
Microarchitecture and
implementation of the
synergistic processor in
65-nm and 90-nm SOI

B. Flachs
S. Asano

S. H. Dhong
H. P. Hofstee

G. Gervais
R. Kim

T. Le
P. Liu

J. Leenstra
J. S. Liberty

B. Michael
H.-J. Oh

S. M. Mueller
O. Takahashi

K. Hirairi
A. Kawasumi
H. Murakami

H. Noro
S. Onishi

J. Pille
J. Silberman

S. Yong
A. Hatakeyama

Y. Watanabe
N. Yano

D. A. Brokenshire
M. Peyravian

V. To
E. Iwata

This paper describes the architecture and implementation of the
original gaming-oriented synergistic processor element (SPE) in
both 90-nm and 65-nm silicon-on-insulator (SOI) technology and
introduces a new SPE implementation targeted for the high-
performance computing community. The Cell Broadband Enginee
processor contains eight SPEs. The dual-issue, four-way single-
instruction multiple-data processor is designed to achieve high
performance per area and power and is optimized to process
streaming data, simulate physical phenomena, and render objects
digitally. Most aspects of data movement and instruction flow are
controlled by software to improve the performance of the memory
system and the core performance density. The SPE was designed as
an 11-FO4 (fan-out-of-4-inverter-delay) processor using 20.9
million transistors within 14.8 mm2 using the IBM 90-nm SOI low-k
process. CMOS (complementary metal-oxide semiconductor)
static gates implement the majority of the logic. Dynamic circuits
are used in critical areas and occupy 19% of the non–static random
access memory (SRAM) area. Instruction set architecture,
microarchitecture, and physical implementation are tightly coupled
to achieve a compact and power-efficient design. Correct operation
has been observed at up to 5.6 GHz and 7.3 GHz, respectively, in
90-nm and 65-nm SOI technology.

Introduction
As gaming develops into an immersive experience with

more realistic rendering, object movement, and strategy,

it is becoming increasingly similar to high-performance

computing (HPC). To achieve high levels of realism,

traditional HPC algorithms and those with characteristics

much like HPC algorithms are being used in gaming.

These algorithms often process massive amounts of data

in a manner that can be partitioned to enable parallel

execution. Throughput is often more important to HPC

and gaming than the general-purpose thread with

complex branching schemes. Gaming and HPC are also

similar in that they are limited by factors such as

component cost and power dissipation. More often than

not, the question for HPC and gaming is not the speed at

which a single thread can run, but the sustainable

throughput per unit of system cost.

Two algorithmic methods of partitioning are popular.

Vectorization has long been a staple of simulation and

solution within the HPC community, while today’s

media-rich application software is often characterized

by multiple lightweight threads and software pipelines.

The trend in gaming is to merge these two characteristics.

This trend in software design favors processors that utilize

characteristics of vector processing and multiple threads.

Software running on these processors can efficiently drive

the improved memory bandwidth becoming available

from commodity memory systems, while software that

runs on processors designed to accelerate a single thread

of execution by taking advantage of instruction-level

parallelism is much less able to derive benefit from the

new memory systems.
Note: Portions of this paper are based on earlier publications by the authors. �2006
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�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 B. FLACHS ET AL.

529

0018-8646/07/$5.00 ª 2007 IBM



Memory latency is a key limiter to processor

performance. Modern processors lose up to 4,000

instruction slots while they wait for data from main

memory. Previous designs emphasized large caches and

reorder buffers to reduce the average latency and to

maintain instruction throughput while waiting for data

from cache misses. However, because the reuse rate for

much of the data is low, caches that can deliver high hit

rates on large data structures consume large amounts of

area that might have been used by computational

elements. When the cache misses, processing can continue

through branch prediction to fill a reorder buffer.

However, it would be difficult to build a reorder buffer

large enough to continue through a main memory access.

Transistor oxides are now only a few atomic levels

thick, and the channels are extremely narrow. These

features improve transistor performance and increase

transistor density, but they tend to also increase leakage

current. As processor performance becomes power

limited, leakage current becomes an important

performance issue. Since leakage is proportional to area,

processor designs must extract more performance per

transistor. Since the performance efficiency of caches and

reorder buffers diminishes as they increase in size, another

approach is necessary.

