Cell Broadband Engine K Shimizy
processor vault security 3.8 Lierty

architecture

Current data protection technologies such as those based on
public-key encryption and broadcast encryption focus on the
secure control and protection of data. Although these protection
schemes are effective and mathematically sound, they are
susceptible to systematic attacks that utilize any underlying
platform weakness, bypassing the cryptographic strengths of the
actual schemes. Thus, ensuring that the computing platform
supports the cryptographic data protection layers is a critical
issue. The Cell Broadband Engine™ (Cell/|B.E.) processor
security architecture has three core features that are well suited
for this purpose. It provides hardware-enforced process

isolation in which code and data can execute in physically isolated
memory space. It also provides the ability to perform hardware-
supported authentication of any software stack (i.e., “secure boot™)
during runtime. Finally, the architecture provides a hardware key
to act as the root of an encryption chain. Data encrypted directly
or indirectly by this key can be decrypted and provided only

to an application that is running in the isolated memory and that
has been verified. This significantly reduces an adversary’s chances
of manipulating software to expose the key that is fundamental
to a data protection or authentication scheme. Furthermore, it
provides a foundation for an application to attest itself to a remote
party by demonstrating access to a secret.

Introduction

With the increasing connectivity and the virtualization of
computing resources, we are seeing a new paradigm of
computing in which the location of a process is difficult to
determine and may even become irrelevant. For example,
consumer computing resources are being used to solve
massively parallel problems by using peer-to-peer
computing technology, as in the case of the World
Community Grid [1]. Also, large Internet commerce sites,
which have excess capacity during off-holiday times, sell
their computing capacity to other companies [2]. Thus, we
are gradually seeing the beginning of an era in which
one’s computing process can be computing anywhere in
the world and in which one’s process can be sharing a
single computing resource with “stranger” processes.
Thus, the owner of the process must trust that the
computing resource will not manipulate or steal one’s
process or data and that the computing resource is secure
enough to keep stranger processes isolated from one

another. Only when the required security technology is
in place will this virtual computation world flourish.
With existing computing resources, securing the
underlying platform, including the operating system,
firmware, and device drivers, is very difficult. The
microprocessors, which are the brains of these
platforms, are typically not designed with security
as a priority, or they simply do not have features that
security architects consider fundamental to a secure
platform. Thus, security architects design around this
limitation with software-based approaches, such as using
software to compartmentalize and separate applications
or to check for application-code tampering. However,
protecting software with software has a fundamental
flaw in that the protective software may be compromised
as well. Therefore, a more ideal solution is to rethink
and rearchitect the processor hardware, which is
intrinsically less vulnerable than software, to support
the security of the platform.

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

K. SHIMIZU ET AL.

521

522

Main
memory SPE SPE
(off-chip) 1 i
LS LS
— 4 - 4
‘ s v
m wn
% > 3 > > 5 > g
I PPE [
g > S > > g > E
: . EIB
v v
ST ST
4 4 1/0
v v .
off-ch
aas | | agas (off-chip)

Cell/B.E. Architecture: Nine heterogeneous processor cores, includ-
ing one PowerPC-based PPE (runs operating system) and eight SPEs
(data processing workhorses). Cores are connected to one another,
system memory, and I/O through the EIB.

The Cell Broadband Engine* (Cell/B.E.) processor is
designed with this hardware-centric secure platform goal
in mind. Because its designers were given the rare
opportunity to design a processor from the ground up,
the Cell/B.E. processor is arguably one of the first high-
performance, general-purpose microprocessors [3] in
which security is an integral part of the processor
architecture and not an afterthought. The main strength
of its architecture is its ability to allow an application to
protect itself from other software running on the platform
by using features in the hardware design. The application
need not assume that other software on the platform,
especially the operating system, is well designed or has
not been compromised by an adversary. The application
can trust the hardware to protect it directly so that
sensitive, high-value data can remain protected even if the
platform software is compromised or modified.

This ability to guarantee security independently of
the operating system or other software on the system may
be key to the success of the virtual computing resource
framework described earlier. With this technology, a
particular process owner does not have to worry about
whether the administrator of the computing resource has
installed the newest operating system security fixes or
whether the process will be running side by side with a
malicious application. The processor design directly
guarantees security regardless of the software
environment of the platform.

