
Cell Broadband Engine
processor vault security
architecture

K. Shimizu
H. P. Hofstee

J. S. Liberty

Current data protection technologies such as those based on
public-key encryption and broadcast encryption focus on the
secure control and protection of data. Although these protection
schemes are effective and mathematically sound, they are
susceptible to systematic attacks that utilize any underlying
platform weakness, bypassing the cryptographic strengths of the
actual schemes. Thus, ensuring that the computing platform
supports the cryptographic data protection layers is a critical
issue. The Cell Broadband Enginee (Cell/B.E.) processor
security architecture has three core features that are well suited
for this purpose. It provides hardware-enforced process
isolation in which code and data can execute in physically isolated
memory space. It also provides the ability to perform hardware-
supported authentication of any software stack (i.e., ‘‘secure boot’’)
during runtime. Finally, the architecture provides a hardware key
to act as the root of an encryption chain. Data encrypted directly
or indirectly by this key can be decrypted and provided only
to an application that is running in the isolated memory and that
has been verified. This significantly reduces an adversary’s chances
of manipulating software to expose the key that is fundamental
to a data protection or authentication scheme. Furthermore, it
provides a foundation for an application to attest itself to a remote
party by demonstrating access to a secret.

Introduction

With the increasing connectivity and the virtualization of

computing resources, we are seeing a new paradigm of

computing in which the location of a process is difficult to

determine and may even become irrelevant. For example,

consumer computing resources are being used to solve

massively parallel problems by using peer-to-peer

computing technology, as in the case of the World

Community Grid [1]. Also, large Internet commerce sites,

which have excess capacity during off-holiday times, sell

their computing capacity to other companies [2]. Thus, we

are gradually seeing the beginning of an era in which

one’s computing process can be computing anywhere in

the world and in which one’s process can be sharing a

single computing resource with ‘‘stranger’’ processes.

Thus, the owner of the process must trust that the

computing resource will not manipulate or steal one’s

process or data and that the computing resource is secure

enough to keep stranger processes isolated from one

another. Only when the required security technology is

in place will this virtual computation world flourish.

With existing computing resources, securing the

underlying platform, including the operating system,

firmware, and device drivers, is very difficult. The

microprocessors, which are the brains of these

platforms, are typically not designed with security

as a priority, or they simply do not have features that

security architects consider fundamental to a secure

platform. Thus, security architects design around this

limitation with software-based approaches, such as using

software to compartmentalize and separate applications

or to check for application-code tampering. However,

protecting software with software has a fundamental

flaw in that the protective software may be compromised

as well. Therefore, a more ideal solution is to rethink

and rearchitect the processor hardware, which is

intrinsically less vulnerable than software, to support

the security of the platform.

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 K. SHIMIZU ET AL.

521

0018-8646/07/$5.00 ª 2007 IBM

The Cell Broadband Engine� (Cell/B.E.) processor is

designed with this hardware-centric secure platform goal

in mind. Because its designers were given the rare

opportunity to design a processor from the ground up,

the Cell/B.E. processor is arguably one of the first high-

performance, general-purpose microprocessors [3] in

which security is an integral part of the processor

architecture and not an afterthought. The main strength

of its architecture is its ability to allow an application to

protect itself from other software running on the platform

by using features in the hardware design. The application

need not assume that other software on the platform,

especially the operating system, is well designed or has

not been compromised by an adversary. The application

can trust the hardware to protect it directly so that

sensitive, high-value data can remain protected even if the

platform software is compromised or modified.

This ability to guarantee security independently of

the operating system or other software on the system may

be key to the success of the virtual computing resource

framework described earlier. With this technology, a

particular process owner does not have to worry about

whether the administrator of the computing resource has

installed the newest operating system security fixes or

whether the process will be running side by side with a

malicious application. The processor design directly

guarantees security regardless of the software

environment of the platform.

