IBM POWERG6 partition
mobility: Moving virtual
servers seamlessly between
physical systems

This paper presents the IBM Power Architecture™ extension for
enhanced virtualization that is first implemented in the POWERG™
processor. Virtual partition memory enables all of the memory of a
virtual server running in a logical partition to be made virtual by
the POWER Hypervisor™ firmware. The Processor Compatibility
register allows backward compatibility by providing a mode in
which a POWERG processor behaves like a POWERS™ processor.
Enhancements to the timebase facility enable updates to the virtual
timebase of a logical partition while maintaining consistency with

1

W. J. Armstrong
R. L. Arndt

T. R. Marchini
N. Nayar

W. M. Sauer

other partitions in the system. These fundamental enhancements
are explained and their role in implementing the new partition
mobility function is described. Partition mobility allows the
seamless migration of virtual servers from one physical POWERG

microprocessor-based system to another.

Introduction

Partition mobility makes it possible to move running
partitions from one physical server to another. This
provides considerable systems management flexibility and
improved availability. Applications no longer have to be
shut down to move them from one server to another. This
is useful in several ways:

* Planned outages for hardware and firmware
maintenance and upgrades can be avoided by
moving the running partitions to an adequately
configured alternate server during the maintenance
or upgrade.

e Workloads running on servers that are indicating a
predictive failure can be moved to other servers so
repairs can be made. This avoids a scheduled outage
and a potential unscheduled one.

e Workloads on several small, underutilized servers can
be consolidated onto a single large server without an
application outage.

* Workloads can be moved from server to server in
order to optimize server utilization and workload
performance within a data center—all while the
applications are running.

These are just some examples of capabilities enabled by
partition mobility. IBM POWERG6* processor partition
mobility distinguishes itself from competitive products by
supporting mobility between heterogeneous POWERG6
processor-based systems. In part, this is accomplished by
allowing the operating system (OS) and firmware to
cooperate with partition mobility. Additionally, the
ability to make partitions more virtualized, and therefore
more mobile, is enabled by several architectural
enhancements in the POWERG6 processor. Among these
enhancements are virtual partition memory (VPM), the
Processor Compatibility register (PCR), and new
POWERG6 processor timebase adjustment facilities. VPM
allows the IBM POWER Hypervisor* firmware to
relocate the real memory of a partition underneath an
active OS by optionally adding a level of indirection in
the translation process and intercepting page fault
exceptions. Running under VPM, the partition memory
state can be copied from the source to the destination
platform, and the hypervisor monitors any changed pages
on the source platform. The partition can then be
momentarily stopped while the processor state is
transferred and processing restarts on the destination
platform. After processing starts on the destination
platform, any changed pages are copied over, with
priority given to changed pages that are required to

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

W. J. ARMSTRONG ET AL.

757

758

128 MB real memory

LMB |LMB|LMB|LMB|LMB|LMB|LMB|LMB| Partition view

Physical memory

Hypervisor-controlled resources

(2)

128 MB real memory (VRMA)

LMB |LMB|LMB |LMB|LMB|LMB |LMB |LMB| Partition view

Hypervisor-controlled resources

(®)

RMA memory allocation (a) without VPM and (b) with VPM
(VRMA).

satisfy processing accesses. This forgoing sequence is
standard in the industry; however, unlike other solutions,
POWERG firmware notifies the OS just prior to halting
processing and after restarting in order to allow it to
gracefully prepare and notify location-sensitive programs
of the change in physical location [1]. The PCR facility
allows IBM POWER™ processors to operate in a
backward-compatible mode, increasing the potential
targets for partition mobility. The POWERG6 processor
timebase adjustment facilities ensure that the OS view of
the processor time never goes backward during a move
from one platform to another.

