
CellSs: Making
it easier to
program the Cell
Broadband
Engine
processor

J. M. Perez
P. Bellens

R. M. Badia
J. Labarta

With the appearance of new multicore processor architectures,
there is a need for new programming paradigms, especially for
heterogeneous devices such as the Cell Broadband Enginee
(Cell/B.E.) processor. CellSs is a programming model that
addresses the automatic exploitation of functional parallelism from
a sequential application with annotations. The focus is on the
flexibility and simplicity of the programming model. Although the
concept and programming model are general enough to be extended
to other devices, its current implementation has been tailored to the
Cell/B.E. device. This paper presents an overview of CellSs and a
newly implemented scheduling algorithm. An analysis of the
results—both performance measures and a detailed analysis with
performance analysis tools—was performed and is presented here.

Introduction and motivation

To design each generation of processors with higher

performance than the last is becoming increasingly

difficult because of the technological limitations imposed

by their power consumption and heat generation. The

current industry roadmap is based on multicore designs,

that is, chips with multiple processors [1]. Each of the

cores in these chips can offer less performance than the

current single-core processors, but together they form a

high-performing and energy-efficient device. Several

examples are on the market: the AMD Opteron** and

Athlon** processors; from Intel the dual-core

P4 Pentium** D core codenamed Smithfield, the

forthcoming dual-core Itanium** processor codenamed

Montecito, and the quadcore processor codenamed

Kentsfield; and the IBM POWER4*, POWER5*, and

POWER6* processors. These are examples of

homogeneous multicore processors. However, there are

also examples of heterogeneous multicore processors,

such as ClearSpeed** accelerator systems and the Ageia

PhysX** physics processing unit.

Furthermore, Intel recently announced the design of a

research prototype with 80 core processors and a capacity

of more than a trillion flops that uses less electricity than

a modern desktop chip. The chip is modularly designed,

and each tile has its own router built into the core,

creating a network on a chip.

The challenge now facing programmers is this:

Applications must be ported to these new multicore

architectures so that they can make use of threads and

take advantage of all the possibilities offered by these

devices. According to a recent Berkeley report [2], the

current programming methodologies can be used with

chips with two to eight cores, but not for systems with

more than 16 or 32 processors per chip. Also in this

report, the authors set a target of 1,000 cores per chip and

reference a set of 13 dwarfs (a dwarf is an algorithmic

method that captures a pattern of computation and

communication) as benchmarks to be used to design and

evaluate parallel programming models and architectures.

Current programming methodologies should be shifted

toward a more human-centric point of view to maximize

programmer productivity, and the programming models

should be independent of the processor count. A wide

range of data types should be supported, as well as task-,

word-, and bit-level parallelism.

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 J. M. PEREZ ET AL.

593

0018-8646/07/$5.00 ª 2007 IBM

The first-generation Cell Broadband Engine�

(Cell/B.E.) processor [3] is composed of a 64-bit

multithreaded IBM PowerPC* processor element (PPE)

and eight synergistic processor elements (SPEs) connected

by an internal high-bandwidth element interconnect bus

(EIB). The PPE has two levels of on-chip cache and

supports vector multimedia extensions (VMX1) to

accelerate multimedia applications by using VMX

single-instruction multiple-data (SIMD) units. The eight

SPEs in a Cell/B.E. device are processors designed to

accelerate media and streaming workloads. There are two

important problems that the programmer is faced with

when using the Cell/B.E. device: First, the SPE local

memory is small (256 KB) and is not coherent with the

PPE main memory. Each time a computation is to be

executed in an SPE, the data must be transferred from

main memory to the SPE local memory through a direct

memory access (DMA) transfer. Second, the maximum

performance of an SPE is obtained with vectorized

code using single-precision floating-point (float) data.

CellSs [4] has been recently proposed as a programming

model for multicore processors, and its current

implementation is focused on the Cell/B.E. device. The

programming model is based on simple annotations to a

sequential code. The annotations identify independent

parts of the code (tasks) without collateral effects (only

local variables and parameters are accessed). A source-to-

source compiler is used to generate the code for both the

PPE and SPEs. At runtime, the system will try to

concurrently execute tasks in different SPEs without data

dependencies among them. To meet this objective, at

runtime the system builds and schedules a task-

dependency graph. Also, all data transfers between main

memory and SPE local memory are handled by the

system.

In this work we focus on offering tools that enable a

flexible and high-level programming model for the

Cell/B.E. processor while relying on other compilers [5, 6]

(or those that may appear in the future) for code

vectorization and other, lower level code optimizations.

In this paper, we provide an overview of CellSs and

describe the new scheduling strategies implemented in the

runtime library. Some experimental results and trace files

of real executions are presented, and we review some

proposals related to this work.

Overview of CellSs

CellSs is a programming model for multicore processors.

Its current implementation is tailored to the Cell/B.E.

device, but the programming model is general enough to

be applied to other multicore processors or symmetric

multiprocessors (SMPs).2 While this section presents an

overview of CellSs, the reader is referred to [4] for more

detail.

CellSs syntax is based on code annotations, or

pragmas, inserted in the application code. The current

implementation is based on C language, and Figure 1

shows a sample application with its corresponding

pragmas (not all function code is shown, but sample

codes can be downloaded from [7]). The application

implements an LU factorization. The data structure is a

hypermatrix.3 At the first level, there is a matrix A of size

NB 3 NB of pointers to floats. Each of these pointers

addresses a block of B 3 B floats or has a null value to

indicate that the block has all elements equal to zero. This

strategy allows the easy representation of sparse matrices.

