Cell Broadband Engine
Architecture and its first
Implementation—A
performance view

The Cell Broadband Engine™ (Cell/B.E.) processor is the first
implementation of the Cell Broadband Engine Architecture
(CBEA), developed jointly by Sony, Toshiba, and IBM.

In addition to use of the Cell/B.E. processor in the Sony Computer
Entertainment PLAYSTATION®3 system, there is much interest
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in using it for workstations, media-rich electronics devices, and
video and image processing systems. The Cell/B.E. processor
includes one PowerPC® processor element (PPE) and eight
synergistic processor elements (SPEs). The CBEA is designed to
be well suited for a wide variety of programming models, and it
allows for partitioning of work between the PPE and the eight
SPEs. In this paper we show that the Cell/B.E. processor can
outperform other modern processors by approximately an order of

magnitude and by even more in some cases.

1. Introduction

Until recently, improvements in the performance of
general-purpose processor systems were derived primarily
from higher processor clock frequencies and wider

issue superscalar and deeper super-pipelined designs.
However, without a commensurate increase in the
memory speed, these approaches led only to relatively
increased memory latencies and even more complex logic
to hide those latencies. Furthermore, because of hardware
limits on the number of concurrent accesses to memory,
complex processor cores often ended up underutilizing
the execution pipelines and memory bandwidth.

The approach taken by the Cell Broadband Engine’
(Cell/B.E.) processor designers was to focus on improving
performance/area and performance/power ratios [1].
These goals are largely achieved using simple, yet
powerful cores that use area more efficiently with less
power dissipation. Supported by a high-bandwidth
interconnection bus, these cores can work both
independently and cooperatively. By supporting a large
number of simultaneous memory accesses from the direct
memory access (DMA) engines, which can move data with
negligible processor assistance, the Cell/B.E. processor

Note: A version of this paper was published on the IBM developerWorks® Web site:
hitp:|www.ibm.com|developerworks/power|library/pa-cellperf]; 11/29/2005.

design allows for effective use of the memory bandwidth
as well. Architecturally, the design philosophy resulted
from the recent trend of having multiple general-purpose
cores in the same chip; in the Cell/B.E. processor, the cores
are simple and are designed to be able to work together
efficiently and in novel ways. Extensive documentation
on the Cell/B.E. processor and its programming
environments can be found in [2].

In Section 2, we introduce the performance
characteristics of the Cell/B.E. processor, focusing on
the PowerPC* processor element (PPE), the synergistic
processor elements (SPEs), the element interconnect bus
(EIB), the Rambus XDR** dynamic random access
memory (DRAM), and the input/output interfaces
(IOIFs). Finally, in Section 3, we characterize the
performance of several applications that exploit the
Cell/B.E. processor features and compare the results
with those of a few other general-purpose processors.

2. Cell/B.E. Architecture, bandwidths,

and latencies

Figure 1 shows a high-level view of the first
implementation of the Cell/B.E. processor. It includes a
general-purpose 64-bit PPE. In addition, the Cell/B.E.
processor incorporates eight SPEs interconnected by a
high-speed, memory-coherent EIB. The initial
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Block diagram of the Cell/B.E. processor. (LS: local store; I+D: instruction + data caches; PPU: PowerPC processor unit; BIF: broadband

interface.)

implementation of the Cell/B.E. processor is targeted to
run at 3.2 GHz.

The execution units on the SPEs follow the
single-instruction multiple-data (SIMD) execution
model of vector processors and account for much of
the computational power of the Cell/B.E. processor.
When single-precision (SP) floating-point (FP)
fused multiply—add instructions are in use, the eight SPEs
in the first-generation Cell/B.E. chip can perform up to
64 FP operations per processor cycle.

The integrated memory controller provides a peak
bandwidth of 25.6 GB/s to an external Rambus XDR
DRAM, while the integrated input/output (I/O)
controller provides an aggregate peak raw bandwidth of
25 GB/s on inbound links and 35 GB/s on outbound
links. The EIB supports a peak bandwidth of 204.8 GB/s
for intrachip data transfers among the PPE, the SPEs, the
memory interface controller (MIC), and the IOIF
controllers.

PowerPC processor element

The PPE is a dual-issue, in-order implementation of the
IBM PowerPC Architecture®, with multithreading
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capability and integrated vector multimedia extensions
(VMX). The PPE is responsible for overall control of the
chip and is typically used in the management and
allocation of synergistic processor units (SPUs) and their
tasks.

As shown in Figure 2, the PPE consists of three main
units: the instruction unit (IU), the execution unit (XU),
and the vector/scalar execution unit (VSU), which
contains the VMX and floating-point unit (FPU). The U
contains the Level 1 (L1) instruction cache (ICache),
branch prediction hardware, instruction buffers, and
dependency checking logic. The main division between
the IU and the rest of the system is at the instruction issue
3 (IS3) stage, which is the main stall point for the PPE.
The XU contains the integer execution units (FXUs) and
the load—store unit (LSU). The VSU contains all of the
execution resources for FP and VMX instructions, as well
as separate VMX and FP instruction queues in order to
increase overall processor throughput. A pipeline timing
diagram of the PPE is presented in Figure 3.

