Speech
recognition
systems on the
Cell Broadband
Engine processor

In this paper we describe our design, implementation, and

initial results of a prototype connected-phoneme—based speech
recognition system on the Cell Broadband Engine™ (Cell/B.E.)
processor. Automated speech recognition decodes speech samples
into plaintext (other representations are possible) and must process
samples at real-time rates. Fortunately, the computational tasks
involved in this pipeline are highly data parallel and can receive
significant hardware acceleration from vector-streaming
architectures such as the Cell/B.E. Architecture. Identifying and
exploiting these parallelism opportunities is challenging and critical
to improving system performance. From our initial performance
timings, we observed that a single Cell/B.E. processor can
recognize speech from thousands of simultaneous voice channels in
real time—a channel density that is orders of magnitude greater
than the capacity of existing software speech recognizers based on
CPUs (central processing units). This result emphasizes the
potential for Cell/B.E. processor—based speech recognition and will
likely lead to the development of production speech systems using

Y. Liu

H. Jones

S. Vaidya
M. Perrone
B. Tydlitat
A. K. Nanda

Cell|B.E. processor clusters.

Introduction

Speech recognition has already been successfully
integrated into many application areas and commercial
products. Consider, for example, the Honda Acura** TL
navigational system that responds to verbal queries, the
Palm OS** 5 Voice Command recognition software for
personal digital assistants (PDAs), the Motorola
Bluetooth™* Car Kit that includes voice recognition and
automatic dial, or the Genesta speech-controlled portable
computer. These products demonstrate that speech
recognition at interactive rates is viable even within the
limited processing capabilities and resources of portable
and embedded devices. However, many other
applications require speech processing beyond interactive
rates. Speech recognition systems in telephony
applications for automated call centers represent the
largest segment of the speech processing market; these
centers receive and must process thousands of telephone
conversations. Similarly, in areas of data mining, such as

intelligence and surveillance, there is also a growing
interest in applying speech recognition to both online
compressed speech channels and repositories of archival
speech.

These systems must process many channels of speech at
real-time rates and are generally constructed from clusters
of processors based on commodity CPUs (central
processing units). The number of nodes in such a cluster
scales commensurately with the amount of speech traffic
the system is expected to process. With the current
generation of processors, each node can manage roughly
20 to 30 speech channels in real time, and cluster sizes
range from tens to thousands of nodes. System
performance can also be scaled by incorporating more
powerful processors. This is perhaps a more viable
approach since recent trends show that vector-streaming
architectures, such as that of the Cell Broadband Engine’
(Cell/B.E.) processor, exhibit a better cost—performance
ratio than traditional computer architectures for a variety

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

Y. LIU ET AL.

583

584

|

L

- itl L8l R
o b !

(a) Oscillogram and (b) spectrogram for “heute ist schones
frithlingswetter” (“it’s nice weather today”).

of data-parallel applications. Implementing a speech
system on the Cell/B.E. processor, however, requires more
effort than simply porting legacy source codes and then
expecting automatic hardware acceleration to result only
from compiler optimizations and special hand-tuned math
libraries. Individual algorithms must be profiled and
reformulated to explicitly expose areas of data parallelism
amenable for a streaming and vector implementation.
This is the approach we took in designing a prototype
speech recognition engine on the Cell/B.E. processor. The
results we observed are very surprising and encouraging:
Our system performs roughly two orders of magnitude
faster than existing speech systems.

Cell/B.E. processor
The Cell/B.E. processor is a new streaming heterogeneous
multiprocessor architecture jointly designed by Sony,
Toshiba, and IBM. This architecture is heterogeneous
in the sense that it combines a general-purpose IBM
PowerPC* processor element (PPE) with several
special-purpose vector processing cores, called synergistic
processor elements (SPEs). Each core executes on an
independent instruction stream. The Cell/B.E. processor
also supports data streaming by providing explicit user
management over the data communication via direct
memory access (DMA) transfers between the PPE main
memory and the local store memories of the SPEs.
Memory transactions can be interleaved with instruction
execution, allowing their transfer latencies to be partially
or completely concealed to improve pipeline efficiency.
This design provides the Cell/B.E. processor with
several interesting advantages over traditional processors.
Many data-parallel tasks can be structured to expose