Attack models

Existing processor architectures follow the ring protection

structure [4], in which ring 0 at the center has the highest

privilege and the outer rings have less privilege. Software

that runs in ring 0 can access any memory area or

input/output (I/O) device, while software in the outer

rings is limited in the areas that it can access. Most user

applications reside in the outer rings. The problem occurs

when a malicious user application succeeds in moving

from an external ring to ring 0; once this happens, any

critical data such as keys and secrets that were protected

by the ring structure become vulnerable. The Cell/B.E.

processor addresses this issue by providing a protection

structure that is orthogonal to the ring structure. Also,

some attacks against the Advanced Encryption Standard

(AES) have been successful by manipulating the processor

cache [5]. The solution to this problem is twofold: The

Cell/B.E. processor provides a memory hierarchy that

does not use a cache architecture, and it provides an

atomic hardware operation that erases the memory

region used by an application.

Related work

The Trusted Computing Group (TCG) [6] is focused on

using an external hardware chip, the Trusted Platform

Module (TPM), as the root of its security. In contrast,

because the Cell/B.E. processor vault security architecture

is integrated into the processor itself, it can offer protection

from attacks that the TCG approach is vulnerable to,

such as buffer-overflow attacks [7]. As for other

commercial processor security architectures, much of the

isolation is based on hardware support for virtualization.

However, support for virtualization has been part of the

IBM PowerPC Architecture* [8] for several generations

and is fully incorporated in the Cell/B.E. Architecture

(CBEA), although it is not considered to be a primary

security offering. Within academia, there have been

other approaches to provide hardware-based security

that is tolerant of operating system compromises [9].

Cell/B.E. processor overview
The Cell/B.E. processor is a multiprocessor core

architecture [10] (Figure 1). The cores are heterogeneous,

and there are two classes of cores on the chip. The 64-bit

PowerPC* processor element (PPE) is the principal core

that assumes a supervisory role. This PPE runs the

operating system. The other type of core on a Cell/B.E.

processor is the synergistic processor element (SPE); in

the current implementation, there are eight SPEs. The

SPEs are the computational workhorses: each contains a

reduced instruction set computing (RISC)–style single-

instruction multiple-data (SIMD) set, a wide and large

(128 128-bit) register file, and 256 KB of physically

dedicated private memory, or local storage (LS) [11]. The

high-bandwidth element interconnect bus (EIB) connects

these processor cores to one another and to the off-chip

system memory and I/O.

Figure 1

Cell/B.E. Architecture: Nine heterogeneous processor cores, includ-

ing one PowerPC-based PPE (runs operating system) and eight SPEs

(data processing workhorses). Cores are connected to one another,

system memory, and I/O through the EIB.

EIB

SPE

LS

SPE

LS

PPE

S
P

E

L
S

S
P

E

L
S

S
P

E

L
S

S
P

E

L
S

SPE

LS

SPE

LS

Main

memory

(off-chip)

I/O

(off-chip)

K. SHIMIZU ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

522

The SPE plays a key role in the Cell/B.E. processor

security architecture. It fetches instructions from the LS

and loads data from and stores data to the LS. However,

the LS is not a hardware-managed cache. Instead, the LS

memory region is mapped in the system memory map,

and software (either the software running on the PPE or

the software thread executing on the SPE) is expected to

explicitly transfer code and data into the LS. The

transfers can occur with any resource on the EIB, such as

main memory, LS of other SPEs, and I/O devices.

For example, consider a programming model in which

the PPE software launches an application thread on an

SPE. After confirming that the SPE is stopped, the PPE

initiates a data transfer of the code and data for the

application from system memory into the LS of the SPE.

Once the transfer is complete, the PPE sets the SPE

program pointer to the entry point of the code and sends

a command to the SPE to start executing. During the

execution of the application on the SPE, the application

code must explicitly initiate a data transfer with the

source address (e.g., in system memory) and the

destination address (an LS address) if it must transfer

data between the LS of the SPE and system memory (in

order to obtain more data blocks or code blocks).

To summarize, on one side, the SPE processor reads

from and writes to the LS, and on the other side, the

LS receives reads and writes from agents on the EIB.

These memory transfers via the EIB are explicitly

controlled by software and are not initiated by hardware.

Cell/B.E. processor security
Three architectural features define and differentiate the

Cell/B.E. processor security architecture: the secure

processing vault, the runtime secure boot, and the

hardware root of secrecy features.

Secure processing vault

To achieve a secure platform, a processing environment

must exist in which a single application can execute in

isolation from all other executing software threads in the

system. The Cell/B.E. processor secure processing vault

provides such an environment. Within the vault, the

execution of the application and its data cannot be

manipulated or observed; the hardware design prevents

other applications from doing so.