Although the PPE is considered an in-order machine,
several mechanisms allow it to achieve some of the benefits
of out-of-order execution, without the associated
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complexity of instruction or memory access reordering
hardware. First the processor can make forward progress
on a thread even when a load from that thread misses the
cache. The processor continues to execute past the load
miss, stopping only when there is an instruction that is
actually dependent on the load. This allows the processor
to send up to eight requests to the L2 cache without
stopping. This can be a great benefit to FP and SIMD
code, since these typically have a very high data cache miss
rate, and it is often easy to identify independent loads.
In addition to allowing loads to be performed out of
order, the PPE uses “delayed execution pipelines” to
achieve some of the benefits of out-of-order execution.
Delayed execution pipelines allow instructions that
normally would cause a stall at the issue stage to move to a
special “delay pipe” to be executed later at a specific point.

Synergistic processor element

The SPE comprises an SPU and a memory flow controller
(MFC). The SPU [3] is a compute engine that supports
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the SIMD execution paradigm with 256-KB of dedicated
local storage. The MFC consists of a DMA controller
with an associated memory management unit to aid
effective-to-real address translation, as well as an atomic
unit to handle synchronization operations with other
SPUs and the PowerPC processor unit (PPU).

The SPU is a dual-issue, in-order machine with a large
128-entry, 128-bit register file used for FP, integer, and
branch operations. It operates directly on instructions
and data from its dedicated local store and relies on a
channel interface to the DMA controller to access the
main memory and other local stores. The channel
interface, which is in the MFC, runs independently of the
SPU and is capable of translating addresses and
transferring data between the main memory and the local
storage while the SPU continues with the program
execution.

Simply stated, the SPU is based on a SIMD
architecture. The set of operations allowed by its
instruction set architecture closely resembles that of the
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POWER* VMX unit. Each SPU can perform operations
on sixteen 8-bit integers, eight 16-bit integers, four 32-bit
integers, or four SP FP numbers per cycle. At 3.2 GHz,
each SPU is capable of performing up to 51.2 billion 8-bit
integer operations or 25.6 Gflops in SP when using the
fused multiply—add instruction.
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Figure 4 shows the main functional units in an SPE: an
FPU for SP, double-precision (DP), and integer
multiplies; a fixed-point unit for arithmetic, logical
operations, and word shifts; another fixed-point unit
for permutes, shuffles, and quad-word rotates; a
control unit for instruction sequencing and branch
execution; a local store unit for loads and stores
and to supply instructions to the control unit; and a
channel/DMA transport that is responsible for
controlling input and output through the MFC.

Each functional unit in Figure 4 is assigned to one of
the two execution pipelines. The FPU and the fixed-point
unit are on the even pipeline while the rest of the
functional units are on the odd pipeline. The SPU can
issue and complete up to two instructions per cycle, one
on each of the execution pipelines. A dual issue occurs
when a group of fetched instructions has at least two
ready-to-execute instructions, one of which is executed by
a unit on the even pipeline and the other by a unit on the
odd pipeline.

Instruction fetches are initiated in one of three ways:
instruction flush condition, inline prefetch, or software
hint. The instruction fetch logic reads 32 instructions at a
time into its instruction line buffer from which two
instructions at a time are sent to the issue logic. When the
operands are ready, the issue logic sends the instructions
to the functional units for execution in the same cycle.
Pipeline length varies from two to seven cycles. Figure 5
shows an SPU pipeline diagram.
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Pipeline timing diagram of the SPU.

Features such as a fixed access time to the local store,
simple rules to issue instructions, software-inserted
branch hints, and a large register file are exposed to the
compiler and applications for performance tuning. With
only moderate effort to tune codes, we have seen a wide
variety of applications approach the theoretical limit of
two instructions issued per cycle in the SPU.

Element interconnect bus

The EIB in the Cell/B.E. processor allows for
communication among the PPE, the SPEs, the off-chip
memory, and the external I/O (Figure 6). The EIB
consists of one address bus and four 16-byte-wide data
rings, two of which run clockwise and the other two
counterclockwise. Each ring can allow up to three
concurrent data transfers as long as their paths do not
overlap. The EIB operates at half the speed of the
processor.

Each requester on the EIB starts with a small number
of initial command credits to send out requests on the
bus. The number of credits is the size of the command
buffer inside the EIB for that particular requester. One
command credit is used for each request on the bus.
When a slot becomes open in the command buffer as a
previous request progresses in the EIB request pipeline,
the EIB returns the credit to the requester.

When a unit requires access to a data ring in order to
send data to another unit, it makes a single request to the
data ring arbiter on the EIB. The arbiter processes
requests from all requesters and decides, as optimally as it

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007

PPE SPE1 SPE3 SPES SPE7 I0IF1

| p | > | 3 | 9 | 10 | 11

I EIB
Unit—>|5 |4 |3 |2 Il IO
ID BIF/
MIC || SPEO || SPE2 || SPE4 || SPE6 || o

EIB and the connected units.

can, which data ring is granted to which requester and the
time at which the data ring is granted. The memory
controller is given the highest priority to prevent stalling
of the requester of the read data, while all others are
treated equally with a round-robin priority. Any ring
requester can use any of the four rings to send or receive
data. The data arbiter does not grant a data ring to a
requester if the transfer would cross more than halfway
around the ring on its way to its destination or would
interfere with another data transfer already in progress.
Each unit on the EIB can simultaneously send and
receive 16 bytes of data every bus cycle. The maximum
data bandwidth of the entire EIB is limited by the
maximum rate, one 16-byte data transfer per bus
cycle, at which addresses are “snooped” across all
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Table 1 Sustained EIB bandwidth achieved for some SPE-to-SPE DMA transfers.

