Modeling of risk
losses using
size-biased data

In this paper we present a method for drawing inferences about the
process of financial losses that are associated with the operations of
a business. For example, for a bank such losses may be related to
erroneous transactions, human error, fraud, lawsuits, or power

outages. Information about the frequency and magnitude of losses
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is obtained through the search of a number of sources, such as
printed, computerized, or Internet-based publications related to
insurance and finance. The data consists of losses that were
discovered in the search. We assume that the probability

of a loss appearing in the body of sources and also being
discovered increases with the magnitude of the loss. Our
approach simultaneously models the process of losses and the
process of populating the database. The approach is illustrated
using data related to operational risk losses that are of special

interest to the banking industry.

Introduction
Consider a business, such as a bank, that is interested in
estimating the types of risks it faces. For example, banks
have recently become very interested in estimating their
exposure to operational risk, which includes almost all
forms of risk except those related to financial markets and
credit. A classification and explanation of these risks can
be found in the description of the Basel IT framework for
international banking [1]. Of special relevance is Section
V of this document, which provides a set of requirements
to be met by a banking institution in order to prove to
the Basel Committee that it “has an operational risk
management system that is conceptually sound and
is implemented with integrity.” Furthermore, the
framework specifies requirements for reporting losses and
for self-assessment. It also offers one of three approaches
for calculating operational risk losses, leaving a
substantial degree of flexibility for the banking institution
to account for business profiles of individual institutions.
Because the new regulations require banks to set aside
resources to cover operational risk losses, the issue of risk
estimation has become an important research subject.
For example, methods for risk modeling, estimation,
management, and hedging are considered in recent books
[2-5]. An extensive summary of operational risk issues
can be found in the January 2002 issue of the Risk
journal; in particular, see [6]. A number of publications

focus on methods emphasizing causal modeling and
management of specific types of risks [7, 8]. Bayesian
methods for risk modeling and estimation are discussed,
for example, in [9, 10]. Statistical issues related to the
estimation of losses are considered in [11, 12].

In this paper, we discuss an approach to modeling that
is most appealing in the early phases of risk modeling,
when reliable data is difficult to obtain and the existing
data sources are known to be incomplete. Specifically, in
the application that inspired this paper, we made use of a
database that contained descriptions of operational losses
suffered by various companies over a number of years.
These losses were generally large, and entries related to the
bank of interest itself were extremely rare. The relevant
data can be found in [13]. This database was in the
initial phase of construction and was thus known to be
incomplete. We can safely assume that it referred to only
a small fraction of losses suffered by various businesses.

The process of populating the database is typically
focused on a certain set of sources. We assume that only
losses that appeared or might have appeared in this set of
sources are relevant. Our main problem of interest is how
to use such a database to gain information about the
stream of losses facing a given institution. A number of
techniques have been used to increase the information
content of databases containing rare events. For example,
in many areas related to health and safety (such as the
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chemical process industry) it is customary to report the
“near-miss” incidents and use this information to enhance
the inference related to risks, incident rates, and losses
[14]. However, even with enhancements of this type, we
expect that a substantial portion of risk-contributing
events is likely to remain under-reported, especially in the
early phase of populating the database. For successful
inference under the stated conditions, one must be able
to model the process of populating the database.

The data-collection process is probably the most
challenging part of building an inference system related to
operational losses. Of course, the issues of data quality
and relevance are fundamental, and addressing these
issues is a necessary condition for credible quantitative
analysis of risks pertaining to a given institution. These
issues have been discussed extensively in the literature
[3]. To increase the amount of reliable data relevant to
operational risk modeling, a number of data-sharing
arrangements among banks have been established.
However, the coverage of events related to operational
risk is still quite limited, since a large number of such
losses remain either unreported or not identified as being
relevant for inclusion in a database. Furthermore, the
relevance of the data that has already been collected tends
to diminish with time because of factors such as inflation,
major societal disruptions (such as the terrorism events of
September 11, 2001), or new developments in the field of
information technology. Therefore, data collection is an
ongoing process and is itself exposed to a number of risks.

In this paper, we focus on one of these risks, namely,
under-representation of losses due to the fact that sizable
financial losses are generally more likely to appear in the
set of sources, and be discovered, than losses of moderate
or low magnitude. From the perspective of a given
institution, this phenomenon occurs not only in the
course of populating a database from sources that are
external to this institution, but also in the process of
populating internal databases. Though the Basel 11
framework mandates reporting of internal losses, it
offers banks substantial flexibility on choosing reporting
thresholds—and this in itself can create bias, even within
the framework of a single institution. The problem of
systematic biases in the data is of special importance in
the environment in which data sources are assembled, at
least partially, on the basis of automated text analysis of
documents obtained via search of databases containing
nonstructured data or searches of the Internet.

To further understand the concept of external and
internal sources, consider an example of a particular
bank. According to the Basel II regulations, this bank
must maintain a record of all losses exceeding some
threshold. The bank is not obliged to disclose this
information to any external party, except for the Basel
Committee auditors. This is referred to as an internal
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source. On the other hand, a large number of bank losses
eventually appear in either publicly available sources

or sources that are part of data-sharing consortia, and
these are referred to as “external sources.”