Architecture
Figure 1 shows the 65-nm Cell Broadband Engine�

(Cell/B.E.) processor, a heterogeneous shared-memory

multiprocessor [3] featuring a multithreaded 64-bit IBM

PowerPC* processor element (PPE) and eight synergistic

processor elements (SPEs). Performance per transistor

is the motivation for heterogeneity. Software can be

divided into general-purpose computing threads,

operating system (OS) tasks, and streaming media

threads. Each of these tasks can be targeted to a

processing core customized for that particular task.

For example, the PPE is responsible for running the OS

and coordinating the flow of data processing threads

through the SPEs. This differentiation allows the

architectures and implementations of the PPE and SPE to

be optimized for their respective workloads and enables

significant improvements in performance per transistor.

For example, branch history tables are valuable to general-

purpose code and are present in the PPE design, but have

little value for data processing loops and are not present in

the SPE design. Thus, heterogeneity allows the Cell/B.E.

processor to include nine processors in the same area as

a dual-core solution based on an industry-competitive

general-purpose processor core and the L2 cache that

would be necessary to achieve good performance.

Figure 2 shows the major entities of the SPE

architecture and their relationships. Local storage (LS) is

a private memory for SPE instructions and data. The

synergistic processor unit (SPU) core is a processor that

runs instructions from the LS and can read from or write

to the LS with its load and store instructions. The direct

memory access (DMA) unit transfers data between LS

and system memory. The DMA unit is programmable by

SPU software using the channel unit. The channel unit is

a message-passing interface that allows the SPU core to

communicate with both the DMA unit and other units in

the Cell/B.E processor. The channel unit is accessed by

the SPE software through channel access instructions.

The SPU core is a single-instruction multiple-data

(SIMD) reduced instruction set computing (RISC)

processor [4]. All instructions are encoded in 32-bit fixed-

length instruction formats, and no instructions are

Figure 1

The 65-nm Cell Broadband Engine processor.
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Figure 2

SPE architecture. (©2006 IEEE. Reprinted, with permission, from 

Reference [1].)
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difficult to pipeline. The SPU features 128 general-

purpose registers (GPRs) that are used by both floating-

point (FP) and integer instructions. The shared register

file allows for a high level of performance for various

workloads using only a small number of registers. Loop

unrolling, which is necessary to fill functional unit

pipelines with independent instructions, is possible with

the 128 registers. Most instructions operate on 128-bit-

wide data. For example, the FP multiply–add instruction

operates on vectors of four 32-bit single-precision (SP) FP

values. Some instructions, such as FP multiply–add,

consume three register operands and produce a register

result. The SPU includes instructions that perform SP FP

integer arithmetic, logical operations, loads, stores,

compares, and branches. Some of the instructions of the

SPU are intended specifically to support media

applications. The instruction set is designed to simplify

compiler register allocation and code schedulers. Most

SPE software is written in C or Cþþ with intrinsic

functions.

The SPE architecture reduces area and power while

facilitating improved performance by requiring software

to solve difficult scheduling problems, such as data

fetchandbranchprediction.Softwaresolves theseproblems

by including explicit data movement and branch

prediction directives in the instruction stream. Because

the OS is not run on the SPE, it is optimized for user-

mode execution. SPE load and store instructions are

performed within a local address space, not in system

address space. The local address space is untranslated,

unguarded, and noncoherent with respect to the system

address space, and it is serviced by the LS. The LS is a

private memory, not a cache, and does not require tag

arrays or backing store. Loads, stores, and instruction

fetch can complete with a fixed delay and without raising

exceptions. These properties of LS greatly simplify the

SPU core design and provide predictable real-time

behavior. This design reduces the area and power of the

core while allowing for operation at a higher frequency.