There are three types of pragmas: initialization and

finalization pragmas, task pragmas, and synchronization

pragmas. The initialization and finalization pragmas

(css start and css finish) are optional and indicate

the beginning and end of the CellSs applications. If

they are not present in the user code, the compiler will

automatically insert the start pragma at the beginning of

the application and the finish pragma at the end. The task

pragmas are inserted before the code of some functions in

the application. The pragma specifies the direction of the

parameters: input, output, or input and output; and the

size for arrays or matrices. For example, in the case of

Figure 1, four functions have been annotated with a task

pragma: lu0, bdiv, bmod, and fwd. (The code can also

have other nonannotated functions.) If we look closely at

the pragma of bmod, we see that this function has two

input parameters (row and col), which are matrices of

size B 3 B, and an input/output parameter (inner), also

of size B 3 B. (An input parameter is read only, while an

input/output parameter can be read and written by the

function.) The type of parameters (in this case, all of them

are floats) is not indicated in the pragma since the

compiler will extract this information from the function

declaration. If the parameter size was already indicated in

the function declaration, then an alternative pragma for

this same case would have been the following:

#pragma css task input(row,col) inout(inner)

void bmod(float row[B][B], float col[B][B], float

inner[B][B]){

...

}

In this case, the compiler would have extracted the size

of the matrices and the type from the function

declaration. It is important to note that the annotated

1VMX is a feature that enables a processor to perform vector (multiple-data)
instructions in one step.

2An SMP is a homogeneous multiprocessor architecture in which several processors
share a main memory.
3The representation of matrices as hypermatrices is a current limitation of CellSs but
is planned to be overcome in future releases.

J. M. PEREZ ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

594

functions can access only the parameters and local

variables; access to global data is not currently supported.

Another limitation of the current version is that the size

of the storage required for the parameters should not

exceed the size of the local SPE storage; if it does, the

application will fail. We plan to extend the system in the

future to be able to deal with these features.

The synchronization pragma css wait is needed to

access data that is generated by annotated functions. In

this case, the pragma css wait is called before writing the

resulting blocks in a file. The code shown in Figure 1 can

be compiled with the GNU compiler collection (GCC)

and locally tested and debugged in the programmer’s

workstation before compiling with the CellSs compiler.

The CellSs compiler is a source-to-source compiler.

Starting with code that is annotated with pragmas, it

generates two files: the main code, which is to be run in

the PPE, and the task code, to be run in the SPEs. At the

beginning of the main code, the compiler inserts the

following application calls to the CellSs runtime: calls to

initializing and finalizing functions; calls for registering

the annotated functions; and calls to a CellSs runtime

library primitive (css_addTask) wherever a call to one

of the annotated functions is found. For the task code,

an adapter function for each annotated function is

generated. These adapters are called from the task main

code, which is part of the CellSs runtime library. The files

are then compiled with the GCC or the IBM XL C

compiler to generate a single binary.

A CellSs application is called from the command line as

a regular application. The main program of the

application (the master thread) is run on the PPE. An

additional thread (the helper thread) also runs in the PPE

(Figure 2). In the initialization phase, the CellSs runtime

starts as threads in the SPEs, with the number of threads

being indicated by the user (this is defined with an

environment variable). The task program is initiated in

these threads. Whenever the main program calls to the

css_addTask primitive, the master thread adds a node in

a task graph that represents that task. It then looks for

existing data dependencies between this task and tasks

called previously. If a data dependency exists between two

tasks, an edge between these tasks is added. Additionally,

the master thread performs parameters renaming, a

technique that implies the creation of new memory

locations for output or input/output task parameters.

This renaming technique allows the removal of all WAW

(write-after-write) and WAR (write-after-read)

dependencies, greatly increasing the parallelism of the

task-dependency graphs. The helper thread is responsible

for scheduling and further managing the task-dependency

graph. Tasks that have no dependency can be scheduled.

The helper thread selects an idle SPE and assigns a task to

be run in it. The task program running in the SPE waits

for assignments from the helper thread. In addition to

Figure 1

Sparse LU code.

float *A[NB][NB];

#pragma css task inout(diag[B][B])
void lu0(float *diag){
 int i, j, k;

 for (k=0; k<BS; k++)
 for (i=k+1; i<BS; i++) {
 diag[i][k] = diag[i][k] / diag[k][k];
 for (j=k+1; j<BS; j++)
 diag[i][j] -= diag[i][k] * diag[k][j];
 }
}
#pragma css task input(diag[B][B]) inout(row[B][B])
void bdiv(float *diag, float *row){
...
}
#pragma css task input(row[B][B],col[B][B]) inout(inner[B][B])
void bmod(float *row, float *col, float *inner){
...
}
#pragma css task input(diag[B][B]) inout(col[B][B])
void fwd(float *diag, float *col){
...
}

void
write_matrix (FILE * file, float *matrix[NB][NB])
{
 int rows, columns;
 int i, j, ii, jj;

 fprintf (file, "%d\n %d\n", NB * B, NB * B);
 for (i = 0; i < NB; i++)
 for (ii = 0; ii < B; ii++)
 {
 for (j = 0; j < NB; j++){
#pragma css wait on(matrix[i][j])
 for (jj = 0; jj < B; jj++)
 fprintf (file, "%f ", matrix[i][j][ii][jj]);
 }
 fprintf (file, "\n");
 }

}

int main(int argc, char **argv) {
int ii, jj, kk;
FILE *fileC;
…
initialize (A);
#pragma css start
 for (kk=0; kk<NB; kk++) {
 lu0(A[kk][kk]);
 for (jj=kk+1; jj<NB; jj++)
 if (A[kk][jj] != NULL)
 fwd(A[kk][kk], A[kk][jj]);
 for (ii=kk+1; ii<NB; ii++)
 if (A[ii][kk] != NULL) {
 bdiv (A[kk][kk], A[ii][kk]);
 for (jj=kk+1; jj<NB; jj++)
 if (A[kk][jj] != NULL) {
 if (A[ii][jj]==NULL)
 A[ii][jj]=allocate_clean_block();
 bmod(A[ii][kk], A[kk][jj], A[ii][jj]);
 }
 }
 }

 fileC = fopen (argv[3], "w");
 write_matrix (fileC, A);
 fclose (fileC);
 #pragma css finish
}

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 J. M. PEREZ ET AL.

