedicated time-of-day (TOD) oscillator, which is not
subject to spread-spectrum or dynamic frequency

M. J. MACK ET AL.

variation, is used to step the TB and DEC registers. Thus,
these registers are not associated solely with processor
frequency; they are able to keep real time regardless of
processor frequency. Because the timing facility registers
are updated in real time, they are not tied to instruction
boundaries, as are registers checkpointed in the RU.
Thus, these registers cannot be recovered by IRR; they
require assistance from firmware.

Each processor chip has a TOD register that is
synchronized peer to peer with all other processor chips in
the system. The chip TOD has an interface to each
processor core TB, enabling all processor cores to have
synchronized TB registers. The initial time setting
requires a firmware-driven sequence that uses the move-
to-SPR instruction (mtspr) to the TB and a new timer
facilities management register (TFMR) SPR.

The same TOD value exists across all chips, and this
redundancy is used for restoring individual TB values in
the event of failures. DEC/HDEC or PURR/SPURR
failures, if corrupted, must be restored by host firmware.
Errors in the timer facilities are reported to the hypervisor
via HMI. A bit in the hypervisor maintenance exception
register (HMER) indicates a timing facility error, and bits
in the TFMR provide more information about the state
and health of the various timer facilities.

Cache-inhibited loads

Some cache-inhibited (CI) loads cause coherent storage
locations to be modified, so they have the same affect as
stores. However, because a CI load cannot complete until
after the data returns and is written back to the general-
purpose register, the store is done prior to the checkpoint
of the CI load. This creates a special case for recovery, as
IRR cannot back up to a checkpoint prior to the CI load
and retry it, because the storage has already been
modified.

The RU always allows a CI load to checkpoint, even if
checkpointing is blocked because of a reported error.
Dispatch restrictions on CI loads ensure that a CI load
will be the only instruction in the group for that thread,
so only the CI load is allowed to checkpoint past an error
and no other instructions.

Therefore, in the presence of an error somewhere in the
core, the dispatch and LSU dataflow logic still operate
correctly in order to complete a CI load and advance the
checkpoint. Thus, errors in this logic while a CI load is in
progress escalate to a processor checkstop (with unique
FIR bits to identify this window).

The mechanism of requiring CI loads to checkpoint
after an error is detected reduces the recoverability of soft
errors in the dispatch and LSU dataflow logic by
approximately 2%, as it is expected that CI loads will be
outstanding approximately 2% of the time. It still allows
full SRAM soft-error recovery.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

STCX

Store conditional doubleword indexed (stdcx) and store
conditional word indexed (stwcx) instructions are
collectively referred to as STCX. Along with the load and
reserve instructions, STCX is used to perform atomic
update operations. STCX is similar to CI load in that it
modifies coherent memory prior to being checkpointed
using the same approach as for CI load. The only
difference is that STCX is held in execution until
completion, so it does not need to be redispatched when
the data for the condition register (CR) and the fixed-
point exception register (XER) is available.

STCX is the only instruction in a dispatch group for a
thread. The LSU informs the RU when a STCX is
executing on a per-thread basis. If an error is detected
while a STCX is in progress for a thread, the checkpoint
for that thread must be allowed to advance to the point
that includes the STCX.

Therefore, in the presence of an error somewhere in the
core, the logic that is updated by the STCX must still
operate correctly in order to complete the instruction and
advance the checkpoint. Thus, errors in this logic while a
STCX is in progress must escalate to a processor
checkstop.

Also, similar to CI loads, if the L2 detects a normally
recoverable interface error on a STCX and squashes the
STCX, it indicates to the core that the instruction was
canceled. This is to prevent the core from hanging while it
waits for an attempted recovery to complete.

SYNC (HWSync), PTESync, and TLBIE
(TLBI-Remote)

The hardware barrier/TLB invalidate entry and heavy-
weight barrier (HWBarrier) instructions use a
barrier_done flag to ensure that only a single
HWBarrier is outstanding to the storage interface. These
operations must be completed, i.e., the barrier_done
pulsed back to the core before the IRR can proceed.