Test configuration

Aggregate EIB bandwidth at 3.2 GHz (GB/s)

SPEl < SPE3, SPES « SPE7, SPE0 « SPE2, SPE4 — SPE6 186
SPEO < SPE4, SPEl < SPES, SPE2 « SPE6, SPE3 « SPE7 197
SPEO < SPEI1, SPE2 < SPE3, SPE4 « SPES5, SPE6 < SPE7 197
SPEO < SPE3, SPEIl < SPE2, SPE4 — SPE7, SPES « SPE6 197
SPEO < SPE7, SPEIl < SPE6, SPE2 « SPES, SPE3 « SPE4 78
SPEO < SPES, SPE1 < SPE4, SPE2 < SPE7, SPE3 < SPE6 95
SPEO < SPE6, SPE1 « SPE7, SPE2 < SPE4, SPE3 < SPE5 197

units connected to the EIB. Since each snooped address
request can potentially transfer up to 128 bytes, the
theoretical peak data bandwidth on the EIB at 3.2 GHz is
128 bytes X 1.6 GHz = 204.8 GB/s.

The sustained data bandwidth on the EIB will often be
lower than the peak bandwidth because of several factors:
the locations of the destination and the source relative to
each other, the potential for interference between the new
transfer and those already in progress, the number of
Cell/B.E. chips in the system, whether the data transfers
are to or from memory or between local stores in the
SPEs, and the efficiency of the data arbiter.

Reduced bus bandwidths can result when all requesters
access the same destination (memory or local store)
at the same time, when all transfers are in the same
direction and cause idling on two of the four data rings,
when there are a large number of partial cache line transfers
lowering the bus efficiency, or when each data transfer is
six hops, inhibiting the units on the way from using
the same ring.

We ran a series of experiments on the hardware in our
laboratory using a core frequency of 3.2 GHz. In our
experiments, all four pairs of SPEs did streaming reads or
writes to each other’s local stores. For instance, SPEO
reads from SPE2, SPE4 from SPE6, SPE1 from SPE3,
and SPES5 from SPE7, and vice versa in all cases. Table 1
shows the results from a few of the runs. We use the
notation SPEx < SPEy to indicate that SPEx reads from
the local store of SPEy, and vice versa.

The sustained effective data bandwidth in our
experiments varied from 78 GB/s (38% of peak) to
197 GB/s (96% of peak). In the case in which the
bandwidth is only 78 GB/s, the communicating SPEs are
farthest apart (see Figure 6) and only one transfer
happens on each of the four rings (this determines the
lower bound for the EIB bandwidth). We would expect
102.4 GB/s in this case, but because of the limitation
of the data ring arbiter design, we achieve about 75%
of the expected bandwidth. In the case in which the
bandwidth is 95 GB/s, the communicating SPEs are five
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hops away from each other and still prevent other transfers
from taking place because of path overlap. In the
remaining cases, the bandwidth achieved is close to the
peak of 204.8 GB/s.

Memory subsystem

The MIC in the Cell/B.E. chip is connected to the external
Rambus XDR DRAM through two XDR controller I/O
(XTO) channels that operate at a maximum effective
frequency of 3.2 GHz (400 MHz, octal data rate). Each
XIO channel can have eight banks for a maximum size of
256 MB, for a total memory size of 512 MB.

The MIC has separate independently operating read
and write request queues for each XIO channel. For each
channel, the MIC arbiter alternates the dispatch between
read and write queues after a minimum of every eight
dispatches from each queue or until the queue becomes
empty, whichever comes first. High-priority read requests
are given precedence over normal reads and writes.

Writes of 16 bytes or more, but less than 128 bytes, can
be written directly to memory using a masked-write
operation; writes less than 16 bytes require a read—
modify—write operation. Because of the small number of
buffers for read—modify—write operations, the read part
of the read—modify—write operation is given a higher
priority than normal reads, while the corresponding write
part of the operation is given a higher priority than
normal writes.

Other performance-enhancing features in the MIC
include a fast-path mode, in which an incoming request
can bypass an empty request queue and be dispatched
immediately to reduce read latency by several cycles, and
a mode in which reads can be speculatively dispatched to
the DRAMs even before the combined response is
received from the EIB.

With both XIO channels operating at 3.2 GHz, the
peak raw memory bandwidth is 25.6 GB/s. However,
normal memory operations such as refresh and scrubbing
typically reduce the bandwidth to about 24.6 GB/s. The
peak bandwidth assumes that all of the banks are
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kept active all of the time by the incoming request streams,
that all requests are of the same type (read or write), and
that each request is exactly 128 bytes. If streaming
reads and writes are intermingled, the effective bandwidth
can be further reduced to about 21 GB/s; the bandwidth
loss in this case arises from the overhead of turning
around the MIC-to-XIO bidirectional bus.

