
Speech
recognition
systems on the
Cell Broadband
Engine processor

Y. Liu
H. Jones
S. Vaidya

M. Perrone
B. Tydlitát

A. K. Nanda

In this paper we describe our design, implementation, and
initial results of a prototype connected-phoneme–based speech
recognition system on the Cell Broadband Enginee (Cell/B.E.)
processor. Automated speech recognition decodes speech samples
into plaintext (other representations are possible) and must process
samples at real-time rates. Fortunately, the computational tasks
involved in this pipeline are highly data parallel and can receive
significant hardware acceleration from vector-streaming
architectures such as the Cell/B.E. Architecture. Identifying and
exploiting these parallelism opportunities is challenging and critical
to improving system performance. From our initial performance
timings, we observed that a single Cell/B.E. processor can
recognize speech from thousands of simultaneous voice channels in
real time—a channel density that is orders of magnitude greater
than the capacity of existing software speech recognizers based on
CPUs (central processing units). This result emphasizes the
potential for Cell/B.E. processor–based speech recognition and will
likely lead to the development of production speech systems using
Cell/B.E. processor clusters.

Introduction

Speech recognition has already been successfully

integrated into many application areas and commercial

products. Consider, for example, the Honda Acura** TL

navigational system that responds to verbal queries, the

Palm OS** 5 Voice Command recognition software for

personal digital assistants (PDAs), the Motorola

Bluetooth** Car Kit that includes voice recognition and

automatic dial, or the Genesta speech-controlled portable

computer. These products demonstrate that speech

recognition at interactive rates is viable even within the

limited processing capabilities and resources of portable

and embedded devices. However, many other

applications require speech processing beyond interactive

rates. Speech recognition systems in telephony

applications for automated call centers represent the

largest segment of the speech processing market; these

centers receive and must process thousands of telephone

conversations. Similarly, in areas of data mining, such as

intelligence and surveillance, there is also a growing

interest in applying speech recognition to both online

compressed speech channels and repositories of archival

speech.

These systems must process many channels of speech at

real-time rates and are generally constructed from clusters

of processors based on commodity CPUs (central

processing units). The number of nodes in such a cluster

scales commensurately with the amount of speech traffic

the system is expected to process. With the current

generation of processors, each node can manage roughly

20 to 30 speech channels in real time, and cluster sizes

range from tens to thousands of nodes. System

performance can also be scaled by incorporating more

powerful processors. This is perhaps a more viable

approach since recent trends show that vector-streaming

architectures, such as that of the Cell Broadband Engine�

(Cell/B.E.) processor, exhibit a better cost–performance

ratio than traditional computer architectures for a variety

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 Y. LIU ET AL.

583

0018-8646/07/$5.00 ª 2007 IBM

of data-parallel applications. Implementing a speech

system on the Cell/B.E. processor, however, requires more

effort than simply porting legacy source codes and then

expecting automatic hardware acceleration to result only

from compiler optimizations and special hand-tuned math

libraries. Individual algorithms must be profiled and

reformulated to explicitly expose areas of data parallelism

amenable for a streaming and vector implementation.

This is the approach we took in designing a prototype

speech recognition engine on the Cell/B.E. processor. The

results we observed are very surprising and encouraging:

Our system performs roughly two orders of magnitude

faster than existing speech systems.

Cell/B.E. processor
The Cell/B.E. processor is a new streaming heterogeneous

multiprocessor architecture jointly designed by Sony,

Toshiba, and IBM. This architecture is heterogeneous

in the sense that it combines a general-purpose IBM

PowerPC* processor element (PPE) with several

special-purpose vector processing cores, called synergistic

processor elements (SPEs). Each core executes on an

independent instruction stream. The Cell/B.E. processor

also supports data streaming by providing explicit user

management over the data communication via direct

memory access (DMA) transfers between the PPE main

memory and the local store memories of the SPEs.

Memory transactions can be interleaved with instruction

execution, allowing their transfer latencies to be partially

or completely concealed to improve pipeline efficiency.

This design provides the Cell/B.E. processor with

several interesting advantages over traditional processors.

Many data-parallel tasks can be structured to expose

single-instruction multiple-data (SIMD) parallelism,

predictablememory access patterns, and data-independent

processing. These parallel tasks generally execute much

faster on the SPE processors than on the PPE processor.