HWBarrier instructions are always the only
instructions in a dispatch group for a thread. The LSU
does not send a barrier operation to the memory
subsystem until the RU advances the GTag past the
instruction, i.e., it is checkpointed. If an error is detected
while an HWBarrier is in progress (released to storage)
for a thread, IRR cannot proceed until barrier_done is
received.

Thus, in the presence of an error somewhere in the
processor core, the barrier_done logic must still operate
correctly in order to complete the HWBarrier. Thus,
errors in this logic must escalate to a processor checkstop.

Cache and memory uncorrectable errors

UEs may originate from memory, the cache hierarchy, or
interface failures. The IBM Power Architecture includes a

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

synchronous UE machine-check interrupt function. The
processor hardware is responsible for trapping the failing
storage address for the hypervisor machine-check
handler, and the hypervisor is responsible for containing
the damage to the affected workload and utilizing
available OS recovery. For instruction fetch UEs, the
hardware traps the effective address in the machine status
save and restore register 0 (SRRO0) and the reason in the
machine status save and restore register 1 (SRR1). For
data fetches, the hardware holds the effective address in
the data address register (DAR) and the reason in the
data storage interrupt status register (DSISR).

UEs are often quite damaging because of the
limitations of the machine-check handler, depending on
the address affected. Some transient UEs from the cache
hierarchy have been observed in POWER processor-
based systems, which suggests a failure mode in the
memory subsystem, where a transient event affects
persistent state, causing multiple UEs from main
memory. This experience warranted an investment in
improved UE handling.

For L2 UEs, the objective is to allow the L2 purge and
delete (implemented in hardware) to eliminate UEs in
unmodified data. The processor goes through normal
IRR on the first occurrence of a UE on the chance that it
will be removed with the purge and delete. While the
processor is in IRR, the L2 purges the line containing the
UE and deletes the line. Unmodified data is simply
invalidated, and modified data will cause a special UE
(SUE) to be cast out to memory. If the UE was in
unchanged data, it should disappear altogether, and if the
UE was in modified data, it will return (as a SUE) when
refetched from memory after IRR, and the processor will
take a machine-check interrupt.

In order to avoid the latency for inline ECC correction,
the processor nest interface implements a level of retry
below IRR. Non-safe mode implies that inline ECC
correction is bypassed, while safe mode implies that inline
ECC correction is enabled and UEs will be stamped as
SUEs to the processor. When a UE is encountered in
non-safe mode, the load instruction is rejected by the
LSU and the data is re-sent in safe mode by the L2 cache.
The instruction will be rejected by the LSU until the data
arrives without error from the L2 after passing through
inline ECC correction. If the data still contains a UE after
ECC correction, IRR is entered to correct the error.

SLB

Because of the size of the SLB, it is prohibitively
expensive in terms of area and power to maintain a
separate SLB checkpoint. Therefore, SLB entries are
backed up in a shadow memory buffer that the OS can
use to restore the SLB contents, if required.

M. J. MACK ET AL.

770

The SLB is preserved (not reset) during IRR, but some
error conditions may compromise its integrity. These
include parity or multihit errors and update windows in
which the SLB was updated but the instruction that
caused the update did not reach the checkpoint before an
unrelated error was detected. The integrity of the SLB is
indicated to the hypervisor via the HMI or HMER, or via
a machine check, and the hypervisor notifies the OS to
restore the SLB. A hardware failure in the SLB will
normally cause a parity error, but it could also cause a
multihit error. A software bug that causes duplicate
entries will cause a multihit error, but because a multihit
error ORs the data from the multiple entries, it may or
may not also indicate a parity error. An SLB update
window error is due to an unrelated error, not specific to
the SLB, that hit at a bad time. In general, it is assumed
that a multihit error is a software bug, and a parity error
without a multihit error is a hardware failure. Update
window errors, i.e., errors that occur in the processor
while an SLB entry is being updated, are due to hardware
failures outside the SLB.

As SLB restoration or recovery is not guaranteed
(particularly for software bugs), information is provided
to the hypervisor about the cause of the SLB corruption
so that it can isolate it to a single thread. The SLB does
not get reset by hardware during recovery, even when it is
corrupted.