Finally, the Cell/B.E. processor also implements
resource allocation to provide controlled access to the
critical shared resources such as the memory or the I/O
links. This controlled access allows time-critical
applications to meet timing targets by preventing
contention for the shared resources.

Flexible I/O interface
The seven transmit and five receive Rambus FlexIO**
links are each one byte wide. These links can be
configured as two logical interfaces. With the Rambus
FlexIO links operating at 5 GHz, the IOIF provides a
peak raw bandwidth of 35 GB/s outbound and 25 GB/s
inbound. A typical configuration may have one IOIF
configured with raw bandwidths of 30 GB/s outbound
and 20 GB/s inbound and another IOIF with raw
bandwidths of 5 GB/s outbound and 5 GB/s inbound.
Data and commands on the IOIF are transmitted as
packets. In addition to the command, response, and data,
each packet may carry information such as the data tag,
data size, command identifier, and flow control
information, as well as other information. Because of
these overheads and potentially nonoptimal arrival
times of data and commands, the effective bandwidth on
the two interfaces may be typically lower, ranging from
50% to 80% of the raw bandwidth. Of course, other
factors such as the prevailing data traffic on the EIB,
resource allocation, speed of the I/O devices, ordering
characteristics of the I/O data traffic, and interrupts can
potentially reduce the I/O bandwidth further.

3. Application examples and their performance
characteristics

In this section, we present the results for a number of
applications that showcase the performance of the
Cell/B.E. chip. The applications cover a wide range:
matrix multiplication, LINPACK [4], MPEG-2 video
decoding [5], triangle transform and lighting, and
cryptography algorithms such as Advanced Encryption
Standard (AES), Triple Data Encryption Standard
(TDES), and Message Digest 5 (MDS5) algorithm. Some
of the performance results in this section were obtained
from our cycle-accurate SPEsim performance model (an
internal tool), because it provides considerable insight
into pipeline behavior. In other cases, the results

were measured on the hardware with no operating
system support and overheads. All applications, which
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were optimized to take advantage of the Cell/B.E.
microarchitecture features in using techniques such as the
ones described in [6], were compiled with a prerelease
version of the IBM XL C compiler [7] on the Linux**
operating system.

The results from the hardware indicate that the
simulator is typically more than 98% accurate for
compute-intensive code, while in some cases such
as LINPACK, which has significant memory activity,
the modeling accuracy can drop to about 88% because
of simplifying assumptions in the EIB and memory
system model.

Optimization of matrix multiplication
Our matrix multiplication program calculates C= A X B,
where A4, B, and C are square matrices of order N. Each
element ¢; of C is computed as follows:

N—1
= E az‘kbk;"
k=0

A well-known optimization to reduce the required
memory bandwidth is to partition the matrices into
smaller square matrices of order M < N:

Coo Cor CO,N/M—I
Cio ¢y CI,N/M—I
CN/Mfl,O CN/M—IA,I CN/Mfl,N/M—l
Aoo A01 e AO,N/M—I
m Ay Al,N/M—l
AN/Mfl,O AN/M—I,I AN/M—LN/M—I
Boo B(n e BO,N/M—I
B, By, BI,N/M—]
X )
BN/M—I,O BN/M—I,I BN/M—I,N/M—I
where A4;;, By, and C; are square matrices of order M.

Each matrix block Cj; is then solved by
N/M~1
C;= Z Ay By -
k=0

The first optimization for the SPE architecture was to
take advantage of the four-way SIMD using 32-bit
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multiply—add operations to perform up to eight SP
FP operations per cycle.

The next optimization was to take advantage of DMA
engines in the SPE by adopting a double-buffer approach
to overlap computations on the previously fetched data
blocks with transfers of subsequent data blocks to and
from memory. This effectively prevents memory stalls.

Additional optimizations, such as overlapping the
execution of blocks, loop exchange, and software
pipelining, were applied to balance the usage of the two
SPU pipelines and maximize the dual-issue rate. With
these tuning efforts, the matrix multiplication program on
a single SPU improved its performance by almost 60
times over the original scalar code running on an SPU.

The data presented in Table 2 was obtained from
a cycle-accurate SPEsim simulator. All SPUs had
performance characteristics similar to those shown in
Table 2. The accuracy of the results was 99.6% from our
SPEsim simulator for matrix multiplication with a matrix
size of 256 X 256 (one SPU, SPEsim = 25.12 Gflops,
hardware = 25.01 Gflops).

Since operations in each data block are independent
of those in other blocks, the matrix multiplication
algorithm is easily parallelized to all eight SPUs. Figure 7
shows that the matrix multiplication performance increases
almost linearly with the number of SPUs, especially with
large matrix sizes. Using eight SPUs, the parallel version
of matrix multiplication achieves 201 Gflops, very close
to the theoretical maximum of 204.8 Gflops. With seven
SPUs, we observed that the load balancing could cause
nonlinear performance scaling for smaller matrix sizes
such as 512 X 512. As matrix size increases, this
problem disappears.
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Assuming that matrix multiplication can achieve its
peak SP FP capability, a Pentium** 4 processor with
SSE3 (streaming SIMD extensions) at 3.2 GHz can
achieve 25.6 Gflops, while the Cell/B.E. processor can
achieve 201 Gflops, greater by almost a factor of 8.