SIMD computations map directly to vector instructions,

predictable memory access patterns allow prefetching

of data elements, and data-independent processing

enables simplification of the vector execution pipeline

(eliminating the need for complex branch-prediction

strategies). Furthermore, whereas traditional processors

employ caches to exploit data coherency, the Cell/B.E.

processor allows users to directly program the memory

hierarchy and implement their own application-specific

data caching policies. Streaming applications with

completely predictable memory access benefit the most

from user-managed caches and, when implemented

correctly, can experience 100% cache hit performance.

For further information on the Cell/B.E. Architecture

and its programming models, please refer to References

[1] and [2].

Speech processing
Early analysts segmented speech signals into small

windowed intervals and annotated them by phonemes

(linguistically distinct speech sounds). This classification

is possible because a speech signal looks roughly like a

sequence of stationary waveforms. Analysts look at the

waveforms and spectrogram plots and distinguish

phonemes by examining their spectral characteristics

(e.g., format frequencies) (Figure 1). Today, this analysis

is completely automated by digital signal processing and

pattern-matching algorithms.

Speech recognition systems generally consist of three

components: feature extraction, pattern matching, and

model training. These components work together to

recognize the information being communicated by verbal

speech. In a real-time system, the first two components

require special optimization since this system has the

constraint that speech channels must be processed at line

rates using a fixed amount of memory. Optimizations for

model training are less important since the models need to

be trained only once prior to any recognition activity.

Efforts to optimize this step, however, are still worthwhile

because training is an iterative process and can be

computationally expensive. We limit our discussion here

to only the feature extraction and pattern-matching

components.

Feature extraction

The feature extraction front end takes a windowed speech

frame from the speech audio waveform and from it

derives a compact feature vector representation that

captures important spectral and temporal properties. The

most common features used by speech systems are the mel

Figure 1

(a) Oscillogram and (b) spectrogram for “heute ist schönes

frühlingswetter” (“it’s nice weather today”).

(a)

(b)

Y. LIU ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

584

frequency cepstral coefficients (MFCC), which are based

on the Fourier spectrum of the audio signal, mapped

to a nonlinear frequency scale that roughly corresponds

to the human perception of sounds. The first and

second derivatives of this spectrum are also considered to

measure the rate at which sounds change. The mean

energy is subtracted and the variance is normalized to

remove the channel transfer function.

There are 12 stages of processing:

1. Window frame extraction.

2. Mean subtraction.

3. Energy computation.

4. Preemphasis filtering.

5. Hamming window filtering.

6. Spectrum computation (using fast Fourier

transform [FFT]).

7. Mel frequency scale mapping.

8. Cepstrum computation.

9. Decorrelation (using discrete Fourier transform).

10. Cepstral filtering.

11. Cepstrum energy normalization.

12. First- and second-order derivatives.

The first processing stage starts with a windowed frame

of 200 samples (25 ms of audio at 8 kHz) and the final

result is a 39-component feature vector (12 MFCC, 1

energy, 13 first derivative, 13 second derivative). This

processing is uniformly applied to overlapping frames

(10 ms of overlap) in the speech signal to produce a

sequence of MFCC feature vectors.

Pattern matching

Under this representation, new speech samples can be

compared with reference samples by discovering and

quantifying common patterns in their feature vector

sequences. This is a test for similarity rather than

equality, since speech samples are not expected to match

exactly. Matches are scored using hidden Markov models

(HMMs), which statistically summarize patterns over a

reference set. The purpose of the pattern-matching

component is to then evaluate or decode new speech

samples by comparing them against a set of HMMs.

HMMs

An HMM [3–5] models a stochastic temporal process

with parameters that are not directly observable (hence,

hidden), but that can be inferred only from the set of

observation sequences that it generates (here, the

observations are MFCC feature vectors). HMMs are

graphically represented by a set of nodes and directed

edges. The nodes represent states and edges represent

transitions between states. Observation sequences are

generated by paths between the start node and the end

nodes. Start and end states are special states that do not

generate observations. All other states generate

observations whenever they are visited according to their

probability density functions (PDFs). State transitions

also occur probabilistically.