The first step is to detect and report the three possible
conditions for each thread: parity errors, multihit errors,
and update window errors. The LSU reports parity and
multihit errors, and the RU reports update window errors
for each thread. Because the hypervisor could encounter
SLB parity errors during a save and restore operation,
which is a window not enabled for HMI, a machine check
is required to break the program flow and circumvent the
error. Since this specific case of a parity error requires a
machine check, a machine-check interrupt is used to
report all parity and multihit errors (all SLB errors
detected by the LSU). The RU-detected window error
does not persist (like a parity error), so it will not prevent
the hypervisor from making forward progress after
recovery; thus, an HMI is adequate to support them.

Noncheckpointed SPRs
Noncheckpointed SPRs have a window similar to the
SLB-modified window in which an SPR is modified, but
the mtspr instruction did not checkpoint because of an
error condition or a minirefresh trigger. The hardware
will detect the SPR-modified window and report it to host
firmware via HMI very similarly to how the SLB-
modified window is detected. The SPR-modified
condition is indicated in the HMER.

The SPR-modified window is almost identical to the
SLB-modified window and requires no special handling

M. J. MACK ET AL.

for successful IRR, except to clear the SPR-modified bit
in the HMER. The process to handle errors that occur
during an SPR-modified window consists of the following
steps:

® mtspr instructions are not to be dispatched until the
RU write queue is empty, meaning the only active
instruction is the mtspr.

* Asynchronous machine checks are not blocked.

e HMI is blocked until the core is not in hypervisor
state or is not making forward progress after IRR in
hypervisor state, which guarantees that if the
hypervisor performed an mtspr, it will be retried
before taking the HMI.

* Asynchronous interrupts (non-HMI, non-machine
check) are blocked until forward progress is achieved
in the same hypervisor state as the one in which the
error was encountered. If the original error occurred
while in hypervisor mode, then waiting for the mtspr
to be reexecuted before taking the HMI will also wait
to take any other asynchronous interrupt (non-
machine check). If not in hypervisor mode at the time
of the error, the core will take the HMI but will block
other asynchronous interrupts until the mtspr is
reexecuted in nonhypervisor mode after the HMI.

This guarantees that if there is no asynchronous
machine check, then the mtspr will be reexecuted prior to
any further access to the SPR.

Because the mtspr executes by itself, there are no
synchronous machine-check conditions that could cause
the SPR-modified window to be hit. The exposure to
asynchronous machine-check conditions is also negligibly
small, though not impossible. Therefore, the machine-
check handler also checks for the SPR-modified bit in the
HMER. Because the machine-check handler checks for
the bit, the HMI interrupt handler is responsible to clear
the bit.

If an asynchronous machine check does occur during
the SPR-modified window, the hypervisor will checkstop
the processor. Assuming the machine check was
survivable in the first place, the machine-check handler
should indicate “hypervisor backed up” prior to the
checkstop, so that processor sparing may still be
attempted. A processor could also checkstop because of a
permanent fault that hits the SPR-modified window.

The registers affected by the SPR-modified window
control debug and performance-monitoring functions,
which are not preserved when a processor-sparing action
occurs. The performance monitor must be invalidated,
and the user notified to reinitialize the desired setup.
Typically, hardware debug controls are the same on every
processor, so they are not actually lost. The user of

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

software debug functions should be aware that processor
sparing occurred and that it is necessary to reinitialize the
debug environment.

Store errors

Storage is part of the processor checkpoint. The L1 cache
is store-through, so in general, storage is checkpointed
coherently outside the processor. However, for some
period of time, storage updates reside in buffers only in
the processor. Errors in the store buffers or on store
interfaces prevent the changed data from reaching the
coherent storage checkpoint. Because the store buffers
and interfaces make up a substantial number of circuits,
errors in this logic must be recoverable, or at least
contained as much as possible, to minimize damage to the
system.

The hardware must prevent storage errors from
affecting other processors, which means not allowing
storage errors to propagate to storage owned by other
processors. Any store-related error should prevent the
store from being written to the L2, so that the storage
corruption is confined to a dropped store. The bounds of
the storage corruption then depend on whether the store
was done by the hypervisor, the OS, or a user program. If
the store was done by a user program, the OS may be able
to recover from a software checkpoint. If the store was
done by the OS, the hypervisor may be able to contain the
damage to a single partition. If the store was done by the
hypervisor, it is likely that the entire system will have to
be checkstopped.