Attack models

Existing processor architectures follow the ring protection
structure [4], in which ring 0 at the center has the highest

K. SHIMIZU ET AL.

privilege and the outer rings have less privilege. Software
that runs in ring 0 can access any memory area or
input/output (I/O) device, while software in the outer
rings is limited in the areas that it can access. Most user
applications reside in the outer rings. The problem occurs
when a malicious user application succeeds in moving
from an external ring to ring 0; once this happens, any
critical data such as keys and secrets that were protected
by the ring structure become vulnerable. The Cell/B.E.
processor addresses this issue by providing a protection
structure that is orthogonal to the ring structure. Also,
some attacks against the Advanced Encryption Standard
(AES) have been successful by manipulating the processor
cache [5]. The solution to this problem is twofold: The
Cell/B.E. processor provides a memory hierarchy that
does not use a cache architecture, and it provides an
atomic hardware operation that erases the memory
region used by an application.

Related work

The Trusted Computing Group (TCG) [6] is focused on
using an external hardware chip, the Trusted Platform
Module (TPM), as the root of its security. In contrast,
because the Cell/B.E. processor vault security architecture
is integrated into the processor itself, it can offer protection
from attacks that the TCG approach is vulnerable to,
such as buffer-overflow attacks [7]. As for other
commercial processor security architectures, much of the
isolation is based on hardware support for virtualization.
However, support for virtualization has been part of the
IBM PowerPC Architecture* [8] for several generations
and is fully incorporated in the Cell/B.E. Architecture
(CBEA), although it is not considered to be a primary
security offering. Within academia, there have been

other approaches to provide hardware-based security
that is tolerant of operating system compromises [9].

Cell/B.E. processor overview

The Cell/B.E. processor is a multiprocessor core
architecture [10] (Figure 1). The cores are heterogeneous,
and there are two classes of cores on the chip. The 64-bit
PowerPC* processor element (PPE) is the principal core
that assumes a supervisory role. This PPE runs the
operating system. The other type of core on a Cell/B.E.
processor is the synergistic processor element (SPE); in
the current implementation, there are eight SPEs. The
SPEs are the computational workhorses: each contains a
reduced instruction set computing (RISC)-style single-
instruction multiple-data (SIMD) set, a wide and large
(128 128-bit) register file, and 256 KB of physically
dedicated private memory, or local storage (LS) [11]. The
high-bandwidth element interconnect bus (EIB) connects
these processor cores to one another and to the off-chip
system memory and I/O.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

The SPE plays a key role in the Cell/B.E. processor
security architecture. It fetches instructions from the LS
and loads data from and stores data to the LS. However,
the LS is not a hardware-managed cache. Instead, the LS
memory region is mapped in the system memory map,
and software (either the software running on the PPE or
the software thread executing on the SPE) is expected to
explicitly transfer code and data into the LS. The
transfers can occur with any resource on the EIB, such as
main memory, LS of other SPEs, and I/O devices.

For example, consider a programming model in which
the PPE software launches an application thread on an
SPE. After confirming that the SPE is stopped, the PPE
initiates a data transfer of the code and data for the
application from system memory into the LS of the SPE.
Once the transfer is complete, the PPE sets the SPE
program pointer to the entry point of the code and sends
a command to the SPE to start executing. During the
execution of the application on the SPE, the application
code must explicitly initiate a data transfer with the
source address (e.g., in system memory) and the
destination address (an LS address) if it must transfer
data between the LS of the SPE and system memory (in
order to obtain more data blocks or code blocks).

To summarize, on one side, the SPE processor reads
from and writes to the LS, and on the other side, the
LS receives reads and writes from agents on the EIB.
These memory transfers via the EIB are explicitly
controlled by software and are not initiated by hardware.

Cell/B.E. processor security

Three architectural features define and differentiate the
Cell/B.E. processor security architecture: the secure
processing vault, the runtime secure boot, and the
hardware root of secrecy features.

Secure processing vault

To achieve a secure platform, a processing environment
must exist in which a single application can execute in
isolation from all other executing software threads in the
system. The Cell/B.E. processor secure processing vault
provides such an environment. Within the vault, the
execution of the application and its data cannot be
manipulated or observed; the hardware design prevents
other applications from doing so.