Data is transferred to and from the LS in 128-byte lines

by the SPE DMA engine similar to the way a

supercomputer uses vector load and store instructions to

move data to and from the vector register file. Data

moves between system memory and the DMA engine

using the on-chip interconnect. The on-chip interconnect

sources and sinks 16 bytes of data every other cycle. The

SPE DMA engine allows SPE software to schedule

data transfers in parallel with core execution. Figure 3

shows a timeline of how software can be organized into

cooperative coarse-grained threads that take advantage

of nonblocking DMA commands to facilitate overlap

between data transfer and core computation. Thread

management can be done by the software itself or

through a task manager application programming

interface. In this example, the threading is directly

encoded into the software so that as thread 1 finishes its

computation, it initiates a DMA fetch of its next data set

and branches to thread 2. Thread 2 begins by waiting for

its previously requested data transfers to finish and begins

computation while the DMA engine obtains the data

needed by thread 1. When thread 2 completes the

computation, it programs the DMA engine to store the

results to system memory and fetch the next data set from

system memory. Thread 2 then branches back to thread 1.

Techniques such as double buffering and coarse-grained

multithreading allow software to overcome memory

latency and achieve high memory bandwidth and

improved performance. The DMA engine can process up

to 16 commands simultaneously, and each command can

fetch up to 16 KB of data. These transfers are divided

into 128-byte packets for the on-chip interconnect. The

DMA engine can support up to 16 packets in flight at a

time. DMA commands are richer than a typical set of

cache prefetch instructions because they can perform

scatter or gather operations from system memory or set

up a complex set of status reporting and notification

mechanisms. Software can achieve much higher

bandwidth through the DMA engine than it could with a

hardware prefetch engine; in addition, with the DMA

engine, a much higher fraction of that bandwidth is useful

data than with the speculative prefetch engine design.

The SPE programs the DMA engine through the

channel interface, a messaging-passing interface intended

to overlap input/output (I/O) with data processing and

Figure 3

Example of the timeline of concurrent computation and memory 

access. (©2006 IEEE. Reprinted, with permission, from Reference 

[1].)
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minimize the power consumed by synchronization. Each

device is allocated one or more channels through which

messages can be sent to or from the SPU core. Channels

have sufficient capacity for multiple messages to be

queued and for the SPU to send multiple commands to a

device in pipelined fashion without incurring delay, until

the channel capacity is exhausted. When a channel is

exhausted, the write or read instruction stalls the SPU

in a low-power wait mode until the device becomes ready.

Channel wait mode can often substitute for polling

and represents significant power savings. Channel facilities

are accessed with three instructions: read channel,

write channel, and read channel count, which measures

channel capacity. The SPE architecture supports up to 128

unidirectional channels. The channel architecture of the

SPE enables pipelined computation and communication

in a latency-tolerant and power-efficient manner.

The SPE has separate 8-byte-wide inbound and

outbound data buses. The DMA engine supports transfer

requests generated by both the local SPU and the

requesters external to the local SPE. External requests can

be programmed into the external request queue or

received as incoming element interconnect bus (EIB) read

or write requests to addresses within the system real-

address range assigned to the LS. The SPE request queue

supports up to 16 outstanding transfer requests. Each

request can transfer up to 16 KB of data to or from the

local address space. DMA request addresses are

translated by the memory management unit (MMU)

before the request is sent to the bus. Software can check

or be notified when requests or groups of requests are

completed.

Microarchitecture
The microarchitecture of the SPE is designed to

support very high frequency operation. One measure of

delay that can be used to compare designs in different

technologies is the fan-out-of-4 (FO4) inverter delay,which

is the time required for an inverter to drive four copies of

itself. In these terms, the SPE is an 11-FO4 design. This

allows four to eight stages of logic per cycle, depending

on the distance that must be traveled during the cycle.

Many signal distribution paths feature about 35% of the

cycle time in wire delay. At first glance, high frequency

would not seem to be a good low-power option because,

relative to a 22-FO4 design [5], there are twice as many

registers per pipeline. However, a 22-FO4 design would

require two pipelines to achieve the same throughput as

the 11-FO4 pipeline. From this point of view, the number

of registers might be about equal, but the 11-FO4 pipeline

would have only about half as many logic transistors as

the two pipelines in the 22-FO4 design. In the 11-FO4

design, some of the registers in the pipeline can be

implemented as pulsed latches, reducing the 11-FO4 to

22-FO4 latch ratio from 2:2 to 1.5:2, a net clock load

savings of 25% and a logic area savings of 50%, which

translates into significant active power and leakage power

savings. Thus, for streaming and vector workloads that

can take advantage of the large register file to hide

instruction latency, the 11-FO4 design reduces both area

and power while achieving very high performance levels.