The hardware must detect when it has dropped a store
and differentiate whether it was a store by the partition or
by the hypervisor. The core includes the hypervisor state
bit with each store command, and the nest stores it
through the life of the request. The L2 cache implements
separate FIR bits for hypervisor and nonhypervisor state
stores dropped, for each core. (These FIR bits are
independent of address errors, data errors, and command
errors, so that the hypervisor or nonhypervisor versions
of all types are not needed.) The FIR that indicates the
error will always be on the same chip as the core that
issued the dropped store.

System-level firmware support
Functions such as event logging, setting thresholds,
Elastic Interface bit steering, L2 and L3 cache-line
deletes, and frequency and voltage adjustments or
thermal management require firmware help. Hardware
and host firmware are used for any functions that have
real-time requirements.

All successful soft-error recoveries by the POWERG6
core are logged. This includes capturing trace-array
information. (The trace array is frozen at the point of the

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

recovery. The trace is reenabled after the trace data has
been captured for a log.)

A recovery may appear successful to the hardware, but
it is possible that the core is not making progress from the
partition viewpoint (e.g., there may be a hardware defect
in the FPU that causes a recurring error). The firmware
may not be able to react quickly enough to keep up with
the recovery rate of the core. To cover this case, the
hypervisor tracks the rate of error recovery for each core.
If the rate of error recovery exceeds the threshold, the
hypervisor will checkstop the processor. This triggers the
alternate processor recovery flow for the system. Even
though the processor will have checkstopped when in
hypervisor mode, the hypervisor will recognize this as a
special case (a hypervisor-initiated checkstop) and will
not terminate the system. The normal flows for CPU
(central processing unit) sparing, and for policies that are
to be deployed when there is no spare, will be followed.

Hypervisor maintenance interrupt handling

Many of the conditions discussed earlier are reported to
the hypervisor via the HMER and an HMI. The
conditions may be individually masked (enabled) by the
HMER. The HMI is blocked when in hypervisor mode,
and external interrupts are disabled. Normally, host
firmware is responsible for polling the HMER conditions
when in this state, but some special cases have a mode-bit
enablement to escalate to machine check when the HMI is
blocked.

Processor checkstop handling

For processor checkstops, the hypervisor must log out
required fault-isolation information and analyze it to
determine whether CPU sparing is possible, i.e., whether
the checkpoint is intact, or whether the task and partition
running on the failed processor must be terminated.

CPU-sparing support
IRR is effective for transient (soft) errors, but not for
permanent (hard) errors, since a persistent error will
prevent the processor from making any forward progress.
Because the RU checkpoint pipeline lags the execution
pipeline, hard failures that prevent further execution of
instructions usually do not mean that the checkpoint is
corrupted. Thus, the checkpoint could be extracted and
restored on a different processor to continue executing
from the checkpoint. If a spare processor is available in
the configuration, then there is no loss of workload or
capacity. The checkpoint could also be restored on a
previously active processor to recover the workload,
although there would be a loss in overall system capacity,
which the hypervisor communicates to the OS.

In the event that the checkpoint is damaged because of
the error, then the workload cannot be recovered, and the

M. J. MACK ET AL.

771

772

hypervisor must attempt to contain the loss of the
processor to the partition that was running on it at the
time of the checkstop.

In order to restore the checkpoint on an alternate
processor, it must first be extracted from the defective
processor. It is then reestablished by using firmware on
the spare processor.

The integrity of the checkpoint is determined by
analyzing the error-reporting registers for the failed
processor core. If valid, the checkpoint is then loaded into
the spare processor, and instruction execution resumes
from the checkpoint. This process sequence is performed
by the host firmware, similar to a return from a machine
check. If the checkpoint integrity is compromised, then
sparing is aborted and the hypervisor will attempt to
contain the damage to the partition that was running at
the time.

Noncheckpointed facilities

Some SPRs are not included in the RU checkpoint and

are, instead, extracted by software or otherwise dealt with
by the hypervisor in preparation to resume the alternate
processor.