Optimization of LINPACK

LINPACK solves a dense system of linear equations

Ax = b, where A4 is a matrix of order N, and x and b are
single-dimension arrays of size N. Matrix multiplication
isakeypart of LINPACK. The LINPACK implementation
on the Cell/B.E. processor is based on the block-
partitioned algorithm for LU factorization [8].

LINPACK single-precision FP performance

The initial implementation of SP LINPACK was a
scalar version. When run on the cycle-accurate SPEsim
simulator with a matrix size of 1,024 X 1,024 using
partitioned blocks of 64 X 64, it achieved only

0.26 Gflops with a 3.2-GHz SPE.

With optimizations added to hide the memory latency
by overlapping data transfers with computation using
double buffers, as well as working to maximize dual issue
with optimal instruction scheduling, the final optimized
version of the program achieved 16.5 Gflops on a
1K X 1K matrix, 22.0 Gflops on a 4K X 4K matrix,
and 23.5 Gflops on an 8K X 8K matrix (Table 3). The
efficiency, defined as the ratio of achieved performance
to peak performance, increases significantly with the
matrix size and optimization.

Table 4 shows the performance of LINPACK when
it is optimized to run on all eight SPEs. Note that the
computational efficiency as a percentage of peak
performance improved significantly with the larger matrix
size. Eight SPUs running LINPACK at 3.2 GHz achieve
155.5 Gflops on a 4K X 4K matrix.

Table 5 compares the performance results of parallelized
LINPACK from the SPEsim and the hardware. As
the table shows, the SPEsim results for LINPACK are
off by up to 12%, except for the 4K X 4K case, because not
all of the complexities of DMA and the memory system
were modeled.

LINPACK double-precision FP performance

Although the SPU DP FP performance is not as high as
the SP performance, it is still good. Each SPU is capable
of executing two DP instructions every seven cycles. With
fused multiply—add, an SPU can achieve a peak

1.83 Gflops at 3.2 GHz. With eight SPUs and fully
pipelined DP FP support in the VMX of the PPE, the
Cell/B.E. processor is capable of a peak 21.03-Gflops DP
FP performance, compared with a peak SP FP
performance of 230.4 Gflops.
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Table 2 Performance of matrix multiplication on an SPU.

No. of No. of CPI Dual issue Channel stalls Other stalls Gflops
cycles instructions (%) (%) (%)
Original (scalar) 258.90M 247.10M 1.050 26.1 114 26.3 0.42
SIMD optimized 9.78M 13.80M 0.711 40.3 3.0 9.8 10.96
SIMD + double buffer 9.68M 13.60M 0.711 41.4 2.6 10.2 11.12
Optimized code 4.27TM 8.42M 0.508 80.1 0.2 0.4 25.12
Table 3  Performance of optimized LINPACK on a single SPU.
Code Matrix size No. of No. of CPI Dual Channel Other Gflops Efficiency
cycles instructions issue stalls stalls (%)
(%) (%) (%)
Original 1,024 X 1,024 9.11G 6.57G 1.39 16.0 1.9 50.0 0.26 1.02
Optimized 1,024 X 1,024 140.00M 205.00M 0.68 56.7 18.1 3.9 16.50 64.50
Optimized 4,096 X 4,096 6.66G 11.90G 0.56 71.7 6.4 1.7 22.00 85.90
Optimized 8,192 X 8,192 50.00G 94.00G 0.53 75.8 3.8 1.0 23.50 91.80
Note: There is an error of approximately 10% in these SPEsim performance results.
Table 4 Performance of parallelized LINPACK on eight SPUs.
Matrix size Cycles No. of CPI  Dual  Channel ~ Other  SPEsim  Measured Model Efficiency
instructions issue stalls stalls Gflops Gflops accuracy (%)
(%) (%) (%) (%)
1,024 X 1,024 27.6M 2.92M 0.95 32.6 26.9 12.6 83.12 73.04 87.87 35.7
4,096 X 4,096  918.0M 1.51G 0.61 56.7 10.8 3.4 160.00 155.50 97.20 75.9

The initial implementation of DP LINPACK was a
scalar version. When run on the SPEsim with a matrix
size of 1,024 X 1,024, using partitioned blocks of 64 X 64,
it achieved 0.27 Gflops on a 3.2-GHz SPE. With
additional tuning, the final version achieved 1.55 Gflops
on a 4K X 4K matrix, or about 85% of peak performance,
as shown in Table 6.

The DP version of LINPACK on the Cell/B.E.
processor was also parallelized to run on all eight SPUs.
Table 7 summarizes the performance of LINPACK
parallelized to eight SPUs, running on SPEsim.