An HMM learns patterns over reference examples by

assigning state PDFs and transition probabilities that

maximize the probabilities of their sequence output, while

also accommodating the variability of individual feature

sequences. For example, constructing an HMM to

recognize the word ‘‘one’’ requires several verbal samples

of this word by different speakers. The pronunciation of

this word could vary from speaker to speaker, and even

the same speaker cannot exactly reproduce the same

sounds twice. However, these pronunciations share

common spectral and temporal patterns that are captured

by the HMM through selectively strengthening paths and

feature distributions in the network during the training

process. Although HMMs cannot be explicitly trained

using negative examples, discrimination is possible by

comparing probabilities across all other models.

An HMM is scored against a new speech sample by

evaluating paths through the HMM network. Multiple

paths could generate the same feature sequence, so the

likelihood for an HMM matching the feature sequence is

given by the total of all possible path probabilities. This

requires an exhaustive search through the network, which

can be efficiently computed using the Viterbi algorithm,

explained in the next section.

Viterbi algorithm

A direct search of all paths in the network is not feasible

computationally, so the Viterbi algorithm applies

recursion to cache the intermediate path probabilities.

This recursion can be efficiently implemented using

dynamic programming. For each feature vector frame fi,

the algorithm examines each HMM state sj and computes

its emission probability p(f¼ fi j sj) by evaluating the

feature vector against the PDF of state sj. All possible

transitions into this state are then examined. Probabilities

from previous states that transition into this one are

multiplied with their respective transitional probabilities

p(s¼ sj j sk) and are then summed. This result is multiplied

with the emission probability of state sj to give the total

probability Li,j of all intermediate paths between the start

state and the current state that generate feature vector

frames up to fi. The initial conditions are set such that

path computations begin at the start state for the first

feature vector frame.

The recurrence is given by

L
i; j
¼ pð f ¼ f

i
j s

j
Þ
X
k

L
i�1;k

pðs ¼ s
j
j s

k
Þ; ð1aÞ

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 Y. LIU ET AL.

585

with the initial values set to

L
0;0
¼ 1; L

0; j
¼ 0 j 8j . 0: ð1bÞ

Since the system obeys stochastic constraints, all path

probabilities sum to unity. This means that probabilities

of individual paths can be quite small. Therefore, it is

useful to express these probabilities on a log scale.

However, it is very expensive to add two numbers

together in the log scale, i.e., computing log(aþb) directly

from log(a) and log(b). To simplify matters, the maximal

path is generally a good approximation to the summation

of all possible paths. Using this approximation,

Equations (1a) and (1b) can be approximated by

L
0

i; j
¼ logðpð f ¼ f

i
j s

j
ÞÞ

þmax
k
ðL0

i�1;k
þ logð pðs ¼ s

j
j s

k
ÞÞÞ; ð2aÞ

with the initial conditions

L
0

0;0
¼ 0; L

0

0; j
¼ �‘ j 8j . 0 : ð2bÞ

The goal of this computation is to evaluate Lm,n, the

probability that the feature sequence was generated by a

path through the HMM. The approximation for the term

L0
m;n is called the Viterbi probability and is computed

recursively using Equations (2a) and (2b). Strictly

speaking, L0
m;n is not a probability, but a likelihood. This

likelihood value is sufficient for recognizing speech from

samples that contain exactly one word unit (called the

isolated digit recognition problem). However, in most

practical recognition systems, the speech channels contain

multiple words, and decoding from these channels (called

the connected digit recognition problem) requires an

additional trace-back step after computing L0
m;n to

recover the maximal path through the HMM network

and to identify the actual sequence of decoded words

encountered along this path. Supporting this trace-back

step requires that bookkeeping information, such as

back-pointers and model labels, be maintained along with

intermediate path likelihoods during the recursion. The

Viterbi algorithm decodes HMMs against isolated digits,

but recognizing connected digits requires searching

hypothetical paths that pass through multiple HMMs.

This search can also be organized efficiently using

dynamic programming to extend the basic Viterbi

algorithm. Such an approach, called the level-building

algorithm (LBA), is discussed in the next section.