The goal of isolating a process thread is not new;

however, in contrast to our hardware-based method,

existing approaches have used software to enforce the

separation. The operating system or the hypervisor

(which is also known as the virtual machine monitor and is

the software layer with the most authority in a virtualized

system) is responsible for separating processes. For

example, the operating system ensures that the memory

location of the high-value data is protected from reads

and writes from nonauthorized processes. The problem

with this approach is that if an adversary takes control of

the operating system or the hypervisor, security is

instantly compromised. Furthermore, because of the

sheer size and complexity of the operating system and, to

a lesser degree, the hypervisor, they can be brittle and

difficult to make secure.

The adversary can use the operating system to change

the permissions for the memory area it is trying to access

or simply use the operating system to read the memory

location, since the operating system can read any memory

location in most systems. An adversary looks for a

weakness in the operating system design, such as a buffer

overflow vulnerability, exploits this hole to gain control

of it, and then executes actions that are restricted to the

operating system it is attacking. Within this kind of

environment, sensitive data can easily be copied by the

adversary-controlled operating system. The fundamental

problem with existing approaches is that the software

they use to provide the isolation can be manipulated by

an adversary. A better approach is for the hardware

design to isolate the process in such a way that the

software cannot override the isolation; this is the function

of the Cell/B.E. processor secure processing vault.

In the Cell/B.E. processor, the vault is realized as

an SPE running in a mode in which it has effectively

disengaged itself from the bus and, by extension, the rest

of the system. In this mode, the LS of the SPE, which

contains the application code and data, is locked for

use by the SPE alone; it cannot be read from or

written to by any other software. Control mechanisms

that are usually available for supervisory processes for the

SPE are disabled. In fact, once the SPE is isolated, the

only external action possible is to cancel its task,

whereupon all information in the LS and SPE is erased

by the hardware before external access is re-enabled.

From the hardware perspective, when an SPE is in

this isolation mode, the SPE processor access to

the LS remains the same, while on the other side of

the LS (the bus side), external accesses are blocked,

as illustrated in Figure 2. Thus, all LS read and write

requests originating from units on the bus such as the

PPE, other SPEs, and the I/O have no effect on the locked

region of the LS. However, for communication purposes,

an area of the LS of the isolated SPE is left open to data

transfers to and from other units on the bus. The

application running on the isolated SPE is responsible

for ensuring that the data coming through the open

communication area of its LS is safe. Also consistent with

the idea that the cores execute independently, any number

of SPEs can be in isolation mode simultaneously.

All of this is accomplished exclusively by hardware

means; no software (e.g., in the form of setting protection

bits in an address translation table) is involved in the

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 K. SHIMIZU ET AL.

523

process. Because of this absolute hardware isolation, even

the operating system and the hypervisor cannot access the

locked LS or take control of the SPE core. Therefore,

a hacker who has gained root or hypervisor privileges is

not a threat to an application executing on an isolated

SPE. The supervisory privileges do not enable the hacker

to control the application, and they do not allow the

hacker to read from or write to the memory used by it.

The execution flow and the data of the isolated

application are safe.

Runtime secure boot

The vault protects an application from other software

that may have been modified or compromised. However,

this does not address the question of what happens if the

application itself has been modified. For example, an

adversary can modify the application so that when it

accesses valuable data within the secure vault, it copies

the data into an openly accessible area outside of the

vault. Such a modification must be detected so that such

an application is not executed. One counter measure may

be to design a software-implemented loader that checks

the authentication of the application and executes it only

when the authentication succeeds. However, the loader

may be modified so that it does not check for

authentication correctly and allows compromised code to

execute within the vault. In another case, the loader may

be circumvented entirely by an adversary, and the

authentication step skipped. A hardware solution is

needed to ensure that the authentication step is

consistently and correctly executed.

Therefore, it is generally believed that the root of an

authentication scheme must be implemented in hardware.