Performance monitor

The performance monitor is dramatically distorted after a
system-level recovery action, such as CPU sparing, so
there would be only very limited value in attempting to
restore the data values from the failed processor. Because
the overhead to provide logout capability is high, the
performance monitor facilities are invalidated instead and
are disabled on the spare processor. If performance
monitoring was active on the failed processor, a message
is posted that it was terminated and should be
reinitialized by the user.

Timing facility

The timing facility (TB register, decrementers, and
utilization registers) remains active during recovery, so it
is not checkpointed in the RU. The TB is synchronized
across all processors, so it does not need to be restored on
the spare. The decrementer and utilization registers are
accessible via a JTAG (IEEE Standard 1149.1) interface
and are transferred to the spare processor. The values
may have to be adjusted to account for the elapsed time,
which can be determined by logging the TB from the
failed processor (close to the decrementer and PURR and
SPURR values) and comparing it with the TB on the
spare processor at the time the timing facility registers are
to be restored.

SLB
The hypervisor must invalidate the SLB on the spare
processor with an SLB invalidate all instruction (s1bia)

M. J. MACK ET AL.

for both threads and restore the SLB contents from the
shadow bulffer, as is done for an SLB parity error or
asynchronous machine check with the SLB-modified bit
active in the HMER.

Error-reporting structure and FIRs

Each error detected is fed through a commonly used
error-report macro. If sufficient area or wiring is not
available to support individual error-report macros for
each specific error, then errors are grouped into classes.

The macro is configurable and contains, at a minimum,
a mask latch and a hold latch. The mask latch can be used
if an error checker is determined to be faulty itself,
especially in early hardware debug. A hold latch is used to
determine which error (or class of errors) caused a
recovery or checkstop event by scanning out of the
processor all error-report state latches. In the typical
configuration, the hold latch is a set-only latch and does
not directly drive the error-output signal of the macro.
There are several possible configurations with the macro,
but the minimal one is most commonly used.

In more complex arrangements, the hold latch can be
inline with the error-output signal if timing requirements
dictate such an arrangement. In this case, a keeper latch
can be used by one or more of these macro types to
provide the memory function usually provided by the
hold latch. If more than one error-report macro shares a
keeper, the error lines from each are ORed together such
that isolation is limited to the class of errors driven by the
multiple macros.

This structure is highly effective in debugging early
hardware failures, since generally only one error-report
macro will be active at a time during hardware validation.
In an operational system, however, there will be multiple
error-report hold latches active, as recovery may occur
multiple times in a healthy machine for several valid error
conditions.

The results of the error-report macros are collected
together into classes, ORed together, and sent to the
FIRs. The classes (e.g., dataflow error, register file
correctable error, register file uncorrectable error, and
functional) exist for each functional unit in the FIR
domain. Each FIR bit has an associated mask bit and
action bits that determine what should happen following
any occurrence of the associated error type. Allowed
actions are recovery (IRR), system checkstop, local
checkstop, HMI, or machine check. This allows errors in
a hardware validation environment and in a production
environment to be treated differently, or for a faulty error
class to be completely masked off. In the case of
checkstops, further FIR bits are prevented from being set,
since cascading errors may occur, and their recording
would confuse the isolation of the checkstop-causing
error.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

The processor core contains two FIRs, one for
instruction-side events and one for execution-side events.
The nest logic contains multiple FIRs, one for each
logical unit (e.g., the L2 quadrant, L3 directory slice,
external bus controller, fabric bus interfaces, and memory
controller). The FIR bits are cleared in the process of
IRR.

Because a single error may cause multiple cascading
errors, two who’s-on-first (WOF) registers are provided to
capture the source of the first error detected in the
processor. Once any error occurs and is recorded in the
WOF, all subsequent errors are blocked from setting bits
in the WOF. Which WOF is selected toggles when a FIR
reset occurs, making available the two most recent
sources of IRR.

Concluding remarks

The POWERG6 processor design includes robust error
checking and facilities for IRR that cover most errors
that can occur. This functionality is accomplished
through checkpointing the execution flow, along with
other mechanisms used for special cases and the L1, L2,
and memory storage structures. The POWERG6 processor
design also provides the capability to transfer the working
state of a processor core to another spare core in the
system, when the original core is deemed to have a
persistent error condition. A reduced mode of IRR,
minirefresh, can be used to increase the performance of
certain types of operation and is also used in early
hardware debug workarounds.