Virtual partition memory

Logical real memory

Power virtualization provides for complete isolation of
the logical partitions running in the system. This includes
the partition memory, because it is essential that no
partition can read or write the memory of another
partition, so the POWER Hypervisor firmware needs
complete control over all of the partition-accessible
memory. Thus, the POWER4* and POWERS5* processors
provide the facilities to enable the hypervisor to control
the real system partition-accessible memory [2, 3]. These

W. J. ARMSTRONG ET AL.

facilities have been designed to not only maintain
hypervisor control, but also minimize the performance
impact on the program running in the partition.

A logical partition sees its memory as logically
contiguous address space of 0 through N. The low
portion of the logical address space, called the real mode
area (RMA), is addressable by the partition when address
translation is disabled in the machine state register. The
remaining memory must be addressed through the virtual
address translation mechanism provided for in the IBM
Power Architecture* technology.

The hypervisor allocates memory to the partitions in
units called logical memory blocks (LMBs). Each LMB is
a physically contiguous area of memory, and all LMBs in
a system have the same size (e.g., the LMB size in a
POWERG6 processor-based system is 16 MB). LMB size
can be changed with a system reboot. Prior to the
POWERG6 processor, the LMBs assigned to the RMA had
to be physically contiguous. The RMA for the partition is
defined by a real start address (defined in the real-mode
offset register [RMOR]) and a length (defined in the
RMLS field of the Logical Partition Control register
[LPCR]). The hypervisor has to supply a sufficiently large
contiguous block of real storage to satisfy the OS real
memory requirements (e.g., 128 MB), as shown in
Figure 1(a). The non-RMA of the partition logical real
address space can be populated by any set of LMBs in the
system (they do not have to be contiguous, as do the
RMA LMBs).

Although the existing mechanisms provided the
necessary control and optimized performance, they
lacked the capability for the hypervisor to make the
memory of a partition virtual at a fine granularity. One of
the reasons that fine-grain control is required is to track
changed pages for partition mobility. For example, there
is no mechanism for the hypervisor to track stores to
RMA pages when address translation is disabled. VPM
provides the capability without compromising the
partitioning integrity of the system and without an
additional layer of translation in the processor.

VPM architecture

VPM allows the hypervisor to track changes made to
memory pages by a partition that is being moved from
one physical server to another. Because the partition
continues to run while it is being moved, it may make
changes to memory pages after the hypervisor has sent
the earlier copy of memory to the destination server. By
tracking changed pages during partition movement, the
hypervisor knows which partition pages must be re-sent
to the destination. The idea is to treat partition memory
like virtual memory at the hypervisor level. This could
have been done by requiring a second level of address
translation for all partition memory accesses, an

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

approach that has been applied successfully on IBM
zSeries™ servers for decades. IBM pSeries* virtualization
previously kept a single level of address translation by
maintaining the partition page table in the hypervisor,
which reduces complexity and improves performance.
VPM was required to keep address translation to a single
level but still provide the control to the hypervisor for
virtualization functions, such as partition mobility.

The VPM architecture adds support for translating
RMA addresses through the page table of the partition.
The following architecture facilities had to be defined in
order to make this approach work:

e Three bits in the LPCR control the VPM mode.

* One bit controls VPM mode for memory
accesses with partition address translation
disabled (VPMy).

e A second bit controls VPM mode for memory
accesses with partition address translation
enabled (VPM,).

e The ISL mode bit forces all virtual accesses to be
treated by hardware as if they were accesses to
4-KB pages. (ISL refers to the ignore SLB large-
page specification, and SLB refers to segment
look-aside buffer.)

* Define and reserve a special virtual segment 1D
(VSID) to be used for partition real address
translation. The VSID is normally obtained by
searching the SLB, when address translation is
enabled. There are no SLB entries for partition real
address translation.

e The VRMASD field in the LPCR defines the page size
to be used for the translation of partition real mode
addresses. This information is also provided by the
SLB entry for virtual memory accesses.

e New interrupts are defined to enter the hypervisor
page fault handler if a partition real memory access
misses in the page table.

¢ Along with the interrupts, new special-purpose
registers were defined to assist the hypervisor in
handling the interrupts.