The goal of isolating a process thread is not new;
however, in contrast to our hardware-based method,
existing approaches have used software to enforce the
separation. The operating system or the hypervisor
(which is also known as the virtual machine monitor and is
the software layer with the most authority in a virtualized
system) is responsible for separating processes. For
example, the operating system ensures that the memory
location of the high-value data is protected from reads

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

and writes from nonauthorized processes. The problem
with this approach is that if an adversary takes control of
the operating system or the hypervisor, security is
instantly compromised. Furthermore, because of the
sheer size and complexity of the operating system and, to
a lesser degree, the hypervisor, they can be brittle and
difficult to make secure.

The adversary can use the operating system to change
the permissions for the memory area it is trying to access
or simply use the operating system to read the memory
location, since the operating system can read any memory
location in most systems. An adversary looks for a
weakness in the operating system design, such as a buffer
overflow vulnerability, exploits this hole to gain control
of it, and then executes actions that are restricted to the
operating system it is attacking. Within this kind of
environment, sensitive data can easily be copied by the
adversary-controlled operating system. The fundamental
problem with existing approaches is that the software
they use to provide the isolation can be manipulated by
an adversary. A better approach is for the hardware
design to isolate the process in such a way that the
software cannot override the isolation; this is the function
of the Cell/B.E. processor secure processing vault.

In the Cell/B.E. processor, the vault is realized as
an SPE running in a mode in which it has effectively
disengaged itself from the bus and, by extension, the rest
of the system. In this mode, the LS of the SPE, which
contains the application code and data, is locked for
use by the SPE alone; it cannot be read from or
written to by any other software. Control mechanisms
that are usually available for supervisory processes for the
SPE are disabled. In fact, once the SPE is isolated, the
only external action possible is to cancel its task,
whereupon all information in the LS and SPE is erased
by the hardware before external access is re-enabled.
From the hardware perspective, when an SPE is in
this isolation mode, the SPE processor access to
the LS remains the same, while on the other side of
the LS (the bus side), external accesses are blocked,
as illustrated in Figure 2. Thus, all LS read and write
requests originating from units on the bus such as the
PPE, other SPEs, and the 1/O have no effect on the locked
region of the LS. However, for communication purposes,
an area of the LS of the isolated SPE is left open to data
transfers to and from other units on the bus. The
application running on the isolated SPE is responsible
for ensuring that the data coming through the open
communication area of its LS is safe. Also consistent with
the idea that the cores execute independently, any number
of SPEs can be in isolation mode simultaneously.

All of this is accomplished exclusively by hardware
means; no software (e.g., in the form of setting protection
bits in an address translation table) is involved in the

K. SHIMIZU ET AL.

523

524

SPE SPE
f d N
{ +—X
IS IS
[\

B> 2o ﬁ— T 5
7] = »n =
| PPE |
@ wn = 72)
s> B o e

Example of a Cell/B.E. processor application. The PPE allocates
an SPE for an application (APP), which can lock the SPE from the
inside, thereby preventing the PPE and other applications from
accessing the SPE. The PPE, however, retains the ability to cancel
the SPE task to gain access.

process. Because of this absolute hardware isolation, even
the operating system and the hypervisor cannot access the
locked LS or take control of the SPE core. Therefore,

a hacker who has gained root or hypervisor privileges is
not a threat to an application executing on an isolated
SPE. The supervisory privileges do not enable the hacker
to control the application, and they do not allow the
hacker to read from or write to the memory used by it.
The execution flow and the data of the isolated
application are safe.

Runtime secure boot
The vault protects an application from other software
that may have been modified or compromised. However,
this does not address the question of what happens if the
application itself has been modified. For example, an
adversary can modify the application so that when it
accesses valuable data within the secure vault, it copies
the data into an openly accessible area outside of the
vault. Such a modification must be detected so that such
an application is not executed. One counter measure may
be to design a software-implemented loader that checks
the authentication of the application and executes it only
when the authentication succeeds. However, the loader
may be modified so that it does not check for
authentication correctly and allows compromised code to
execute within the vault. In another case, the loader may
be circumvented entirely by an adversary, and the
authentication step skipped. A hardware solution is
needed to ensure that the authentication step is
consistently and correctly executed.