If the root can be trusted, the entity authenticated by the

root can be trusted, and so on as the chain of trust

expands. The runtime secure boot feature is a technique

based on this philosophy, whereby during power-on time,

from the first basic I/O system (BIOS) code that is

executed to the operating system code, the code modules

go through a cryptography-based authentication

check. There are a variety of ways to accomplish this; one

is to have the hardware authenticate a small boot module

by using a hardware key. Successful authentication of

this module allows it to authenticate the operating system.

If the authentication of the boot module or the operating

system fails, the booting process is halted, but otherwise,

the booting process is allowed to proceed normally.

The concept is that since the first software to execute

on the chip was authenticated by the hardware and all

succeeding software code has been verified by the code

that launched it, the chain of authentication guarantees

that all software on the system has been indirectly or

directly verified by the hardware key at power-on time.

The drawback of this approach is that it assumes that

checking for compromises in the software at power-on

time is sufficient. It does not protect against software

compromises that occur after power-on time. However,

most software-based attacks occur during runtime; in this

event the chain of authentication breaks and any software

launched subsequently cannot necessarily be trusted.

The Cell/B.E. processor addresses this problem

with its runtime secure boot feature, which permits an

application to perform a secure boot from the hardware

an arbitrary number of times during runtime. Thus, even

if other software on the system has been compromised,

a single application thread can still be robustly checked

independently. In essence, the application can renew its

trustworthiness as many times as needed, even as the

system stays running longer and becomes ‘‘stale.’’

Specifically, a hardware-implemented authentication

mechanism uses a hardware key and a cryptographic

algorithm to verify that the application has not been

modified.

This runtime secure boot is tightly coupled with an SPE

entering isolation mode. An application must go through

the hardware authentication step before it can execute on

an isolated SPE. When isolation mode is requested, the

previous thread is first stopped and canceled, and all

processor states are cleared. The hardware then

automatically fetches the selected application into the LS,

and the hardware verifies the integrity of the application.

If the integrity check fails, the application is not executed.

The check can fail for one of two reasons. First, if the

application has been modified within memory or storage,

the assumption is that its functionality may have changed

and it cannot be trusted anymore. Second, the writer of

the application may not know the cryptographic secret

Figure 2

Example of a Cell/B.E. processor application. The PPE allocates

an SPE for an application (APP), which can lock the SPE from the

inside, thereby preventing the PPE and other applications from

accessing the SPE. The PPE, however, retains the ability to cancel

the SPE task to gain access.

SPE

LS

SPE

LS

S
P

E

L
S

S
P

E

L
S

S
P

E

L
S

S
P

E

L
S

APP

PPE

K. SHIMIZU ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

524

that is needed for a successful authentication. Otherwise,

if the authentication check is successful, the hardware

automatically begins execution of the application in

isolation mode. Because all of these steps are controlled

by hardware, verification of the integrity of the application

cannot be skipped or manipulated and occurs consistently

and correctly.

Figure 3 shows the state machine implementation of the

secure processing vault and the runtime secure boot

features. Normally, the synergistic processor unit (SPU)

executes in the states in the nonisolated execution

environment. A Load command initiates the transition

into the vault environment. If the runtime secure boot

succeeds, the state machine transitions to the SPU

isolated running state, and the application is now

executing in the vault. If the runtime secure boot fails, the

state transitions to the load failed state, in which case

the operating system is expected to invoke the Exit

command on an SPU in this state so that the SPU is

recovered from the error state and is taken out of isolation

mode. When the application has successfully completed

execution in the isolated environment, it can also execute

an Exit command to leave the vault environment. The

Exit command initiates the atomic hardware operation of

erasing all of the LS and the SPE register file before

unlocking the isolated SPE. This is a critical step that

prevents side-channel attacks such as the attack described

in [5]. More details of the design can be found in [12].

Hardware root of secrecy

One of the most important aspects of system security is

the way in which keys are managed. Keys are the linchpin

for system security and data protection. They are used by

applications to encrypt data in storage, to decrypt

encrypted files, or to establish a secure communication

channel. If the keys can easily be exposed, the entire

security scheme is compromised. Despite their critical

role, keys are usually stored in plaintext form in storage.

Ideally, instead of being left in this unprotected state, the

keys are ‘‘sealed in an envelope’’ (or encrypted) when in

storage and unsealed only when given to an authenticated

application. However, this implies that another key is

used for the sealing and unsealing (in other words, for

encrypting and decrypting the first key); how is this key

stored? Eventually, there must be a key that is not

encrypted; because this key is at the root of all unsealing,

we refer to it as the root key.