The above mechanisms allow the hypervisor to allocate
noncontiguous LMBs for the partition RMA. With VPM
support, memory is allocated for the RMA in the same
manner as it is for the non-RMA. The term VRMA
(virtual real mode area) is used to describe the RMA
where the address translation for storage accesses occurs
through the page table. Figure 1(b) shows the allocation
of LMBs for a partition with a VRMA.

Since both the VRMA accesses and the non-VRMA
accesses are translated through the partition page table,
the VPM architecture also allows the hypervisor to take

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

full control of the mapping of logical memory to physical
memory for a partition. On previous systems, the page
table for a partition was a hypervisor resource, but
interrupts alerting the control program to a missing entry
in the page table (page fault) were always directed to the
OS running in the partition. The OS would then call a
hypervisor service to install an entry in the page table.
Thus, the hypervisor decided which physical memory
page was mapped to the virtual page and guaranteed
partition isolation. In a VPM environment, the page table
is still owned by the hypervisor. However, if VPM| is set,
all page faults trigger new hypervisor interrupts instead of
interrupts for the OS. The hypervisor can react in
different ways depending on the status of the page causing
the exception:

e [f the page is not installed in the page table by the OS
running in the partition, it will forward the interrupt
to the OS. This action is transparent to the OS, which
sees a normal page fault and engages its virtual
memory manager to resolve the situation.

e If the page is marked as read only by the hypervisor
for the purposes of tracking stores to partition
memory, the hypervisor will record that a store is
about to occur, change the protection on the page to
allow a store, and return control to the interrupted
instruction. Since address translation for both RMA
and non-RMA accesses occurs through the page
table, stores to all of the partition memory can be
tracked by the hypervisor.

Processor Compatibility register

The PCR controls which level of architecture is visible
and can be exploited by an application program (running
in problem state). Because this is a new facility, there are
currently only two levels of architecture from which to
choose: POWERG and POWERS5. With the POWERG6
architecture, all new architecture facilities and
instructions are available. With POWERS (architecture
version 2.04 [4]), the following new instructions and
facilities are not available: the vector facility and all of the
instructions associated with it, the decimal floating-point
facility and all instructions associated with it, cmpb,
fcpsgn, 1fdp, 1fdpx, stfdp, stfdpx, 1fiwax, prtyd,
prtyw, the W field in the mtfsfi instruction, and the

L and W fields in the mtfsf instruction.

POWER processor-based servers are generally
backward compatible, which means programs running on
a previous-generation server will still run on the next
generation. Performance characteristics may change
between designs to some degree, but the semantics of an
existing program do not. The next generation of servers
does not take away existing instructions or facilities or

W. J. ARMSTRONG ET AL.

759

760

modify the semantics of instructions and facilities in an
incompatible way. A new generation of servers typically
adds to the instruction set and architecture facilities to
improve performance or enable new function; these new
instructions and facilities can then be exploited by
recompiling programs or by upgrading to newer versions
of programs that support the new functions.

The PCR provides a means of forward compatibility:
The POWERS processor-based server is compatible with
the POWERG6 processor-based server running in
POWERS processor mode. When performing software
testing, it is important to have an environment in a
POWERS processor partition on a POWERG6 processor-
based server that behaves exactly like a POWERS
processor-based server for application programs (more
precisely, in a problem state).

The PCR mechanism enables backward migration. For
example, a future processor could implement a POWERG6
processor mode using the PCR mechanism. In the
POWERG6 processor mode, a future processor would
disable all of the newer facilities. Thus, a partition could
migrate back to a POWERG6 processor-based server
without incurring errors that might result because the new
facilities are not available on a POWERG processor-based
server.