Figure 4

SPE organization. (©2006 IEEE. Reprinted, with permission, from 

Reference [1].)
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Figure 4 shows the SPE organization and the key

bandwidths (per cycle) between units. Instructions are

fetched from the LS in 32 four-byte groups when the LS is

idle. Fetch groups are aligned to 64-byte boundaries to

improve the effective instruction fetch bandwidth. The

fetched lines are sent in two cycles to the instruction line

buffer (ILB), which stores 3.5 fetched lines [1]. A half-line

holds instructions until they are sequenced into the issue

logic, while another line holds the single-entry software-

managed branch target buffer (SMBTB). Two lines are

used for inline prefetching, and instructions are sent two

at a time from the ILB to the issue control unit.

The SPE issues and completes all instructions in

program order and does not reorder or rename its

instructions. Although the SPE is not a very long

instruction word processor (VLIW), it does feature a

VLIW-like dual-issue feature and can issue up to two

instructions per cycle (IPC) to nine execution units

organized into two execution pipelines (Table 1).

Instruction pairs can be issued if the first instruction

(from an even address) is routed to an even pipe unit and

the second instruction to an odd pipe unit. Execution

units are assigned to pipelines to maximize dual-issue

efficiency for a variety of workloads. SPE software does

not require NOP (nothing-operation) padding when dual

issue is not possible. Instruction issue and distribution

require three cycles. The simple issue scheme provides for

very high performance, saves at least one pipeline stage,

simplifies resource and dependency checking, and

contributes to the extremely low fraction of logic devoted

to instruction sequencing and control.

Operands are fetched from either the register file or the

forward network and sent to the execution pipelines.

Each of the two pipelines can consume three 16-byte

operands and produce a 16-byte result every cycle. The

register file has six read ports, two write ports, and

128 entries of 128 bits each, and it is accessed in two

cycles. Register file data is sent directly to the functional

unit operand latches. Results produced by functional

units are held in the forward macro (FM) until they are

committed and available from the register file. These

results are read from six FM read ports and distributed to

the units in one cycle.

Loads and stores transfer 16 bytes of data between

the register file and the LS, which is a six-cycle, fully

pipelined, single-ported, 256-KB static random access

memory (SRAM). The LS is shared between the SPE load

and store unit, the SPE instruction fetch unit, and the

DMA unit. Several workloads keep the LS busy between

80% and 90% of their cycles. To provide good

performance while keeping the processor simple, a cycle-

by-cycle arbitration scheme is used. DMA requests are

scheduled in advance but are first in priority. DMA

requests access 128 bytes in the LS in a single cycle,

providing more than sufficient bandwidth with relatively

little interference with the SPE loads and stores. Loads

and stores are second in priority and wait in the issue

stage for an available LS cycle. Instruction fetch accesses

the LS when it is otherwise idle, again with a 128-byte

access to minimize the chances of performance loss due to

instruction run-out.

Table 2 shows the execution units. Simple fixed-

point [6], FP [7], and load results are bypassed directly

from the unit output to the input operands to reduce

result latency. Other results are sent to the FM, from

which they are distributed a cycle later. Result bypassing

involves pushing result data from the outputs of the

functional units over 128-bit-wide buses that cover about

half of the data-flow height. This distribution requires

Table 2 Unit and instruction latency.

Unit Instructions Execution pipe Unit pipeline depth Instruction latency

Simple fixed Word arithmetic, logicals, count leading zeros,

selects, and compares

Even 2 2

Simple fixed Word shifts and rotates Even 3 4

Single precision Multiply–accumulate Even 6 6

Single precision Integer multiply–accumulate Even 7 7

Byte Pop count, absolute sum of differences, byte

average, and byte sum

Even 3 4

Permute Quad-word shifts, rotates, gathers, shuffles, and

reciprocal estimate

Odd 3 4

Local storage Load and store Odd 6 6

Channel Channel read and write Odd 5 6

Branch Branches Odd 3 4
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about half of the 11-FO4 cycle time and forces the simple

fixed-point operations to take two cycles rather than one.