Using virtual storage keys to improve OS reliability is
just one application of the virtual page class key
protection function. There are many more, such as
sharing privileged data with an application. Even a
malicious application would not be able to break the
protection, since it does not have access to the AMR. The
hypervisor may use the facility to enable controlled
sharing of data among multiple partitions (especially a
partition and a program providing services to the
partition). More applications of virtual storage keys are
planned to be developed over time.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of SPARC
International, Inc., in the United States, other countries, or both.

References

1. Power.org, Power ISA™ Version 2.04; see http://
www.power.org/resources|downloads|/PowerISA_203. Public.pdf.
2. J. F. Ziegler, H. W. Curtis, H. P. Mubhlfeld, C. J. Montrose, B.
Chin, M. Nicewicz, C. A. Russell, et al., “IBM Experiments in
Soft Fails in Computer Electronics (1978-1994),” IBM J.
Res. & Dev. 40, No. 1, 3—18 (1996).

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

3. H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K.
Morita, T. Muta, et al., “A 1.3-GHz Fifth-Generation
SPARC64 Microprocessor,” IEEE J. Solid-State Circuits 38,
No. 11, 1896-1905 (2003).

4. M. Mueller, L. C. Alves, W. Fischer, M. L. Fair, and I. Modi,
“RAS Strategy for IBM S/390 G5 and G6,” IBM J. Res. & Dev.
43, No. 5/6, 875-888 (1999).

5. D. C. Bossen, A. Kitamorn, K. F. Reick, and M. S. Floyd,
“Fault-Tolerant Design of the IBM pSeries 690 System Using
POWERA4 Processor Technology,” IBM J. Res. & Dev. 46, No.
1, 77-86 (2002).

Received January 17, 2007, accepted for publication
May 30, 2007; Internet publication October 23, 2007

M. J. MACK ET AL.

773

774

Michael J. Mack IBM Systems and Technology Group,

11400 Burnet Road, Austin, Texas 78758 (mjmack@us.ibm.com).
Mr. Mack is a Senior Engineering Manager in processor
development. He received a B.S. degree in computer engineering,
summa cum laude, from Syracuse University. He joined IBM at the
MIT Laboratory for Computer Science, developing hardware for
parallel-processing research. He has worked on processor designs
for System/370*, AS/400* and RS/6000* machines as well as on
various system-on-chip designs for external customers and IBM
standard products. Mr. Mack joined IBM Austin to work on the
POWERG processor project as the recovery unit lead and later as
the core pervasives unit lead.

Wolfram M. Sauer IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (wsauer@us.ibm.com).
Mr. Sauer is a Senior Technical Staff Member in the processor
development area. He received a diploma degree (“Diplom-
Informatiker™) in computer science from the University of
Dortmund, Germany, in 1984. He subsequently joined IBM at the
development laboratory in Boeblingen, Germany, and worked on
the S/370* (later S/390* and zSeries) processor design, microcode,
and tools. He joined IBM Austin in 2002 to work on the POWERG6
processor project.

Scott B. Swaney IBM Systems and Technology Group,

2455 South Road, Poughkeepsie, New York 12601
(sswaney@us.ibm.com). Mr. Swaney received a B.S. degree in
electrical engineering from Pennsylvania State University. He
joined IBM in the Enterprise Systems Division as a VLSI (very-
large-scale integration) design engineer. He is currently a Senior
Technical Staff Member working on hardware and system design
for the IBM eServer®. Mr. Swaney specializes in design for high
availability in microprocessors and holds multiple patents related
to processor recovery.

Bruce G. Mealey [BM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (mealey@us.ibm.com).
Mr. Mealey is a Senior Technical Staff Member in the OS
development area. He received a B.S. degree in electrical
engineering from the University of Texas. He joined the IBM
Development Laboratory and has worked on system performance,
system bring-up, and OS development. Mr. Mealey is currently
working on OS reliability, serviceability, and availability.

M. J. MACK ET AL.

IBM J. RES. & DEV. VOL. 51

NO. 6 NOVEMBER 2007