Timebase

The timebase is the main source of time information on a
POWER processor. At the time of platform initialization,
the timebase of each platform processor is set to the same
value, which then increments synchronously for all
processors so that an OS detects time advancing
identically on each processor. The OS then adds a fixed
offset, which is computed when it does a time-set
operation, to the timebase value to compute the wall
clock time. To prevent requiring a time-set operation
when migrating a partition from one system to another,
the timebase for that partition must be set by the
hypervisor on the destination machine to match the value
on the source machine, even though the timebase value
on the destination system will not have any correlation to
the timebase value on the source system. The partition
must not observe time to go backward in this case but
may see it move forward only by the amount of time that
elapsed during the migration. The rate of change of the
timebase must be the same on the source and destination
systems. If either of these two conditions is not satisfied,
the timing facilities of the partition will encounter errors
on the destination system. It is a requirement of the
Power Architecture technology that fine-grained
synchronization with other processors in the system must
also be maintained. This means low-order bits of the
timebase on all of the processors within a system must be
close and not set arbitrarily. The following are

W. J. ARMSTRONG ET AL.

architectural enhancements that allow the partition to
observe a consistent view of its timing facilities after
migration:

e Bits 0:59 of the timebase register are incremented at a
rate of once per every 31.25 ns. The processor
architecture requires that the rate of timebase
incrementing on all server processors be 512 MHz.

e TBU40 (timebase update facility) is a new special-
purpose register that allows access to the upper 40 bits
of the timebase. The hypervisor can set up the upper
40 bits of the timebase for a partition without
disturbing fine-grained synchronization based on the
low-order 24 bits.

Partition mobility

This section describes the use of the VPM architecture
and the TBU40 facility to implement partition mobility.
VPM is used to migrate the main store of a partition. The
TBUA40 facility is used to present consistent timing
facilities to the partition when it resumes execution on the
destination system.

Page sizes

Besides the 4-KB page size, the POWERG6 processor
supports large page sizes of 64 KB and 16 MB and a huge
page size of 16 GB. The large and huge page sizes present
a challenge for tracking “dirty” pages for migration.
(“Dirty” pages are those that must be re-sent to the
destination system, as explained later.) Partitions that are
assigned 16-GB pages are ineligible for migration. The
mechanism used to track stores to large pages is explained
in the following section.

Main store migration

Figure 2 illustrates main store migration. Prior to moving
a partition, the source system hypervisor places the
virtual processors of the partition in VPM mode. It does
this invisibly to the OS and applications. As part of the
switch to VPM mode, the hypervisor starts using two
page tables. The first is the “normal” hashed page table
that is visible to the partition. This table is called the
virtual page table (VPT). The hypervisor makes the
second hashed page table, the physical page table (PPT),
visible to the processor. The hypervisor uses the PPT to
track stores to the partition memory based on a 4-KB
page size.

The partition may use large pages. The hypervisor
keeps track of stores to large pages on a 4-KB page size
basis by breaking the large page down into constituent
4-KB pages and installing page table entries for only
4-KB page sizes in the PPT. Since the processor searches
the PPT based on the page size in the SLB entry (SLBE),

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

a mechanism is required to ignore the large-page
indicator in the SLBE. This mechanism is the ISL bit in
the LPCR, described in the list of architecture facilities in
the section “VPM architecture,” earlier in this paper. As
part of the switch to VPM mode, the hypervisor also
switches the processor into a mode in which it ignores the
large-page indicator in an SLBE.

The hypervisor keeps track of the pages that need to be
migrated in a dirty page table. All pages of the partition
are marked as dirty at the start of the migration. Pages
that have been sent are set to an effective state of read only
in the PPT and marked clean. Whenever the partition
attempts to write to one of the clean pages, it is intercepted
by the hypervisor by means of a VPM interrupt. The
hypervisor reverts that page to the dirty state. The
hypervisor then makes the page writable again and returns
control to the partition at the point of interruption.

The process of sending or resending pages to the
destination hypervisor continues until there is sufficient
partition memory state on the destination hypervisor so
that the processing of the partition can be transferred to
processors on the destination server and resume its
operation there. The source hypervisor suspends the
partition and transfers its internal processor and other
necessary state to the destination hypervisor. The source
hypervisor also sends the dirty page table to the
destination hypervisor. The destination hypervisor
receives the dirty page table and uses it to set the state of
all dirty pages to an “invalid” access state. The partition
is then resumed on the destination hypervisor. The source
hypervisor continues sending the remaining partition
page frames to the destination hypervisor, which marks
them as clean upon their successful arrival.

