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The Cell Broadband Enginee (Cell/B.E.) processor is the first
implementation of the Cell Broadband Engine Architecture
(CBEA), developed jointly by Sony, Toshiba, and IBM.
In addition to use of the Cell/B.E. processor in the Sony Computer
Entertainment PLAYSTATIONt3 system, there is much interest
in using it for workstations, media-rich electronics devices, and
video and image processing systems. The Cell/B.E. processor
includes one PowerPCt processor element (PPE) and eight
synergistic processor elements (SPEs). The CBEA is designed to
be well suited for a wide variety of programming models, and it
allows for partitioning of work between the PPE and the eight
SPEs. In this paper we show that the Cell/B.E. processor can
outperform other modern processors by approximately an order of
magnitude and by even more in some cases.

1. Introduction

Until recently, improvements in the performance of

general-purpose processor systems were derived primarily

from higher processor clock frequencies and wider

issue superscalar and deeper super-pipelined designs.

However, without a commensurate increase in the

memory speed, these approaches led only to relatively

increased memory latencies and even more complex logic

to hide those latencies. Furthermore, because of hardware

limits on the number of concurrent accesses to memory,

complex processor cores often ended up underutilizing

the execution pipelines and memory bandwidth.

The approach taken by the Cell Broadband Engine�

(Cell/B.E.) processor designers was to focus on improving

performance/area and performance/power ratios [1].

These goals are largely achieved using simple, yet

powerful cores that use area more efficiently with less

power dissipation. Supported by a high-bandwidth

interconnection bus, these cores can work both

independently and cooperatively. By supporting a large

number of simultaneous memory accesses from the direct

memory access (DMA) engines, which can move data with

negligible processor assistance, the Cell/B.E. processor

design allows for effective use of the memory bandwidth

as well. Architecturally, the design philosophy resulted

from the recent trend of having multiple general-purpose

cores in the same chip; in the Cell/B.E. processor, the cores

are simple and are designed to be able to work together

efficiently and in novel ways. Extensive documentation

on the Cell/B.E. processor and its programming

environments can be found in [2].

In Section 2, we introduce the performance

characteristics of the Cell/B.E. processor, focusing on

the PowerPC* processor element (PPE), the synergistic

processor elements (SPEs), the element interconnect bus

(EIB), the Rambus XDR** dynamic random access

memory (DRAM), and the input/output interfaces

(IOIFs). Finally, in Section 3, we characterize the

performance of several applications that exploit the

Cell/B.E. processor features and compare the results

with those of a few other general-purpose processors.

2. Cell/B.E. Architecture, bandwidths,
and latencies
Figure 1 shows a high-level view of the first

implementation of the Cell/B.E. processor. It includes a

general-purpose 64-bit PPE. In addition, the Cell/B.E.

processor incorporates eight SPEs interconnected by a

high-speed, memory-coherent EIB. The initial
Note: A version of this paper was published on the IBM developerWorkst Web site:
http://www.ibm.com/developerworks/power/library/pa-cellperf/; 11/29/2005.
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implementation of the Cell/B.E. processor is targeted to

run at 3.2 GHz.

The execution units on the SPEs follow the

single-instruction multiple-data (SIMD) execution

model of vector processors and account for much of

the computational power of the Cell/B.E. processor.

When single-precision (SP) floating-point (FP)

fused multiply–add instructions are in use, the eight SPEs

in the first-generation Cell/B.E. chip can perform up to

64 FP operations per processor cycle.

The integrated memory controller provides a peak

bandwidth of 25.6 GB/s to an external Rambus XDR

DRAM, while the integrated input/output (I/O)

controller provides an aggregate peak raw bandwidth of

25 GB/s on inbound links and 35 GB/s on outbound

links. The EIB supports a peak bandwidth of 204.8 GB/s

for intrachip data transfers among the PPE, the SPEs, the

memory interface controller (MIC), and the IOIF

controllers.

PowerPC processor element

The PPE is a dual-issue, in-order implementation of the

IBM PowerPC Architecture*, with multithreading

capability and integrated vector multimedia extensions

(VMX). The PPE is responsible for overall control of the

chip and is typically used in the management and

allocation of synergistic processor units (SPUs) and their

tasks.

As shown in Figure 2, the PPE consists of three main

units: the instruction unit (IU), the execution unit (XU),

and the vector/scalar execution unit (VSU), which

contains the VMX and floating-point unit (FPU). The IU

contains the Level 1 (L1) instruction cache (ICache),

branch prediction hardware, instruction buffers, and

dependency checking logic. The main division between

the IU and the rest of the system is at the instruction issue

3 (IS3) stage, which is the main stall point for the PPE.

The XU contains the integer execution units (FXUs) and

the load–store unit (LSU). The VSU contains all of the

execution resources for FP and VMX instructions, as well

as separate VMX and FP instruction queues in order to

increase overall processor throughput. A pipeline timing

diagram of the PPE is presented in Figure 3.