Y. LIU ET AL.

single-instruction multiple-data (SIMD) parallelism,
predictable memory access patterns, and data-independent
processing. These parallel tasks generally execute much
faster on the SPE processors than on the PPE processor.
SIMD computations map directly to vector instructions,
predictable memory access patterns allow prefetching

of data elements, and data-independent processing
enables simplification of the vector execution pipeline
(eliminating the need for complex branch-prediction
strategies). Furthermore, whereas traditional processors
employ caches to exploit data coherency, the Cell/B.E.
processor allows users to directly program the memory
hierarchy and implement their own application-specific
data caching policies. Streaming applications with
completely predictable memory access benefit the most
from user-managed caches and, when implemented
correctly, can experience 100% cache hit performance.
For further information on the Cell/B.E. Architecture
and its programming models, please refer to References
[1] and [2].

Speech processing

Early analysts segmented speech signals into small
windowed intervals and annotated them by phonemes
(linguistically distinct speech sounds). This classification
is possible because a speech signal looks roughly like a
sequence of stationary waveforms. Analysts look at the
waveforms and spectrogram plots and distinguish
phonemes by examining their spectral characteristics
(e.g., format frequencies) (Figure 1). Today, this analysis
is completely automated by digital signal processing and
pattern-matching algorithms.

Speech recognition systems generally consist of three
components: feature extraction, pattern matching, and
model training. These components work together to
recognize the information being communicated by verbal
speech. In a real-time system, the first two components
require special optimization since this system has the
constraint that speech channels must be processed at line
rates using a fixed amount of memory. Optimizations for
model training are less important since the models need to
be trained only once prior to any recognition activity.
Efforts to optimize this step, however, are still worthwhile
because training is an iterative process and can be
computationally expensive. We limit our discussion here
to only the feature extraction and pattern-matching
components.

Feature extraction

The feature extraction front end takes a windowed speech
frame from the speech audio waveform and from it
derives a compact feature vector representation that
captures important spectral and temporal properties. The
most common features used by speech systems are the mel

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

frequency cepstral coefficients (MFCC), which are based
on the Fourier spectrum of the audio signal, mapped
to a nonlinear frequency scale that roughly corresponds
to the human perception of sounds. The first and
second derivatives of this spectrum are also considered to
measure the rate at which sounds change. The mean
energy is subtracted and the variance is normalized to
remove the channel transfer function.

There are 12 stages of processing:

Window frame extraction.

Mean subtraction.

Energy computation.

Preemphasis filtering.

Hamming window filtering.

Spectrum computation (using fast Fourier
transform [FFT]).

Mel frequency scale mapping.

Sk L=

® =

Cepstrum computation.

9. Decorrelation (using discrete Fourier transform).
10. Cepstral filtering.

11. Cepstrum energy normalization.

12. First- and second-order derivatives.

The first processing stage starts with a windowed frame
of 200 samples (25 ms of audio at 8 kHz) and the final
result is a 39-component feature vector (12 MFCC, 1
energy, 13 first derivative, 13 second derivative). This
processing is uniformly applied to overlapping frames
(10 ms of overlap) in the speech signal to produce a
sequence of MFCC feature vectors.

Pattern matching

Under this representation, new speech samples can be
compared with reference samples by discovering and
quantifying common patterns in their feature vector
sequences. This is a test for similarity rather than
equality, since speech samples are not expected to match
exactly. Matches are scored using hidden Markov models
(HMMs), which statistically summarize patterns over a
reference set. The purpose of the pattern-matching
component is to then evaluate or decode new speech
samples by comparing them against a set of HMMs.

HMMs

An HMM [3-5] models a stochastic temporal process
with parameters that are not directly observable (hence,
hidden), but that can be inferred only from the set of
observation sequences that it generates (here, the
observations are MFCC feature vectors). HMMs are
graphically represented by a set of nodes and directed
edges. The nodes represent states and edges represent
transitions between states. Observation sequences are

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

generated by paths between the start node and the end
nodes. Start and end states are special states that do not
generate observations. All other states generate
observations whenever they are visited according to their
probability density functions (PDFs). State transitions
also occur probabilistically.