The destination hypervisor resumes the partition with
the virtual processors of the partition in VPM mode. After
the partition is resumed, any attempt by the partition to
access a page whose state is invalid causes a VPM
interrupt, which is handled by the hypervisor. The
destination hypervisor blocks the virtual processor and
then makes a high-priority “demand paging” request to
the source hypervisor for that page. The requested page is
sent ahead of other pages that are waiting to be
transferred to the destination hypervisor. When the
requested page arrives, the hypervisor marks the page as
“valid” and resumes the virtual processor at the point of
interruption. This process continues transparently to the
partition until all remaining partition pages have been
transferred from the source to the destination. Once all
pages are resident on the destination server, the
destination hypervisor takes the virtual processors of the
partition out of VPM mode.

During the period of time that the partition is in VPM
mode for movement, other storage access interrupts may
occur. The source or the destination hypervisor uses the

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

POWERG source server POWERG destination server

Partition running here
Partition memory Before migration

started

Container created
Partition memory

Partition running here

o Copy
Partition memory

page

LT =]
LTI

Partition running here
Partition memory

Container is being filled
Partition memory

Time

N/
Running program stored
into these pages

Only container left Take
Partition memory over

Partition running here
Partition memory

After migration
has finished

Partition running here
Partition memory

[0 = dirty = not sent

[0 = dirty = invalid

O = clean = valid

O =clean = sent

Partition mobility: main store migration.

VPT to analyze an interrupt and passes control to the OS
interrupt handler if the interrupt is not associated with
partition movement.

Consistent timing facilities for a migrating partition
It is advisable to have the time of day synchronized
between the source and destination hypervisors through
the use of time reference partitions (TRPs). A TRP is
tagged as such by the system administrator. The hypervisor
synchronizes its time with the Universal Time Coordinated
(UTC) of the TRP. A TRP is expected to use the Network
Time Protocol (NTP) to maintain its UTC.

When the partition stops executing on the source
system, the hypervisor takes a snapshot of the time of day
of the hypervisor, the virtual time of day of the migrating
partition, and the value of the timebase register on the
source system. The values are sent to the destination
hypervisor. The destination hypervisor takes a snapshot

W. J. ARMSTRONG ET AL.

761

762

of its time of day when the partition is about to resume on
the destination system. Because the two hypervisors have
synchronized time, the difference between the snapshots
of the hypervisor time on the source system and that on
the destination system is the elapsed time when the
partition was not executing on the source or destination
system. The elapsed time is used to compute the virtual
time-of-day and timebase value offset for the migrating
partition. The timebase offset value is placed in the
partition TBU40 register whenever a virtual processor of
the partition is dispatched to provide a consistent view of
its virtual timebase value.

Concluding remarks

POWER processor virtualization is enhanced on
POWERG6 processor-based systems by a set of substantial
improvements. Virtualization of memory and timing
facilities provides complete partition virtualization when
used with virtual I/O and frees the partition from any
specific server. The PCR provides additional application
compatibility between processor families. This enhanced
virtualization, mobility, and portability provide
numerous virtual server management advantages and
improvements to physical resource utilization for users of
POWERG6 processor-based systems.

Acknowledgments

Many people were involved in the conception, definition,
and implementation of the POWERG®6 virtualization
improvements. The authors specifically thank the Power
Architecture team, Cathy May, Ed Silha, Giles Frazier,
and Brad Frey, for their roles in defining the basic
mechanisms and transforming them into concise
architecture documents.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

References

1. Power.org, “Power Architecture™ Platform Requirements”; see
http:|lwww.power.org/members|developers/specs/PAPR
(registration required).