Speech system design

Constructing a speech recognition system requires

modeling at two levels. At the highest level, the

vocabulary and grammar that govern their syntactic use

must first be decided. Figure 2 shows an example of the

simple task of recognizing sequences of numbers. The

vocabulary consists of the numbers ‘‘one’’ through ‘‘nine’’

and ‘‘oh’’ (meaning ‘‘zero’’). The grammar allows any

arrangement of digits in the sequence. A special silence

model is also included to account for periods of silence

(or background noise) between each utterance of a

number. The set of numbers and the silence model are

modeled by HMMs. The type of HMM (e.g., number

of states and the allowable transitions between them)

most commonly used in speech recognition is called the

left–right HMM. Here, the number of states roughly

corresponds to the duration of the utterance, and the

states are connected and arranged sequentially so that

transitions occur only monotonically from left to right;

that is, each state allows only self-transitions and forward

transitions. The PDF for each HMM state is generally

modeled by a set of Gaussian functions over the feature

vectors. This representation is called the Gaussian mixture

model (GMM). The parameters of a GMM include the

Gaussian means and covariances (the feature vectors are

decorrelated so the covariance matrices are diagonal), as

well as weights for each Gaussian. Gaussian functions are

commonly shared across multiple GMMs to reduce the

model complexity, a technique called Gaussian parameter

tying.

Decoding isolated digits amounts to evaluating the

Viterbi probability of a speech sample against several

HMM word models and selecting the best. Decoding

connected digits is more challenging because the speech

sample contains several words and the word boundaries

are unknown. The LBA solves this problem by evaluating

Figure 2

(a) First-order left–right HMM model. (b) HMM system for

recognizing connected digits.

(b)

(a)

s0 s1 s2 s3

P(s0|s0)

P(s1|s0)

P(s1|s1) P(s2|s2) P(s3|s3)

P(s2|s1) P(s3|s2)

P(x|s0) P(x|s1) P(x|s2) P(x|s3)

Silence Silence

Two

One

Three

Four

Oh

Y. LIU ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

586

multiple hypothetical intervals within the speech sample.

The computation is organized into levels, each of which

corresponds to a single digit decode. The process begins

by initializing all HMMs to decode starting at the first

speech frame. The location of the ending frame for the

first digit is unknown, so each HMM evaluates all speech

frames thereafter as potential candidates for the last

frame of the first digit. In practice though, only a small

interval past the first speech frame is searched since the

word utterance is not expected to span the entire speech

sample. The second level then evaluates each of the

ending frames from the first level as a possible starting

frame for the second digit, and this process proceeds until

all speech frames are evaluated. During the course of

the decode process, word transition probabilities (e.g.,

bigrams or trigrams) can be applied to enforce a local

syntax. Back-pointers are also kept to support the

trace-back step, in which we work backwards from the

last speech frame to recover all of the word-level

transitions that were made.

In the LBA just described, all possibilities are

explored; it has an exponential computational complexity

but captures the idea of decoding connected digits. In

real-time systems, the amount of processing must be

directly proportional to the size of the speech sample, and

the amount of storage must be constant. Therefore, the

decoding must occur synchronously with each speech

frame, and only a small word transition history can be

kept. For details about this approach, please refer to the

frame-synchronous level building (FSLB) algorithm by

Lee and Rabiner [6].

System implementation
Our speech recognition system on the Cell/B.E. processor

is implemented by three SPE kernel programs:

spe_extract, spe_computeobs, and spe_viterbi. The

PPE processor is responsible for initializing and loading

data into the SPE kernels, invoking the SPE kernels, and

performing the final scoring. In the future, we will

implement a scheduler on the PPE to analyze and

distribute load across the SPE processors. The feature

extraction front end is implemented by spe_extract

while the decoder is factored into two SPE programs:

spe_computeobs and spe_viterbi. Our system

processes a speech channel by calling each of the SPE

kernels in sequence. Intermediate data is streamed

between the SPE local store and PPE memory during

successive SPE calls. The final scoring lattice from

spe_viterbi is traversed by an FSLB implementation on

the PPE to perform a trace-back step and recover the

decoded text.

spe_extract

The design of the feature extraction is based on the

pipeline from the Mississippi State Institute for Signal

and Information Processing (MS ISIP) speech recognition

toolkit [7], with the stages listed in the section on feature

extraction. All of these steps are implemented within the

resources of a single SPE program. The mean subtraction

and energy computation across the speech window

requires the summation of elements in the window. The

computation for this sum is vectorized by laying out data

elements as an array of 128-bit (four-component) SIMD

vectors, and then performing the sum across the vectors.