Although the PPE is considered an in-order machine,

several mechanisms allow it to achieve some of the benefits

of out-of-order execution, without the associated

Figure 1 
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complexity of instruction or memory access reordering

hardware. First the processor can make forward progress

on a thread even when a load from that thread misses the

cache. The processor continues to execute past the load

miss, stopping only when there is an instruction that is

actually dependent on the load. This allows the processor

to send up to eight requests to the L2 cache without

stopping. This can be a great benefit to FP and SIMD

code, since these typically have a very high data cache miss

rate, and it is often easy to identify independent loads.

In addition to allowing loads to be performed out of

order, the PPE uses ‘‘delayed execution pipelines’’ to

achieve some of the benefits of out-of-order execution.

Delayed execution pipelines allow instructions that

normally would cause a stall at the issue stage to move to a

special ‘‘delay pipe’’ to be executed later at a specific point.

Synergistic processor element

The SPE comprises an SPU and a memory flow controller

(MFC). The SPU [3] is a compute engine that supports

the SIMD execution paradigm with 256-KB of dedicated

local storage. The MFC consists of a DMA controller

with an associated memory management unit to aid

effective-to-real address translation, as well as an atomic

unit to handle synchronization operations with other

SPUs and the PowerPC processor unit (PPU).

The SPU is a dual-issue, in-order machine with a large

128-entry, 128-bit register file used for FP, integer, and

branch operations. It operates directly on instructions

and data from its dedicated local store and relies on a

channel interface to the DMA controller to access the

main memory and other local stores. The channel

interface, which is in the MFC, runs independently of the

SPU and is capable of translating addresses and

transferring data between the main memory and the local

storage while the SPU continues with the program

execution.

Simply stated, the SPU is based on a SIMD

architecture. The set of operations allowed by its

instruction set architecture closely resembles that of the

Figure 2 
Block diagram of the PPE. (BRU: branch unit; I-ERAT, D-ERAT: instruction/data effective-to-real address translation.)
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POWER* VMX unit. Each SPU can perform operations

on sixteen 8-bit integers, eight 16-bit integers, four 32-bit

integers, or four SP FP numbers per cycle. At 3.2 GHz,

each SPU is capable of performing up to 51.2 billion 8-bit

integer operations or 25.6 Gflops in SP when using the

fused multiply–add instruction.

Figure 4 shows the main functional units in an SPE: an

FPU for SP, double-precision (DP), and integer

multiplies; a fixed-point unit for arithmetic, logical

operations, and word shifts; another fixed-point unit

for permutes, shuffles, and quad-word rotates; a

control unit for instruction sequencing and branch

execution; a local store unit for loads and stores

and to supply instructions to the control unit; and a

channel/DMA transport that is responsible for

controlling input and output through the MFC.

Each functional unit in Figure 4 is assigned to one of

the two execution pipelines. The FPU and the fixed-point

unit are on the even pipeline while the rest of the

functional units are on the odd pipeline. The SPU can

issue and complete up to two instructions per cycle, one

on each of the execution pipelines. A dual issue occurs

when a group of fetched instructions has at least two

ready-to-execute instructions, one of which is executed by

a unit on the even pipeline and the other by a unit on the

odd pipeline.

Instruction fetches are initiated in one of three ways:

instruction flush condition, inline prefetch, or software

hint. The instruction fetch logic reads 32 instructions at a

time into its instruction line buffer from which two

instructions at a time are sent to the issue logic. When the

operands are ready, the issue logic sends the instructions

to the functional units for execution in the same cycle.

Pipeline length varies from two to seven cycles. Figure 5

shows an SPU pipeline diagram.

Figure 3 
Pipeline diagram of the PPE.
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Features such as a fixed access time to the local store,

simple rules to issue instructions, software-inserted

branch hints, and a large register file are exposed to the

compiler and applications for performance tuning. With

only moderate effort to tune codes, we have seen a wide

variety of applications approach the theoretical limit of

two instructions issued per cycle in the SPU.

Element interconnect bus

The EIB in the Cell/B.E. processor allows for

communication among the PPE, the SPEs, the off-chip

memory, and the external I/O (Figure 6). The EIB

consists of one address bus and four 16-byte-wide data

rings, two of which run clockwise and the other two

counterclockwise. Each ring can allow up to three

concurrent data transfers as long as their paths do not

overlap. The EIB operates at half the speed of the

processor.

Each requester on the EIB starts with a small number

of initial command credits to send out requests on the

bus. The number of credits is the size of the command

buffer inside the EIB for that particular requester. One

command credit is used for each request on the bus.

When a slot becomes open in the command buffer as a

previous request progresses in the EIB request pipeline,

the EIB returns the credit to the requester.

When a unit requires access to a data ring in order to

send data to another unit, it makes a single request to the

data ring arbiter on the EIB. The arbiter processes

requests from all requesters and decides, as optimally as it

can, which data ring is granted to which requester and the

time at which the data ring is granted. The memory

controller is given the highest priority to prevent stalling

of the requester of the read data, while all others are

treated equally with a round-robin priority. Any ring

requester can use any of the four rings to send or receive

data. The data arbiter does not grant a data ring to a

requester if the transfer would cross more than halfway

around the ring on its way to its destination or would

interfere with another data transfer already in progress.