An HMM learns patterns over reference examples by
assigning state PDFs and transition probabilities that
maximize the probabilities of their sequence output, while
also accommodating the variability of individual feature
sequences. For example, constructing an HMM to
recognize the word “one” requires several verbal samples
of this word by different speakers. The pronunciation of
this word could vary from speaker to speaker, and even
the same speaker cannot exactly reproduce the same
sounds twice. However, these pronunciations share
common spectral and temporal patterns that are captured
by the HMM through selectively strengthening paths and
feature distributions in the network during the training
process. Although HMMs cannot be explicitly trained
using negative examples, discrimination is possible by
comparing probabilities across all other models.

An HMM is scored against a new speech sample by
evaluating paths through the HMM network. Multiple
paths could generate the same feature sequence, so the
likelihood for an HMM matching the feature sequence is
given by the total of all possible path probabilities. This
requires an exhaustive search through the network, which
can be efficiently computed using the Viterbi algorithm,
explained in the next section.

Viterbi algorithm
A direct search of all paths in the network is not feasible
computationally, so the Viterbi algorithm applies
recursion to cache the intermediate path probabilities.
This recursion can be efficiently implemented using
dynamic programming. For each feature vector frame f;,
the algorithm examines each HMM state s; and computes
its emission probability p(f=f;|s;) by evaluating the
feature vector against the PDF of state s;. All possible
transitions into this state are then examined. Probabilities
from previous states that transition into this one are
multiplied with their respective transitional probabilities
p(s=s;|s;) and are then summed. This result is multiplied
with the emission probability of state s; to give the total
probability L;; of all intermediate paths between the start
state and the current state that generate feature vector
frames up to f;. The initial conditions are set such that
path computations begin at the start state for the first
feature vector frame.

The recurrence is given by

L =p(f=1ls) ; L (s =515, (la)

Y. LIU ET AL.

585

586

P(So‘so) P(S1|S1) P(Sz‘sz) P(S3‘S3)

P(syls,) P(s5]s,)
P(X‘SO) P(x|31) P(x‘sz) P(xls'_;)
(a)

T —
- —
- (Three >—
CSitonce = Fow >

(a) First-order left-right HMM model. (b) HMM system for
recognizing connected digits.

with the initial values set to

Lyy=1, Ly, =0]%>0. (1b)

Since the system obeys stochastic constraints, all path
probabilities sum to unity. This means that probabilities
of individual paths can be quite small. Therefore, it is
useful to express these probabilities on a log scale.
However, it is very expensive to add two numbers
together in the log scale, i.e., computing log(a + b) directly
from log(a) and log(b). To simplify matters, the maximal
path is generally a good approximation to the summation
of all possible paths. Using this approximation,
Equations (1a) and (1b) can be approximated by

L;}j = log(p(f:f, | Sj))
+ maxk(L;fl’k + log(p(s = 5; 15,)))s (2a)

with the initial conditions

/

Lyg=0, Ly, =—=[Vj>0. (2b)

The goal of this computation is to evaluate L,,,, the
probability that the feature sequence was generated by a
path through the HMM. The approximation for the term
L,,, is called the Viterbi probability and is computed
recursively using Equations (2a) and (2b). Strictly
speaking, L;, , is not a probability, but a likelihood. This
likelihood value is sufficient for recognizing speech from
samples that contain exactly one word unit (called the
isolated digit recognition problem). However, in most

Y. LIU ET AL.

practical recognition systems, the speech channels contain
multiple words, and decoding from these channels (called
the connected digit recognition problem) requires an
additional trace-back step after computing L, , to
recover the maximal path through the HMM network
and to identify the actual sequence of decoded words
encountered along this path. Supporting this trace-back
step requires that bookkeeping information, such as
back-pointers and model labels, be maintained along with
intermediate path likelihoods during the recursion. The
Viterbi algorithm decodes HMMs against isolated digits,
but recognizing connected digits requires searching
hypothetical paths that pass through multiple HMM:s.
This search can also be organized efficiently using
dynamic programming to extend the basic Viterbi
algorithm. Such an approach, called the level-building
algorithm (LBA), is discussed in the next section.