Elements in the resulting array are then combined by dot

product with a ones vector. The spectrum computation

step is considered the pivot or core of the pipeline, as it is

the algorithm with the highest computational cost.

Fortunately the Cell/B.E. Software Development Kit

library contains an extremely efficient FFT algorithm [8],

which we judiciously apply. We profiled the FFT

performance and determined that it completes eight FFTs

in 3,800 cycles, which roughly accounts for 69 Gflops of

computation and represents 34% efficiency on the

Cell/B.E. processor. Data vectorization occurs along the

axis of a speech window frame; each block of four

sequential data elements in the window is processed

concurrently using vector instructions. However, the FFT

routine expects a complex signal input in a format that

interleaves real and imaginary components.

Accommodating this data layout incurs only a small

performance penalty to perform data interleaving and

de-interleaving when moving data into and out of the

FFT routine. Many of these stages require precomputed

lookup tables. For example, FFT requires a table of

twiddle factors to be precomputed for one of its

parameters. Likewise, the discrete cosine transform

(DCT) step, which decorrelates the MFCC vectors (to

allow diagonal covariance matrices), and the various

filtering operations also take advantage of precomputed

factors. Using table lookups helps in both computation

and accuracy as constant data terms can be computed

only once and in higher precision. The first and second

MFCC derivatives are computed by central differencing.

Supporting this computation requires a short queue of

MFCC frames to be maintained.

spe_computeobs

Evaluating the emission probability of generating a

particular feature vector at a particular HMM state is

independent of the network search, and this computation

can be factored easily from the main decode. This is

actually necessary for recognition tasks of higher

complexity since the parameters for the GMMs occupy a

significant amount of memory. Currently, we use four

Gaussian functions per mixture (one GMM per state),

with a total of 57 HMM states. These parameters use

roughly 71 KB of memory, which is almost a quarter of

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 Y. LIU ET AL.

587

the SPE local store memory. Future implementations

may require the parameter to be streamed into the local

store. The end result of this kernel computation is a

two-dimensional table (feature vector frames by HMM

states) of emission probabilities. Since probabilities are

expressed in log space, vectorizing this computation is

very straightforward:

log
1

ð2pÞN=2 j
P
j 1=2

exp � 1

2
ðx� lÞT

X�1

ðx� lÞ
 ! !

¼ log
1

ð2pÞN=2 j
P
j 1=2

 !
� 1

2
ðx� lÞT

X�1

ðx� lÞ: ð3Þ

The first term on the right-hand side of Equation (3) can

be precomputed, and the second term can be computed

by a dot product, since
P�1 is diagonal. The dot-product

computation is vectorized by first multiplying the three

vectors componentwise using the 128-bit SIMD registers

and then aggregating the result into a single value by

summing four components at a time across the vector.

Evaluating the emission probabilities is the most

arithmetic-intensive step and represents the bottleneck of

our system.

spe_viterbi

The decoding process occurs frame synchronously by

permitting the predecessor state for a model start state to

come from the end state of any HMM (as allowed by the

language grammar). This computation is vectorized along

the HMM state axis by concatenating HMMs together

and setting transitional probabilities across model

boundaries to zero. The recurrence relations given in

Equations (2a) and (2b) are processed using vector

instructions for each block of four states. The layout for

this computation is shown in Figure 3. Shaded groups of

four elements in each column are stored in 128-bit

registers and are operated on by SIMD vector

instructions. Evaluating the path probabilities requires

only two columns of data to be stored at any given time.

In addition to path probabilities, other bookkeeping

information is kept to support the trace-back process.

Since all HMMs in our experiment are strictly first-order

left–right, data access to previous state probabilities is

aligned by shifting the state column down by one state.

Decoding proceeds by seeding the start states of each

model with an initial probability and then streaming the

emission probability table in and streaming the

intermediate path probabilities out to main memory.

