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This paper presents the IBM Power Architecturee extension for
enhanced virtualization that is first implemented in the POWER6e

processor. Virtual partition memory enables all of the memory of a
virtual server running in a logical partition to be made virtual by
the POWER Hypervisore firmware. The Processor Compatibility
register allows backward compatibility by providing a mode in
which a POWER6 processor behaves like a POWER5e processor.
Enhancements to the timebase facility enable updates to the virtual
timebase of a logical partition while maintaining consistency with
other partitions in the system. These fundamental enhancements
are explained and their role in implementing the new partition
mobility function is described. Partition mobility allows the
seamless migration of virtual servers from one physical POWER6
microprocessor-based system to another.

Introduction

Partition mobility makes it possible to move running

partitions from one physical server to another. This

provides considerable systems management flexibility and

improved availability. Applications no longer have to be

shut down to move them from one server to another. This

is useful in several ways:

� Planned outages for hardware and firmware

maintenance and upgrades can be avoided by

moving the running partitions to an adequately

configured alternate server during the maintenance

or upgrade.

� Workloads running on servers that are indicating a

predictive failure can be moved to other servers so

repairs can be made. This avoids a scheduled outage

and a potential unscheduled one.

� Workloads on several small, underutilized servers can

be consolidated onto a single large server without an

application outage.

� Workloads can be moved from server to server in

order to optimize server utilization and workload

performance within a data center—all while the

applications are running.

These are just some examples of capabilities enabled by

partition mobility. IBM POWER6* processor partition

mobility distinguishes itself from competitive products by

supporting mobility between heterogeneous POWER6

processor-based systems. In part, this is accomplished by

allowing the operating system (OS) and firmware to

cooperate with partition mobility. Additionally, the

ability to make partitions more virtualized, and therefore

more mobile, is enabled by several architectural

enhancements in the POWER6 processor. Among these

enhancements are virtual partition memory (VPM), the

Processor Compatibility register (PCR), and new

POWER6 processor timebase adjustment facilities. VPM

allows the IBM POWER Hypervisor* firmware to

relocate the real memory of a partition underneath an

active OS by optionally adding a level of indirection in

the translation process and intercepting page fault

exceptions. Running under VPM, the partition memory

state can be copied from the source to the destination

platform, and the hypervisor monitors any changed pages

on the source platform. The partition can then be

momentarily stopped while the processor state is

transferred and processing restarts on the destination

platform. After processing starts on the destination

platform, any changed pages are copied over, with

priority given to changed pages that are required to
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satisfy processing accesses. This forgoing sequence is

standard in the industry; however, unlike other solutions,

POWER6 firmware notifies the OS just prior to halting

processing and after restarting in order to allow it to

gracefully prepare and notify location-sensitive programs

of the change in physical location [1]. The PCR facility

allows IBM POWER* processors to operate in a

backward-compatible mode, increasing the potential

targets for partition mobility. The POWER6 processor

timebase adjustment facilities ensure that the OS view of

the processor time never goes backward during a move

from one platform to another.

Virtual partition memory

Logical real memory

Power virtualization provides for complete isolation of

the logical partitions running in the system. This includes

the partition memory, because it is essential that no

partition can read or write the memory of another

partition, so the POWER Hypervisor firmware needs

complete control over all of the partition-accessible

memory. Thus, the POWER4* and POWER5* processors

provide the facilities to enable the hypervisor to control

the real system partition-accessible memory [2, 3]. These

facilities have been designed to not only maintain

hypervisor control, but also minimize the performance

impact on the program running in the partition.

A logical partition sees its memory as logically

contiguous address space of 0 through N. The low

portion of the logical address space, called the real mode

area (RMA), is addressable by the partition when address

translation is disabled in the machine state register. The

remaining memory must be addressed through the virtual

address translation mechanism provided for in the IBM

Power Architecture* technology.

The hypervisor allocates memory to the partitions in

units called logical memory blocks (LMBs). Each LMB is

a physically contiguous area of memory, and all LMBs in

a system have the same size (e.g., the LMB size in a

POWER6 processor-based system is 16 MB). LMB size

can be changed with a system reboot. Prior to the

POWER6 processor, the LMBs assigned to the RMA had

to be physically contiguous. The RMA for the partition is

defined by a real start address (defined in the real-mode

offset register [RMOR]) and a length (defined in the

RMLS field of the Logical Partition Control register

[LPCR]). The hypervisor has to supply a sufficiently large

contiguous block of real storage to satisfy the OS real

memory requirements (e.g., 128 MB), as shown in

Figure 1(a). The non-RMA of the partition logical real

address space can be populated by any set of LMBs in the

system (they do not have to be contiguous, as do the

RMA LMBs).