Speech system design

Constructing a speech recognition system requires
modeling at two levels. At the highest level, the
vocabulary and grammar that govern their syntactic use
must first be decided. Figure 2 shows an example of the
simple task of recognizing sequences of numbers. The
vocabulary consists of the numbers “one” through “nine”
and “oh” (meaning “zero”). The grammar allows any
arrangement of digits in the sequence. A special silence
model is also included to account for periods of silence
(or background noise) between each utterance of a
number. The set of numbers and the silence model are
modeled by HMMs. The type of HMM (e.g., number
of states and the allowable transitions between them)
most commonly used in speech recognition is called the
left—right HM M. Here, the number of states roughly
corresponds to the duration of the utterance, and the
states are connected and arranged sequentially so that
transitions occur only monotonically from left to right;
that is, each state allows only self-transitions and forward
transitions. The PDF for each HMM state is generally
modeled by a set of Gaussian functions over the feature
vectors. This representation is called the Gaussian mixture
model (GMM). The parameters of a GMM include the
Gaussian means and covariances (the feature vectors are
decorrelated so the covariance matrices are diagonal), as
well as weights for each Gaussian. Gaussian functions are
commonly shared across multiple GMMs to reduce the
model complexity, a technique called Gaussian parameter
tying.

Decoding isolated digits amounts to evaluating the
Viterbi probability of a speech sample against several
HMM word models and selecting the best. Decoding
connected digits is more challenging because the speech
sample contains several words and the word boundaries
are unknown. The LBA solves this problem by evaluating

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

multiple hypothetical intervals within the speech sample.
The computation is organized into levels, each of which
corresponds to a single digit decode. The process begins
by initializing all HMMs to decode starting at the first
speech frame. The location of the ending frame for the
first digit is unknown, so each HMM evaluates all speech
frames thereafter as potential candidates for the last
frame of the first digit. In practice though, only a small
interval past the first speech frame is searched since the
word utterance is not expected to span the entire speech
sample. The second level then evaluates each of the
ending frames from the first level as a possible starting
frame for the second digit, and this process proceeds until
all speech frames are evaluated. During the course of
the decode process, word transition probabilities (e.g.,
bigrams or trigrams) can be applied to enforce a local
syntax. Back-pointers are also kept to support the
trace-back step, in which we work backwards from the
last speech frame to recover all of the word-level
transitions that were made.

In the LBA just described, all possibilities are
explored; it has an exponential computational complexity
but captures the idea of decoding connected digits. In
real-time systems, the amount of processing must be
directly proportional to the size of the speech sample, and
the amount of storage must be constant. Therefore, the
decoding must occur synchronously with each speech
frame, and only a small word transition history can be
kept. For details about this approach, please refer to the
frame-synchronous level building (FSLB) algorithm by
Lee and Rabiner [6].

System implementation

Our speech recognition system on the Cell/B.E. processor
is implemented by three SPE kernel programs:
spe_extract, spe_computeobs, and spe_viterbi. The
PPE processor is responsible for initializing and loading
data into the SPE kernels, invoking the SPE kernels, and
performing the final scoring. In the future, we will
implement a scheduler on the PPE to analyze and
distribute load across the SPE processors. The feature
extraction front end is implemented by spe_extract
while the decoder is factored into two SPE programs:
spe_computeobs and spe_viterbi. Our system
processes a speech channel by calling each of the SPE
kernels in sequence. Intermediate data is streamed
between the SPE local store and PPE memory during
successive SPE calls. The final scoring lattice from
spe_viterbi is traversed by an FSLB implementation on
the PPE to perform a trace-back step and recover the
decoded text.

spe_extract

The design of the feature extraction is based on the
pipeline from the Mississippi State Institute for Signal