Results
To profile the performance of our recognizer, we set up a

simple experiment to perform speaker-independent

speech recognition of phonemes from a digit vocabulary

based on the TIDIGITS corpus. This vocabulary includes

the utterances ‘‘zero,’’ ‘‘one,’’ . . ., ‘‘nine,’’ and ‘‘oh’’ by

speakers of different gender and dialects, which are

altogether modeled by 19 phonemes (each composed of a

three-state HMM with four Gaussian functions per

HMM state). We used the MS ISIP speech decoder to

provide model training and establish the baseline decoder

performance. The platforms we used for testing are

shown in Table 1.

The performance is measured by timing the latency to

process a single-channel speech sample on a single SPE,

and then extrapolating to the total number of physical

SPEs available. This helps to estimate peak system

performance under perfect load balancing and task

scheduling. Table 1 also summarizes the speech

recognition performance for these platforms. Units are

measured in real-time channels (RTCs), where 1 RTC¼ 1

second of audio per 1 second of processing time.

On both the Cell/B.E. processor and the software

platforms, recognition accuracy was 99%, which is to be

expected for such a simple recognition task. Since

recognition accuracy depends only on the training and

language modeling, the performance of our prototype

speech recognition engine on the Cell/B.E. processor can

be extended to production systems because the SPE

Figure 3

SIMD vectorization of the Viterbi algorithm.

“o
n

e”
“t

w
o
”

“t
h

re
e”

“f
o

u
r”

H
M

M
 s

ta
te

s

Observation frames

1

1

1

1

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Y. LIU ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

588

kernel programs were designed to scale with model and

language complexity.

Conclusions
We have implemented and demonstrated a prototype

speech recognition engine that is capable of processing

approximately 1,000 speech channels on a single Cell/B.E.

processor. The kernel computations are designed to

be highly scalable, and we expect this performance result

to generalize well to commercial speech systems. We

attribute the performance gains in our system mainly to

the raw computational power and memory management

of the Cell/B.E. processor. We harness these resources by

carefully choosing data layouts and reformulating

algorithms to expose data parallelism and streaming

opportunities.

Although the performance we measured pertains to

only a simple digit recognition problem with a small

vocabulary, the relative performance between CPU and

Cell/B.E. processor–based systems is important to note.

Speech recognition systems that incorporate very large

vocabularies, complex grammar, and detailed GMMs

decode channels at rates far below real time.

Implementing these systems on the Cell/B.E. processor

allows the channel density to be scaled upward while

handling more complex tasks and resulting in higher

recognition quality.

Future work
Having implemented the core algorithms in a basic speech

recognition system, we identify three areas in which we

can focus our future development efforts: language

modeling, compressed speech, and speech activity

detection.

Language modeling

Toward the longer-range goal of developing a production

speech system, we plan to apply tools from the HMM

Toolkit 3.3 (HTK 3.3) framework [9] to train HMMs and

language models to recognize speech from more complex

and challenging sources. The simple experiment we

conducted for this study did not include any language

modeling; any digit can follow any other digit, and we

made no attempt to construct actual words from the

sequence of decoded phonemes. The HTK is a collection

of software utilities and tools to train, decode, and

evaluate HMMs. We plan to start with the TIMIT corpus

[10], which contains conversations from a finite dictionary

and strictly follows a language grammar. After constructing

and training the appropriate models, we will integrate

them into our existing Cell/B.E. speech recognition

system.

Compressed speech

The amount of speech traffic being transmitted over

digital networks (e.g., voice over Internet Protocol) is

rapidly outpacing our ability to efficiently process it. To

communicate over a digital network, speech samples are

first encoded by a lossy compression protocol. This

compression step allows speech to be represented using a

very low (fixed) bit rate, which increases the channel

density given a target bandwidth while unfortunately

introducing significant noise and degradation to the

original audio signals. Qualifying and quantifying how

compression artifacts affect recognition accuracy is an

interesting area of study. Furthermore, recent techniques

have been proposed to derive MFCC features from the

speech-encoding parameters and use the encoding

parameters directly as a feature set. We expect to test

both approaches and compare their results with a third

approach, which is to compress and decompress audio

samples (to artificially add compression noise) and apply

speech recognition to establish a baseline. After

establishing the best approach to computing features on

compressed speech, we will integrate it into our existing

feature-extraction pipeline on the Cell/B.E. processor.

