CellSs: Making 1., porz
it easier to d ML. Sadi

program the Cell
Broadband
Engine
processor

With the appearance of new multicore processor architectures,
there is a need for new programming paradigms, especially for
heterogeneous devices such as the Cell Broadband Engine™
(Cell|B.E.) processor. CellSs is a programming model that
addresses the automatic exploitation of functional parallelism from
a sequential application with annotations. The focus is on the
flexibility and simplicity of the programming model. Although the
concept and programming model are general enough to be extended
to other devices, its current implementation has been tailored to the
Cell/B.E. device. This paper presents an overview of CellSs and a
newly implemented scheduling algorithm. An analysis of the
results—both performance measures and a detailed analysis with

performance analysis tools

was performed and is presented here.

Introduction and motivation
To design each generation of processors with higher
performance than the last is becoming increasingly
difficult because of the technological limitations imposed
by their power consumption and heat generation. The
current industry roadmap is based on multicore designs,
that is, chips with multiple processors [1]. Each of the
cores in these chips can offer less performance than the
current single-core processors, but together they form a
high-performing and energy-efficient device. Several
examples are on the market: the AMD Opteron** and
Athlon** processors; from Intel the dual-core
P4 Pentium™* D core codenamed Smithfield, the
forthcoming dual-core Itanium** processor codenamed
Montecito, and the quadcore processor codenamed
Kentsfield; and the IBM POWER4*, POWERS5*, and
POWERG6™* processors. These are examples of
homogeneous multicore processors. However, there are
also examples of heterogeneous multicore processors,
such as ClearSpeed™* accelerator systems and the Ageia
PhysX** physics processing unit.

Furthermore, Intel recently announced the design of a
research prototype with 80 core processors and a capacity

of more than a trillion flops that uses less electricity than
a modern desktop chip. The chip is modularly designed,
and each tile has its own router built into the core,
creating a network on a chip.

The challenge now facing programmers is this:
Applications must be ported to these new multicore
architectures so that they can make use of threads and
take advantage of all the possibilities offered by these
devices. According to a recent Berkeley report [2], the
current programming methodologies can be used with
chips with two to eight cores, but not for systems with
more than 16 or 32 processors per chip. Also in this
report, the authors set a target of 1,000 cores per chip and
reference a set of 13 dwarfs (a dwarf is an algorithmic
method that captures a pattern of computation and
communication) as benchmarks to be used to design and
evaluate parallel programming models and architectures.
Current programming methodologies should be shifted
toward a more human-centric point of view to maximize
programmer productivity, and the programming models
should be independent of the processor count. A wide
range of data types should be supported, as well as task-,
word-, and bit-level parallelism.

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

J. M. PEREZ ET AL.

593

594

The first-generation Cell Broadband Engine’
(Cell/B.E.) processor [3] is composed of a 64-bit
multithreaded IBM PowerPC* processor element (PPE)
and eight synergistic processor elements (SPEs) connected
by an internal high-bandwidth element interconnect bus
(EIB). The PPE has two levels of on-chip cache and
supports vector multimedia extensions (VMX') to
accelerate multimedia applications by using VMX
single-instruction multiple-data (SIMD) units. The eight
SPEs in a Cell/B.E. device are processors designed to
accelerate media and streaming workloads. There are two
important problems that the programmer is faced with
when using the Cell/B.E. device: First, the SPE local
memory is small (256 KB) and is not coherent with the
PPE main memory. Each time a computation is to be
executed in an SPE, the data must be transferred from
main memory to the SPE local memory through a direct
memory access (DMA) transfer. Second, the maximum
performance of an SPE is obtained with vectorized
code using single-precision floating-point (float) data.

CellSs [4] has been recently proposed as a programming
model for multicore processors, and its current
implementation is focused on the Cell/B.E. device. The
programming model is based on simple annotations to a
sequential code. The annotations identify independent
parts of the code (fasks) without collateral effects (only
local variables and parameters are accessed). A source-to-
source compiler is used to generate the code for both the
PPE and SPEs. At runtime, the system will try to
concurrently execute tasks in different SPEs without data
dependencies among them. To meet this objective, at
runtime the system builds and schedules a task-
dependency graph. Also, all data transfers between main
memory and SPE local memory are handled by the
system.

In this work we focus on offering tools that enable a
flexible and high-level programming model for the
Cell/B.E. processor while relying on other compilers [5, 6]
(or those that may appear in the future) for code
vectorization and other, lower level code optimizations.

In this paper, we provide an overview of CellSs and
describe the new scheduling strategies implemented in the
runtime library. Some experimental results and trace files
of real executions are presented, and we review some
proposals related to this work.

Overview of CellSs

CellSs is a programming model for multicore processors.
Its current implementation is tailored to the Cell/B.E.
device, but the programming model is general enough to
be applied to other multicore processors or symmetric

'WMX is a feature that enables a processor to perform vector (multiple-data)
instructions in one step.

J. M. PEREZ ET AL.

multiprocessors (SMPs).> While this section presents an
overview of CellSs, the reader is referred to [4] for more
detail.

CellSs syntax is based on code annotations, or
pragmas, inserted in the application code. The current
implementation is based on C language, and Figure 1
shows a sample application with its corresponding
pragmas (not all function code is shown, but sample
codes can be downloaded from [7]). The application
implements an LU factorization. The data structure is a
hypermatrix.® At the first level, there is a matrix A of size
NB X NB of pointers to floats. Each of these pointers
addresses a block of B X B floats or has a null value to
indicate that the block has all elements equal to zero. This
strategy allows the easy representation of sparse matrices.