Each unit on the EIB can simultaneously send and

receive 16 bytes of data every bus cycle. The maximum

data bandwidth of the entire EIB is limited by the

maximum rate, one 16-byte data transfer per bus

cycle, at which addresses are ‘‘snooped’’ across all

Figure 5 
Pipeline timing diagram of the SPU.
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units connected to the EIB. Since each snooped address

request can potentially transfer up to 128 bytes, the

theoretical peak data bandwidth on the EIB at 3.2 GHz is

128 bytes 3 1.6 GHz ¼ 204.8 GB/s.

The sustained data bandwidth on the EIB will often be

lower than the peak bandwidth because of several factors:

the locations of the destination and the source relative to

each other, the potential for interference between the new

transfer and those already in progress, the number of

Cell/B.E. chips in the system, whether the data transfers

are to or from memory or between local stores in the

SPEs, and the efficiency of the data arbiter.

Reduced bus bandwidths can result when all requesters

access the same destination (memory or local store)

at the same time, when all transfers are in the same

direction and cause idling on two of the four data rings,

when there are a large number of partial cache line transfers

lowering the bus efficiency, or when each data transfer is

six hops, inhibiting the units on the way from using

the same ring.

We ran a series of experiments on the hardware in our

laboratory using a core frequency of 3.2 GHz. In our

experiments, all four pairs of SPEs did streaming reads or

writes to each other’s local stores. For instance, SPE0

reads from SPE2, SPE4 from SPE6, SPE1 from SPE3,

and SPE5 from SPE7, and vice versa in all cases. Table 1

shows the results from a few of the runs. We use the

notation SPEx$ SPEy to indicate that SPEx reads from

the local store of SPEy, and vice versa.

The sustained effective data bandwidth in our

experiments varied from 78 GB/s (38% of peak) to

197 GB/s (96% of peak). In the case in which the

bandwidth is only 78 GB/s, the communicating SPEs are

farthest apart (see Figure 6) and only one transfer

happens on each of the four rings (this determines the

lower bound for the EIB bandwidth). We would expect

102.4 GB/s in this case, but because of the limitation

of the data ring arbiter design, we achieve about 75%

of the expected bandwidth. In the case in which the

bandwidth is 95 GB/s, the communicating SPEs are five

hops away from each other and still prevent other transfers

from taking place because of path overlap. In the

remaining cases, the bandwidth achieved is close to the

peak of 204.8 GB/s.

Memory subsystem

The MIC in the Cell/B.E. chip is connected to the external

Rambus XDR DRAM through two XDR controller I/O

(XIO) channels that operate at a maximum effective

frequency of 3.2 GHz (400 MHz, octal data rate). Each

XIO channel can have eight banks for a maximum size of

256 MB, for a total memory size of 512 MB.

The MIC has separate independently operating read

and write request queues for each XIO channel. For each

channel, the MIC arbiter alternates the dispatch between

read and write queues after a minimum of every eight

dispatches from each queue or until the queue becomes

empty, whichever comes first. High-priority read requests

are given precedence over normal reads and writes.

Writes of 16 bytes or more, but less than 128 bytes, can

be written directly to memory using a masked-write

operation; writes less than 16 bytes require a read–

modify–write operation. Because of the small number of

buffers for read–modify–write operations, the read part

of the read–modify–write operation is given a higher

priority than normal reads, while the corresponding write

part of the operation is given a higher priority than

normal writes.

Other performance-enhancing features in the MIC

include a fast-path mode, in which an incoming request

can bypass an empty request queue and be dispatched

immediately to reduce read latency by several cycles, and

a mode in which reads can be speculatively dispatched to

the DRAMs even before the combined response is

received from the EIB.

With both XIO channels operating at 3.2 GHz, the

peak raw memory bandwidth is 25.6 GB/s. However,

normal memory operations such as refresh and scrubbing

typically reduce the bandwidth to about 24.6 GB/s. The

peak bandwidth assumes that all of the banks are

Table 1 Sustained EIB bandwidth achieved for some SPE-to-SPE DMA transfers.

Test configuration Aggregate EIB bandwidth at 3.2 GHz (GB/s)

SPE1 $ SPE3, SPE5 $ SPE7, SPE0 $ SPE2, SPE4 $ SPE6 186

SPE0 $ SPE4, SPE1 $ SPE5, SPE2 $ SPE6, SPE3 $ SPE7 197

SPE0 $ SPE1, SPE2 $ SPE3, SPE4 $ SPE5, SPE6 $ SPE7 197

SPE0 $ SPE3, SPE1 $ SPE2, SPE4 $ SPE7, SPE5 $ SPE6 197

SPE0 $ SPE7, SPE1 $ SPE6, SPE2 $ SPE5, SPE3 $ SPE4 78

SPE0 $ SPE5, SPE1 $ SPE4, SPE2 $ SPE7, SPE3 $ SPE6 95

SPE0 $ SPE6, SPE1 $ SPE7, SPE2 $ SPE4, SPE3 $ SPE5 197
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kept active all of the time by the incoming request streams,

that all requests are of the same type (read or write), and

that each request is exactly 128 bytes. If streaming

reads and writes are intermingled, the effective bandwidth

can be further reduced to about 21 GB/s; the bandwidth

loss in this case arises from the overhead of turning

around the MIC-to-XIO bidirectional bus.