Table 8 compares the results measured on hardware
with those measured on the SPEsim model. The modeling
accuracy for DP LINPACK is greater than 97% in all
cases. With a 1,024 X 1,024 matrix, the computational
efficiency of parallelized LINPACK is greater than 64%
when running on all eight SPUs. The best parallelized
LINPACK DP FP result measured on hardware is
11.82 Gflops for a 4,096 X 4,096 matrix, with an efficiency
of 81%. The LINPACK performance on 1A-32
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Table 5 Performance of parallelized LINPACK on SPEsim
and hardware.

No. of SPEsim Hardware Model Efficiency

SPUs (Gflops) (Gflops) accuracy (%)
(%)

IK X 1K matrix 1 16.03 14.94 93.20 58.36
32.79 30.46 92.89 59.49
45.62 42.04 92.15 54.74
56.33 50.80 90.18 49.61
64.94 58.21 89.64 45.48
83.12 73.04 87.87 35.66
160.00  155.50 97.19 75.93

© o W AW N

4K X 4K matrix

(Pentium 4) and TA-64 (Ttanium**) machines [9] is

summarized in Table 9 along with the SPU results.
The LINPACK implementation on the Cell/B.E.

processor has the highest DP FP performance in the
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Table 6 Performance of double-precision floating-point LINPACK on one SPU.

Single SPU Matrix size No. of No. of CPI Dual Channel Other 3.2 GHz Efficiency
DP LINPACK cycles instructions issue stalls stalls (Gflops) (%)
(%) (%) (%)
Original IK X IK 8.46G 491G 1.72 9.5 3.00 58.0 0.27 14.88
Optimized 1K X 1K 1.57G 466.00M 3.36 2.8 0.80 74.1 1.46 80.06
Optimized 4K X 4K 94.50G 26.00G 3.63 1.9 0.20 75.8 1.55 84.88
Table 7 Performance of parallelized double-precision LINPACK on eight SPUs.
Matrix size No. of No. of CPI Dual Channel Other SPEsim Measured Model Efficiency
cycles instructions issue stalls stalls Gflops Gflops accuracy (%)
(%) (%) (%) (%)
1K X 1K 236.7M 69.1M 3.42 2.9 6.7 68.5 9.704 9.46 97.49 64.66
2K X 2K 1.64G 44.9M 3.65 2.2 33 72.5 11.184 11.05 98.80 75.53

Table 8 Comparison of SPEsim and hardware performance

results.
No. of SPEsim Hardware Model Efficiency
SPUs (Gflops) (Gflops) accuracy (%)
(%)
IK X 1K matrix 1 1.46 1.45 99.14 79.23
2 2.84 2.81 98.82 76.78
3 4.15 4.11 99.12 74.86
4 5.39 5.32 98.79 72.68
5 6.56 6.46 98.52 70.60
6 7.66 7.52 98.12 68.49
7 8.67 8.51 98.21 66.43
8 9.71 9.46 97.45 64.62

chart, exceeding the most recent IA-32 and 1A-64
machines available today.

Optimization of MPEG-2 video decoding
The Cell/B.E. processor is targeted primarily for game
applications [1], some of which demand a high video
processing capability; consequently, significant effort has
been devoted to optimizing MPEG-2 video decoding.
Figure 8 shows the major components of an MPEG-2
video decoder: a variable-length decoder (VLD), an
inverse quantizer (IQ), an inverse discrete cosine
transform (IDCT), the motion compensation (MC)
section, and control logic.

The VLD code in an MPEG-2 decoder has many
branches and needs significant optimization to run well

T. CHEN ET AL.

on the SPU. Our optimizations include algorithmic
tuning, lookup-table modification, fast bit manipulation
with SPU intrinsics, static branch prediction with the
“builtin_expect” pragma of the GCC compiler, function
inlining,! and global register assignment. Most of the
optimizations also reduced the instruction count and
eliminated or minimized branch penalties.

A fast IDCT algorithm [10] was adopted to operate
an 8 X 8 two-dimensional IDCT using 512 multiply—
adds and 128 add or subtract instructions. This IDCT
algorithm was regular and it was easy to keep the
precision required by the MPEG-2 standard for
16-bit X 16-bit multiplication. Most operations in IDCT
were four-way SIMD for the inner product, except matrix
transpose, which was eight-way SIMD.

The MC element was implemented primarily with
eight-way SIMD and some 16-way SIMD. Function
inlining and nested “if else” to “switch case” conversion
were adopted to eliminate some branches and to improve
code scheduling by enlarging basic block size.

MC required small pixel block transfers (e.g., 16 X 16
pixels) from system memory to the local store in order to
construct the predicted blocks. If a video frame were
stored in a raster scan manner, MC would require
numerous small DMA transfers (e.g., 16 transfers of
16 bytes). However, in the Cell/B.E. processor, the
DMA transfers are most efficient when performed on
128-byte naturally aligned boundaries. To increase
efficiency, the data structure was rearranged to place
each macroblock in a 384-byte contiguous area,

' Builtin_expect is one of the pragmas provided by the GCC compiler that is treated
by the compiler as a hint for branch direction. Function inlining is a compiler
optimization that expands a program function call to be inlined as part of the
program flow.