There are three types of pragmas: initialization and
finalization pragmas, task pragmas, and synchronization
pragmas. The initialization and finalization pragmas
(css start and css finish) are optional and indicate
the beginning and end of the CellSs applications. If
they are not present in the user code, the compiler will
automatically insert the start pragma at the beginning of
the application and the finish pragma at the end. The task
pragmas are inserted before the code of some functions in
the application. The pragma specifies the direction of the
parameters: input, output, or input and output; and the
size for arrays or matrices. For example, in the case of
Figure 1, four functions have been annotated with a task
pragma: 1u0, bdiv, bmod, and fwd. (The code can also
have other nonannotated functions.) If we look closely at
the pragma of bmod, we see that this function has two
input parameters (row and col), which are matrices of
size B X B, and an input/output parameter (inner), also
of size B X B. (An input parameter is read only, while an
input/output parameter can be read and written by the
function.) The type of parameters (in this case, all of them
are floats) is not indicated in the pragma since the
compiler will extract this information from the function
declaration. If the parameter size was already indicated in
the function declaration, then an alternative pragma for
this same case would have been the following:

#pragma css task input(row,col) inout(inner)
void bmod(float row[BI1[B], float col[BI[B], float
inner[BILBI){

In this case, the compiler would have extracted the size
of the matrices and the type from the function
declaration. It is important to note that the annotated

2An SMP is a homogeneous multiprocessor architecture in which several processors
share a main memory.

The representation of matrices as hypermatrices is a current limitation of CellSs but
is planned to be overcome in future releases.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

functions can access only the parameters and local
variables; access to global data is not currently supported.
Another limitation of the current version is that the size
of the storage required for the parameters should not
exceed the size of the local SPE storage; if it does, the
application will fail. We plan to extend the system in the
future to be able to deal with these features.

The synchronization pragma css wait is needed to
access data that is generated by annotated functions. In
this case, the pragma css wait is called before writing the
resulting blocks in a file. The code shown in Figure 1 can
be compiled with the GNU compiler collection (GCC)
and locally tested and debugged in the programmer’s
workstation before compiling with the CellSs compiler.

The CellSs compiler is a source-to-source compiler.
Starting with code that is annotated with pragmas, it
generates two files: the main code, which is to be run in
the PPE, and the task code, to be run in the SPEs. At the
beginning of the main code, the compiler inserts the
following application calls to the CellSs runtime: calls to
initializing and finalizing functions; calls for registering
the annotated functions; and calls to a CellSs runtime
library primitive (css_addTask) wherever a call to one
of the annotated functions is found. For the task code,
an adapter function for each annotated function is
generated. These adapters are called from the task main
code, which is part of the CellSs runtime library. The files
are then compiled with the GCC or the IBM XL C
compiler to generate a single binary.

A CellSs application is called from the command line as
a regular application. The main program of the
application (the master thread) is run on the PPE. An
additional thread (the helper thread) also runs in the PPE
(Figure 2). In the initialization phase, the CellSs runtime
starts as threads in the SPEs, with the number of threads
being indicated by the user (this is defined with an
environment variable). The task program is initiated in
these threads. Whenever the main program calls to the
css_addTask primitive, the master thread adds a node in
a task graph that represents that task. It then looks for
existing data dependencies between this task and tasks
called previously. If a data dependency exists between two
tasks, an edge between these tasks is added. Additionally,
the master thread performs parameters renaming, a
technique that implies the creation of new memory
locations for output or input/output task parameters.
This renaming technique allows the removal of all WAW
(write-after-write) and WAR (write-after-read)
dependencies, greatly increasing the parallelism of the
task-dependency graphs. The helper thread is responsible
for scheduling and further managing the task-dependency
graph. Tasks that have no dependency can be scheduled.
The helper thread selects an idle SPE and assigns a task to
be run in it. The task program running in the SPE waits
for assignments from the helper thread. In addition to

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

float *A[NBI[NBI;

fipragma css task inout(diag[BILBI])
void TuO(float *diag){
int i, j, k;

for (k=0; k<BS; k++)
for (i=k+1l; i<BS; i++) {
diaglillk] = diaglillk] / diagl[k][k];
for (j=k+1; j<BS; j++)
diaglillj] -= diaglillk] * diaglkI[jI;
}
}
#pragma css task input(diag[BI[B]) inout(row[BI[BI1)
void bdiv(float *diag, float *row){

i..
J#pragma css task input(row[BI[B],col[BI[B]) inout(inner[B]1[B]
void bmod(float *row, float *col, float *inner){

i..
J#pragma css task input(diag[BJ[B]) inout(col[BI[B])
void fwd(float *diag, float *col){

i..

void
write_matrix (FILE * file
{

int rows, columns;

int i, j, 1i, jj;

, float *matrix[NBI[NB])

fprintf (file, "%d\n %d\n", NB * B, NB * B);
for (i = 0; i < NB; i++)
for (i1 = 0; ii < B; iit++)
{
for (j = 0; j < NB; j+H){
#pragma css wait on(matrix[il[j1)
for (jj =0; jj < B; jj+t)
fprintf (file, "%f ", matrix(1103I0i11033);
}
fprintf (file, "\n");
}

}

int main(int argc, char **argv) {
int 11, jj., kk;
FILE *fileC;

initialize (A);
f#pragma css start
for (kk=0; kk<NB; kk++) {
TuO(ALkkILkk]);
for (jj=kk+l; jj<NB; jj++)
if (ACkkI[3jl != NULL)
fwd(ALKkILkk], ALkkI[3j1);
for (ii=kk+l; ii<NB; ii++)
if (A[ii]Ckk] != NULL) {
bdiv (ACkkI[kk], ALii1Ckk1);
for (jj=kk+1; jj<NB; jj++)
if (ACkkI[jjl != NULL) {
if (ALi110JjI==NULL)
Alii1[jjl=allocate_clean_block();
bmod(ALiiJ1Ckk], ACkkICJjl, ALii103d1);
}
}
}
fileC = fopen (argv[3], "w");
write_matrix (fileC, A);
fclose (fileC);
J#fpragma css finish