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

and Information Processing (MS ISIP) speech recognition
toolkit [7], with the stages listed in the section on feature
extraction. All of these steps are implemented within the
resources of a single SPE program. The mean subtraction
and energy computation across the speech window
requires the summation of elements in the window. The
computation for this sum is vectorized by laying out data
elements as an array of 128-bit (four-component) SIMD
vectors, and then performing the sum across the vectors.
Elements in the resulting array are then combined by dot
product with a ones vector. The spectrum computation
step is considered the pivot or core of the pipeline, as it is
the algorithm with the highest computational cost.
Fortunately the Cell/B.E. Software Development Kit
library contains an extremely efficient FFT algorithm [8],
which we judiciously apply. We profiled the FFT
performance and determined that it completes eight FFTs
in 3,800 cycles, which roughly accounts for 69 Gflops of
computation and represents 34% efficiency on the
Cell/B.E. processor. Data vectorization occurs along the
axis of a speech window frame; each block of four
sequential data elements in the window is processed
concurrently using vector instructions. However, the FFT
routine expects a complex signal input in a format that
interleaves real and imaginary components.

Accommodating this data layout incurs only a small
performance penalty to perform data interleaving and
de-interleaving when moving data into and out of the
FFT routine. Many of these stages require precomputed
lookup tables. For example, FFT requires a table of
twiddle factors to be precomputed for one of its
parameters. Likewise, the discrete cosine transform
(DCT) step, which decorrelates the MFCC vectors (to
allow diagonal covariance matrices), and the various
filtering operations also take advantage of precomputed
factors. Using table lookups helps in both computation
and accuracy as constant data terms can be computed
only once and in higher precision. The first and second
MFCC derivatives are computed by central differencing.
Supporting this computation requires a short queue of
MFCC frames to be maintained.

spe_computeobs

Evaluating the emission probability of generating a
particular feature vector at a particular HMM state is
independent of the network search, and this computation
can be factored easily from the main decode. This is
actually necessary for recognition tasks of higher
complexity since the parameters for the GMMSs occupy a
significant amount of memory. Currently, we use four
Gaussian functions per mixture (one GMM per state),
with a total of 57 HMM states. These parameters use
roughly 71 KB of memory, which is almost a quarter of

Y. LIU ET AL.

587

588

:H
=
&
:'l)
(o)
—-
=
¥
°
2
£

“one”

el b= =l = = = = e = = = = = = e = = = = =l = e = = = = =R =)

HMM states

Observation frames
SIMD vectorization of the Viterbi algorithm.

the SPE local store memory. Future implementations
may require the parameter to be streamed into the local
store. The end result of this kernel computation is a
two-dimensional table (feature vector frames by HMM
states) of emission probabilities. Since probabilities are
expressed in log space, vectorizing this computation is
very straightforward:

1 1 T
b U}

1 1 T
—10g<W> —E(X—#) E(X—#)- 3)

The first term on the right-hand side of Equation (3) can
be precomputed, and the second term can be computed
by a dot product, since Z’l is diagonal. The dot-product
computation is vectorized by first multiplying the three
vectors componentwise using the 128-bit SIMD registers
and then aggregating the result into a single value by
summing four components at a time across the vector.
Evaluating the emission probabilities is the most
arithmetic-intensive step and represents the bottleneck of
our system.

Y. LIU ET AL.

spe_viterbi

The decoding process occurs frame synchronously by
permitting the predecessor state for a model start state to
come from the end state of any HMM (as allowed by the
language grammar). This computation is vectorized along
the HMM state axis by concatenating HMMs together
and setting transitional probabilities across model
boundaries to zero. The recurrence relations given in
Equations (2a) and (2b) are processed using vector
instructions for each block of four states. The layout for
this computation is shown in Figure 3. Shaded groups of
four elements in each column are stored in 128-bit
registers and are operated on by SIMD vector
instructions. Evaluating the path probabilities requires
only two columns of data to be stored at any given time.
In addition to path probabilities, other bookkeeping
information is kept to support the trace-back process.
Since all HMMs in our experiment are strictly first-order
left-right, data access to previous state probabilities is
aligned by shifting the state column down by one state.
Decoding proceeds by seeding the start states of each
model with an initial probability and then streaming the
emission probability table in and streaming the
intermediate path probabilities out to main memory.