Figure 5, the SPE pipeline, shows how flush and fetch

are related to other instruction processing. Although

frequency is an important element of SPE performance,

pipeline depth is similar to that found in 20-FO4

processors. Circuit design, efficient layout, and logic

simplification are the keys to supporting the 11-FO4

design frequency while constraining pipeline depth.

To save area and power, the SPE omits hardware

branch prediction and branch history tables. However,

mispredicted branches flush the pipelines and consume

18cycles, so it is important that software employ techniques

to avoid mispredict. Whenever possible, the common

case for conditional branches should be arranged to

be an entirely inline sequence of instructions. When

the common case cannot be identified, it is often

advantageous to compute both paths and use the

select instruction to select the correct results at the end of

the block. When a commonly taken branch is necessary,

especially for the backward branch of a loop, software

can utilize the SMBTB, which is loaded using the branch

hint instructions (hbr, hbra, and hbrr). These instructions

identify both the address of a branch and the probable

address of the branch target. When a branch hint

instruction is executed, instructions from the branch

target are read from the LS and written to the SMBTB.

Later, when the indexed branch instruction is sent to the

issue logic, the SPE instruction sequencer can send the

first instruction of the branch target in the next

consecutive cycle. In this way, a correctly hinted branch

can execute in a single cycle.

Table 3 shows performance on several workloads that

are written in C using intrinsics for the SIMD types

and DMA transfers. SP LINPACK, Advanced

Encryption Standard (AES), and the transform-light

algorithm (a critical stage commonly found in vertex-

based graphics pipelines) achieve performance very close

to the SPE peak of two IPC. The LINPACK data is

especially impressive in that the DMA required to move

the data into and out of the LS is entirely overlapped with

execution. The other workloads execute out of the SPU

LS. Transform light is a computationally intensive

application that has been unrolled four times and its

software pipelined to schedule out most instruction

dependencies. The relatively short instruction latency is

important. If the pipelines were deeper, this algorithm

would require further unrolling to hide the extra latency;

this unrolling would require more than 128 registers

and would thus be impractical. These benchmarks show

that the SPE is a very effective streaming-data processor,

even when running software written in high-level

languages. This is due in part to the simplicity of the

instruction set architecture, the large register file, and the

relatively short execution pipelines, making it easy for

the compiler [8, 9] to schedule code for the SPE. These

benchmarks also show that the DMA programming

model can overcome memory latency and allow the SPU

core to achieve peak performance rather than wait for

needed data. Even with a very simple microarchitecture

and very small area, the SPE can compete on a cycle-by-

cycle basis with more complex cores on non–double-

precision (DP) streaming workloads.

DP LINPACK is one of the applications from the class

of DP HPC applications in which the weak DP

performance of the SPE can be exposed. Architecturally,

the SPU executes two-way SIMD DP multiply–add

instructions. However, the current SPU implementation

can execute only one of these instructions every seven

cycles. This means that at 3.2 GHz, the SPU peaks at only

1.8 DP Gflops. The Cell/B.E. processor DP HPC

performance was studied by Williams et al. [10]. They

report that, in general, the current Cell/B.E. processor

outperforms general-purpose processors by a factor of 3

to 18 and is competitive with the Cray X1E** processor on

several DP algorithms. The algorithms studied overcame

the weak DP performance by taking full advantage of the

25-GB/s memory bandwidth. The authors conclude that

Figure 5

SPE pipeline. (©2006 IEEE. Reprinted, with permission, from 

Reference [1].)
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the DMA model offers advantages over traditional cache-

based architectures but suggest that DP HPC could

benefit, by up to a factor of 2, from improved DP FP

performance. A new SPU design featuring a larger, fully

pipelined, two-way SIMDDPFP unit (FPU) is planned to

be a part of the Los Alamos National Laboratories

petaflop supercomputer [11]. This HPC-oriented design is

intended to improve the DP LINPACK performance by a

factor of 6 over the original gaming-oriented design. The

new level of SPE DP performance should allow the HPC-

oriented Cell/B.E. processor to solidly outperform its

general-purpose counterparts and lead the way into the

next generation of gaming and HPC.