IBM J. RES. & DEV. VOL. 51 NO. 5 SEPTEMBER 2007



Table 9 Comparison of LINPACK performance for Cell/B.E.

and other processors. -
’ Bitstream IDCT YIdGO
T image

LINPACK IK X 1K (DP)  Peak  Actual  Efficiency ‘ ‘ !

Gflops  Gfiops (%) [ Decode control ]»[ MC
SPU, 3.2 GHz 1.83 1.45 79.23
Eight SPUs, 3.2 GHz 14.63 9.46 64.66 .
, Figure 8
Pentium 4, 3.2 GHz 6.40 3.10 48.44

Major components of MPEG-2 decoder illustrating process flow.

Pentium 4 + SSE3, 14.40 7.20 50.00 (VLD: variable-length decoder; 1Q: inverse quantizer; IDCT: inverse
3.6 GHz discrete cosine transform; MC: motion compensation section.)
Itanium, 1.6 GHz 6.40 5.95 92.97

Table 10 Single-SPU MPEG-2 decoding performance at

different resolutions.
Table 12  Performance of a single SPE and another processor

for cryptography. (ECB: electronic code book; CBC: cipher-block
No. of N 0. of ) CPI Frames per chaining; AES: Advanced Encryption Standard; MD5: Message
cycles instructions second at Digest 5 algorithm; TDES: Triple Data Encryption Standard;

3.2 GH:z SHA: secure hashing algorithm.)

CIF 1 Mb/s 63.4M 51.9M 1.22 1,514
Algorithms SPE Pentium 4 SPE
SDTV 5 Mb/s 263M 220M 1.20 365 (Gb/s) with SSE performance
SDTV 8 Mb/s 324M  290M  1.12 296 (Gb/s) advantage
HDTV 18 Mb/s 1.25G 1.01G 1.24 77
AES ECB encrypt
Note: There is an error of approximately 10% in these SPEsim performance results. 128-bit key 2.059 1.029 2.002
192-bit key 1.710 0.877 1.950
256-bit key 1.462 0762 1.918

Table 11  Performance of SPE vs. PowerPC 970* for

transform light. (Mvtx/s = million vertices per second.) AES CBC encrypt

128-bit key 0.795 0.968 0.821
192-bit key 0.664 0.823 0.807
Loop  PPC970 PPCY70 SPE SPE 256-bit key 0.570 0.725 0.786
unrolling 2 GHz 3.2 GHz (scaled) 3.2 GHz advantage
(Mvtx/s) (Mvtx/s) (Mvtx/s) (%) AES EBC decrypt
128-bit key 1.499 1.035 1.448
1 82.95 133.0 139.44 438 192-bit key 1.252 0.870 1.438
D) 94.80 152.0 15592 26 256-bit key 1.068 0.758 1.410
4 89.47 143.0 208.48 45.8 AES CBC decrypt
128-bit key 1.507 1.966 1.560
8 58.45 93.6 21720 132.0 192-bit key 1.249 0.829 1.507
256-bit key 1.066 0.724 1.472
DES
consisting of a 16- X 16-pixel luminance block and two ECB encrypt 0.492 0.426 1156
8- X 8-pixel chrominance blocks (in the case of the 4:2:0 ggg zncrypt gi;g 8;‘;; ??23
. - S 2 ms ecrypt : : :
forrpdt). With this drrfmgement, a macroblock coul.d be CBC decrypt 0.489 0.421 1162
retrieved from the main memory to a local store with
fewer 128-byte DMA transfers. TDES
Table 10 shows our results from the optimized decoder ECB encrypt 0.174 0.133 1.313
. h I SPU simul Asi CBC encrypt 0.097 0.132 0.733
running on .t e cycle-accurate simu ator. As is ECB decrypt 0174 0133 1313
evident, a single 3.2-GHz SPU can easily support any CBC decrypt 0.174 0.132 1.321
kind of real-time MPEG-2 video decoding. MDS 5 a8 5 86 0.855
On hardware, our optimized MPEG-2 decoder was ’ ' ’
able to decode 1,379 common intermediate format (CIF) SHA-1 2.116 0.902 2.347
fFames per second (fps), about 10% 19wer than the SHA-256 0.854 0518 1.649
simulation result. Adjusted for modeling error, each 569
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Table 13  Performance comparison of the Cell/B.E. and other processors for different applications. (ECB: electronic code book; TRE:
terrain rendering engine; HPC: high-performance computing; GPP: general-purpose processor.)

Type Algorithm 3.2-GHz GPP 3.2-GHz Cell/B.E. Performance
processor advantage
HPC Matrix multiplication (SP) 25.6 Gflops* (w/SIMD) 200 Gflops (eight SPEs) 8X (eight SPEs)

LINPACK (SP) 4K X 4K
LINPACK (DP) 1K X 1K
Graphics TRE
Transform light
Security AES ECB encryption 128-bit key 1.03 Gb/s
AES ECB decryption 128-bit key 1.04 Gb/s

TDES ECB encryption 0.13 Gb/s
DES ECB encryption 0.43 Gb/s
SHA-1 0.90 Gb/s

Video
processing  MPEG-2 decoder (SDTV)