Results

To profile the performance of our recognizer, we set up a
simple experiment to perform speaker-independent
speech recognition of phonemes from a digit vocabulary
based on the TIDIGITS corpus. This vocabulary includes
the utterances “zero,” “one,” ..., “nine,” and “oh” by
speakers of different gender and dialects, which are
altogether modeled by 19 phonemes (each composed of a
three-state HMM with four Gaussian functions per
HMM state). We used the MS ISIP speech decoder to
provide model training and establish the baseline decoder
performance. The platforms we used for testing are
shown in Table 1.

The performance is measured by timing the latency to
process a single-channel speech sample on a single SPE,
and then extrapolating to the total number of physical
SPEs available. This helps to estimate peak system
performance under perfect load balancing and task
scheduling. Table 1 also summarizes the speech
recognition performance for these platforms. Units are
measured in real-time channels (RTCs), where 1 RTC =1
second of audio per 1 second of processing time.

On both the Cell/B.E. processor and the software
platforms, recognition accuracy was 99%, which is to be
expected for such a simple recognition task. Since
recognition accuracy depends only on the training and
language modeling, the performance of our prototype
speech recognition engine on the Cell/B.E. processor can
be extended to production systems because the SPE

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

Table 1 Speech recognition performance.

Platform Processor RTCs
SIM 4.0-GHz Cell/B.E. processor simulator 1,759
Cell/B.E. processor 2.4-GHz Cell/B.E. processor hardware 1,216
Sony PLAYSTATION'3 system 3.2-GHz PLAYSTATION3 system (six SPEs) 526
Central processing unit 3.2-GHz Intel Pentium** 4 10

kernel programs were designed to scale with model and
language complexity.

Conclusions

We have implemented and demonstrated a prototype
speech recognition engine that is capable of processing
approximately 1,000 speech channels on a single Cell/B.E.
processor. The kernel computations are designed to

be highly scalable, and we expect this performance result
to generalize well to commercial speech systems. We
attribute the performance gains in our system mainly to
the raw computational power and memory management
of the Cell/B.E. processor. We harness these resources by
carefully choosing data layouts and reformulating
algorithms to expose data parallelism and streaming
opportunities.

Although the performance we measured pertains to
only a simple digit recognition problem with a small
vocabulary, the relative performance between CPU and
Cell/B.E. processor—based systems is important to note.
Speech recognition systems that incorporate very large
vocabularies, complex grammar, and detailed GMMs
decode channels at rates far below real time.
Implementing these systems on the Cell/B.E. processor
allows the channel density to be scaled upward while
handling more complex tasks and resulting in higher
recognition quality.

Future work

Having implemented the core algorithms in a basic speech
recognition system, we identify three areas in which we
can focus our future development efforts: language
modeling, compressed speech, and speech activity
detection.

Language modeling

Toward the longer-range goal of developing a production
speech system, we plan to apply tools from the HMM
Toolkit 3.3 (HTK 3.3) framework [9] to train HMMs and
language models to recognize speech from more complex
and challenging sources. The simple experiment we
conducted for this study did not include any language
modeling; any digit can follow any other digit, and we

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

made no attempt to construct actual words from the
sequence of decoded phonemes. The HTK is a collection
of software utilities and tools to train, decode, and
evaluate HMMs. We plan to start with the TIMIT corpus
[10], which contains conversations from a finite dictionary
and strictly follows a language grammar. After constructing
and training the appropriate models, we will integrate
them into our existing Cell/B.E. speech recognition
system.

Compressed speech

The amount of speech traffic being transmitted over
digital networks (e.g., voice over Internet Protocol) is
rapidly outpacing our ability to efficiently process it. To
communicate over a digital network, speech samples are
first encoded by a lossy compression protocol. This
compression step allows speech to be represented using a
very low (fixed) bit rate, which increases the channel
density given a target bandwidth while unfortunately
introducing significant noise and degradation to the
original audio signals. Qualifying and quantifying how
compression artifacts affect recognition accuracy is an
interesting area of study. Furthermore, recent techniques
have been proposed to derive MFCC features from the
speech-encoding parameters and use the encoding
parameters directly as a feature set. We expect to test
both approaches and compare their results with a third
approach, which is to compress and decompress audio
samples (to artificially add compression noise) and apply
speech recognition to establish a baseline. After
establishing the best approach to computing features on
compressed speech, we will integrate it into our existing
feature-extraction pipeline on the Cell/B.E. processor.