Although the existing mechanisms provided the

necessary control and optimized performance, they

lacked the capability for the hypervisor to make the

memory of a partition virtual at a fine granularity. One of

the reasons that fine-grain control is required is to track

changed pages for partition mobility. For example, there

is no mechanism for the hypervisor to track stores to

RMA pages when address translation is disabled. VPM

provides the capability without compromising the

partitioning integrity of the system and without an

additional layer of translation in the processor.

VPM architecture

VPM allows the hypervisor to track changes made to

memory pages by a partition that is being moved from

one physical server to another. Because the partition

continues to run while it is being moved, it may make

changes to memory pages after the hypervisor has sent

the earlier copy of memory to the destination server. By

tracking changed pages during partition movement, the

hypervisor knows which partition pages must be re-sent

to the destination. The idea is to treat partition memory

like virtual memory at the hypervisor level. This could

have been done by requiring a second level of address

translation for all partition memory accesses, an

Figure 1

RMA memory allocation (a) without VPM and (b) with VPM 
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approach that has been applied successfully on IBM

zSeries* servers for decades. IBM pSeries* virtualization

previously kept a single level of address translation by

maintaining the partition page table in the hypervisor,

which reduces complexity and improves performance.

VPM was required to keep address translation to a single

level but still provide the control to the hypervisor for

virtualization functions, such as partition mobility.

The VPM architecture adds support for translating

RMA addresses through the page table of the partition.

The following architecture facilities had to be defined in

order to make this approach work:

� Three bits in the LPCR control the VPM mode.
� One bit controls VPM mode for memory

accesses with partition address translation

disabled (VPM0).
� A second bit controls VPM mode for memory

accesses with partition address translation

enabled (VPM1).
� The ISL mode bit forces all virtual accesses to be

treated by hardware as if they were accesses to

4-KB pages. (ISL refers to the ignore SLB large-

page specification, and SLB refers to segment

look-aside buffer.)
� Define and reserve a special virtual segment ID

(VSID) to be used for partition real address

translation. The VSID is normally obtained by

searching the SLB, when address translation is

enabled. There are no SLB entries for partition real

address translation.
� The VRMASD field in the LPCR defines the page size

to be used for the translation of partition real mode

addresses. This information is also provided by the

SLB entry for virtual memory accesses.
� New interrupts are defined to enter the hypervisor

page fault handler if a partition real memory access

misses in the page table.
� Along with the interrupts, new special-purpose

registers were defined to assist the hypervisor in

handling the interrupts.

The above mechanisms allow the hypervisor to allocate

noncontiguous LMBs for the partition RMA. With VPM

support, memory is allocated for the RMA in the same

manner as it is for the non-RMA. The term VRMA

(virtual real mode area) is used to describe the RMA

where the address translation for storage accesses occurs

through the page table. Figure 1(b) shows the allocation

of LMBs for a partition with a VRMA.

Since both the VRMA accesses and the non-VRMA

accesses are translated through the partition page table,

the VPM architecture also allows the hypervisor to take

full control of the mapping of logical memory to physical

memory for a partition. On previous systems, the page

table for a partition was a hypervisor resource, but

interrupts alerting the control program to a missing entry

in the page table (page fault) were always directed to the

OS running in the partition. The OS would then call a

hypervisor service to install an entry in the page table.

Thus, the hypervisor decided which physical memory

page was mapped to the virtual page and guaranteed

partition isolation. In a VPM environment, the page table

is still owned by the hypervisor. However, if VPM1 is set,

all page faults trigger new hypervisor interrupts instead of

interrupts for the OS. The hypervisor can react in

different ways depending on the status of the page causing

the exception:

� If the page is not installed in the page table by the OS

running in the partition, it will forward the interrupt

to the OS. This action is transparent to the OS, which

sees a normal page fault and engages its virtual

memory manager to resolve the situation.
� If the page is marked as read only by the hypervisor

for the purposes of tracking stores to partition

memory, the hypervisor will record that a store is

about to occur, change the protection on the page to

allow a store, and return control to the interrupted

instruction. Since address translation for both RMA

and non-RMA accesses occurs through the page

table, stores to all of the partition memory can be

tracked by the hypervisor.