Sparse LU code.
595

J. M. PEREZ ET AL.

596

PPE

Master thread Helper thread
CellSs PPE library
User main |/ Data dependence T E
program E Data renaming — .
: Scheduling |

SPE,
CellSs SPE library | SPE,
DMA in | SPE,
Work assignment Ly Task execution
DMA out
Synchronization

Finalizati / =
U RenamingK_y m:igllzl;wn Original task code .
ser | tble // .
data l
Tasks
Stage in/out data
Memory
Figure 2

CellSs runtime behavior.

assigning the task, the task program receives information
from the helper thread regarding the location of the
parameters needed for this task. The data transfers back
and forth between the main memory and the SPE local
memory are performed by the CellSs SPE library
transparently to the user code.

Once the task finishes, the task program notifies the
helper thread, which then updates the task-dependency
graph according to the current situation and schedules
new tasks for execution in idle SPEs. Note that the helper
thread is able to concurrently schedule several tasks in
different SPEs, thereby exploiting the inherent parallelism
of the application at the task (annotated-function) level.

Middleware for the Cell/B.E. processor

CellSs applications are composed of two types of binaries:
the main program, which runs in the PPE, and the task
program, which runs in the SPE. These binaries are
obtained by compilation of the files generated by the
CellSs compiler with the CellSs runtime libraries (CellSs
PPE library and CellSs SPE library), as described in the
overview above.

When the main program is started in the PPE (Figure 2),
the task program is launched in each of the SPEs used
for this execution. The task program waits for requests
from the main program. To execute the annotated
functions in the slave SPEs, the runtime prepares all of
the necessary data to be transferred to the SPEs, requests
the SPE to start a task, and synchronizes with the SPEs to
be notified when a task finishes.

When the scheduling policy selects a task from the ready
list and selects the SPE resources needed to execute the
task, it builds a data structure, the task control buffer, that

J. M. PEREZ ET AL.

stores all of the information required by the SPE to locate
the necessary data for the task. The task control buffer
contains information such as the task type identifier and
the location of each parameter. The task type identifier
allows the SPE to know which task to execute from among
all annotated functions. For each of the task parameters,
the task control buffer includes the initial address and size
of the parameter, as well as some flags indicating such
characteristics as type and input or output.

The request from the main program to execute a task in
a given SPE is done through a data structure located in
main memory. One entry of this structure exists for each
of the SPEs. When a task is ready for execution for a
given SPE, the main program places the request in the
corresponding entry, along with the address and size of
the task control buffer.

The behavior of the task program run in the SPE is the
following: If the task program is idle, it polls its
corresponding entry in the data structure until a task
request is detected. It then accesses the task control
buffer, which contains all of the data required for the
requested task, including data that is in the main memory
and not yet transferred to local memory and data that is
already in local memory. Once all of the necessary input
data has been transferred in, the task is executed in the
SPE by calling the annotated task through the generated
adapter. When the task is finished, the SPE program
transfers the output data to main memory.

Regarding the data alignment requirement in the SPEs,
the task program aligns all data in position in multiples of
16 bytes. The task program also synchronizes with the
main program when a task execution is finished. This
synchronization is done through a main memory position.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

The garbage collection of the task control buffers, as
with the rest of data structures, is handled by the CellSs
PPE library.

CellSs is based on the SPE threads provided with the
Cell/B.E. system libraries.

Reducing scheduling overhead

The first attempt to implement the scheduling strategy for
CellSs was based on scheduling one task to one SPE at a
time. However, this turned out to produce a lot of
overhead since the system takes a lot of time to schedule
each task. To improve the situation, the tasks are now
grouped in bundles that are scheduled to one SPE. To
group the tasks, the following heuristics are followed:

e Tasks forming a chain are grouped. A chain is defined
as a subgraph in which each task has at most one
predecessor and at most one successor. Matrix
multiplication is a typical application with such a
data-dependence graph. Furthermore, in this case the
reused data is not transferred out through the DMA
(and it is not transferred in for the next task); only the
output data generated by the last task in the bundle is
copied back to main memory. This greatly reduces the
number of data transfers for some examples. As
shown in Figure 3(a), the scheduler groups the tasks
of one chain.

e Totally independent tasks are grouped. Some
applications show a data-dependence graph with
totally independent tasks. In this case, as shown in
Figure 3(b), bundles of consecutive tasks in the ready
list are grouped.

* For more general data-dependence graph
organizations, the scheduler begins from the first task
in the ready list and tries to find a chain. However, if
this chain does not exist, it takes the next task in the
ready list and tries again to find a chain. This is
repeated until the group of tasks has a given size. For
example, Figure 3(c) shows how the scheduler first
groups the tasks.

Since all SPEs are symmetric, the assignment of tasks
to a given SPE is made according to availability and in a
rotational manner.

To reduce the execution time of a bundle of tasks,
double buffering is implemented. Figure 4 shows the
sequence of events that is followed to execute a bundle of
tasks in the SPE. In this figure, all DMA inputs and
outputs are decomposed in two parts: the time invested in
programming the transfer and the wait time until the
transfer has finished. First, the task control buffer of the
bundle of tasks is transferred in. Once this information is
available, the data needed for the first task is transferred

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

(a) ©

Sample tasks graphs: (a) tasks organized in chains; (b) totally
independent tasks; (c) general dependency.