Finally, the Cell/B.E. processor also implements

resource allocation to provide controlled access to the

critical shared resources such as the memory or the I/O

links. This controlled access allows time-critical

applications to meet timing targets by preventing

contention for the shared resources.

Flexible I/O interface

The seven transmit and five receive Rambus FlexIO**

links are each one byte wide. These links can be

configured as two logical interfaces. With the Rambus

FlexIO links operating at 5 GHz, the IOIF provides a

peak raw bandwidth of 35 GB/s outbound and 25 GB/s

inbound. A typical configuration may have one IOIF

configured with raw bandwidths of 30 GB/s outbound

and 20 GB/s inbound and another IOIF with raw

bandwidths of 5 GB/s outbound and 5 GB/s inbound.

Data and commands on the IOIF are transmitted as

packets. In addition to the command, response, and data,

each packet may carry information such as the data tag,

data size, command identifier, and flow control

information, as well as other information. Because of

these overheads and potentially nonoptimal arrival

times of data and commands, the effective bandwidth on

the two interfaces may be typically lower, ranging from

50% to 80% of the raw bandwidth. Of course, other

factors such as the prevailing data traffic on the EIB,

resource allocation, speed of the I/O devices, ordering

characteristics of the I/O data traffic, and interrupts can

potentially reduce the I/O bandwidth further.

3. Application examples and their performance
characteristics
In this section, we present the results for a number of

applications that showcase the performance of the

Cell/B.E. chip. The applications cover a wide range:

matrix multiplication, LINPACK [4], MPEG-2 video

decoding [5], triangle transform and lighting, and

cryptography algorithms such as Advanced Encryption

Standard (AES), Triple Data Encryption Standard

(TDES), and Message Digest 5 (MD5) algorithm. Some

of the performance results in this section were obtained

from our cycle-accurate SPEsim performance model (an

internal tool), because it provides considerable insight

into pipeline behavior. In other cases, the results

were measured on the hardware with no operating

system support and overheads. All applications, which

were optimized to take advantage of the Cell/B.E.

microarchitecture features in using techniques such as the

ones described in [6], were compiled with a prerelease

version of the IBM XL C compiler [7] on the Linux**

operating system.

The results from the hardware indicate that the

simulator is typically more than 98% accurate for

compute-intensive code, while in some cases such

as LINPACK, which has significant memory activity,

the modeling accuracy can drop to about 88% because

of simplifying assumptions in the EIB and memory

system model.

Optimization of matrix multiplication

Our matrix multiplication program calculates C¼A3B,

where A, B, and C are square matrices of order N. Each

element cij of C is computed as follows:

c
ij
¼
XN�1

k¼0

a
ik
b
kj
:

A well-known optimization to reduce the required

memory bandwidth is to partition the matrices into

smaller square matrices of order M , N:

C
00

C
01

� � � C
0;N=M�1

C
10

C
11

C
1;N=M�1

..

. . .
.

C
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C
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C
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¼
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� � � B
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;

where Aij, Bij, and Cij are square matrices of order M.

Each matrix block Cij is then solved by

C
ij
¼

XN=M�1

k¼0

A
ik
B
kj
:

The first optimization for the SPE architecture was to

take advantage of the four-way SIMD using 32-bit
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multiply–add operations to perform up to eight SP

FP operations per cycle.

The next optimization was to take advantage of DMA

engines in the SPE by adopting a double-buffer approach

to overlap computations on the previously fetched data

blocks with transfers of subsequent data blocks to and

from memory. This effectively prevents memory stalls.

Additional optimizations, such as overlapping the

execution of blocks, loop exchange, and software

pipelining, were applied to balance the usage of the two

SPU pipelines and maximize the dual-issue rate. With

these tuning efforts, the matrix multiplication program on

a single SPU improved its performance by almost 60

times over the original scalar code running on an SPU.

The data presented in Table 2 was obtained from

a cycle-accurate SPEsim simulator. All SPUs had

performance characteristics similar to those shown in

Table 2. The accuracy of the results was 99.6% from our

SPEsim simulator for matrix multiplication with a matrix

size of 256 3 256 (one SPU, SPEsim ¼ 25.12 Gflops,

hardware ¼ 25.01 Gflops).

Since operations in each data block are independent

of those in other blocks, the matrix multiplication

algorithm is easily parallelized to all eight SPUs. Figure 7

shows that the matrix multiplication performance increases

almost linearly with the number of SPUs, especially with

large matrix sizes. Using eight SPUs, the parallel version

of matrix multiplication achieves 201 Gflops, very close

to the theoretical maximum of 204.8 Gflops. With seven

SPUs, we observed that the load balancing could cause

nonlinear performance scaling for smaller matrix sizes

such as 512 3 512. As matrix size increases, this

problem disappears.

Assuming that matrix multiplication can achieve its

peak SP FP capability, a Pentium** 4 processor with

SSE3 (streaming SIMD extensions) at 3.2 GHz can

achieve 25.6 Gflops, while the Cell/B.E. processor can

achieve 201 Gflops, greater by almost a factor of 8.