2. W.J. Armstrong, R. L. Arndt, D. C. Boutcher, R. G. Kovacs,
D. Larson, K. A. Lucke, N. Nayar, and R. C. Swanberg,
“Advanced Virtualization Capabilities of POWERS Systems,”
IBM J. Res. & Dev. 49, No. 4/5, 523-531 (2005).

3. IBM Corporation, “Logical Partition Security in the IBM
eServer pSeries 690,” white paper; see http://www.ibm.com/
serversfeserver|pseries/hardware/whitepapers|/lpar_security.html.

4. Power.org, “Power ISA™ Version 2.04”; see http://
www.power.org[resources/downloads/PowerlISA_203. Public.pdf.

™

Received January 9, 2007; accepted for publication
February 6, 2007; Internet publication October 12, 2007

W. J. ARMSTRONG ET AL.

William J. Armstrong 1BM Systems and Technology Group,
3605 Highway 52 N., Rochester, Minnesota 55901
(billarm@us.ibm.com). Mr. Armstrong is an IBM Distinguished
Engineer. He received a B.S. degree in computer engineering from
the University of Notre Dame and an M.S. degree in computer
engineering from Iowa State University. He is the Lead Architect
for the POWER Hypervisor firmware. He has worked for IBM
since 1988 on a variety of projects, focusing on kernel
development, systems performance, and logical partitioning and
virtualization of POWER platforms for the IBM pSeries and
iSeries™ systems. Mr. Armstrong holds numerous patents in the
areas of partitioning, virtualization, and kernel design.

Richard L. Arndt 1BM Systems and Technology Group,
11501 Burnet Road, Austin, Texas 78758 (rlarndt@us.ibm.com).
Mr. Arndt is a Senior Technical Staff Member and a RISC
Platform Architect. He received B.S. and M.S. degrees in electrical
engineering from the University of Wisconsin at Madison.

Mr. Arndt has worked with several industry groups to develop
standards for I/O and system firmware and architecture. He is
responsible for defining the architecture for IBM pSeries logical
partitioning (LPAR). Mr. Arndt holds numerous patents in the
area of LPAR and platform resource virtualization.

Timothy R. Marchini 1BM Systems and Technology Group,
2455 South Road, Poughkeepsie, NY 12601 (marchini@us.ibm.com).
Mr. Marchini is a Senior Technical Staff Member in the System
Design organization. He received a B.S. degree in electrical
engineering from Gannon University in 1978. He subsequently
joined IBM at the development lab in Poughkeepsie, New York,
and worked on virtualization and enhanced memory functions for
the IBM S/370* (later the S/390* and zSeries) processor design,
simulation, testing, and product engineering. He joined the System
Design organization in 2001. Mr. Marchini has held a number of
management and technical positions in server development.

Naresh Nayar [1BM Systems and Technology Group, 3605
Highway 52 N., Rochester, Minnesota 55901 (nayar@us.ibm.com).
Dr. Nayar is a Senior Technical Staff Member. He holds a B.Tech.
degree in electrical engineering from the Indian Institute of
Technology, New Delhi, India, and M.S. and Ph.D. degrees in
computer science from Iowa State University. He joined IBM in
1992 and has worked on many i5/0S™* kernel projects with focus on
synchronization primitives and task dispatching. His most recent
work has been in the area of LPAR for iSeries and pSeries systems.
Dr. Nayar holds numerous patents in the area of partitioning and
kernel design.

Wolfram M. Sauer IBM Systems and Technology Group,
11400 Burnet Road, Austin Texas 78758 (wsauer@us.ibm.com).
Mr. Sauer is a Senior Technical Staff Member in the processor
development area. He received a diploma degree (Diplom-
Informatiker) in computer science from the University of
Dortmund, Germany, in 1984. He subsequently joined IBM at the
development lab in Boeblingen, Germany, and worked on the
S/370 (later S/390 and zSeries) processor design, microcode, and
tools. He joined IBM Austin in 2002 to work on the POWERG6
processor project.

IBM J. RES. & DEV. VOL. 51 NO. 6 NOVEMBER 2007