595

assigning the task, the task program receives information

from the helper thread regarding the location of the

parameters needed for this task. The data transfers back

and forth between the main memory and the SPE local

memory are performed by the CellSs SPE library

transparently to the user code.

Once the task finishes, the task program notifies the

helper thread, which then updates the task-dependency

graph according to the current situation and schedules

new tasks for execution in idle SPEs. Note that the helper

thread is able to concurrently schedule several tasks in

different SPEs, thereby exploiting the inherent parallelism

of the application at the task (annotated-function) level.

Middleware for the Cell/B.E. processor

CellSs applications are composed of two types of binaries:

the main program, which runs in the PPE, and the task

program, which runs in the SPE. These binaries are

obtained by compilation of the files generated by the

CellSs compiler with the CellSs runtime libraries (CellSs

PPE library and CellSs SPE library), as described in the

overview above.

When the main program is started in the PPE (Figure 2),

the task program is launched in each of the SPEs used

for this execution. The task program waits for requests

from the main program. To execute the annotated

functions in the slave SPEs, the runtime prepares all of

the necessary data to be transferred to the SPEs, requests

the SPE to start a task, and synchronizes with the SPEs to

be notified when a task finishes.

When the scheduling policy selects a task from the ready

list and selects the SPE resources needed to execute the

task, it builds a data structure, the task control buffer, that

stores all of the information required by the SPE to locate

the necessary data for the task. The task control buffer

contains information such as the task type identifier and

the location of each parameter. The task type identifier

allows the SPE to know which task to execute from among

all annotated functions. For each of the task parameters,

the task control buffer includes the initial address and size

of the parameter, as well as some flags indicating such

characteristics as type and input or output.

The request from the main program to execute a task in

a given SPE is done through a data structure located in

main memory. One entry of this structure exists for each

of the SPEs. When a task is ready for execution for a

given SPE, the main program places the request in the

corresponding entry, along with the address and size of

the task control buffer.

The behavior of the task program run in the SPE is the

following: If the task program is idle, it polls its

corresponding entry in the data structure until a task

request is detected. It then accesses the task control

buffer, which contains all of the data required for the

requested task, including data that is in the main memory

and not yet transferred to local memory and data that is

already in local memory. Once all of the necessary input

data has been transferred in, the task is executed in the

SPE by calling the annotated task through the generated

adapter. When the task is finished, the SPE program

transfers the output data to main memory.

Regarding the data alignment requirement in the SPEs,

the task program aligns all data in position in multiples of

16 bytes. The task program also synchronizes with the

main program when a task execution is finished. This

synchronization is done through a main memory position.

CellSs runtime behavior.

User main

program

User

data

Helper threadMaster thread

Memory

Renaming

table

PPE

CellSs PPE library

SPE0

SPE1

SPE2

CellSs SPE library

...

Work assignment

Finalization

signal

Tasks

Stage in/out data

Figure 2

Task control buffer

Data dependence

Data renaming

Scheduling

DMA in

Task execution

DMA out

Synchronization

Original task code
Synchronization

J. M. PEREZ ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

596

The garbage collection of the task control buffers, as

with the rest of data structures, is handled by the CellSs

PPE library.

CellSs is based on the SPE threads provided with the

Cell/B.E. system libraries.

Reducing scheduling overhead

The first attempt to implement the scheduling strategy for

CellSs was based on scheduling one task to one SPE at a

time. However, this turned out to produce a lot of

overhead since the system takes a lot of time to schedule

each task. To improve the situation, the tasks are now

grouped in bundles that are scheduled to one SPE. To

group the tasks, the following heuristics are followed:

� Tasks forming a chain are grouped. A chain is defined

as a subgraph in which each task has at most one

predecessor and at most one successor. Matrix

multiplication is a typical application with such a

data-dependence graph. Furthermore, in this case the

reused data is not transferred out through the DMA

(and it is not transferred in for the next task); only the

output data generated by the last task in the bundle is

copied back to main memory. This greatly reduces the

number of data transfers for some examples. As

shown in Figure 3(a), the scheduler groups the tasks

of one chain.
� Totally independent tasks are grouped. Some

applications show a data-dependence graph with

totally independent tasks. In this case, as shown in

Figure 3(b), bundles of consecutive tasks in the ready

list are grouped.
� For more general data-dependence graph

organizations, the scheduler begins from the first task

in the ready list and tries to find a chain. However, if

this chain does not exist, it takes the next task in the

ready list and tries again to find a chain. This is

repeated until the group of tasks has a given size. For

example, Figure 3(c) shows how the scheduler first

groups the tasks.

Since all SPEs are symmetric, the assignment of tasks

to a given SPE is made according to availability and in a

rotational manner.