Implementation

About one-half of the 65-nm Cell/B.E. processor shown

in Figure 1 is dedicated to eight SPEs. The large fraction

of chip area and the high repeat count make the physical

implementation of the SPE very important. A slightly

larger SPE might have meant that the number of SPEs

would have been reduced from eight to six, resulting in up

to 25% performance loss.

Figure 6 shows the floorplans of both the SPU and the

memory flow controller (SMF) that make up the original

gaming-oriented SPE. This SPE has two primary stacks.

The left-hand stack has four 64-KB SRAM arrays [6] that

implement local storage, while the right-hand stack is the

SIMD data flow. The SIMD data flow has a 128-bit, 128-

entry unified register file (GPR) with six read ports and

two write ports, four 32-bit fixed-point units (SFX) [7],

and four SP FPUs (SFP) [12]. Between the data flow and

the LS is the control bay stack. The top third of the

control bay stack is filled with a DP FPU, while the

bottom features all of the instruction fetch and

sequencing logic. This floorplan illustrates the importance

of heterogeneity. The instruction sequencing logic

occupies only about 10% of the SPU area. This is a small

fraction of the area required by the corresponding

functions in an industry-standard general-purpose

processor, which has large structures for instruction

caching, branch prediction, renaming, and out-of-order

completion. In general, comparisons with general-

purpose processors show that about four SPEs fit in the

area of a general-purpose processor and its L2 cache.

The HPC SPE design deletes the DP FPU from the

control bay stack and adds two DP FPUs at the top of the

data flow. Thus, the HPC SPE can execute the SIMD DP

instructions in a fully pipelined manner, while the gaming

SPE must double-pump its single DP unit. The SMF is

designed to operate at half the frequency of the SPU.

The SPE design has roughly 20.9 million transistors,

and the chip area including the SMF is 14.8 mm2

(2.54 mm3 5.81 mm) fabricated with a 90-nm silicon-on-

insulator (SOI) technology. The 65-nm version of the

design is 10.5 mm2. Full CMOS static gates and

transmission gates are used to implement the majority of

the logic. Dynamic circuits are used for the timing-critical

areas, including forwarding, control signal generation,

Table 3 Cell/B.E. processor application performance.

Class Algorithm General-purpose processorb 3.2-GHz Cell/B.E.

processor

IPC/SPE Relative

performance

Computing Single-precision matrix multiplication 25.6 Gflops (with SIMD) 25.6 Gflops (8 SPEs) 1.96 83

Single-precision LINPACK 4K 3 4K 25.6 Gflops (with SIMD) 156 Gflops (8 SPEs) 1.64 63

Double-precision LINPACK 1K 3 1K 7.2 Gflops (3.6 GHz/SSE3) 9.67 Gflops 0.30 1.33

Single-precision FFTa 16M 1.2 Gflops (2 GHz) 46.8 Gflops 243

Graphics Terrain rendering engine 0.85 fps (2.7 GHz/VMX) 30 fps 353

Transform light 128 Mvtx/s (2.7 GHz/VMX) 8 3 217 Mvtx/s 1.50 133

Security AES ECB encrypt 128-bit key 1.03 Gb/s 8 3 2.06 Gb/s 163

AES ECB decrypt 128-bit key 1.04 Gb/s 8 3 1.5 Gb/s 113

TDES ECB encrypt 0.13 Gb/s 8 3 0.17 Gb/s 1.80 103

DES ECB encrypt 0.43 Gb/s 8 3 0.49 Gb/s 93

SHA-1 0.9 Gb/s 8 3 2.12 Gb/s 183

Video MPEG-2 decode (SDTV) 354 fps (with SIMD) 8 3 329 fps 0.80 73

AES: Advanced Encryption Standard; DES: Data Encryption Standard; MPEG: Moving Picture Experts Group; Mvtx/s: millions of vertices per second; SDTV: standard-definition

television; SHA: secure hash algorithm; TDES: Triple Data Encryption Standard; fps: frames per second.
aA programming example: Large fast Fourier transform (FFT) on the Cell Broadband Engine.
b3.2-GHz Intel Pentium** 4 processor, except where noted.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007 B. FLACHS ET AL.