Optimization of LINPACK

LINPACK solves a dense system of linear equations

Ax¼ b, where A is a matrix of order N, and x and b are

single-dimension arrays of size N. Matrix multiplication

is akeypartofLINPACK.TheLINPACKimplementation

on the Cell/B.E. processor is based on the block-

partitioned algorithm for LU factorization [8].

LINPACK single-precision FP performance

The initial implementation of SP LINPACK was a

scalar version. When run on the cycle-accurate SPEsim

simulator with a matrix size of 1,024 3 1,024 using

partitioned blocks of 64 3 64, it achieved only

0.26 Gflops with a 3.2-GHz SPE.

With optimizations added to hide the memory latency

by overlapping data transfers with computation using

double buffers, as well as working to maximize dual issue

with optimal instruction scheduling, the final optimized

version of the program achieved 16.5 Gflops on a

1K 3 1K matrix, 22.0 Gflops on a 4K 3 4K matrix,

and 23.5 Gflops on an 8K 3 8K matrix (Table 3). The

efficiency, defined as the ratio of achieved performance

to peak performance, increases significantly with the

matrix size and optimization.

Table 4 shows the performance of LINPACK when

it is optimized to run on all eight SPEs. Note that the

computational efficiency as a percentage of peak

performance improved significantly with the larger matrix

size. Eight SPUs running LINPACK at 3.2 GHz achieve

155.5 Gflops on a 4K 3 4K matrix.

Table 5 compares the performance results of parallelized

LINPACK from the SPEsim and the hardware. As

the table shows, the SPEsim results for LINPACK are

off by up to 12%, except for the 4K34K case, because not

all of the complexities of DMA and the memory system

were modeled.

LINPACK double-precision FP performance

Although the SPU DP FP performance is not as high as

the SP performance, it is still good. Each SPU is capable

of executing two DP instructions every seven cycles. With

fused multiply–add, an SPU can achieve a peak

1.83 Gflops at 3.2 GHz. With eight SPUs and fully

pipelined DP FP support in the VMX of the PPE, the

Cell/B.E. processor is capable of a peak 21.03-Gflops DP

FP performance, compared with a peak SP FP

performance of 230.4 Gflops.

Figure 7 

Performance of parallelized matrix multiplication for matrices of 

different sizes. 
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The initial implementation of DP LINPACK was a

scalar version. When run on the SPEsim with a matrix

size of 1,0243 1,024, using partitioned blocks of 643 64,

it achieved 0.27 Gflops on a 3.2-GHz SPE. With

additional tuning, the final version achieved 1.55 Gflops

on a 4K34K matrix, or about 85% of peak performance,

as shown in Table 6.

The DP version of LINPACK on the Cell/B.E.

processor was also parallelized to run on all eight SPUs.

Table 7 summarizes the performance of LINPACK

parallelized to eight SPUs, running on SPEsim.

Table 8 compares the results measured on hardware

with those measured on the SPEsim model. The modeling

accuracy for DP LINPACK is greater than 97% in all

cases. With a 1,024 3 1,024 matrix, the computational

efficiency of parallelized LINPACK is greater than 64%

when running on all eight SPUs. The best parallelized

LINPACK DP FP result measured on hardware is

11.82 Gflops for a 4,0963 4,096 matrix, with an efficiency

of 81%. The LINPACK performance on IA-32

(Pentium 4) and IA-64 (Itanium**) machines [9] is

summarized in Table 9 along with the SPU results.

The LINPACK implementation on the Cell/B.E.

processor has the highest DP FP performance in the

Table 3 Performance of optimized LINPACK on a single SPU.

Code Matrix size No. of

cycles

No. of

instructions

CPI Dual

issue

(%)

Channel

stalls

(%)

Other

stalls

(%)

Gflops Efficiency

(%)

Original 1,024 3 1,024 9.11G 6.57G 1.39 16.0 1.9 50.0 0.26 1.02

Optimized 1,024 3 1,024 140.00M 205.00M 0.68 56.7 18.1 3.9 16.50 64.50

Optimized 4,096 3 4,096 6.66G 11.90G 0.56 71.7 6.4 1.7 22.00 85.90

Optimized 8,192 3 8,192 50.00G 94.00G 0.53 75.8 3.8 1.0 23.50 91.80

Note: There is an error of approximately 10% in these SPEsim performance results.

Table 4 Performance of parallelized LINPACK on eight SPUs.

Matrix size Cycles No. of

instructions

CPI Dual

issue

(%)

Channel

stalls

(%)

Other

stalls

(%)

SPEsim

Gflops

Measured

Gflops

Model

accuracy

(%)

Efficiency

(%)

1,024 3 1,024 27.6M 2.92M 0.95 32.6 26.9 12.6 83.12 73.04 87.87 35.7

4,096 3 4,096 918.0M 1.51G 0.61 56.7 10.8 3.4 160.00 155.50 97.20 75.9

Table 5 Performance of parallelized LINPACK on SPEsim

and hardware.