To reduce the execution time of a bundle of tasks,

double buffering is implemented. Figure 4 shows the

sequence of events that is followed to execute a bundle of

tasks in the SPE. In this figure, all DMA inputs and

outputs are decomposed in two parts: the time invested in

programming the transfer and the wait time until the

transfer has finished. First, the task control buffer of the

bundle of tasks is transferred in. Once this information is

available, the data needed for the first task is transferred

in. Next, the transfer of the data needed for the second

task is programmed, and the execution of the first task is

overlapped with this second transfer. After the execution

of the first task, a check is made to determine that the

second transfer has finished and, if necessary, the DMA

out of the output data is programmed. (This step is not

needed, for example, for chains.) Then the DMA in of the

data needed for the third task is programmed. Next, the

execution of the second task is started. This is repeated

for all tasks. At the end of the execution of all of the

tasks, the DMA out of the output data of the last task in

the group is programmed, and the task program waits for

all of the DMA outs to finish. Finally, the task program

synchronizes with the helper thread to indicate that the

bundle of tasks has been executed.

Additionally, a prescheduling strategy has been

implemented to reduce the time between the execution

of task bundles. While a bundle is executed in a given

SPE, the helper thread preschedules a new bundle of tasks

to this SPE following the same scheduling strategy. It

Figure 3

Sample tasks graphs: (a) tasks organized in chains; (b) totally

independent tasks; (c) general dependency.

... ...

(a) (b) (c)

Figure 4

Double buffering in a task bundle.

DMA programming:

reading task

control buffer

Waiting for DMA

transfer

DMA

programming:

reading data

Task execution

DMA

programming:

writing data

Synchronization

with helper

thread

Task 1

in bundle

Task 2

in bundle

Task N
in bundle

...

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 J. M. PEREZ ET AL.

597

does this in such a way that when the SPE finishes the

execution of a bundle, a new bundle is ready to be

executed. Once a task has been scheduled, it is removed

from the ready list (but not from the data-dependence

graph). The scheduler will try to preschedule the

forthcoming bundle from tasks in the ready list (and their

predecessors, in the case when chains exist). The tasks are

removed from the data-dependence graph only when the

SPE indicates that they have completed execution.

Tracing

A tracing mechanism has been implemented in the CellSs

runtime; it generates postmortem trace files of the

applications that conform to Paraver [8]. (A Paraver trace

file is a collection of records ordered by time where

information about the events and states that the

application has passed through is stored.) These traces

can then be analyzed with the Paraver graphical user

interface, making it possible to do performance analysis

at different levels, such as at the task level and the thread

level. The interface also provides filtering and composing

functions that can provide different views of the

application, as well as a set of modules to calculate

various statistics.

Although Paraver has its own tracing packages for

Message Passing Interface (MPI), Open Multiprocessing

(OpenMP**), and other programming models, in the

CellSs case, a tracing component has been embedded in

the CellSs runtime. The tracing component records events

as they are signaled throughout the library. For example,

it records when the main program enters or exits any

function of the CellSs library (as a css_init), it records

when an annotated function is called in the main program

(when css_registerTask is called, and therefore, a node

is added to the graph) or when a task is started or

finished. The traces obtained make it possible to analyze

the behavior of the CellSs runtime and that of the

application in general. This tracing capability can be

enabled or disabled by the user with a compilation flag.

Examples and results
To generate these results, we used the Cell/B.E. platform

available at the Barcelona Supercomputing Center–

Centro Nacional de Supercomputación (BSC-CNS)–

composed four two-way Cell/B.E. processor–based

blades: Two are DD2.0 prototypes while the other two

are DD3.1 blades. The two prototype DD2.0 Cell/B.E.

processor–based blades run at 2.4 GHz and have a total

memory of 512 MB Rambus XDR** RAM (256 MB on

each Cell/B.E. chip); the two DD3.1 Cell/B.E. processor–

based blades run at 3.2 GHz and have a total memory of

1 GB XDR RAM (512 MB on each Cell/B.E. chip). The

system runs both for libspe 1.1 and for libspe 2.0 [9].

Scalability analysis

For scalability, we used a simple test application that

generates a given number of totally independent tasks.

The application starts with a block-matrix, each block of

64 3 64 floats, and performs a transposition of each of

the blocks. The task submitted to the SPE performs this

individual transposition of the blocks. To test different

sizes of tasks, we artificially increased the size by

performing different numbers of iterations. The example

has been run with task sizes, measured in microseconds, of

4.89, 9.71, 19.42, 24.23, 48.40, 96.80, and120.90.Figure 5(a)

shows the results obtained. As can be observed, the system

starts to scale at task sizes of 48.40 ls, at least until eight
SPEs, and almost perfectly at task sizes of 96.80 and

120.90 ls. The baseline in the speed-up calculation is the

program executing with only one SPE.

Performance results of given examples

This section presents results for some examples. The first

example is matrix multiplication. Again, the application

operates with block-matrices, each block of 64364 floats,

and for the results given in this section, the matrix is of

Figure 5

Scalability analysis of CellSs (a) with different task sizes and (b)

of matrix multiplication.

0

2

4

6

8

10

12

14

16

0 5 10 15
Number of SPEs

(a)

Number of SPEs

(b)

Microseconds

Microseconds

S
p

ee
d

 u
p

 4.89
 9.71
 19.42
 24.23
 48.40
 96.80
120.90

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10

S
p

ee
d

 u
p

2,022.77
281.32
117.47
58.46
27.87
21.86

J. M. PEREZ ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

598

16 3 16 blocks (the final matrix is 1,024 3 1,024 floats).

We have tested the system with different versions of this

application, from a scalar version (which will be the initial

try for a nonexpert programmer) to one using the

extremely well vectorized version given in the IBM

Software Development Kit (SDK) [9]. In between, other

simpler vectorization cases are considered. The range of

duration of the block-multiply run in the SPEs goes from

2,022.77 ls in the worst case to 21.86 ls for the SDK case.