Similarly to the approach presented in this paper, one
may approach the problem of estimating operational
risk losses of medium and large magnitudes in three
stages. The initial goal (stage 1) is to develop methods
for characterizing the stream of losses related to the
operations of both financial and nonfinancial institutions,
observed worldwide, as well as the magnitudes of these
losses; this involves drawing inferences about the hidden
population of losses that are not represented in the
database. The latter goal is achieved by introducing a
concept called the discovery probability curve (DPC),
which specifies the probability that a loss of a given size
will enter the body of sources and be discovered. This
probability curve can itself be subject to an estimation
effort. Subsequently, in the second stage, one may
estimate the fraction of these losses that is related to
financial institutions. Finally, in the third stage, one can
use this model, in conjunction with characteristics of the
specific bank of interest, to estimate model parameters
that relate to the stream of operations-related losses for
this bank. Though we present the general structure for
such causal modeling in the last section of this paper,
the focus of the paper is on problems related to the
first-stage methods for characterizing losses.

The proposed modeling of risks is useful in several
respects. For example, it can be used by a bank, in
conjunction with analysis of internal losses, as a basis for
reserving capital needed to cover operational losses for a
given period. Also, it can be used by insurance companies
to assess the risk (or specific types of risks) related to the
bank and to establish premiums. Although modern banks
are usually self-insured with respect to operational losses,
in the future some banks may prefer to mitigate the effects
of these types of losses through insurance companies. For
example, Financial Institution Operating Risk Insurance
(FIORI) is currently being offered by the Swiss Re
company, one of the world’s largest reinsurers [15].
While some classes of risks may be good candidates
for insurance coverage, other types of risks could be
mitigated by service agreements and risk-sharing
arrangements with other companies. In essence, we
are considering here a situation faced by every newly
emerging branch of insurance when data is sparse and
expensive to collect and risks are poorly understood. The
current literature related to actuarial science does not
appear to provide an agreed-upon statistical methodology
for the establishment of a new area of risk analysis or
insurance. In this work, we attempt to formulate a
framework that may be helpful in the development of
such methodology.
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In the next section, we describe our basic approach.
Subsequently, we consider the problem of estimating
model parameters and the use of goodness-of-fit tests for
various aspects of the model. The fourth section considers
models that are focused on losses that exceed a pre-
specified threshold and discusses tail-based inference for
such models in the presence of size-biased sampling.
Finally, we discuss examples, generalizations, and
directions of future research.

Estimation of the properties of hidden populations has
been considered in the literature in relation to such areas
as demography (e.g., population size estimation [16]),
software reliability (estimation of the number of
software defects hidden in programming code [17]), or
nondestructive evaluation (inferences related to hidden
defects [18]). The corresponding techniques are referred
to in the statistical literature as size-biased sampling. What
makes the present problem special is its strong actuarial
aspect: The questions that are asked in the current
context are much different from those asked in the areas
mentioned above. These questions, in turn, determine the
tools used in the statistical analysis.

We now introduce the approach for addressing
questions arising in the context of risk estimation. Our
basic assumptions are as follows:

® The process of losses is modeled as a homogeneous
Poisson distribution with a rate of A events per year.

® The underlying distribution of loss magnitudes is
described by some density f(x) that belongs to one
of the families that are typically used to describe
distribution of losses [5, 19]. For example, the Pareto,
Weibull, or lognormal families can be considered
good candidates.

e If a loss of magnitude x occurs, its probability of
being discovered in the process of populating a
database is p(x), where p is a monotone function with
a value from 0 to 1. In essence, we demand that p(x)
satisfy the properties of a cumulative distribution
function (cdf). Some considerations that might be
instrumental in selecting the suitable form of p(x) are
given below. We henceforth frequently refer to this
function as the discovery probability curve, or DPC.

We note that in more complex applications, the rate 4,
as well as the parameters associated with the distribution
of losses and the DPC that corresponds to these losses,
will depend on a set of factors, as is discussed in the last
section.

To illustrate the basic ideas of our approach, we briefly
discuss the data given in Appendix A of [13]. This data
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Observed losses (in Deutsche marks) from Appendix A in [13]
plotted on the Weibull probability plot. The straight line
corresponds to the parameter values (¢ = 0.32, b = 4.9 X 107).

contains records of 226 losses assembled from public
sources (e.g., news reports) and their degree of relevance
to the banking industry. The losses are in Deutsche marks
(DM). In 1998, when the database was populated, the
exchange rate was approximately one U.S. dollar
(1 USD) = 1.8 DM. Record No. 12 (a 177-DM loss by
AVA, or Asesores de Valores, the institution that suffered
the loss) is considered an outlier and it is not used in the
analysis. Therefore, our data consists of 225 observations.
In our initial analysis, we subdivided the data
randomly into two parts, the learning sample and the test
sample. All of the methods discussed below were first
applied to the learning sample and then validated on
the test sample. In this paper, however, we show results
only for the overall sample. Among several candidate
distributions used by practitioners for describing the
magnitude of losses (e.g., see [5, 19]), we considered the
Weibull and Pareto distributions. Because our sample size
was very small, the simplicity of these distributions was a
strong factor in our decision to use them in order to avoid
well-known data-analysis problems such as overfitting,
with the resulting loss of predictive ability. In Figure 1 we
show the observed losses on the Weibull probability plot.
The Weibull cdf F(x) and density f(x) are given by