Because the root key is important to keeping all other

keys hidden, it must be robustly protected. The Cell/B.E.

processor accomplishes this with its hardware root of

secrecy feature. The root key is embedded in the

hardware, and no software can access the root key; only

a hardware decryption facility has access to it. This

makes it much more difficult for software to be

manipulated so that the root key is exposed, and the

hardware functionality cannot be changed so that the key

is exposed.

Furthermore, activation of the hardware decryption

using this root key is tightly integrated with the SPE

isolation mode, as shown in Figure 4. When an SPE

Figure 3

SPU isolated state transitions.

SPU nonisolated execution environment

Transition states

SPU isolated execution environment

SPU and local storage isolated from system

Run

Stop

Load
failed Exit

Exit

Load

Load
success

Exit

Exit
complete

Load

Run

Stop

Exit Load

Load
failed

SPU isolated

(stopped)
SPU isolated

(running)

SPU
stopped

SPU
running

Figure 4

Hardware root of secrecy steps.

Hardware (processor)

Operating system

Decrypted

data/code

Isolated SPE

Decryption

Encrypted

data/code

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 K. SHIMIZU ET AL.

525

enters isolation mode, the hardware decryption facility

transfers the encrypted data into the isolated SPE and

decrypts the data using the hardware root key. The

decrypted data is placed within the protected LS and is

available for an isolated SPE application to use. In fact,

the decryption based on the root key can happen only

within an isolated SPE and not outside it; there is no

access to the root key or secrets decrypted by the root

key, by hardware or software, from a nonisolated SPE or

the PPE. First, this implies that a system designer can

force all data decryptions by the root key to happen

within the protected environment of the secure processing

vault; the keys unsealed by the root key are always placed

(at least initially) in the vault only. Second, only

applications that have successfully passed the runtime

secure boot authentication are given access to the keys

unsealed by the root key. Any software that may have

been adversely modified is not given access to the

unsealed keys. Because the foundation of this control is

grounded in both the runtime secure boot and the

hardware root of secrecy features, the process is more

resistant to manipulation than with a completely

software-controlled access mechanism.

The term hardware root of trust is commonly used

within the security community to refer to the root of an

authentication chain, where application integrity is

verified, while hardware root of secrecy is associated with

the decryption chain, where application secrets are

decrypted and controlled. The Cell/B.E. processor

security architecture has the hardware root of trust and

the authentication chain (described in the previous

section), as well as the hardware root of secrecy and the

decryption chain.

Another advantage of this feature is the answer to

the question, What prevents an adversary from taking

an application intended to run within the vault and

executing it outside the vault? The answer is to encrypt

a portion of the application code using the hardware

root key. Because the code is encrypted, it cannot

be captured and directly executed on a regular,

nonisolated SPE. The code must be decrypted and,

therefore, is forced to execute within the vault, where it

can be decrypted by the root key. This reassures the

application writer that a particular application will

execute only within the secure processing vault.

Usage models

Encrypt-in, encrypt-out

The secure processing vault is best exploited by the

‘‘encrypt-in, encrypt-out’’ usage model (Figure 5) in which

the incoming data is encrypted, an operation is performed

on the data, and the data is re-encrypted before it is

placed outside the vault. In this model, the data is in its

vulnerable plaintext form only within the secure

processing vault; the only code that has access to this

plaintext data is that which is authenticated via the

runtime secure boot; and the keys used for decryption

and encryption are hidden from the system using the

hardware root of secrecy. With this usage model of the

vault, existing system functions such as file operations

and network operations can be used ‘‘as is’’ without

sacrificing security. Because the data is already encrypted

by the time it is accessed as a payload to these operations,

the secrecy and authenticity of the data can be

guaranteed even if these system operations are somehow

compromised. Any data with associated privacy or piracy

concerns (e.g., rights-managed content or software, social

security numbers, credit card numbers) can be robustly

protected with this programming model. In addition, this

model can be used for both streaming applications such

as video decoding and nonstreaming applications such as

database searches.

Figure 5

Encrypt-in, encrypt-out usage model.