Figure 5(b) shows these results. It is observed how all

cases scale quite well with up to four SPEs, but with

higher numbers of SPEs, it no longer scales for the two

cases with faster tasks.

Additionally, Table 1 shows the absolute performance

values (in Gflops) for some of the cases in this example.

With the current version, the higher performance is

obtained with the kernel of the SDK and four SPEs

(66.36 Gflops). The reason for this behavior becomes

clear by analyzing trace files for four and eight SPEs: The

master thread is busy adding tasks to the task-

dependency graph most of its time (88% of the time). This

factor and the task removal (in the helper thread) are the

current bottlenecks of the system. This part of the code is

especially complex: It requires the synchronization

between the master and helper threads that access the

same data structures and the different actions that have to

be performed in a certain sequence. Currently, we are

working on more efficient data structures that can

alleviate this problem.

Sparse LU is another example application that has

been tested. It presents a more challenging problem to the

scheduler than the previous applications, since the task

graph of the application is much more complex.

Figure 6(a) shows the corresponding task graph for a

small matrix size of 8 3 8 blocks. Different colors

represent the different task types that are called in this

application. Figure 6(b) shows the speed up obtained for

this example with different matrix sizes (163 16, 323 32,

and 643 64 blocks, with a block size of 643 64 floats for

all cases). It is observed that the system is able to schedule

the problem correctly for big matrix sizes.

Performance analysis

This section presents an introduction of the type of

performance analysis that can be done with the execution

trace files extracted by CellSs and Paraver.

For the matrix multiplication example, the elements of

the matrices are blocks of 64 3 64 single-precision floats,

while the matrices are of 16 3 16 blocks. This schema

generates 4,096 tasks, each task consisting of a 64 3 64

matrix multiplication. The 4,096 tasks are organized in

chains of 16 dependent tasks, in which each task reads the

result of the previous one. The CellSs scheduler is able to

identify this graph organization and is able to group parts

of these chains into bundles. Figure 7(a) shows the first

window shown by Paraver when opening a trace file. The

timeline is the x-axis, and each of the rows in the y-axis

represents a thread of the application. The master and

helper threads, shown at the top, are run in the PPE. Each

of the remaining threads runs in a separate SPE. The

Table 1 Performance results for the matrix multiplication

(Gflops).

No. of SPEs Task size (ls)

117.47 58.46 27.87 21.86

1 4.29 8.16 19.46 20.48

2 8.34 16.27 37.24 39.24

4 16.46 30.08 63.38 66.36

6 21.28 44.02 58.74 59.81

8 30.81 48.32 59.50 58.88

Figure 6

Sparse LU example: (a) task-dependence graph (8 � 8 matrix

case); (b) speed up for the sparse LU case for different matrices.

0 2 4 6 8 10

Number of SPUs

(b)

S
p
ee

d
 u

p

16 � 16

32 � 32

64 � 64

(a)

0

1

2

3

4

5

6

7

8

9

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 J. M. PEREZ ET AL.

599

small green flags (vertical hash marks on the horizontal
green lines) represent events. The yellow lines represent
communications between the SPE threads and the helper
thread. The blue color in the threads indicates activity.

With Paraver, the user can configure the type of view of

the trace. For example, if a filter is used for a set of events

and a semantic value is given to the periods between each

event, the view shown in Figure 7(b) is obtained. The

different colors represent different phases of each thread

type. In the SPE threads, yellow indicates a DMA

transfer and brown indicates when the SPE is executing

the task. The figure shows very clearly how the runtime is

able to schedule bundles of several tasks to be executed in

the same SPE. Also, the shorter yellow states are due to

the fact that the transfers are overlapped with the

computations. From this view, the user can also capture

the amount of time invested in each of the phases. The

format in which data is presented to the user by Paraver is

shown in Table 2. In this case, for example, the SPEs are

busy almost all of the time executing the tasks (;92%
of the time); the master thread invests most of its time

(;70%) in adding new tasks; and the helper thread is

simply waiting for SPE thread events to conclude for

;70% of the time.

Other types of information that can be extracted using

Paraver include the following: the number of bytes

transferred between main memory and the SPEs, the

bandwidths obtained in the transfers, the type of tasks

executed, and the identifier of the task, which indicates

the order of generation and helps in analyzing task

scheduling.

Related work
The IBM Research prototype Cell/B.E. Architecture

OpenMP compiler [5] implements techniques for

optimizing the execution of scalar code in SIMD units,

subword optimization, and other techniques. For

example, it implements autoSIMDization, which is the

process of extracting SIMD parallelism from scalar loops.

This feature generates vector instructions from scalar

source code for the SPEs and VMX units of the PPE. It is

also able to overlap data transfers with computation to

enable the SPEs to process data that exceeds the local

memory capacity.

Besides the low-level optimizations, this compiler

enables the OpenMP programming model [10]. This

approach provides programmers with the abstraction of a

single shared-memory address space. Using OpenMP

directives, programmers can specify regions of code that

can be executed in parallel. From a single-body program,

the compiler duplicates the necessary code, adds the

required additional code to manage the coordination of

the parallelization, and generates the corresponding

binaries for the PPE and SPE cores. The PPE uses

asynchronous signals to inform each SPE that work is

available or that it should terminate. The SPEs use a

mailbox to update the PPE on the status of their

execution. The compiler implements a software cache

mechanism to allow reuse of temporary buffers in the

local memory, and therefore, there is no need for DMA

transfers for all accesses to shared memory. Other

features, such as code partitioning, have been

implemented to allow applications that do not fit in the

local SPE memory.

While the IBM approach is focused on OpenMP, we

see CellSs as an alternative programming model to

OpenMP. It is our view that CellSs is likely more flexible

and can be used for a different range of applications.