Speech activity detection

Speech channels often contain long periods of no

speech. Removing these segments not only helps cull

computation, but also improves recognition performance

since speaker normalization is intended to be performed

over voice activity. Identifying and annotating intervals

of speech activity in voice channels is a binary

classification problem; we are trying to classify speech

from background. Therefore, models for both are 589

Y. LIU ET AL.

590

required. We plan to investigate approaches using linear
classifiers, such as support vector machines, single-state
HMMs, GMMs, or a hybrid combination of these
approaches. We plan to integrate the best result in our
Cell/B.E. processor speech recognition pipeline.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Honda
Motor Company Ltd., Palm, Inc., Bluetooth SIG, Inc., or Intel
Corporation in the United States, other countries, or both.

Cell Broadband Engine and PLAYSTATION are trademarks of
Sony Computer Entertainment, Inc., in the United States, other
countries, or both.

References

1. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,

T. R. Maeurer, and D. Shippy, “Introduction to the Cell
Multiprocessor,” IBM J. Res. & Dev. 49, No. 4/5, 589-604
(2005).

2. A.K.Nanda, J. R. Moulic, R. E. Hanson, G. Goldrian, M. N.
Day, B. D. D’Amora, and S. Kesavarapu, “Cell/B.E. Blades:
Building Blocks for Scalable, Real-Time, Interactive, and
Digital Media Servers,” IBM J. Res. & Dev. 51, No. 5, 573-582
(2007, this issue).

3. J. Picone, “Continuous Speech Recognition Using Hidden
Markov Models,” IEEE ASSP Magazine 7, No. 3, 26-41
(1990).

4. J. W. Picone, “Signal Modeling Techniques for Speech
Recognition,” Proceedings of the IEEE 81, No. 9, 1215-1247
(1993).

5. L. R. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,” Proceedings of
the IEEE 77, No. 2, 257-286 (1989).

6. C.-H. Lee and L. Rabiner, “A Network-Based Frame-
Synchronous Level Building Algorithm for Connected Word
Recognition,” Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, New York, NY,
1998, pp. 410-413.

7. A. Ganapathiraju, N. Deshmukh, J. Hamaker, V. Mantha,
Y. Wu, X. Zhang, J. Zhao, and J. Picone, “ISIP Public
Domain LVCSR System,” Proceedings of the Speech
Transcription Workshop, Linthicuam Heights, MD, 1999; see
http:|[scholar.google.com/scholar?hl=en&lr=&qg=cache:
OxINGex23gEJ:www.isip.msstate.edu/publications/conferences/
dod_Ivesr[1999/asr/doc/paper_v2.pdftauthor:
%22Ganapathiraju%22+intitle:%221S1P+Public+Domaint
LVCSR+System%22+.

8. A. C. Chow, G. C. Fossum, and D. A. Brokenshire, “A
Programming Example: Large FFT on the Cell Broadband
Engine,” Proceedings of the Global Signal Processing Expo and
Conference, Santa Clara, CA, 2005; see http.//www.ibm.com/
chips/techlib/techlib.nsf]techdocs/
0AA2394A505EFOFB872570AB005BFOF1/$file/

GSPx_FFT _paper_legal_0115.pdf.

9. What is HTK? University of Cambridge, Cambridge, U.K.;
see http:/|htk.eng.cam.ac.uk]/.

10. W. M. Fisher, G. R. Doddington, and K. M. Goudie-
Marshall, “The DARPA Speech Recognition Research
Database: Specifications and Status,” Proceedings of DARPA
Workshop on Speech Recognition, 1986, pp. 93-99.