Processor Compatibility register
The PCR controls which level of architecture is visible

and can be exploited by an application program (running

in problem state). Because this is a new facility, there are

currently only two levels of architecture from which to

choose: POWER6 and POWER5. With the POWER6

architecture, all new architecture facilities and

instructions are available. With POWER5 (architecture

version 2.04 [4]), the following new instructions and

facilities are not available: the vector facility and all of the

instructions associated with it, the decimal floating-point

facility and all instructions associated with it, cmpb,

fcpsgn, lfdp, lfdpx, stfdp, stfdpx, lfiwax, prtyd,

prtyw, the W field in the mtfsfi instruction, and the

L and W fields in the mtfsf instruction.

POWER processor-based servers are generally

backward compatible, which means programs running on

a previous-generation server will still run on the next

generation. Performance characteristics may change

between designs to some degree, but the semantics of an

existing program do not. The next generation of servers

does not take away existing instructions or facilities or
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modify the semantics of instructions and facilities in an

incompatible way. A new generation of servers typically

adds to the instruction set and architecture facilities to

improve performance or enable new function; these new

instructions and facilities can then be exploited by

recompiling programs or by upgrading to newer versions

of programs that support the new functions.

The PCR provides a means of forward compatibility:

The POWER5 processor-based server is compatible with

the POWER6 processor-based server running in

POWER5 processor mode. When performing software

testing, it is important to have an environment in a

POWER5 processor partition on a POWER6 processor-

based server that behaves exactly like a POWER5

processor-based server for application programs (more

precisely, in a problem state).

The PCR mechanism enables backward migration. For

example, a future processor could implement a POWER6

processor mode using the PCR mechanism. In the

POWER6 processor mode, a future processor would

disable all of the newer facilities. Thus, a partition could

migrate back to a POWER6 processor-based server

without incurring errors that might result because the new

facilities are not available on a POWER6 processor-based

server.

Timebase
The timebase is the main source of time information on a

POWER processor. At the time of platform initialization,

the timebase of each platform processor is set to the same

value, which then increments synchronously for all

processors so that an OS detects time advancing

identically on each processor. The OS then adds a fixed

offset, which is computed when it does a time-set

operation, to the timebase value to compute the wall

clock time. To prevent requiring a time-set operation

when migrating a partition from one system to another,

the timebase for that partition must be set by the

hypervisor on the destination machine to match the value

on the source machine, even though the timebase value

on the destination system will not have any correlation to

the timebase value on the source system. The partition

must not observe time to go backward in this case but

may see it move forward only by the amount of time that

elapsed during the migration. The rate of change of the

timebase must be the same on the source and destination

systems. If either of these two conditions is not satisfied,

the timing facilities of the partition will encounter errors

on the destination system. It is a requirement of the

Power Architecture technology that fine-grained

synchronization with other processors in the system must

also be maintained. This means low-order bits of the

timebase on all of the processors within a system must be

close and not set arbitrarily. The following are

architectural enhancements that allow the partition to

observe a consistent view of its timing facilities after

migration:

� Bits 0:59 of the timebase register are incremented at a

rate of once per every 31.25 ns. The processor

architecture requires that the rate of timebase

incrementing on all server processors be 512 MHz.
� TBU40 (timebase update facility) is a new special-

purpose register that allows access to the upper 40 bits

of the timebase. The hypervisor can set up the upper

40 bits of the timebase for a partition without

disturbing fine-grained synchronization based on the

low-order 24 bits.

Partition mobility

This section describes the use of the VPM architecture

and the TBU40 facility to implement partition mobility.

VPM is used to migrate the main store of a partition. The

TBU40 facility is used to present consistent timing

facilities to the partition when it resumes execution on the

destination system.

Page sizes

Besides the 4-KB page size, the POWER6 processor

supports large page sizes of 64 KB and 16 MB and a huge

page size of 16 GB. The large and huge page sizes present

a challenge for tracking ‘‘dirty’’ pages for migration.

(‘‘Dirty’’ pages are those that must be re-sent to the

destination system, as explained later.) Partitions that are

assigned 16-GB pages are ineligible for migration. The

mechanism used to track stores to large pages is explained

in the following section.

Main store migration

Figure 2 illustrates main store migration. Prior to moving

a partition, the source system hypervisor places the

virtual processors of the partition in VPM mode. It does

this invisibly to the OS and applications. As part of the

switch to VPM mode, the hypervisor starts using two

page tables. The first is the ‘‘normal’’ hashed page table

that is visible to the partition. This table is called the

virtual page table (VPT). The hypervisor makes the

second hashed page table, the physical page table (PPT),

visible to the processor. The hypervisor uses the PPT to

track stores to the partition memory based on a 4-KB

page size.