By contrast, OpenMP is primarily focused on the

parallelization of fine-grain numerical loops. CellSs does,

however, rely on the IBM compiler (or others that offer

similar features) for autoSIMDization, the automatic

vectorization of the SPE code. CellSs can also rely

on GCC, for which similar autovectorization features

are being implemented by a research group at the

IBM Haifa Laboratory [6].

In the IBM Roadrunner system [11], the AMD

Opteron processors are host elements and the Cell/B.E.

blades are accelerator elements for the Opteron hosts. At

the level of the Cell/B.E. blades, the PPE processors are

hosts and the SPEs are accelerators.

The Accelerated Library Framework (ALF) [12]

application programming interface (API) provides a set

of functions to help programmers solve data-parallel

problems on a hybrid system. ALF supports the single-

program multiple-data (SPMD) programming style with

a single program running on all accelerator elements at

one time. ALF offers programmers an interface to easily

partition data across a set of parallel processes without

having to write architecturally dependent code. Its

Figure 7

Paraver views: (a) state “as is”; (b) execution phases.

(a)

(b)

J. M. PEREZ ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

600

features include data transfer management, parallel task

management, double buffering, and data partitioning.

The programming model is based on work queues. In

ALF, a task is a function that receives a parameters list

and a work packet identifier. The main program opens

the parallelism by creating several work packets for a task

and then waits until all of the work packets have finished

(with a barrier). ALF is currently distributed with the

IBM SDK 2.0. From our point of view, ALF is at a lower

level than CellSs, and there is a possibility that CellSs

based on ALF can be implemented.

Some similarities to CellSs can be found with thread-

level speculation, especially as in the work proposed by

Zhai et al. [13]. This work tries to solve the performance

limitation introduced by the forwarding of scalar values

between threads. In this approach, the compiler inserts

explicit synchronization primitives (wait and signal) to

communicate scalars that are used by multiple threads.

These synchronization points define dependencies among

the threads similar to the data-dependency analysis

performed by CellSs. The difference is that in the former

approach, the problem is tackled at compile time, and in

CellSs, at execution time.

Sequoia [14] is a programming language based on Cþþ.
Similar to CellSs, it is based on the decomposition of

programs into tasks. In this case, one of the differences is

that in Sequoia, tasks can call themselves recursively.

While the top level (inner task implementation)

recursively decomposes the problem into smaller tasks,

the lower level (leaf task implementation) implements the

SPE code itself. Whether a task call is bound to the inner

task or the leaf task is determined by the runtime

according to the user-specified task-mapping

specification.

Table 2 Data presented in Paraver view of the time invested in each phase by each thread.

Master

(%)

Helper

thread

(%)

SPE

thread 1

(%)

SPE

thread 2

(%)

SPE

thread 3

(%)

SPE

thread 4

(%)

Return to user code 4.73 — — — — —

Adding task 69.51 — — — — —

Schedule — 7.36 — — — —

Prepare bundle — 2.56 — — — —

Prepare bundle submission — 0.76 — — — —

Submit bundle — 1.97 — — — —

Attend task finished — 4.09 — — — —

Remove tasks 25.76 12.51 — — — —

Low-level wait for events — 70.76 — — — —

Waiting for tasks — — 4.20 4.07 3.94 4.03

Getting task description — — 0.09 0.08 0.09 0.09

Task stage in — — 0.90 0.90 0.88 0.88

Task arguments alignment — — 0.27 0.25 0.27 0.28

Task execution — — 91.31 91.33 91.30 91.30

Task stage out — — 0.43 0.42 0.44 0.44

Task finished notification — — 0.05 0.05 0.05 0.05

Wait for DMA — — 2.76 2.89 3.03 2.94

Total 100.00 100.00 100.00 100.00 100.00 100.00

Average 33.33 14.29 12.50 12.50 12.50 12.50

Maximum 69.51 70.76 91.31 91.33 91.30 91.30

Minimum 4.73 0.76 0.05 0.05 0.05 0.05

Standard deviation 26.98 23.35 29.82 29.83 29.81 29.82

Coefficient of variation 0.81 1.63 2.39 2.39 2.39 2.39

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 J. M. PEREZ ET AL.

601

Programs written in Sequoia contain the SPE code and

the PPE code. The language has a construct that allows

specifying loops with independent iterations. It also has a

reduction construct and a sequential loop construct.

These constructs are handled by the runtime library and

are the only elements in Sequoia that determine the task-

level parallelism. They also serve as barriers, which, in

practice, makes them similar to basic parallel constructs

from OpenMP without the nowait clause, and they are

not very well suited for complex irregular algorithms.

Similar to CellSs, the Sequoia runtime hides data transfer

latency by overlapping computation and data transfers.

RapidMind [15] is another programming model for the

Cell/B.E. processor. It is based on a Cþþ template library

and a runtime library that performs dynamic code

generation. The template library allows writing and

invoking SPE code from within the PPE code. All SPE

code is written using the template library.

The RapidMind Cþþ template library provides a set of

data types, control flow macros, reduction operations,

and common functions that allow the runtime library to

capture a representation of the SPE code (retained code).

The library data types have been designed to easily

express SIMD operations and to pass those operations to

the runtime library. The runtime in turn extracts

parallelism from those operations by vectorizing the code

and by splitting array and vector calculations on the

different SPEs. It also has an optimizer that can perform

loop invariant removal. Similar to CellSs, RapidMind

assigns work to the SPEs dynamically and hides data

transfer latency by overlapping computation and data

transfers. Although RapidMind provides a good

framework for programming the Cell/B.E. processor,

CellSs offers a higher level and more flexible

programming model.