25.6 Gflops* (w/SIMD)
7.2 Gflops (3.6-GHz 1A-32/SSE3) 9.67 Gflops (eight SPEs) 1.3X (eight SPEs)
85 fps (2.7-GHz G5/VMX)
128 Mvtx/s (2.7-GHz G5/VMX) 217 Mvtx/s (one SPE)

354 fps (w/SIMD)

156 Gflops (eight SPEs) 6X (eight SPEs)
30 fps (Cell/B.E. chip) 35X (Cell/B.E. chip)
1.7X (one SPE)

2X (one SPE)

1.4X (one SPE)
1.3X (one SPE)
1.1X (one SPE)

2.3 (one SPE)

2.06 Gb/s (one SPE)
1.5 Gb/s (one SPE)

0.17 Gb/s (one SPE)
0.49 Gb/s (one SPE)
2.12 Gb/s (one SPE)

329 fps (one SPE) 0.9X (one SPE)

*Assuming 100% compute efficiency, achieving theoretical peak of 25.6 Gflops, in its single-precision matrix multiplication and LINPACK implementation.

SPU is capable of decoding about 324 fps with a 5-Mb/s
standard-definition television (SDTV) video stream.
Intel reports that its Pentium 4 processor running at
2.8 GHz is capable of decoding about 310 frames of an
SDTV 720 X 480 X 30 fps video stream every second
when using the highly tuned Intel Integrated
Performance Primitive (IPP) library [11]. With linear
scaling to 3.2 GHz, this frame rate increases to 354 fps.
Although differences in the video stream data can
change these numbers to some extent, given that the
Cell/B.E. processor has eight SPUs, the Cell/B.E.
processor should outperform a general-purpose
processor with SIMD capability by a fair margin.

Optimization of triangle transform light

Transform light is a critical stage in vertex-based
graphic pipelines. Because of its structured data, the
transform-light implementation on the Cell/B.E.
processor can benefit greatly from the SIMD support in
the SPU. The optimizations here were focused primarily
on loop unrolling, increasing the dual-issue rate,
overlapping the DMAs with computation, and

avoiding branches.

With many more registers than general-purpose
processors, our transform light on the SPU benefited
significantly from aggressive loop unrolling.

For comparative analysis, we implemented a best-
effort transform light on a single-core PowerPC 970
(PPC970) system running at 2 GHz. The results in
Table 11 show that an optimized transform-light
compute kernel on one SPU performs approximately
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43% better than on a PPC970/VMX system when
scaled to 3.2 GHz. Given that the Cell/B.E. processor
contains eight SPUs, the Cell/B.E. processor should
outperform the PPC970/VMX by a wide margin.

Cryptography performance
Cryptography is a rapidly emerging technology that is
increasingly found in many applications. The Cell/B.E.
processor, with its SIMD pipelines and a large register
file, can execute cryptography functions efficiently.
Optimization of the code focused on aggressive loop
unrolling and register-based table lookups to take
advantage of the large register file of an SPU. Tuning was
also done for dual issue, bit permutation, and byte
shuffling. Table 12 summarizes the performance results of
several key cryptography algorithms and hash functions
on a single SPE and on a Pentium 4 processor with SSE.
Results demonstrate that the cryptography performance
ofasingle SPEis typically better (up to 2.3 times at the same
frequency) than that of a Pentium 4 processor with SSE.

Cell/B.E. processor performance summary
Minor et al.? showed that their implementation of the
terrain rendering engine (TRE) on the Cell/B.E. processor
runs 50 times faster than on a PPC970 with the VMX
running at 2 GHz.

With the innovative microarchitectural features of the
Cell/B.E.processor, we showed that a wide variety of

2B. Minor, G. Fossum, and V. To, “Terrain Rendering Engine (TRE): Cell Broadband
Optimized Real-Time Ray-Caster,” Presented at GSPx (Global Signal Processing
Conference and Exposition), October 2005.
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algorithms on the Cell/B.E. processor achieve
performance that is equal to or significantly better than
a general-purpose processor. For applications that can
take advantage of SPU SIMD pipelines and PPU thread-
level parallelism, the results will be similar. Table 13
summarizes the performance advantage of the Cell/B.E.
processor (or its one SPU) over that of other processors.

4. Summary

With eight decoupled SPU SIMD engines, each with
dedicated resources including DMA channels, the
Cell/B.E. processor has eight times more SIMD
capability (for up to 16-way data parallelism) than
traditional processors with vector architecture
extensions. The results presented in this paper
demonstrate that the Cell/B.E. processor can perform
particularly well in cases in which a general-purpose
processor would normally become compute bound by a
single SIMD application. As with other computer
systems, optimization efforts devoted to tuning an
application will have a direct impact on the performance
that can be realized. Applications that fully use SIMD
capabilities in the eight SPEs of the Cell/B.E. processor
will provide performance unequaled by any other
contemporary processor. With its performance density
and efficiency, the Cell/B.E. processor can outperform
competing leading-edge processors on a variety of
workloads by approximately an order of magnitude, in
some cases even more, when software is tuned and
optimized for this architecture.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of
Rambus, Inc., Linus Torvalds, or Intel Corporation in the United
States, other countries, or both.

fCell Broadband Engine is a trademark of Sony Computer
Entertainment, Inc., in the United States, other countries, or both.
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