The partition may use large pages. The hypervisor

keeps track of stores to large pages on a 4-KB page size

basis by breaking the large page down into constituent

4-KB pages and installing page table entries for only

4-KB page sizes in the PPT. Since the processor searches

the PPT based on the page size in the SLB entry (SLBE),
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a mechanism is required to ignore the large-page

indicator in the SLBE. This mechanism is the ISL bit in

the LPCR, described in the list of architecture facilities in

the section ‘‘VPM architecture,’’ earlier in this paper. As

part of the switch to VPM mode, the hypervisor also

switches the processor into a mode in which it ignores the

large-page indicator in an SLBE.

The hypervisor keeps track of the pages that need to be

migrated in a dirty page table. All pages of the partition

are marked as dirty at the start of the migration. Pages

that have been sent are set to an effective state of read only

in the PPT and marked clean. Whenever the partition

attempts to write to one of the clean pages, it is intercepted

by the hypervisor by means of a VPM interrupt. The

hypervisor reverts that page to the dirty state. The

hypervisor then makes the page writable again and returns

control to the partition at the point of interruption.

The process of sending or resending pages to the

destination hypervisor continues until there is sufficient

partition memory state on the destination hypervisor so

that the processing of the partition can be transferred to

processors on the destination server and resume its

operation there. The source hypervisor suspends the

partition and transfers its internal processor and other

necessary state to the destination hypervisor. The source

hypervisor also sends the dirty page table to the

destination hypervisor. The destination hypervisor

receives the dirty page table and uses it to set the state of

all dirty pages to an ‘‘invalid’’ access state. The partition

is then resumed on the destination hypervisor. The source

hypervisor continues sending the remaining partition

page frames to the destination hypervisor, which marks

them as clean upon their successful arrival.

The destination hypervisor resumes the partition with

the virtual processors of the partition in VPMmode. After

the partition is resumed, any attempt by the partition to

access a page whose state is invalid causes a VPM

interrupt, which is handled by the hypervisor. The

destination hypervisor blocks the virtual processor and

then makes a high-priority ‘‘demand paging’’ request to

the source hypervisor for that page. The requested page is

sent ahead of other pages that are waiting to be

transferred to the destination hypervisor. When the

requested page arrives, the hypervisor marks the page as

‘‘valid’’ and resumes the virtual processor at the point of

interruption. This process continues transparently to the

partition until all remaining partition pages have been

transferred from the source to the destination. Once all

pages are resident on the destination server, the

destination hypervisor takes the virtual processors of the

partition out of VPM mode.

During the period of time that the partition is in VPM

mode for movement, other storage access interrupts may

occur. The source or the destination hypervisor uses the

VPT to analyze an interrupt and passes control to the OS

interrupt handler if the interrupt is not associated with

partition movement.

Consistent timing facilities for a migrating partition

It is advisable to have the time of day synchronized

between the source and destination hypervisors through

the use of time reference partitions (TRPs). A TRP is

tagged as such by the system administrator. The hypervisor

synchronizes its timewith theUniversal TimeCoordinated

(UTC) of the TRP. A TRP is expected to use the Network

Time Protocol (NTP) to maintain its UTC.

When the partition stops executing on the source

system, the hypervisor takes a snapshot of the time of day

of the hypervisor, the virtual time of day of the migrating

partition, and the value of the timebase register on the

source system. The values are sent to the destination

hypervisor. The destination hypervisor takes a snapshot

Figure 2

Partition mobility: main store migration.
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of its time of day when the partition is about to resume on

the destination system. Because the two hypervisors have

synchronized time, the difference between the snapshots

of the hypervisor time on the source system and that on

the destination system is the elapsed time when the

partition was not executing on the source or destination

system. The elapsed time is used to compute the virtual

time-of-day and timebase value offset for the migrating

partition. The timebase offset value is placed in the

partition TBU40 register whenever a virtual processor of

the partition is dispatched to provide a consistent view of

its virtual timebase value.

Concluding remarks
POWER processor virtualization is enhanced on

POWER6 processor-based systems by a set of substantial

improvements. Virtualization of memory and timing

facilities provides complete partition virtualization when

used with virtual I/O and frees the partition from any

specific server. The PCR provides additional application

compatibility between processor families. This enhanced

virtualization, mobility, and portability provide

numerous virtual server management advantages and

improvements to physical resource utilization for users of

POWER6 processor-based systems.
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