Vault (isolated SPE)

Encrypted Re-encryptedDecrypted

MemoryMemory Operation

Figure 6

Anchor for secure authenticated channel—Secure Sockets Layer

stack.

Vault (isolated SPE)

Private/public

key pair

Certification revocation list

Untrusted envelope

Operating system,

other applications,

network

Hardware

random number

generator

Application
Storage

Server

DVD

disk drive

K. SHIMIZU ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

526

Secure authenticated channel from the processing

vault

System functions outside the vault are treated as part of

the untrusted environment, and traditional cryptography-

based methods are used for the application inside the

vault to securely communicate with a server on the other

side of the network (for network functions), itself at a

later time (for storage functions), or another device in the

system (for I/O functions). Thus, there is a clear

delineation between the trusted application and the other,

untrusted software on the system; this allows for a point-

to-point trusted channel with just the application and not

the entire platform with its many difficult-to-verify

components (Figure 6).

In addition to the usual use of a private and public key

pair and a certificate revocation list, secure, authenticated

communication is achieved by the three core security

features and an on-chip hardware random number

generator. For example, the vault feature can ensure that

the process of authenticating its communication partner

is not manipulated by an adversary. The runtime secure

boot feature can protect the certificate revocation list

from modification. The hardware root of secrecy can

ensure that the private key is not exposed by an attacker.

Also, the hardware random number can be used to

protect against replay attacks by, in essence, marking the

current communication with a timestamp. A replay attack

is a situation in which an adversary takes an old

communication message and resends it through the

unsecured communication channel. Because the

authentication protocol will verify that the message is

authentic, a robust timestamp feature is the only way for

the communication partners to realize that a ‘‘man-in-the-

middle’’ attack is happening.

Attestation

Although earlier sections have implied this, it is worth

explicitly stating that the combination of the hardware

root of secrecy and the hardware-based authentication

feature makes attestation possible. Attestation is a core

requirement in trusted computing whereby a process can

attest that it is indeed what it claims to be because it was

able to access secrets that it otherwise could not have.

With the vault architecture, only code images that have

been successfully authenticated are able to execute and

access data that has been decrypted by the hardware root

of secrecy. Because these secrets cannot be decrypted any

other way, they can be used to attest to the remote party

that the application executing in the secure vault is

uniquely the owner of the secret.

Future work
Work is ongoing to develop a software infrastructure

based on this processor security design. The processor

provides only a secure foundation; the software design

must provide the necessary flexibility, security, and

usability. The software focus is on three main

components: the SPE secure kernel, the operating system,

and a build-time tool. The secure kernel is the software

layer trusted to administer the secure application (the

application that executes in the vault environment). For

example, the secure kernel is entrusted to load and

authenticate various secure applications (possibly from

different sources), govern policy for permitting a process

to run in the vault environment, and ensure that different

applications running in the vault environment do not leak

or steal secrets from one another. These software

components will be released as part of the Cell/B.E.

processor Software Development Kit.

In addition, a video streaming application is being

developed to exploit both the security software

infrastructure and the performance capabilities. In many

cases, security and performance constitute a design trade-

off decision. For example, with the encrypt-in, encrypt-

out programming model, one can see how encryption and

decryption steps can hinder performance. However, the

application will demonstrate how the SPE performance

for cryptography algorithms makes the programming

model feasible and that security need not necessarily be

compromised in order to meet performance requirements.

Acknowledgments
We thank all of the development engineers, programmers,

architects, and management who made this work

possible. In particular, we wish to thank (in alphabetical

order) Dan Brokenshire, Alex Chow, David Craft,

Michael Day, Jonathan Dement, Gilles Gervais, Sanjay

Gupta, Aki Hatakeyama, Charlie Johns, Jim Kahle,

Kenji Kikuchi, Mark Nutter, Mohammed Peyravian,

Mack Riley, Bill Tiernan, Atushi Tsuji, Yukio Watanabe,

and Emmanuel Zarpas.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

�Cell Broadband Engine is a trademark of Sony Computer
Entertainment, Inc., in the United States, other countries, or both.