Task 1 Task 2 Task N
in bundle in bundle in bundle
B DMA programming: O DMA O DMA
reading task programming: programming:

control buffer reading data writing data

O Waiting for DMA O Task execution

transfer

O Synchronization
with helper
thread

Double buffering in a task bundle.

in. Next, the transfer of the data needed for the second
task is programmed, and the execution of the first task is
overlapped with this second transfer. After the execution
of the first task, a check is made to determine that the
second transfer has finished and, if necessary, the DMA
out of the output data is programmed. (This step is not
needed, for example, for chains.) Then the DMA in of the
data needed for the third task is programmed. Next, the
execution of the second task is started. This is repeated
for all tasks. At the end of the execution of all of the
tasks, the DMA out of the output data of the last task in
the group is programmed, and the task program waits for
all of the DMA outs to finish. Finally, the task program
synchronizes with the helper thread to indicate that the
bundle of tasks has been executed.

Additionally, a prescheduling strategy has been
implemented to reduce the time between the execution
of task bundles. While a bundle is executed in a given
SPE, the helper thread preschedules a new bundle of tasks
to this SPE following the same scheduling strategy. It 597

J. M. PEREZ ET AL.

598

Microseconds
4.89

Number of SPEs
@
9
gl Microseconds
—— 2,022.77
TF —=— 28132
6F —a— 11747
S s = 5846
2 27.87
24T —e— 2186
[0}
3 L
2 L
l L
0]]]]
0 2 4 6 8 10
Number of SPEs
(b)

Scalability analysis of CellSs (a) with different task sizes and (b)
of matrix multiplication.

does this in such a way that when the SPE finishes the
execution of a bundle, a new bundle is ready to be
executed. Once a task has been scheduled, it is removed
from the ready list (but not from the data-dependence
graph). The scheduler will try to preschedule the
forthcoming bundle from tasks in the ready list (and their
predecessors, in the case when chains exist). The tasks are
removed from the data-dependence graph only when the
SPE indicates that they have completed execution.

Tracing

A tracing mechanism has been implemented in the CellSs
runtime; it generates postmortem trace files of the
applications that conform to Paraver [8]. (A Paraver trace
file is a collection of records ordered by time where
information about the events and states that the
application has passed through is stored.) These traces
can then be analyzed with the Paraver graphical user
interface, making it possible to do performance analysis
at different levels, such as at the task level and the thread
level. The interface also provides filtering and composing
functions that can provide different views of the

J. M. PEREZ ET AL.

application, as well as a set of modules to calculate
various statistics.

Although Paraver has its own tracing packages for
Message Passing Interface (MPI), Open Multiprocessing
(OpenMP**), and other programming models, in the
CellSs case, a tracing component has been embedded in
the CellSs runtime. The tracing component records events
as they are signaled throughout the library. For example,
it records when the main program enters or exits any
function of the CellSs library (as a css_init), it records
when an annotated function is called in the main program
(when css_registerTask is called, and therefore, a node
is added to the graph) or when a task is started or
finished. The traces obtained make it possible to analyze
the behavior of the CellSs runtime and that of the
application in general. This tracing capability can be
enabled or disabled by the user with a compilation flag.

Examples and results

To generate these results, we used the Cell/B.E. platform
available at the Barcelona Supercomputing Center—
Centro Nacional de Supercomputacion (BSC-CNS)—
composed four two-way Cell/B.E. processor—based
blades: Two are DD2.0 prototypes while the other two
are DD3.1 blades. The two prototype DD2.0 Cell/B.E.
processor—based blades run at 2.4 GHz and have a total
memory of 512 MB Rambus XDR** RAM (256 MB on
each Cell/B.E. chip); the two DD3.1 Cell/B.E. processor—
based blades run at 3.2 GHz and have a total memory of
1 GB XDR RAM (512 MB on each Cell/B.E. chip). The
system runs both for libspe 1.1 and for libspe 2.0 [9].

Scalability analysis

For scalability, we used a simple test application that
generates a given number of totally independent tasks.
The application starts with a block-matrix, each block of
64 X 64 floats, and performs a transposition of each of
the blocks. The task submitted to the SPE performs this
individual transposition of the blocks. To test different
sizes of tasks, we artificially increased the size by
performing different numbers of iterations. The example
has been run with task sizes, measured in microseconds, of
4.89,9.71,19.42,24.23,48.40,96.80, and 120.90. Figure 5(a)
shows the results obtained. As can be observed, the system
starts to scale at task sizes of 48.40 us, at least until eight
SPEs, and almost perfectly at task sizes of 96.80 and
120.90 ps. The baseline in the speed-up calculation is the
program executing with only one SPE.

Performance results of given examples

This section presents results for some examples. The first
example is matrix multiplication. Again, the application
operates with block-matrices, each block of 64 X 64 floats,
and for the results given in this section, the matrix is of

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

16 X 16 blocks (the final matrix is 1,024 X 1,024 floats).
We have tested the system with different versions of this
application, from a scalar version (which will be the initial
try for a nonexpert programmer) to one using the
extremely well vectorized version given in the IBM
Software Development Kit (SDK) [9]. In between, other
simpler vectorization cases are considered. The range of
duration of the block-multiply run in the SPEs goes from
2,022.77 us in the worst case to 21.86 us for the SDK case.
Figure 5(b) shows these results. It is observed how all
cases scale quite well with up to four SPEs, but with
higher numbers of SPEs, it no longer scales for the two
cases with faster tasks.