Ohara et al. [16] present a new programming model,

MPI microtask, based on the standard MPI

programming model for distributed-memory parallel

machines. In this model, programmers do not need to

manage the SPE local store as long as they partition their

application into a collection of microtasks that fit into the

local store. Furthermore, preprocessor and runtime in

this microtask system optimize the execution of the

microtasks by exploiting explicit communications in the

MPI model. There is a prototype available that includes a

novel static scheduler for such optimizations. Initial

experiments show encouraging results.

At the architectural level, the Cell/B.E. processor can

be compared with SMPs. However, in the latter

architecture, the threads share the memory space, and

therefore, data can be easily shared, although a

synchronization mechanism should exist to avoid

conflicts. The Cell/B.E. SPEs have local memory, and

data must be copied there by DMA before performing

any calculation with them. This is one of the fundamental

characteristics of the Cell/B.E. Architecture that makes

its programming a challenge.

Another architecture with similarities to that of the

Cell/B.E. is one that uses graphics processor units

(GPUs). The latest series of this type of hardware

presents a great potential for parallelism, with up to six

vertex processors and up to 16 pixel processors. Although

these processors are initially very specialized, because of

their excellent performance/cost ratio, different

approaches to use them in applications beyond their

specialized graphical use have been presented [13, 17, 18].

GPUs can be programmed by means of C for Graphics

(Cg) [19], a C-like high-level language. However, to be

able to use the GPUs for general-purpose computation,

there are some requirements that must be met, for

example, the fact that the data structure must be arranged

in arrays in order to be stored in the specific structures

of the GPU. This is easy for applications dealing with

matrices or arrays, but it is more difficult to accommodate

data structures such as binary trees and to accommodate

general programs that use pointers. Another limitation

is that the computation may be inefficient in cases in

which the program control flow is complex. To our

knowledge, there are no approaches to hide these

complexities from the programmers with environments

equivalent to CellSs.

Conclusions and future work

This paper presents CellSs, an alternative to traditional

parallel programming models. The objective is to be able

to offer a simple and flexible programming model for

parallel and heterogeneous architectures. Following the

CellSs paradigm, input applications can be written as

sequential programs. This paradigm is currently

customized for the Cell/B.E. Architecture. The runtime

builds a task-dependency graph of the calls to functions

that are annotated in the user code and schedules these

calls in the SPEs, handling all data transfers from and to

the SPEs. In addition, a locality-aware scheduling

algorithm has been implemented to reduce the amount of

data that is transferred to and from the SPEs.

Although CellSs has some similarities with OpenMP

because of the fact that both use pragmas to annotate the

code, the semantics behind CellSs are quite different. In

OpenMP, the programmer explicitly indicates what is

parallel and what is not, while in CellSs, the programmer

identifies pieces of code that are independent of one

another. Thus, by annotating a function, we are not

saying that it can be run in parallel: The system will be

able to find the inherent parallelism of the application by

building a data-dependency graph of the actual calls to

the annotated functions. CellSs provides programmers

J. M. PEREZ ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

602

with a more flexible programming model with an adaptive

parallelism level depending on the application input data.

OpenMP is more appropriate for applications with

parallelism at the loop level, while CellSs fits better for

applications with parallelism at the function level.

However, given the current 3.0 extensions of OpenMP,

which define the concept of task, both programming

models can converge into one in the future. We plan to

perform the integration of OpenMP and CellSs and

develop other extensions.

The initial results are promising, but there is a lot of

work left, for example, the development of new

annotations to be taken into account by the source-to-

source compiler, improvement in the scheduling and data

handling, and in general, improvement of the runtime

performance.

Although the approach presented in this paper is

focused on the Cell/B.E. Architecture, we consider CellSs

to be generic enough for use (after tailoring the

middleware) with other multicore architectures.

Acknowledgments
This work has been partially supported by the Comisión

Interministerial de Ciencia y Tecnologı́a (CICYT) under

contract TIN2004-07739-CO2-01 and by the BSC-IBM

Master R&D Collaboration agreement.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Advanced
Micro Devices, Inc., Intel Corporation, ClearSpeed Technology
plc, AGEIA Technologies, Inc., OpenMP Architecture Review
Board, or Rambus, Inc., in the United States, other countries, or
both.

�Cell Broadband Engine is a trademark of Sony Computer
Entertainment, Inc., in the United States, other countries, or both.

References
1. D. Geer, ‘‘Chip Makers Turn to Multicore Processors,’’

Computer 38, No. 5, 11–13 (2005).
2. K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.

Husbands, K. Keutzer, D. A. Patterson, et al., ‘‘The
Landscape of Parallel Computing Research: A View from
Berkeley,’’ Technical Report EECS-2006-183, University of
California at Berkeley, 2006.

3. D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C.
Johns, J. Kahle, et al., ‘‘The Design and Implementation of a
First-Generation Cell Processor,’’ Proceedings of the IEEE
International Solid-State Circuits Conference, San Francisco,
CA, 2005, pp. 184–185.

4. P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, ‘‘CellSs:
A Programming Model for the Cell BE Architecture,’’
Proceedings of the ACM/IEEE SC2006 Conference on High
Performance Networking and Computing, Tampa, FL,
2006, p. 86.

5. A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T.
Chen, P. H. Oden, D. A. Prener, et al., ‘‘Using Advanced
Compiler Technology to Exploit the Performance of the Cell

Broadband Enginee Architecture,’’ IBM Systems J. 45, No. 1,
59–84 (2006).

6. Cell Broadband Engine Technology, GNU GCC Tools
Upgraded to Version 4.1.1, IBM alphaWorks; see http://
www.alphaworks.ibm.com/topics/cell.