No. of

SPUs

SPEsim

(Gflops)

Hardware

(Gflops)

Model

accuracy

(%)

Efficiency

(%)

1K 3 1K matrix 1 16.03 14.94 93.20 58.36

2 32.79 30.46 92.89 59.49

3 45.62 42.04 92.15 54.74

4 56.33 50.80 90.18 49.61

5 64.94 58.21 89.64 45.48

8 83.12 73.04 87.87 35.66

4K 3 4K matrix 8 160.00 155.50 97.19 75.93

Table 2 Performance of matrix multiplication on an SPU.

No. of

cycles

No. of

instructions

CPI Dual issue

(%)

Channel stalls

(%)

Other stalls

(%)

Gflops

Original (scalar) 258.90M 247.10M 1.050 26.1 11.4 26.3 0.42

SIMD optimized 9.78M 13.80M 0.711 40.3 3.0 9.8 10.96

SIMD þ double buffer 9.68M 13.60M 0.711 41.4 2.6 10.2 11.12

Optimized code 4.27M 8.42M 0.508 80.1 0.2 0.4 25.12
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chart, exceeding the most recent IA-32 and IA-64

machines available today.

Optimization of MPEG-2 video decoding

The Cell/B.E. processor is targeted primarily for game

applications [1], some of which demand a high video

processing capability; consequently, significant effort has

been devoted to optimizing MPEG-2 video decoding.

Figure 8 shows the major components of an MPEG-2

video decoder: a variable-length decoder (VLD), an

inverse quantizer (IQ), an inverse discrete cosine

transform (IDCT), the motion compensation (MC)

section, and control logic.

The VLD code in an MPEG-2 decoder has many

branches and needs significant optimization to run well

on the SPU. Our optimizations include algorithmic

tuning, lookup-table modification, fast bit manipulation

with SPU intrinsics, static branch prediction with the

‘‘builtin_expect’’ pragma of the GCC compiler, function

inlining,1 and global register assignment. Most of the

optimizations also reduced the instruction count and

eliminated or minimized branch penalties.

A fast IDCT algorithm [10] was adopted to operate

an 8 3 8 two-dimensional IDCT using 512 multiply–

adds and 128 add or subtract instructions. This IDCT

algorithm was regular and it was easy to keep the

precision required by the MPEG-2 standard for

16-bit 3 16-bit multiplication. Most operations in IDCT

were four-way SIMD for the inner product, except matrix

transpose, which was eight-way SIMD.

The MC element was implemented primarily with

eight-way SIMD and some 16-way SIMD. Function

inlining and nested ‘‘if else’’ to ‘‘switch case’’ conversion

were adopted to eliminate some branches and to improve

code scheduling by enlarging basic block size.

MC required small pixel block transfers (e.g., 16 3 16

pixels) from system memory to the local store in order to

construct the predicted blocks. If a video frame were

stored in a raster scan manner, MC would require

numerous small DMA transfers (e.g., 16 transfers of

16 bytes). However, in the Cell/B.E. processor, the

DMA transfers are most efficient when performed on

128-byte naturally aligned boundaries. To increase

efficiency, the data structure was rearranged to place

each macroblock in a 384-byte contiguous area,

Table 6 Performance of double-precision floating-point LINPACK on one SPU.

Single SPU

DP LINPACK

Matrix size No. of

cycles

No. of

instructions

CPI Dual

issue

(%)

Channel

stalls

(%)

Other

stalls

(%)

3.2 GHz

(Gflops)

Efficiency

(%)

Original 1K 3 1K 8.46G 4.91G 1.72 9.5 3.00 58.0 0.27 14.88

Optimized 1K 3 1K 1.57G 466.00M 3.36 2.8 0.80 74.1 1.46 80.06

Optimized 4K 3 4K 94.50G 26.00G 3.63 1.9 0.20 75.8 1.55 84.88

Table 7 Performance of parallelized double-precision LINPACK on eight SPUs.

Matrix size No. of

cycles

No. of

instructions

CPI Dual

issue

(%)

Channel

stalls

(%)

Other

stalls

(%)

SPEsim

Gflops

Measured

Gflops

Model

accuracy

(%)

Efficiency

(%)

1K 3 1K 236.7M 69.1M 3.42 2.9 6.7 68.5 9.704 9.46 97.49 64.66

2K 3 2K 1.64G 44.9M 3.65 2.2 3.3 72.5 11.184 11.05 98.80 75.53

Table 8 Comparison of SPEsim and hardware performance

results.

No. of

SPUs

SPEsim

(Gflops)

Hardware

(Gflops)

Model

accuracy

(%)

Efficiency

(%)

1K 3 1K matrix 1 1.46 1.45 99.14 79.23

2 2.84 2.81 98.82 76.78

3 4.15 4.11 99.12 74.86

4 5.39 5.32 98.79 72.68

5 6.56 6.46 98.52 70.60

6 7.66 7.52 98.12 68.49

7 8.67 8.51 98.21 66.43

8 9.71 9.46 97.45 64.62

1Builtin_expect is one of the pragmas provided by the GCC compiler that is treated
by the compiler as a hint for branch direction. Function inlining is a compiler
optimization that expands a program function call to be inlined as part of the
program flow.
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consisting of a 16- 3 16-pixel luminance block and two

8- 3 8-pixel chrominance blocks (in the case of the 4:2:0

format). With this arrangement, a macroblock could be

retrieved from the main memory to a local store with

fewer 128-byte DMA transfers.