Additionally, Table 1 shows the absolute performance
values (in Gflops) for some of the cases in this example.
With the current version, the higher performance is
obtained with the kernel of the SDK and four SPEs
(66.36 Gflops). The reason for this behavior becomes
clear by analyzing trace files for four and eight SPEs: The
master thread is busy adding tasks to the task-
dependency graph most of its time (88% of the time). This
factor and the task removal (in the helper thread) are the
current bottlenecks of the system. This part of the code is
especially complex: It requires the synchronization
between the master and helper threads that access the
same data structures and the different actions that have to
be performed in a certain sequence. Currently, we are
working on more efficient data structures that can
alleviate this problem.

Sparse LU is another example application that has
been tested. It presents a more challenging problem to the
scheduler than the previous applications, since the task
graph of the application is much more complex.

Figure 6(a) shows the corresponding task graph for a
small matrix size of 8 X 8 blocks. Different colors
represent the different task types that are called in this
application. Figure 6(b) shows the speed up obtained for
this example with different matrix sizes (16 X 16, 32 X 32,
and 64 X 64 blocks, with a block size of 64 X 64 floats for
all cases). It is observed that the system is able to schedule
the problem correctly for big matrix sizes.

Performance analysis

This section presents an introduction of the type of
performance analysis that can be done with the execution
trace files extracted by CellSs and Paraver.

For the matrix multiplication example, the elements of
the matrices are blocks of 64 X 64 single-precision floats,
while the matrices are of 16 X 16 blocks. This schema
generates 4,096 tasks, each task consisting of a 64 X 64
matrix multiplication. The 4,096 tasks are organized in
chains of 16 dependent tasks, in which each task reads the
result of the previous one. The CellSs scheduler is able to
identify this graph organization and is able to group parts
of these chains into bundles. Figure 7(a) shows the first

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

9
g I
7|k
6 |
g5l
]
3
2 4t
)
3 L
2 |
1k
O 1 1 1 1
0 2 4 6 8 10
Number of SPUs
(b)

Sparse LU example: (a) task-dependence graph (8 X 8 matrix
case); (b) speed up for the sparse LU case for different matrices.

Table 1 Performance results for the matrix multiplication

(Gflops).
No. of SPEs Task size (us)

11747 58.46 27.87 21.86
1 4.29 8.16 19.46 20.48
2 8.34 16.27 37.24 39.24
4 16.46 30.08 63.38 66.36
6 21.28 44.02 58.74 59.81
8 30.81 48.32 59.50 58.88

window shown by Paraver when opening a trace file. The
timeline is the x-axis, and each of the rows in the y-axis
represents a thread of the application. The master and
helper threads, shown at the top, are run in the PPE. Each
of the remaining threads runs in a separate SPE. The

J. M. PEREZ ET AL.

599

600

win_1 @ matmul_db-0001.prv

Phase & matmul_db-0001.prv

3 CHLF i} 1L m 3
TR TR T IR T I T I v T n (T e T T
e e e e S el snacats? SESEeIoe]

AT T ST T T T (OO OO s T
T T T T T TR OO T
B e T e e e I e e

ETTETE T AT AT AT T TETT AT
s N o

(b)

Paraver views: (a) state “as is”; (b) execution phases.

small green flags (vertical hash marks on the horizontal
green lines) represent events. The yellow lines represent
communications between the SPE threads and the helper
thread. The blue color in the threads indicates activity.

With Paraver, the user can configure the type of view of
the trace. For example, if a filter is used for a set of events
and a semantic value is given to the periods between each
event, the view shown in Figure 7(b) is obtained. The
different colors represent different phases of each thread
type. In the SPE threads, yellow indicates a DMA
transfer and brown indicates when the SPE is executing
the task. The figure shows very clearly how the runtime is
able to schedule bundles of several tasks to be executed in
the same SPE. Also, the shorter yellow states are due to
the fact that the transfers are overlapped with the
computations. From this view, the user can also capture
the amount of time invested in each of the phases. The
format in which data is presented to the user by Paraver is
shown in Table 2. In this case, for example, the SPEs are
busy almost all of the time executing the tasks (~92%
of the time); the master thread invests most of its time
(~70%) in adding new tasks; and the helper thread is
simply waiting for SPE thread events to conclude for
~70% of the time.

Other types of information that can be extracted using
Paraver include the following: the number of bytes
transferred between main memory and the SPEs, the
bandwidths obtained in the transfers, the type of tasks
executed, and the identifier of the task, which indicates
the order of generation and helps in analyzing task
scheduling.

Related work

The IBM Research prototype Cell/B.E. Architecture
OpenMP compiler [5] implements techniques for

J. M. PEREZ ET AL.

optimizing the execution of scalar code in SIMD units,
subword optimization, and other techniques. For
example, it implements autoSIM Dization, which is the
process of extracting SIMD parallelism from scalar loops.
This feature generates vector instructions from scalar
source code for the SPEs and VMX units of the PPE. It is
also able to overlap data transfers with computation to
enable the SPEs to process data that exceeds the local
memory capacity.

Besides the low-level optimizations, this compiler
enables the OpenMP programming model [10]. This
approach provides programmers with the abstraction of a
single shared-memory address space. Using OpenMP
directives, programmers can specify regions of code that
can be executed in parallel. From a single-body program,
the compiler duplicates the necessary code, adds the
required additional code to manage the coordination of
the parallelization, and generates the corresponding
binaries for the PPE and SPE cores. The PPE uses
asynchronous signals to inform each SPE that work is
available or that it should terminate. The SPEs use a
mailbox to update the PPE on the status of their
execution. The compiler implements a software cache
mechanism to allow reuse of temporary buffers in the
local memory, and therefore, there is no need for DMA
transfers for all accesses to shared memory. Other
features, such as code partitioning, have been
implemented to allow applications that do not fit in the
local SPE memory.