7. Code Example, Barcelona Supercomputing Center, 2007; see
http://www.bsc.es/plantillaH.php?cat_id¼183.

8. J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris,
‘‘DiP: A Parallel Program Development Environment,’’
Proceedings of the 2nd International Euro-Par Conference on
Parallel Processing, Lyon, France, 1996, pp. 665–674.

9. IBM Corporation, IBM Software Development Kit (SDK)
IBM Cell Broadband Engine Software Development Kit; see
http://www.alphaworks.ibm.com/tech/cellsw.

10. The Community of OpenMP Users, Researchers, Tool
Developers, and Providers; see http://www.compunity.org/.

11. IBM Corporation (September 6, 2006). IBM to Build World’s
First Cell Broadband Engine Based Supercomputer. Press
release; see http://www-03.ibm.com/press/us/en/pressrelease/
20210.wss.

12. IBM Corporation, Software Development Kit 2.1
Accelerated Library Framework Programmer’s Guide and API
Reference, Version 1.1; see http://df.unife.it/u/belletti/sdkdocs/
ALFProgrammersGuideAndAPIRef_v1.1.pdf.

13. A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry,
‘‘Compiler Optimization of Scalar Value Communication
Between Speculative Threads,’’ Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose,
CA, 2002, pp. 171–183.

14. K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R
Horn, L. Leem, J. Y. Park, et al., ‘‘Sequoia: Programming the
Memory Hierarchy,’’ Proceedings of the ACM/IEEE
Conference on Supercomputing, Tampa, FL, 2006, p. 4.

15. RapidMind, Inc., ‘‘Cell BE Porting and Tuning with
RapidMind: A Case Study,’’ white paper; see http://
www.rapidmind.net/case-cell.php.

16. M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T.
Nakatani, ‘‘MPI Microtask for Programming the Cell
Broadband Enginee Processor,’’ IBM Systems J. 45, No. 1,
85–102 (2006).

17. T. Yang and A. Gerasoulis, ‘‘A Fast Static Scheduling
Algorithm for DAGs on an Unbounded Number of
Processors,’’ Proceedings of the ACM/IEEE Conference on
Supercomputing, Albuquerque, NM, 1991, pp. 633–642.

18. N. Galoppo, N. K. Govindaraju, M. Henson, and D.
Manocha, ‘‘LU-GPU: Efficient Algorithms for Solving Dense
Linear Systems on Graphics Hardware,’’ Proceedings of the
ACM/IEEE Conference on Supercomputing, Seattle, WA,
2005, p. 3.

19. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, ‘‘GPU
Cluster for High Performance Computing,’’ Proceedings of
ACM/IEEE Conference on Supercomputing, Pittsburgh, PA,
2004, p. 47.

Received March 14, 2007; accepted for publication

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 J. M. PEREZ ET AL.

603

March 28, 2007; Internet publication August 17, 2007

Josep M. Perez Barcelona Supercomputing Center, Jordi
Girona 29, 08034 Barcelona, Spain (josep.m.perez@bsc.es).
Mr. Perez is a Researcher at the Barcelona Supercomputing
Center. He holds an M.S. degree from the Technical University of
Catalonia (Universitat Politècnica de Catalunya, or UPC) in
Barcelona, where he is a doctoral candidate in computer science
under the guidance of Dr. Rosa M. Badia. Mr. Perez’s research
interests include Grid programming models and multicore
programming models.

Pieter Bellens Barcelona Supercomputing Center, Jordi Girona
29, 08034 Barcelona, Spain (pieter.bellens@bsc.es). Mr. Bellens is a
Researcher at the Barcelona Supercomputing Center. He holds
computer science and engineering degrees from the Katholieke
Universiteit Leuven, Belgium, and is a doctoral candidate in
computer science at the Technical University of Catalonia (UPC),
under the guidance of Dr. Rosa M. Badia and Dr. Jesús Labarta.
Mr. Bellens’ research interests include parallel computing, the
Cell/B.E. processor, and scheduling.

Rosa M. Badia Barcelona Supercomputing Center, Jordi
Girona 29, 08034 Barcelona, Spain (rosa.m.badia@bsc.es).
Dr. Badia is the Manager of Grid computing and clusters at the
Barcelona Supercomputing Center. She is also an Associate
Professor at the Computer Architecture department of the
Technical University of Catalonia (UPC). She received B.S. and
Ph.D. degrees in computer science from the Technical University of
Catalonia in 1989 and 1994, respectively. Since 1989, she has been
lecturing at the UPC on computer organization and architecture
and very-large-scale integration (VLSI) design, in both
undergraduate and graduate programs. Her current research
interests include performance prediction and modeling of message-
passing interface programs, programming models for the Grid,
resource management in the Grid, and programming models for
multicore processors. Dr. Badia has participated in several
international research projects.

Jesús Labarta Barcelona Supercomputing Center, Jordi
Girona 29, 08034 Barcelona, Spain (jesus.labarta@bsc.es).
Professor Labarta is the Director of high-performance computing
research at the Barcelona Supercomputing Center. He has been a
full professor at the Computer Architecture department at the
Technical University of Catalonia (UPC) since 1990. He has been
lecturing on computer architecture, operating systems, computer
networks, and performance evaluation since 1981. From 1995 to
2004 he was Director of Centro Europeo de Paralelismo de
Barcelona (CEPBA) at the UPC. His research interest has been
centered on parallel computing, covering areas from
multiprocessor architecture, memory hierarchy, parallelizing
compilers, operating systems, parallelization of numerical kernels,
metacomputing tools, and performance analysis and prediction
tools. Dr. Labarta has led the technical work of 15 industrial
research and development projects at UPC.

J. M. PEREZ ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

604