535



GPR, load and store, and dynamic programmable

logic arrays (DPLAs), which occupy 19% of the non-

SRAM area in the SPE. Extensive clock gating is

implemented, ensuring that only necessary logic is

activated. The SPE has been tested at various

temperatures, supply voltages, and operating frequencies.

Correct operation of a 90-nm SPE has been observed

at up to 5.6 GHz at 1.4-V supply and 568C, while the

65-nm SPE has run at up to 7.2 GHz at 1.35-V supply.

Latch use

Four kinds of latches [3] are used in the SPE. Most of

these are transmission gate latches with either a single

port or a two-way multiplexer (mux) configuration.

Where a wider mux is required and timing is critical,

dynamic scannable mux latches are used with various

configurations from a three-way to a nine-way mux.

Where area and timing are critical, pulsed clock latches

are used. Finally, DPLA latches are used where wide

ANDing and ORing are required and timing is critical.

GPR file and data flow

Three cycles are required for GPR operation (Figure 7).

The first cycle is for address predecoding and decoded

signal distribution; the second cycle is for final decoding

and array access; and the third cycle is for data-flow

distribution. A read operation is performed first, followed

by a write operation within an 11-FO4 cycle. Up to

eight operations, six reads and two writes (6r2w), are

performed independently every cycle. Collisions are

avoided by the SPE control logic. A dynamic two-stage

domino read scheme is used for a read operation, and

a static write scheme is used for a write operation. The

data from each of three read ports is taken from the true

side of a register cell, and the data from the other three

read ports is taken from the complement side of a register

cell. This leads to three true read ports and three

complement read ports at the GPR macro boundary.

The selection of ports with true or complement data is

carefully made so that the number of inverters in the data

flow distributing the GPR data is minimized to reduce

path delay. The wire level, width, and spacing for all

major signal distributions in the data flow are

predetermined by Spice (simulation program with

integrated circuit emphasis) simulations. Actual wires

are then implemented using a specially developed routing

tool to ensure optimized signal quality and distribution

delays. This tool is used for all data-flow signals, load

and store paths, DMA access paths, and instruction

fetch paths (Figure 6).

Dependency checking and data forwarding

Dependency checking and data forwarding are performed

by several macros: the dependency check macro (DCM),

the FM, and several DPLAs. DCM compares the newly

issued instruction with those in the execution pipes. The

subsequent DPLAs determine the final dependencies,

Figure 6

The 90-nm gaming SPE with engineered buses. (ATO: atomic unit 

for synchronization; FM: forward macro; GPR: unified register 

files; RTB: self-test unit; SBI: SPE bus interface; SFP: 

single-precision FPUs; SFX: 32-bit fixed-point units; SMM: SPE 

memory management unit.) (©2006 IEEE. Reprinted, with 

permission, from Reference [2].)
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Table 4 Simulated active power of DCM (mW).

Data input

switching factor

(%)

Clock activity (%)

0 25 50 75 100

0 2.0 8.1 14.1 20.2 26.3

5 2.3 10.9 19.4 28.0 36.5

10 2.7 13.7 24.7 35.7 46.7

20 3.4 19.3 35.2 51.2 67.1

30 4.1 24.9 45.8 66.7 87.5

38 4.6 29.4 54.2 79.0 103.8

40 4.8 30.6 56.4 82.1 107.9

50 5.5 36.2 66.9 97.6 128.3
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including exceptions, as well as the dependencies among

the committed instructions. The data in the correct stage

in FM is selected and forwarded to the receiving operand

latches (dynamic mux latches) according to the results of

the DCM and DPLAs. The results from DPLAs are used

to select the final data at the mux in the receiving operand

latches. DCM is implemented with the combination of

full static CMOS and transmission gates [Figure 8(a)]. Its

circuit design, layout, placement, and wiring to and from

the DCM are highly customized in order to satisfy the

11-FO4 cycle time. The simulated active power numbers

[13] of the DCM are tabulated with respect to clock

activity and the fraction of input data signals that switch

in a cycle in Table 4.