While the IBM approach is focused on OpenMP, we
see CellSs as an alternative programming model to
OpenMP. It is our view that CellSs is likely more flexible
and can be used for a different range of applications.
By contrast, OpenMP is primarily focused on the
parallelization of fine-grain numerical loops. CellSs does,
however, rely on the IBM compiler (or others that offer
similar features) for autoSIMDization, the automatic
vectorization of the SPE code. CellSs can also rely
on GCC, for which similar autovectorization features
are being implemented by a research group at the
IBM Haifa Laboratory [6].

In the IBM Roadrunner system [11], the AMD
Opteron processors are host elements and the Cell/B.E.
blades are accelerator elements for the Opteron hosts. At
the level of the Cell/B.E. blades, the PPE processors are
hosts and the SPEs are accelerators.

The Accelerated Library Framework (ALF) [12]
application programming interface (API) provides a set
of functions to help programmers solve data-parallel
problems on a hybrid system. ALF supports the single-
program multiple-data (SPMD) programming style with
a single program running on all accelerator elements at
one time. ALF offers programmers an interface to easily
partition data across a set of parallel processes without
having to write architecturally dependent code. Its

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

Table 2 Data presented in Paraver view of the time invested in each phase by each thread.

Master Helper SPE SPE SPE SPE
(%) thread thread 1 thread 2 thread 3 thread 4
(%) (%) (%) (%) (%)
Return to user code 4.73 — — — —
Adding task 69.51 — — — —
Schedule — 7.36 — — —
Prepare bundle — 2.56 — — —
Prepare bundle submission — 0.76 — — —
Submit bundle — 1.97 — — —
Attend task finished — 4.09 — — —
Remove tasks 25.76 12.51 — — —
Low-level wait for events — 70.76 — — —
Waiting for tasks — — 4.20 4.07 3.94 4.03
Getting task description — — 0.09 0.08 0.09 0.09
Task stage in — — 0.90 0.90 0.88 0.88
Task arguments alignment — — 0.27 0.25 0.27 0.28
Task execution — — 91.31 91.33 91.30 91.30
Task stage out — — 0.43 0.42 0.44 0.44
Task finished notification — — 0.05 0.05 0.05 0.05
Wait for DMA — — 2.76 2.89 3.03 2.94
Total 100.00 100.00 100.00 100.00 100.00 100.00
Average 33.33 14.29 12.50 12.50 12.50 12.50
Maximum 69.51 70.76 91.31 91.33 91.30 91.30
Minimum 4.73 0.76 0.05 0.05 0.05 0.05
Standard deviation 26.98 23.35 29.82 29.83 29.81 29.82
Coefficient of variation 0.81 1.63 2.39 2.39 2.39 2.39

features include data transfer management, parallel task
management, double buffering, and data partitioning.
The programming model is based on work queues. In
ALF, a task is a function that receives a parameters list
and a work packet identifier. The main program opens
the parallelism by creating several work packets for a task
and then waits until all of the work packets have finished
(with a barrier). ALF is currently distributed with the
IBM SDK 2.0. From our point of view, ALF is at a lower
level than CellSs, and there is a possibility that CellSs
based on ALF can be implemented.

Some similarities to CellSs can be found with thread-
level speculation, especially as in the work proposed by
Zhai et al. [13]. This work tries to solve the performance
limitation introduced by the forwarding of scalar values
between threads. In this approach, the compiler inserts
explicit synchronization primitives (wait and signal) to

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

communicate scalars that are used by multiple threads.
These synchronization points define dependencies among
the threads similar to the data-dependency analysis
performed by CellSs. The difference is that in the former
approach, the problem is tackled at compile time, and in
CellSs, at execution time.

Sequoia [14] is a programming language based on C++
Similar to CellSs, it is based on the decomposition of
programs into tasks. In this case, one of the differences is
that in Sequoia, tasks can call themselves recursively.
While the top level (inner task implementation)
recursively decomposes the problem into smaller tasks,
the lower level (leaf task implementation) implements the
SPE code itself. Whether a task call is bound to the inner
task or the leaf task is determined by the runtime
according to the user-specified task-mapping
specification.

J. M. PEREZ ET AL.

601

602

Programs written in Sequoia contain the SPE code and
the PPE code. The language has a construct that allows
specifying loops with independent iterations. It also has a
reduction construct and a sequential loop construct.
These constructs are handled by the runtime library and
are the only elements in Sequoia that determine the task-
level parallelism. They also serve as barriers, which, in
practice, makes them similar to basic parallel constructs
from OpenMP without the nowait clause, and they are
not very well suited for complex irregular algorithms.
Similar to CellSs, the Sequoia runtime hides data transfer
latency by overlapping computation and data transfers.

RapidMind [15] is another programming model for the
Cell/B.E. processor. It is based on a C++ template library
and a runtime library that performs dynamic code
generation. The template library allows writing and
invoking SPE code from within the PPE code. All SPE
code is written using the template library.

The RapidMind C++ template library provides a set of
data types, control flow macros, reduction operations,
and common functions that allow the runtime library to
capture a representation of the SPE code (retained code).
The library data types have been designed to easily
express SIMD operations and to pass those operations to
the runtime library. The runtime in turn extracts
parallelism from those operations by vectorizing the code
and by splitting array and vector calculations on the
different SPEs. It also has an optimizer that can perform
loop invariant removal. Similar to CellSs, RapidMind
assigns work to the SPEs dynamically and hides data
transfer latency by overlapping computation and data
transfers. Although RapidMind provides a good
framework for programming the Cell/B.E. processor,
CellSs offers a higher level and more flexible
programming model.