References
1. World Community Grid; see www.worldcommunitygrid.org.
2. ‘‘Lifting the Bonnet,’’ The Economist, October 5, 2006.
3. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,

T. R. Maeurer, and D. Shippy, ‘‘Introduction to the Cell
Multiprocessor,’’ IBM J. Res. & Dev. 49, No. 4/5, 589–604
(July/September 2005).

4. J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, Third Edition, Morgan Kaufmann,
San Francisco, CA, 2003, p. 471.

5. O. Aciicmez, W. Schindler, and C. K. Koc, ‘‘Cache Based
Remote Timing Attack on the AES,’’ Topics in Cryptology—
CT-RSA 2007: The Cryptographers’ Track at the RSA

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 K. SHIMIZU ET AL.

527

Conference, M. Abe, Editor, Springer, San Francisco, 2007,
pp. 271–286.

6. Trusted Computing Group; see https://www.
trustedcomputinggroup.org/home.

7. R. Sailer, L. van Doorn, and J. P. Ward, ‘‘The Role of TPM in
Enterprise Security,’’ Datenschutz und Datensicherheit 28,
539–547 (2004).

8. IBM Corporation, PowerPC Operating Environment
Architecture, Book III, Version 2.01, December 2003.

9. D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz, ‘‘Architectural Support for
Copy and Tamper Resistant Software,’’ Proceedings of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
IX), November 2000, pp. 168–177.

10. D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee,
C. Johns, J. Kahle, et al., ‘‘The Design and Implementation of
a First-Generation Cell Processor,’’ IEEE International Solid-
State Circuits Symposium, February 2005, pp. 184–185.

11. B. Flachs, S. Asano, S. H. Dhong, H. P. Hofstee, G. Gervais,
R. Kim, T. Le, et al., ‘‘The Microarchitecture of the Streaming
Processor for a Cell Processor,’’ IEEE International Solid-
State Circuits Symposium, February 2005, pp. 134–135.

12. IBM Corporation, Cell Broadband Engine Architecture,
October 3, 2006; see http://www-128.ibm.com/developerworks/
power/cell/docs_documentation.html.

Received October 18, 2006; accepted for publication

Kanna Shimizu IBM Systems and Technology Group,
11501 Burnet Road, Austin, Texas 78758 (kannas@us.ibm.com).
Dr. Shimizu is the Cell/B.E. Processor and Systems Security
Architect. She currently leads the development of security software
architecture on Cell/B.E. processor platforms and consults on
future processor security architectures. She received a Ph.D. degree
in electrical engineering from Stanford University, an M.S. degree
in computer science from the University of Oxford, and a B.S.
degree in electrical engineering from the California Institute of
Technology.

H. Peter Hofstee IBM Systems and Technology Group,
STI Design Center, 11400 Burnet Road, Austin, Texas 78758
(hofstee@us.ibm.com). Dr. Hofstee received his doctorandus
degree in theoretical physics from the Rijks Universiteit
Groningen, The Netherlands, in 1988, and his M.S. and Ph.D.
degrees in computer science from the California Institute of
Technology in 1991 and 1994, respectively. After two years on the
faculty at Caltech, in 1996 he joined the IBM Austin Research
Laboratory, where he participated in the design of two 1-GHz
PowerPC prototypes, focusing on microarchitecture, logic design,
and chip integration. In 2000 he helped start the Sony–Toshiba–
IBM (STI) Design Center to design a next generation of processors
for the broadband era, the Cell/B.E. processor. Dr. Hofstee is a
member of the CBEA team and the Chief Architect of the
synergistic processor in the Cell/B.E. processor. He was elected to
the IBM Academy of Technology in 2004.

John S. Liberty IBM Systems and Technology Group,
11501 Burnet Road, Austin, Texas 78758. Mr. Liberty received B.S.
and M.S. degrees in electrical engineering from North Carolina
State University. He is an Advisory Engineer in the STI Design
Center, responsible for helping architect and develop the Cell/B.E.
processor. His main focus within the Cell/B.E. processor is the
SPU SIMD processor. He was a leader in designing the SPU
channel interface and the SPU inherent security architecture.
Before working on the Cell/B.E. processor, he was a designer
working on graphic processing units. Mr. Liberty holds four
patents, with 12 patents pending; he has co-authored three
technical articles.

K. SHIMIZU ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

528

March 29, 2007; Internet publication August 8, 2007