Received March 15, 2007; accepted for publication
April 3, 2007; Internet publication August 11, 2007

Y. LIU ET AL.

Yang Liu Lawrence Livermore National Laboratory,

7000 East Avenue, Livermore, California 94550 (liu24@linl.gov).
Dr. Liu is a Computer Scientist at Lawrence Livermore National
Laboratory (LLNL). In 2004, he received a Ph.D. degree in
computer science from the University of California, Davis. Dr. Liu
has directed his recent efforts at LLNL to applying hardware
acceleration to data and computation-intensive algorithms using
commodity computer processors. His research interests include
computer graphics, scientific visualization, high-performance
computing, and bioinformatics.

Holger Jones Lawrence Livermore National Laboratory,

7000 East Avenue, Livermore, California 94550 (holgerjones@.linl.gov).
Mr. Jones is a Projects Team Leader and Senior Developer at
LLNL, with experience in signal processing, systems programming,
distributed computing, control systems engineering, and scientific
visualization. He received an M.S. degree in electrical and
computer engineering from the University of California, Davis, in
2002.

Sheila Vaidya Lawrence Livermore National Laboratory,
7000 East Avenue, Livermore, California 94550 (vaidyal @linl.gov).
Dr. Vaidya is an embedded computing and data processing
solutions program leader at LLNL. Her background is in high-
performance computing, information technology, and digital
imaging, and she has extensive experience in microelectronics
systems and technology, semiconductor devices, integrated-circuit
design and fabrication, and chip-manufacturing infrastructure. She
received a Ph.D. degree in materials science and solid-state physics
from the State University of New York, Stony Brook, in 1979.
She has more than 100 scientific publications and holds 14 patents.
Dr. Vaidya is currently responsible for developing embedded
computing and data processing solutions for national security
applications at LLNL.

Michael Perrone IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mpp@us.ibm.com). Dr. Perrone is an IBM Master Inventor
and the manager of the Cell/B.E. Solutions department, which has
the mission of identifying and optimizing high-affinity workloads
for the Cell/B.E. and other multicore processors. Current projects
include high-performance computing workloads, seismic imaging,
network intrusion detection, digital content creation, rich media
mining, image analysis, speech recognition, and bioinformatics. He
received a Ph.D. degree in physics from Brown University. His
research includes algorithmic optimization for the Cell/B.E.
processor, parallel computing, and statistical machine learning.

Borivoj Tydlitat BM Czech Republic, Voice Technologies
and Systems, V' Parku 2294/4, 148 00 Praha 4, Czech Republic
(borivoj_tydlitat@cz.ibm.com). Mr. Tydlitat received an M.S.
degree in computer engineering from the Czech Technical
University, Prague. He has worked at the IBM Thomas J. Watson
Research Center on multiple projects related to speech recognition
and natural language understanding. He is currently a member of
the IBM Research team in Prague, working on the development of
embedded IBM ViaVoice™ speech recognition software and
participating in speech technology research.

Ashwini K. Nanda BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, NY 10598
(ashwini@us.ibm.com). As the Chief Architect of Quasar/Cell/B.E.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

systems, Dr. Nanda established and managed the Quasar systems
team in the IBM Systems and Technology group. He played a lead
role in establishing the Cell/B.E./Quasar systems technology,
product roadmap (including QS20, the first Cell/B.E. blade
product), and business to focus on the emerging compute-intensive,
streaming, real-time, and interactive applications. Prior to that,
Dr. Nanda led research and prototyping of Cell/B.E. processor—
based systems and their application at the IBM T.J. Watson
Research Center, in Yorktown Heights, New York. Earlier at
IBM Research, he established and managed the Scalable

Server Architecture group for several years. His key research
contributions include MemorIES (Memory Instrumentation and
Emulation System) and High Throughput Coherence Controllers.
Dr. Nanda was co-General Chair of the International Symposium
on High Performance Computer Architecture (HPCA-7), he served
on the editorial board of IEEE Transactions on Parallel and
Distributed Systems, and he co-edited a special issue of the IEEE
Computer magazine. He holds ten U.S. patents and has published
more than 40 papers on computer systems architecture, design, and
performance.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

Y. LIU ET AL.

591