Therefore, it is generally believed that the root of an
authentication scheme must be implemented in hardware.

K. SHIMIZU ET AL.

If the root can be trusted, the entity authenticated by the
root can be trusted, and so on as the chain of trust
expands. The runtime secure boot feature is a technique
based on this philosophy, whereby during power-on time,
from the first basic I/O system (BIOS) code that is
executed to the operating system code, the code modules
go through a cryptography-based authentication

check. There are a variety of ways to accomplish this; one
is to have the hardware authenticate a small boot module
by using a hardware key. Successful authentication of
this module allows it to authenticate the operating system.
If the authentication of the boot module or the operating
system fails, the booting process is halted, but otherwise,
the booting process is allowed to proceed normally.

The concept is that since the first software to execute

on the chip was authenticated by the hardware and all
succeeding software code has been verified by the code
that launched it, the chain of authentication guarantees
that all software on the system has been indirectly or
directly verified by the hardware key at power-on time.

The drawback of this approach is that it assumes that
checking for compromises in the software at power-on
time is sufficient. It does not protect against software
compromises that occur after power-on time. However,
most software-based attacks occur during runtime; in this
event the chain of authentication breaks and any software
launched subsequently cannot necessarily be trusted.

The Cell/B.E. processor addresses this problem
with its runtime secure boot feature, which permits an
application to perform a secure boot from the hardware
an arbitrary number of times during runtime. Thus, even
if other software on the system has been compromised,
a single application thread can still be robustly checked
independently. In essence, the application can renew its
trustworthiness as many times as needed, even as the
system stays running longer and becomes “stale.”
Specifically, a hardware-implemented authentication
mechanism uses a hardware key and a cryptographic
algorithm to verify that the application has not been
modified.

This runtime secure boot is tightly coupled with an SPE
entering isolation mode. An application must go through
the hardware authentication step before it can execute on
an isolated SPE. When isolation mode is requested, the
previous thread is first stopped and canceled, and all
processor states are cleared. The hardware then
automatically fetches the selected application into the LS,
and the hardware verifies the integrity of the application.
If the integrity check fails, the application is not executed.
The check can fail for one of two reasons. First, if the
application has been modified within memory or storage,
the assumption is that its functionality may have changed
and it cannot be trusted anymore. Second, the writer of
the application may not know the cryptographic secret

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

that is needed for a successful authentication. Otherwise,
if the authentication check is successful, the hardware
automatically begins execution of the application in
isolation mode. Because all of these steps are controlled
by hardware, verification of the integrity of the application
cannot be skipped or manipulated and occurs consistently
and correctly.

Figure 3 shows the state machine implementation of the
secure processing vault and the runtime secure boot
features. Normally, the synergistic processor unit (SPU)
executes in the states in the nonisolated execution
environment. A Load command initiates the transition
into the vault environment. If the runtime secure boot
succeeds, the state machine transitions to the SPU
isolated running state, and the application is now
executing in the vault. If the runtime secure boot fails, the
state transitions to the load failed state, in which case
the operating system is expected to invoke the Exit
command on an SPU in this state so that the SPU is
recovered from the error state and is taken out of isolation
mode. When the application has successfully completed
execution in the isolated environment, it can also execute
an Exit command to leave the vault environment. The
Exit command initiates the atomic hardware operation of
erasing all of the LS and the SPE register file before
unlocking the isolated SPE. This is a critical step that
prevents side-channel attacks such as the attack described
in [5]. More details of the design can be found in [12].

Hardware root of secrecy

One of the most important aspects of system security is
the way in which keys are managed. Keys are the linchpin
for system security and data protection. They are used by
applications to encrypt data in storage, to decrypt
encrypted files, or to establish a secure communication
channel. If the keys can easily be exposed, the entire
security scheme is compromised. Despite their critical
role, keys are usually stored in plaintext form in storage.
Ideally, instead of being left in this unprotected state, the
keys are “sealed in an envelope” (or encrypted) when in
storage and unsealed only when given to an authenticated
application. However, this implies that another key is
used for the sealing and unsealing (in other words, for
encrypting and decrypting the first key); how is this key
stored? Eventually, there must be a key that is not
encrypted; because this key is at the root of all unsealing,
we refer to it as the root key.