Ohara et al. [16] present a new programming model,
MPI microtask, based on the standard MPI
programming model for distributed-memory parallel
machines. In this model, programmers do not need to
manage the SPE local store as long as they partition their
application into a collection of microtasks that fit into the
local store. Furthermore, preprocessor and runtime in
this microtask system optimize the execution of the
microtasks by exploiting explicit communications in the
MPI model. There is a prototype available that includes a
novel static scheduler for such optimizations. Initial
experiments show encouraging results.

At the architectural level, the Cell/B.E. processor can
be compared with SMPs. However, in the latter
architecture, the threads share the memory space, and
therefore, data can be easily shared, although a
synchronization mechanism should exist to avoid
conflicts. The Cell/B.E. SPEs have local memory, and
data must be copied there by DMA before performing

J. M. PEREZ ET AL.

any calculation with them. This is one of the fundamental
characteristics of the Cell/B.E. Architecture that makes
its programming a challenge.

Another architecture with similarities to that of the
Cell/B.E. is one that uses graphics processor units
(GPUs). The latest series of this type of hardware
presents a great potential for parallelism, with up to six
vertex processors and up to 16 pixel processors. Although
these processors are initially very specialized, because of
their excellent performance/cost ratio, different
approaches to use them in applications beyond their
specialized graphical use have been presented [13, 17, 18].
GPUs can be programmed by means of C for Graphics
(Cg) [19], a C-like high-level language. However, to be
able to use the GPUs for general-purpose computation,
there are some requirements that must be met, for
example, the fact that the data structure must be arranged
in arrays in order to be stored in the specific structures
of the GPU. This is easy for applications dealing with
matrices or arrays, but it is more difficult to accommodate
data structures such as binary trees and to accommodate
general programs that use pointers. Another limitation
is that the computation may be inefficient in cases in
which the program control flow is complex. To our
knowledge, there are no approaches to hide these
complexities from the programmers with environments
equivalent to CellSs.

Conclusions and future work

This paper presents CellSs, an alternative to traditional
parallel programming models. The objective is to be able
to offer a simple and flexible programming model for
parallel and heterogeneous architectures. Following the
CellSs paradigm, input applications can be written as
sequential programs. This paradigm is currently
customized for the Cell/B.E. Architecture. The runtime
builds a task-dependency graph of the calls to functions
that are annotated in the user code and schedules these
calls in the SPEs, handling all data transfers from and to
the SPEs. In addition, a locality-aware scheduling
algorithm has been implemented to reduce the amount of
data that is transferred to and from the SPEs.

Although CellSs has some similarities with OpenMP
because of the fact that both use pragmas to annotate the
code, the semantics behind CellSs are quite different. In
OpenMP, the programmer explicitly indicates what is
parallel and what is not, while in CellSs, the programmer
identifies pieces of code that are independent of one
another. Thus, by annotating a function, we are not
saying that it can be run in parallel: The system will be
able to find the inherent parallelism of the application by
building a data-dependency graph of the actual calls to
the annotated functions. CellSs provides programmers

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

with a more flexible programming model with an adaptive
parallelism level depending on the application input data.
OpenMP is more appropriate for applications with
parallelism at the loop level, while CellSs fits better for
applications with parallelism at the function level.
However, given the current 3.0 extensions of OpenMP,
which define the concept of task, both programming
models can converge into one in the future. We plan to
perform the integration of OpenMP and CellSs and
develop other extensions.

The initial results are promising, but there is a lot of
work left, for example, the development of new
annotations to be taken into account by the source-to-
source compiler, improvement in the scheduling and data
handling, and in general, improvement of the runtime
performance.

Although the approach presented in this paper is
focused on the Cell/B.E. Architecture, we consider CellSs
to be generic enough for use (after tailoring the
middleware) with other multicore architectures.

Acknowledgments

This work has been partially supported by the Comision
Interministerial de Ciencia y Tecnologia (CICYT) under
contract TIN2004-07739-CO2-01 and by the BSC-IBM
Master R&D Collaboration agreement.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Advanced
Micro Devices, Inc., Intel Corporation, ClearSpeed Technology
plc, AGEIA Technologies, Inc., OpenMP Architecture Review
Board, or Rambus, Inc., in the United States, other countries, or
both.

fCell Broadband Engine is a trademark of Sony Computer
Entertainment, Inc., in the United States, other countries, or both.

References

1. D. Geer, “Chip Makers Turn to Multicore Processors,”
Computer 38, No. 5, 11-13 (2005).

2. K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.
Husbands, K. Keutzer, D. A. Patterson, et al., “The
Landscape of Parallel Computing Research: A View from
Berkeley,” Technical Report EECS-2006-183, University of
California at Berkeley, 2006.

3. D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C.
Johns, J. Kahle, et al., “The Design and Implementation of a
First-Generation Cell Processor,” Proceedings of the IEEE
International Solid-State Circuits Conference, San Francisco,
CA, 2005, pp. 184-185.

4. P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “CellSs:
A Programming Model for the Cell BE Architecture,”
Proceedings of the ACM|IEEE SC2006 Conference on High
Performance Networking and Computing, Tampa, FL,

2006, p. 86.

5. A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T.
Chen, P. H. Oden, D. A. Prener, et al., “Using Advanced
Compiler Technology to Exploit the Performance of the Cell

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

Broadband Engine™ Architecture,” IBM Systems J. 45, No. 1,
59-84 (20006).

6. Cell Broadband Engine Technology, GNU GCC Tools
Upgraded to Version 4.1.1, IBM alphaWorks; see hztp://
www.alphaworks.ibm.com/topics|cell.