Table 10 shows our results from the optimized decoder

running on the cycle-accurate SPU simulator. As is

evident, a single 3.2-GHz SPU can easily support any

kind of real-time MPEG-2 video decoding.

On hardware, our optimized MPEG-2 decoder was

able to decode 1,379 common intermediate format (CIF)

frames per second (fps), about 10% lower than the

simulation result. Adjusted for modeling error, each

Table 9 Comparison of LINPACK performance for Cell/B.E.

and other processors.

LINPACK 1K 3 1K (DP) Peak

Gflops

Actual

Gflops

Efficiency

(%)

SPU, 3.2 GHz 1.83 1.45 79.23

Eight SPUs, 3.2 GHz 14.63 9.46 64.66

Pentium 4, 3.2 GHz 6.40 3.10 48.44

Pentium 4 þ SSE3,

3.6 GHz

14.40 7.20 50.00

Itanium, 1.6 GHz 6.40 5.95 92.97

Table 10 Single-SPU MPEG-2 decoding performance at

different resolutions.

No. of

cycles

No. of

instructions

CPI Frames per

second at

3.2 GHz

CIF 1 Mb/s 63.4M 51.9M 1.22 1,514

SDTV 5 Mb/s 263M 220M 1.20 365

SDTV 8 Mb/s 324M 290M 1.12 296

HDTV 18 Mb/s 1.25G 1.01G 1.24 77

Note: There is an error of approximately 10% in these SPEsim performance results.

Table 11 Performance of SPE vs. PowerPC 970* for

transform light. (Mvtx/s ¼million vertices per second.)

Loop

unrolling

PPC970

2 GHz

(Mvtx/s)

PPC970

3.2 GHz (scaled)

(Mvtx/s)

SPE

3.2 GHz

(Mvtx/s)

SPE

advantage

(%)

1 82.95 133.0 139.44 4.8

2 94.80 152.0 155.92 2.6

4 89.47 143.0 208.48 45.8

8 58.45 93.6 217.20 132.0

Table 12 Performance of a single SPE and another processor

for cryptography. (ECB: electronic code book; CBC: cipher-block

chaining; AES: Advanced Encryption Standard; MD5: Message

Digest 5 algorithm; TDES: Triple Data Encryption Standard;

SHA: secure hashing algorithm.)

Algorithms SPE

(Gb/s)

Pentium 4

with SSE

(Gb/s)

SPE

performance

advantage

AES ECB encrypt

128-bit key 2.059 1.029 2.002

192-bit key 1.710 0.877 1.950

256-bit key 1.462 0762 1.918

AES CBC encrypt

128-bit key 0.795 0.968 0.821

192-bit key 0.664 0.823 0.807

256-bit key 0.570 0.725 0.786

AES EBC decrypt

128-bit key 1.499 1.035 1.448

192-bit key 1.252 0.870 1.438

256-bit key 1.068 0.758 1.410

AES CBC decrypt

128-bit key 1.507 1.966 1.560

192-bit key 1.249 0.829 1.507

256-bit key 1.066 0.724 1.472

DES

ECB encrypt 0.492 0.426 1.156

CBC encrypt 0.275 0.417 0.660

ECB decrypt 0.492 0.425 1.158

CBC decrypt 0.489 0.421 1.162

TDES

ECB encrypt 0.174 0.133 1.313

CBC encrypt 0.097 0.132 0.733

ECB decrypt 0.174 0.133 1.313

CBC decrypt 0.174 0.132 1.321

MD5 2.448 2.862 0.855

SHA-1 2.116 0.902 2.347

SHA-256 0.854 0.518 1.649

Figure 8

Major components of MPEG-2 decoder illustrating process flow. 

(VLD: variable-length decoder; IQ: inverse quantizer; IDCT: inverse 

discrete cosine transform; MC: motion compensation section.)

Bitstream Video
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SPU is capable of decoding about 324 fps with a 5-Mb/s

standard-definition television (SDTV) video stream.

Intel reports that its Pentium 4 processor running at

2.8 GHz is capable of decoding about 310 frames of an

SDTV 720 3 480 3 30 fps video stream every second

when using the highly tuned Intel Integrated

Performance Primitive (IPP) library [11]. With linear

scaling to 3.2 GHz, this frame rate increases to 354 fps.

Although differences in the video stream data can

change these numbers to some extent, given that the

Cell/B.E. processor has eight SPUs, the Cell/B.E.

processor should outperform a general-purpose

processor with SIMD capability by a fair margin.

Optimization of triangle transform light

Transform light is a critical stage in vertex-based

graphic pipelines. Because of its structured data, the

transform-light implementation on the Cell/B.E.

processor can benefit greatly from the SIMD support in

the SPU. The optimizations here were focused primarily

on loop unrolling, increasing the dual-issue rate,

overlapping the DMAs with computation, and

avoiding branches.

With many more registers than general-purpose

processors, our transform light on the SPU benefited

significantly from aggressive loop unrolling.