Speech activity detection

Speech channels often contain long periods of no

speech. Removing these segments not only helps cull

computation, but also improves recognition performance

since speaker normalization is intended to be performed

over voice activity. Identifying and annotating intervals

of speech activity in voice channels is a binary

classification problem; we are trying to classify speech

from background. Therefore, models for both are

Table 1 Speech recognition performance.

Platform Processor RTCs

SIM 4.0-GHz Cell/B.E. processor simulator 1,759

Cell/B.E. processor 2.4-GHz Cell/B.E. processor hardware 1,216

Sony PLAYSTATION�3 system 3.2-GHz PLAYSTATION3 system (six SPEs) 526

Central processing unit 3.2-GHz Intel Pentium** 4 10

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 Y. LIU ET AL.

589

required. We plan to investigate approaches using linear

classifiers, such as support vector machines, single-state

HMMs, GMMs, or a hybrid combination of these

approaches. We plan to integrate the best result in our

Cell/B.E. processor speech recognition pipeline.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Honda
Motor Company Ltd., Palm, Inc., Bluetooth SIG, Inc., or Intel
Corporation in the United States, other countries, or both.

�Cell Broadband Engine and PLAYSTATION are trademarks of
Sony Computer Entertainment, Inc., in the United States, other
countries, or both.

References
1. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,

T. R. Maeurer, and D. Shippy, ‘‘Introduction to the Cell
Multiprocessor,’’ IBM J. Res. & Dev. 49, No. 4/5, 589–604
(2005).

2. A. K. Nanda, J. R. Moulic, R. E. Hanson, G. Goldrian, M. N.
Day, B. D. D’Amora, and S. Kesavarapu, ‘‘Cell/B.E. Blades:
Building Blocks for Scalable, Real-Time, Interactive, and
Digital Media Servers,’’ IBM J. Res. & Dev. 51, No. 5, 573–582
(2007, this issue).

3. J. Picone, ‘‘Continuous Speech Recognition Using Hidden
Markov Models,’’ IEEE ASSP Magazine 7, No. 3, 26–41
(1990).

4. J. W. Picone, ‘‘Signal Modeling Techniques for Speech
Recognition,’’ Proceedings of the IEEE 81, No. 9, 1215–1247
(1993).

5. L. R. Rabiner, ‘‘A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,’’ Proceedings of
the IEEE 77, No. 2, 257–286 (1989).

6. C.-H. Lee and L. Rabiner, ‘‘A Network-Based Frame-
Synchronous Level Building Algorithm for Connected Word
Recognition,’’ Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, New York, NY,
1998, pp. 410–413.

7. A. Ganapathiraju, N. Deshmukh, J. Hamaker, V. Mantha,
Y. Wu, X. Zhang, J. Zhao, and J. Picone, ‘‘ISIP Public
Domain LVCSR System,’’ Proceedings of the Speech
Transcription Workshop, Linthicum Heights, MD, 1999; see
http://scholar.google.com/scholar?hl¼en&lr¼&q¼cache:
0xINGex23gEJ:www.isip.msstate.edu/publications/conferences/
dod_lvcsr/1999/asr/doc/paper_v2.pdfþauthor:
%22Ganapathiraju%22þintitle:%22ISIPþPublicþDomainþ
LVCSRþSystem%22þ.

8. A. C. Chow, G. C. Fossum, and D. A. Brokenshire, ‘‘A
Programming Example: Large FFT on the Cell Broadband
Engine,’’ Proceedings of the Global Signal Processing Expo and
Conference, Santa Clara, CA, 2005; see http://www.ibm.com/
chips/techlib/techlib.nsf/techdocs/
0AA2394A505EF0FB872570AB005BF0F1/$file/
GSPx_FFT_paper_legal_0115.pdf.

9. What is HTK? University of Cambridge, Cambridge, U.K.;
see http://htk.eng.cam.ac.uk/.

10. W. M. Fisher, G. R. Doddington, and K. M. Goudie-
Marshall, ‘‘The DARPA Speech Recognition Research
Database: Specifications and Status,’’ Proceedings of DARPA
Workshop on Speech Recognition, 1986, pp. 93–99.