7. Code Example, Barcelona Supercomputing Center, 2007; see
http:|lwww.bsc.es|plantillaH .php?cat_id=183.

8. J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris,
“DiP: A Parallel Program Development Environment,”
Proceedings of the 2nd International Euro-Par Conference on
Parallel Processing, Lyon, France, 1996, pp. 665-674.

9. IBM Corporation, IBM Software Development Kit (SDK)
IBM Cell Broadband Engine Software Development Kit; see
http:|/www.alphaworks.ibm.com/tech/cellsw.

10. The Community of OpenMP Users, Researchers, Tool
Developers, and Providers; see http://www.compunity.org].

11. IBM Corporation (September 6, 2006). IBM to Build World’s
First Cell Broadband Engine Based Supercomputer. Press
release; see hittp://www-03.ibm.com|press/us/en/pressrelease/
20210.wss.

12. IBM Corporation, Software Development Kit 2.1
Accelerated Library Framework Programmer’s Guide and API
Reference, Version 1.1; see http:|/df.unife.itu/belletti/sdkdocs|
ALFProgrammersGuide AndAPIRef vi.1.pdf.

13. A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry,
“Compiler Optimization of Scalar Value Communication
Between Speculative Threads,” Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose,
CA, 2002, pp. 171-183.

14. K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R
Horn, L. Leem, J. Y. Park, et al., “Sequoia: Programming the
Memory Hierarchy,” Proceedings of the ACM/IEEE
Conference on Supercomputing, Tampa, FL, 2006, p. 4.

15. RapidMind, Inc., “Cell BE Porting and Tuning with
RapidMind: A Case Study,” white paper; see htip://
www.rapidmind.net/case-cell.php.

16. M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T.
Nakatani, “MPI Microtask for Programming the Cell
Broadband Engine™ Processor,” IBM Systems J. 45, No. 1,
85-102 (2000).

17. T. Yang and A. Gerasoulis, “A Fast Static Scheduling
Algorithm for DAGs on an Unbounded Number of
Processors,” Proceedings of the ACM/IEEE Conference on
Supercomputing, Albuquerque, NM, 1991, pp. 633-642.

18. N. Galoppo, N. K. Govindaraju, M. Henson, and D.
Manocha, “LU-GPU: Efficient Algorithms for Solving Dense
Linear Systems on Graphics Hardware,” Proceedings of the
ACM/IEEE Conference on Supercomputing, Seattle, WA,
2005, p. 3.

19. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU
Cluster for High Performance Computing,” Proceedings of
ACM/IEEE Conference on Supercomputing, Pittsburgh, PA,
2004, p. 47.

Received March 14, 2007; accepted for publication
March 28, 2007; Internet publication August 17, 2007

J. M. PEREZ ET AL.

603

604

Josep M. Perez Barcelona Supercomputing Center, Jordi
Girona 29, 08034 Barcelona, Spain (josep.m.perez@bsc.es).

Mr. Perez is a Researcher at the Barcelona Supercomputing
Center. He holds an M.S. degree from the Technical University of
Catalonia (Universitat Politécnica de Catalunya, or UPC) in
Barcelona, where he is a doctoral candidate in computer science
under the guidance of Dr. Rosa M. Badia. Mr. Perez’s research
interests include Grid programming models and multicore
programming models.

Pieter Bellens Barcelona Supercomputing Center, Jordi Girona
29, 08034 Barcelona, Spain (pieter.bellens@bsc.es). Mr. Bellens is a
Researcher at the Barcelona Supercomputing Center. He holds
computer science and engineering degrees from the Katholicke
Universiteit Leuven, Belgium, and is a doctoral candidate in
computer science at the Technical University of Catalonia (UPC),
under the guidance of Dr. Rosa M. Badia and Dr. Jests Labarta.
Mr. Bellens’ research interests include parallel computing, the
Cell/B.E. processor, and scheduling.

Rosa M. Badia Barcelona Supercomputing Center, Jordi
Girona 29, 08034 Barcelona, Spain (rosa.m.badia@bsc.es).

Dr. Badia is the Manager of Grid computing and clusters at the
Barcelona Supercomputing Center. She is also an Associate
Professor at the Computer Architecture department of the
Technical University of Catalonia (UPC). She received B.S. and
Ph.D. degrees in computer science from the Technical University of
Catalonia in 1989 and 1994, respectively. Since 1989, she has been
lecturing at the UPC on computer organization and architecture
and very-large-scale integration (VLSI) design, in both
undergraduate and graduate programs. Her current research
interests include performance prediction and modeling of message-
passing interface programs, programming models for the Grid,
resource management in the Grid, and programming models for
multicore processors. Dr. Badia has participated in several
international research projects.

Jesus Labarta Barcelona Supercomputing Center, Jordi
Girona 29, 08034 Barcelona, Spain (jesus.labarta@bsc.es).
Professor Labarta is the Director of high-performance computing
research at the Barcelona Supercomputing Center. He has been a
full professor at the Computer Architecture department at the
Technical University of Catalonia (UPC) since 1990. He has been
lecturing on computer architecture, operating systems, computer
networks, and performance evaluation since 1981. From 1995 to
2004 he was Director of Centro Europeo de Paralelismo de
Barcelona (CEPBA) at the UPC. His research interest has been
centered on parallel computing, covering areas from
multiprocessor architecture, memory hierarchy, parallelizing
compilers, operating systems, parallelization of numerical kernels,
metacomputing tools, and performance analysis and prediction
tools. Dr. Labarta has led the technical work of 15 industrial
research and development projects at UPC.

J. M. PEREZ ET AL.

IBM J. RES. & DEV. VOL. 51

NO. 5 SEPTEMBER 2007