For comparative analysis, we implemented a best-

effort transform light on a single-core PowerPC 970

(PPC970) system running at 2 GHz. The results in

Table 11 show that an optimized transform-light

compute kernel on one SPU performs approximately

43% better than on a PPC970/VMX system when

scaled to 3.2 GHz. Given that the Cell/B.E. processor

contains eight SPUs, the Cell/B.E. processor should

outperform the PPC970/VMX by a wide margin.

Cryptography performance

Cryptography is a rapidly emerging technology that is

increasingly found in many applications. The Cell/B.E.

processor, with its SIMD pipelines and a large register

file, can execute cryptography functions efficiently.

Optimization of the code focused on aggressive loop

unrolling and register-based table lookups to take

advantage of the large register file of an SPU. Tuning was

also done for dual issue, bit permutation, and byte

shuffling. Table 12 summarizes the performance results of

several key cryptography algorithms and hash functions

on a single SPE and on a Pentium 4 processor with SSE.

Results demonstrate that the cryptography performance

of a single SPE is typically better (up to 2.3 times at the same

frequency) than that of a Pentium 4 processor with SSE.

Cell/B.E. processor performance summary

Minor et al.2 showed that their implementation of the

terrain rendering engine (TRE) on the Cell/B.E. processor

runs 50 times faster than on a PPC970 with the VMX

running at 2 GHz.

With the innovative microarchitectural features of the

Cell/B.E.processor, we showed that a wide variety of

Table 13 Performance comparison of the Cell/B.E. and other processors for different applications. (ECB: electronic code book; TRE:

terrain rendering engine; HPC: high-performance computing; GPP: general-purpose processor.)

Type Algorithm 3.2-GHz GPP 3.2-GHz Cell/B.E.

processor

Performance

advantage

HPC Matrix multiplication (SP) 25.6 Gflops* (w/SIMD) 200 Gflops (eight SPEs) 83 (eight SPEs)

LINPACK (SP) 4K 3 4K 25.6 Gflops* (w/SIMD) 156 Gflops (eight SPEs) 63 (eight SPEs)

LINPACK (DP) 1K 3 1K 7.2 Gflops (3.6-GHz IA-32/SSE3) 9.67 Gflops (eight SPEs) 1.33 (eight SPEs)

Graphics TRE 85 fps (2.7-GHz G5/VMX) 30 fps (Cell/B.E. chip) 353 (Cell/B.E. chip)

Transform light 128 Mvtx/s (2.7-GHz G5/VMX) 217 Mvtx/s (one SPE) 1.73 (one SPE)

Security AES ECB encryption 128-bit key 1.03 Gb/s 2.06 Gb/s (one SPE) 23 (one SPE)

AES ECB decryption 128-bit key 1.04 Gb/s 1.5 Gb/s (one SPE) 1.43 (one SPE)

TDES ECB encryption 0.13 Gb/s 0.17 Gb/s (one SPE) 1.33 (one SPE)

DES ECB encryption 0.43 Gb/s 0.49 Gb/s (one SPE) 1.13 (one SPE)

SHA-1 0.90 Gb/s 2.12 Gb/s (one SPE) 2.3 (one SPE)

Video

processing MPEG-2 decoder (SDTV) 354 fps (w/SIMD) 329 fps (one SPE) 0.93 (one SPE)

*Assuming 100% compute efficiency, achieving theoretical peak of 25.6 Gflops, in its single-precision matrix multiplication and LINPACK implementation.

2B. Minor, G. Fossum, and V. To, ‘‘Terrain Rendering Engine (TRE): Cell Broadband
Optimized Real-Time Ray-Caster,’’ Presented at GSPx (Global Signal Processing
Conference and Exposition), October 2005.
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algorithms on the Cell/B.E. processor achieve

performance that is equal to or significantly better than

a general-purpose processor. For applications that can

take advantage of SPU SIMD pipelines and PPU thread-

level parallelism, the results will be similar. Table 13

summarizes the performance advantage of the Cell/B.E.

processor (or its one SPU) over that of other processors.

4. Summary
With eight decoupled SPU SIMD engines, each with

dedicated resources including DMA channels, the

Cell/B.E. processor has eight times more SIMD

capability (for up to 16-way data parallelism) than

traditional processors with vector architecture

extensions. The results presented in this paper

demonstrate that the Cell/B.E. processor can perform

particularly well in cases in which a general-purpose

processor would normally become compute bound by a

single SIMD application. As with other computer

systems, optimization efforts devoted to tuning an

application will have a direct impact on the performance

that can be realized. Applications that fully use SIMD

capabilities in the eight SPEs of the Cell/B.E. processor

will provide performance unequaled by any other

contemporary processor. With its performance density

and efficiency, the Cell/B.E. processor can outperform

competing leading-edge processors on a variety of

workloads by approximately an order of magnitude, in

some cases even more, when software is tuned and

optimized for this architecture.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of
Rambus, Inc., Linus Torvalds, or Intel Corporation in the United
States, other countries, or both.

�Cell Broadband Engine is a trademark of Sony Computer
Entertainment, Inc., in the United States, other countries, or both.
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