Received March 15, 2007; accepted for publication

Yang Liu Lawrence Livermore National Laboratory,
7000 East Avenue, Livermore, California 94550 (liu24@llnl.gov).
Dr. Liu is a Computer Scientist at Lawrence Livermore National
Laboratory (LLNL). In 2004, he received a Ph.D. degree in
computer science from the University of California, Davis. Dr. Liu
has directed his recent efforts at LLNL to applying hardware
acceleration to data and computation-intensive algorithms using
commodity computer processors. His research interests include
computer graphics, scientific visualization, high-performance
computing, and bioinformatics.

Holger Jones Lawrence Livermore National Laboratory,
7000 East Avenue, Livermore, California 94550 (holgerjones@llnl.gov).
Mr. Jones is a Projects Team Leader and Senior Developer at
LLNL, with experience in signal processing, systems programming,
distributed computing, control systems engineering, and scientific
visualization. He received an M.S. degree in electrical and
computer engineering from the University of California, Davis, in
2002.

Sheila Vaidya Lawrence Livermore National Laboratory,
7000 East Avenue, Livermore, California 94550 (vaidya1@llnl.gov).
Dr. Vaidya is an embedded computing and data processing
solutions program leader at LLNL. Her background is in high-
performance computing, information technology, and digital
imaging, and she has extensive experience in microelectronics
systems and technology, semiconductor devices, integrated-circuit
design and fabrication, and chip-manufacturing infrastructure. She
received a Ph.D. degree in materials science and solid-state physics
from the State University of New York, Stony Brook, in 1979.
She has more than 100 scientific publications and holds 14 patents.
Dr. Vaidya is currently responsible for developing embedded
computing and data processing solutions for national security
applications at LLNL.

Michael Perrone IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mpp@us.ibm.com). Dr. Perrone is an IBM Master Inventor
and the manager of the Cell/B.E. Solutions department, which has
the mission of identifying and optimizing high-affinity workloads
for the Cell/B.E. and other multicore processors. Current projects
include high-performance computing workloads, seismic imaging,
network intrusion detection, digital content creation, rich media
mining, image analysis, speech recognition, and bioinformatics. He
received a Ph.D. degree in physics from Brown University. His
research includes algorithmic optimization for the Cell/B.E.
processor, parallel computing, and statistical machine learning.

Bořivoj Tydlitát IBM Czech Republic, Voice Technologies
and Systems, V Parku 2294/4, 148 00 Praha 4, Czech Republic
(borivoj_tydlitat@cz.ibm.com). Mr. Tydlitát received an M.S.
degree in computer engineering from the Czech Technical
University, Prague. He has worked at the IBM Thomas J. Watson
Research Center on multiple projects related to speech recognition
and natural language understanding. He is currently a member of
the IBM Research team in Prague, working on the development of
embedded IBM ViaVoice* speech recognition software and
participating in speech technology research.

Ashwini K. Nanda IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, NY 10598
(ashwini@us.ibm.com). As the Chief Architect of Quasar/Cell/B.E.

Y. LIU ET AL. IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

590 April 3, 2007; Internet publication August 11, 2007

systems, Dr. Nanda established and managed the Quasar systems
team in the IBM Systems and Technology group. He played a lead
role in establishing the Cell/B.E./Quasar systems technology,
product roadmap (including QS20, the first Cell/B.E. blade
product), and business to focus on the emerging compute-intensive,
streaming, real-time, and interactive applications. Prior to that,
Dr. Nanda led research and prototyping of Cell/B.E. processor–
based systems and their application at the IBM T.J. Watson
Research Center, in Yorktown Heights, New York. Earlier at
IBM Research, he established and managed the Scalable
Server Architecture group for several years. His key research
contributions include MemorIES (Memory Instrumentation and
Emulation System) and High Throughput Coherence Controllers.
Dr. Nanda was co-General Chair of the International Symposium
on High Performance Computer Architecture (HPCA-7), he served
on the editorial board of IEEE Transactions on Parallel and
Distributed Systems, and he co-edited a special issue of the IEEE
Computer magazine. He holds ten U.S. patents and has published
more than 40 papers on computer systems architecture, design, and
performance.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 Y. LIU ET AL.

591