One slice of FM consists of sixteen 32-bit registers and

six 16-way muxes [Figures 8(b) and 8(c)]. Each register

contains either a two-way or a three-way mux, depending

on the stage. When the FM is operated in shift mode,

the register data in a stage is shifted to the next stage.

When the data in a stage is forwarded to the destination

operand latches, the 16-way mux path is selected. The

16-way mux is implemented with a dynamic 8-way

NOR gate followed by a cross-coupled NAND

(CCNAND) gate and finally a 2-way static NAND to

complete the 16-way multiplexing. Special attention has

been paid to the physical implementation of the bitlines in

the 16-way mux to avoid any crosstalk among both the

macro internal and the chip-level data-flow wiring.

DPLAs are generated with a specially developed

program. The program receives an espresso file as an input

and generates both schematics and layouts. ANDing is

implemented with a dynamic footed NOR followed by a

strobe circuit. Then ORing is done using a dynamic

footless NOR followed by a scannable CCNAND

[Figure 8(d)]. Twenty-seven DPLAs with 18 configurations

are used in the 90-nm SPE. DPLA AND and OR planes

can accept engineering changes by modifying metal 1,

metal 2, and the contacts between and below metal 1.

DPLAs are selectively used only when an equivalent static

implementation cannot make the required timing. Some

DPLAs have been replaced with static logic in the 65-nm

SPE, reducing the number of DPLA configurations from

18 to 12. These reductions typically save area and power

Figure 7
SPE GPR file circuit diagram and organization. (adr: address; C: complement; rd: read data; T: true; wd: write data; WL: wordline.) (©2006 

IEEE. Reprinted, with permission, from Reference [2].)
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and are accomplished mostly by taking advantage of logic

simplification and retiming.

Instruction line buffer

The instruction line buffer (ILB) uses an eight-

transistor latch cell with single-end bitline for a read

operation and dual datalines for a write operation

(Figure 9). The path from the SPE main memories (four

copies of 64 KB) to the ILB is one of the most critical

paths in the SPE. The ILB write operation is carefully

designed to accept the late arrival of data from the main

memories.

Comp.

Comp.

Figure 8
Dependency checking and data forwarding: (a) DCM circuit and organization; (b) forward macro organization; (c) forward macro circuit 

diagram; (d) dynamic programmable logic array (DPLA). (LCB: local clock buffer; PCA: precharge AND; PCO: precharge OR; Comp.: 

complement.) (©2006 IEEE. Reprinted, with permission, from Reference [2].)
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SPE hardware measurements

The SPE has been rigorously tested and the correct

operation for complicated workloads, such as three-

dimensional picture rendering, has been observed. The

fastest operation of a 90-nm SPE at 5.6 GHz has been

observed at 1.4 V and 568C, while the 65-nm SPE has

been observed to operate at 7.3 GHz. The SPE voltage–

frequency shmoo plot for a 90-nm and a 65-nm part is

shown in Figure 10.

Conclusion
The SPE represents the middle ground between graphics

processors and general-purpose processors. It is more

flexible and programmable than graphics processors but

has more focus on streaming workloads than general-

purpose processors. The SPE competes favorably with

general-purpose processors on a cycle-by-cycle basis with

substantially less area and power while running many

streaming and HPC algorithms. The efficiency in area and

power encourages the construction of a system on a chip

using multiple SPEs and offering performance many times

that of competitive general-purpose processors. It is

possible to address the memory latency bottleneck and

improve application performance through the DMA

programming model. This model provides concurrency

between data access and computation while making

efficient use of the available memory bandwidth. Full

custom design techniques can address a challenging

frequency, area, and power design point. These techniques

Figure 9
Instruction line buffer: (a) read circuits; (b) wordline driver; (c) memory cell; (d) block diagram; (e) floorplan. (©2006 IEEE. Reprinted, with 

permission, from Reference [2].)
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allow the SPE to have a shorter pipeline, occupy less area,

and as a total package, dissipate less power.
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Figure 10

Voltage–frequency shmoo plot for 90-nm and 65-nm SPEs.
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