Because the root key is important to keeping all other
keys hidden, it must be robustly protected. The Cell/B.E.
processor accomplishes this with its hardware root of
secrecy feature. The root key is embedded in the
hardware, and no software can access the root key; only
a hardware decryption facility has access to it. This
makes it much more difficult for software to be

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

SPU nonisolated execution environment
Run

SPU SPU
stopped running

Exit Load L2

|
[

Exit Transition states

complete

Load
success

Load
failed

SPU isolated execution environment

Exit Run

SPU isolated SPU isolated
(stopped) (running)

Stop

SPU and local storage isolated from system

SPU isolated state transitions.

Isolated SPE

S

Decrypted
data/code

Encrypted
data/code

v

Operating system Decryption
[

Hardware (processor) — ofQyu=tt"

Hardware root of secrecy steps.

manipulated so that the root key is exposed, and the
hardware functionality cannot be changed so that the key
is exposed.
Furthermore, activation of the hardware decryption
using this root key is tightly integrated with the SPE
isolation mode, as shown in Figure 4. When an SPE 525

K. SHIMIZU ET AL.

526

Vault (isolated SPE)

Memory —» Memory

Encrypted | Decrypted

Re-encrypted

Encrypt-in, encrypt-out usage model.

Vault (isolated SPE)

4 Application _ﬂ——} Storage

other applications,
network

Private/public ! :

i g ; ; Server
Hardware i ' DVD
random number ! Untrusted envelope E disk drive

generator E Operating system,

|Certification revocation list |

Anchor for secure authenticated channel-—Secure Sockets Layer
stack.

enters isolation mode, the hardware decryption facility
transfers the encrypted data into the isolated SPE and
decrypts the data using the hardware root key. The
decrypted data is placed within the protected LS and is
available for an isolated SPE application to use. In fact,
the decryption based on the root key can happen only
within an isolated SPE and not outside it; there is no
access to the root key or secrets decrypted by the root
key, by hardware or software, from a nonisolated SPE or
the PPE. First, this implies that a system designer can
force all data decryptions by the root key to happen
within the protected environment of the secure processing
vault; the keys unsealed by the root key are always placed
(at least initially) in the vault only. Second, only
applications that have successfully passed the runtime
secure boot authentication are given access to the keys
unsealed by the root key. Any software that may have
been adversely modified is not given access to the
unsealed keys. Because the foundation of this control is
grounded in both the runtime secure boot and the

K. SHIMIZU ET AL.

hardware root of secrecy features, the process is more
resistant to manipulation than with a completely
software-controlled access mechanism.

The term hardware root of trust is commonly used
within the security community to refer to the root of an
authentication chain, where application integrity is
verified, while hardware root of secrecy is associated with
the decryption chain, where application secrets are
decrypted and controlled. The Cell/B.E. processor
security architecture has the hardware root of trust and
the authentication chain (described in the previous
section), as well as the hardware root of secrecy and the
decryption chain.

Another advantage of this feature is the answer to
the question, What prevents an adversary from taking
an application intended to run within the vault and
executing it outside the vault? The answer is to encrypt
a portion of the application code using the hardware
root key. Because the code is encrypted, it cannot
be captured and directly executed on a regular,
nonisolated SPE. The code must be decrypted and,
therefore, is forced to execute within the vault, where it
can be decrypted by the root key. This reassures the
application writer that a particular application will
execute only within the secure processing vault.

Usage models

Encrypt-in, encrypt-out

The secure processing vault is best exploited by the
“encrypt-in, encrypt-out” usage model (Figure 5) in which
the incoming data is encrypted, an operation is performed
on the data, and the data is re-encrypted before it is
placed outside the vault. In this model, the data is in its
vulnerable plaintext form only within the secure
processing vault; the only code that has access to this
plaintext data is that which is authenticated via the
runtime secure boot; and the keys used for decryption
and encryption are hidden from the system using the
hardware root of secrecy. With this usage model of the
vault, existing system functions such as file operations
and network operations can be used “as is” without
sacrificing security. Because the data is already encrypted
by the time it is accessed as a payload to these operations,
the secrecy and authenticity of the data can be
guaranteed even if these system operations are somehow
compromised. Any data with associated privacy or piracy
concerns (e.g., rights-managed content or software, social
security numbers, credit card numbers) can be robustly
protected with this programming model. In addition, this
model can be used for both streaming applications such
as video decoding and nonstreaming applications such as
database searches.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

Secure authenticated channel from the processing
vault

System functions outside the vault are treated as part of
the untrusted environment, and traditional cryptography-
based methods are used for the application inside the
vault to securely communicate with a server on the other
side of the network (for network functions), itself at a
later time (for storage functions), or another device in the
system (for I/O functions). Thus, there is a clear
delineation between the trusted application and the other,
untrusted software on the system; this allows for a point-
to-point trusted channel with just the application and not
the entire platform with its many difficult-to-verify
components (Figure 6).

In addition to the usual use of a private and public key
pair and a certificate revocation list, secure, authenticated
communication is achieved by the three core security
features and an on-chip hardware random number
generator. For example, the vault feature can ensure that
the process of authenticating its communication partner
is not manipulated by an adversary. The runtime secure
boot feature can protect the certificate revocation list
from modification. The hardware root of secrecy can
ensure that the private key is not exposed by an attacker.
Also, the hardware random number can be used to
protect against replay attacks by, in essence, marking the
current communication with a timestamp. A replay attack
is a situation in which an adversary takes an old
communication message and resends it through the
unsecured communication channel. Because the
authentication protocol will verify that the message is
authentic, a robust timestamp feature is the only way for
the communication partners to realize that a “man-in-the-
middle” attack is happening.

Attestation

Although earlier sections have implied this, it is worth
explicitly stating that the combination of the hardware
root of secrecy and the hardware-based authentication
feature makes attestation possible. Attestation is a core
requirement in trusted computing whereby a process can
attest that it is indeed what it claims to be because it was
able to access secrets that it otherwise could not have.
With the vault architecture, only code images that have
been successfully authenticated are able to execute and
access data that has been decrypted by the hardware root
of secrecy. Because these secrets cannot be decrypted any
other way, they can be used to attest to the remote party
that the application executing in the secure vault is
uniquely the owner of the secret.

Future work

Work is ongoing to develop a software infrastructure
based on this processor security design. The processor

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

provides only a secure foundation; the software design
must provide the necessary flexibility, security, and
usability. The software focus is on three main
components: the SPE secure kernel, the operating system,
and a build-time tool. The secure kernel is the software
layer trusted to administer the secure application (the
application that executes in the vault environment). For
example, the secure kernel is entrusted to load and
authenticate various secure applications (possibly from
different sources), govern policy for permitting a process
to run in the vault environment, and ensure that different
applications running in the vault environment do not leak
or steal secrets from one another. These software
components will be released as part of the Cell/B.E.
processor Software Development Kit.

In addition, a video streaming application is being
developed to exploit both the security software
infrastructure and the performance capabilities. In many
cases, security and performance constitute a design trade-
off decision. For example, with the encrypt-in, encrypt-
out programming model, one can see how encryption and
decryption steps can hinder performance. However, the
application will demonstrate how the SPE performance
for cryptography algorithms makes the programming
model feasible and that security need not necessarily be
compromised in order to meet performance requirements.

Acknowledgments

We thank all of the development engineers, programmers,
architects, and management who made this work
possible. In particular, we wish to thank (in alphabetical
order) Dan Brokenshire, Alex Chow, David Craft,
Michael Day, Jonathan Dement, Gilles Gervais, Sanjay
Gupta, Aki Hatakeyama, Charlie Johns, Jim Kahle,
Kenji Kikuchi, Mark Nutter, Mohammed Peyravian,
Mack Riley, Bill Tiernan, Atushi Tsuji, Yukio Watanabe,
and Emmanuel Zarpas.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer
Entertainment, Inc., in the United States, other countries, or both.

References

1. World Community Grid; see www.worldcommunitygrid.org.

2. “Lifting the Bonnet,” The Economist, October 5, 2006.

3. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,

T. R. Maeurer, and D. Shippy, “Introduction to the Cell
Multiprocessor,” IBM J. Res. & Dev. 49, No. 4/5, 589-604
(July/September 2005).

4. J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, Third Edition, Morgan Kaufmann,
San Francisco, CA, 2003, p. 471.

5. 0. Aciicmez, W. Schindler, and C. K. Koc, “Cache Based
Remote Timing Attack on the AES,” Topics in Cryptology—
CT-RSA 2007: The Cryptographers’ Track at the RSA 527

K. SHIMIZU ET AL.

528

Conference, M. Abe, Editor, Springer, San Francisco, 2007,
pp- 271-286.

6. Trusted Computing Group; see https://www.
trustedcomputinggroup.org/home.

7. R. Sailer, L. van Doorn, and J. P. Ward, “The Role of TPM in
Enterprise Security,” Datenschutz und Datensicherheit 28,
539-547 (2004).

8. IBM Corporation, PowerPC Operating Environment
Architecture, Book III, Version 2.01, December 2003.

9. D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,

J. Mitchell, and M. Horowitz, “Architectural Support for
Copy and Tamper Resistant Software,” Proceedings of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
1X), November 2000, pp. 168-177.

10. D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee,
C. Johns, J. Kahle, et al., “The Design and Implementation of
a First-Generation Cell Processor,” IEEE International Solid-
State Circuits Symposium, February 2005, pp. 184-185.

11. B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee, G. Gervais,
R. Kim, T. Le, et al., “The Microarchitecture of the Streaming
Processor for a Cell Processor,” IEEE International Solid-
State Circuits Symposium, February 2005, pp. 134-135.

12. IBM Corporation, Cell Broadband Engine Architecture,
October 3, 2006; see http://www-128.ibm.com|developerworks/
power/cellldocs_documentation.html.

Received October 18, 2006, accepted for publication
March 29, 2007; Internet publication August 8, 2007

K. SHIMIZU ET AL.

Kanna Shimizu 1BM Systems and Technology Group,

11501 Burnet Road, Austin, Texas 78758 (kannas@us.ibm.com).
Dr. Shimizu is the Cell/B.E. Processor and Systems Security
Architect. She currently leads the development of security software
architecture on Cell/B.E. processor platforms and consults on
future processor security architectures. She received a Ph.D. degree
in electrical engineering from Stanford University, an M.S. degree
in computer science from the University of Oxford, and a B.S.
degree in electrical engineering from the California Institute of
Technology.

H. Peter Hofstee 1BM Systems and Technology Group,

STI Design Center, 11400 Burnet Road, Austin, Texas 78758
(hofstee@us.ibm.com). Dr. Hofstee received his doctorandus
degree in theoretical physics from the Rijks Universiteit
Groningen, The Netherlands, in 1988, and his M.S. and Ph.D.
degrees in computer science from the California Institute of
Technology in 1991 and 1994, respectively. After two years on the
faculty at Caltech, in 1996 he joined the IBM Austin Research
Laboratory, where he participated in the design of two 1-GHz
PowerPC prototypes, focusing on microarchitecture, logic design,
and chip integration. In 2000 he helped start the Sony—Toshiba—
IBM (STI) Design Center to design a next generation of processors
for the broadband era, the Cell/B.E. processor. Dr. Hofstee is a
member of the CBEA team and the Chief Architect of the
synergistic processor in the Cell/B.E. processor. He was elected to
the IBM Academy of Technology in 2004.

John S. Liberty 1BM Systems and Technology Group,

11501 Burnet Road, Austin, Texas 78758. Mr. Liberty received B.S.
and M.S. degrees in electrical engineering from North Carolina
State University. He is an Advisory Engineer in the STI Design
Center, responsible for helping architect and develop the Cell/B.E.
processor. His main focus within the Cell/B.E. processor is the
SPU SIMD processor. He was a leader in designing the SPU
channel interface and the SPU inherent security architecture.
Before working on the Cell/B.E. processor, he was a designer
working on graphic processing units. Mr. Liberty holds four
patents, with 12 patents pending; he has co-authored three
technical articles.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