F(x) =1 —exp[—(x/b)], x>0;

F(x) = (¢/b)(x/b) " exp[—(x/b)], (1)

and the estimated parameters of the “law” (i.e., the
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Simulated replica (asterisks) of the data obtained by combining
Weibull-distributed losses (circles) with parameters ¢ = 0.133,
b =26,900 (i.e., u; = 10.2, u, = 7.5, which corresponds to the
solid straight line) and a logistic DPC with parameters (v,, v,) =
(14, 1.7). The dotted straight line corresponds to (¢ = 0.31,
b = 5.9 % 107).

Weibull cdf) are ¢ =0.32 and b =4.9 X 10”. From
Figure 1 it may initially appear that the distribution is
consistent with this law, except that the smaller losses are
missing, presumably because it is difficult for such losses
to enter the set of sources and to be discovered.

Upon closer inspection, however, such a simplistic
explanation becomes unsatisfactory. Suppose that the
population of losses is indeed distributed in accordance
with the above Weibull law. Then the fraction of
operational losses below 105 DM ~ $55M, or 55 million
U.S. dollars, in the overall population is estimated to be
75%, which appears to be much too small, given that the
data collection effort was not limited a priori to sources
that focus only on low-frequency and high-impact events.

Despite these reservations, the fact that the Weibull
probability plot is linear in the upper tail (i.e., for large
observed losses) suggests that the upper tail of the
distribution may indeed be Weibull (albeit with different
parameters) and, with a suitably chosen and plausible
DPC, p(x), we may obtain results that are consistent
with the data.

To illustrate this point, we may switch to
logarithmically transformed data. In the discussion that
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follows, we work primarily with the observations
y = In(x). If the losses are distributed in accordance
with Equation (1), the cdf and density of log losses are

F(y) =1 —exp{—exp[(y — u,)/u,]},
F(») = uy exp{—expl(y — u))/u,)) + (v —u)/u,} . (2)

[Note that throughout this paper, the tilde (~) indicates
quantities associated with log losses.] It is easy to see that

u, =1In(b), u,=1/c (3)

Now let us define the DPC in terms of a logistic curve:

B) = {1 +expl—(y—v,)/v,]} . (4)

We select the DPC parameters (v, v,) = (14, 1.7), using
some prior expectation based on knowledge about the
data-collection mechanism, and we estimate the Weibull
loss distribution parameters on the basis of this selection,
using methods described in subsequent sections.

We next use the resulting estimated parameters

(u1, up) =(10.2, 7.5), jointly with (vq, vo) = (14, 1.7),

to simulate the process of losses and discovery. The
resulting plot is shown in Figure 2. One can see that the
simulated loss data is quite similar to that presented in
Figure 1. Now, for the underlying Weibull law, the
fraction of operational losses below 10° DM in the
overall population is estimated to be 0.96, which is more
consistent with our expectations. Notice that the fitted
distribution is defined for losses as small as 1 DM,
indicating that this model extrapolates far beyond the
range of the losses that were actually observed. This type
of extrapolation does not normally interfere with the
estimation of quantities important for decision-making,
such as those associated with value-at-risk (VAR), which
is a well-known category of risk metric [S]. An immediate
question arises as to whether the particular distributions
selected above are plausible and do not conflict with
actual measurements. In the following sections, we
develop methods for answering such questions and

for fitting models of this type.

While the selection of the distribution of loss
magnitudes can be motivated to some extent by models
prevalent in the actuarial literature, the selection of the
DPC is more problematic. On the basis of experience so
far, it appears reasonable to require that the DPC curve
satisfy the following relation: For every > 0 there exists
X, so that

1= pl(1+m)x] = [1 = p(x)) ™ (5)

for all x > x,,. For example, let us select # = 1 and
consider an event resulting in a loss of some high
magnitude corresponding to a value of 2x. Let us suppose
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that this loss can be documented in one of two ways: 1) as
a single loss of magnitude 2x, or 2) as a pair of losses of
magnitude x each, which are introduced independently
into the body of sources. In the latter case, the event
will be discovered if at least one of the pair of losses is
discovered. The criterion in Equation (5) states that the
probability of overlooking the event under the first
scenario is greater than the probability of overlooking

it under the second scenario.

Of special interest are DPC curves that satisfy
Equation (5) for every n > 0 and x > 0. After performing
algebraic manipulation, one can show that two curves of
this type are

ry—1
p(x)=1—{1+[x=0/m'} , x>, (6)
with shift, scale, and shape parameters ({ > 0, 7 > 0,
0<r<1)and

py(x) =1 —exp{~[(x = )/H'}, x>¢ (7)

(i.e., a shifted Weibull distribution) with the shape
parameter 0 < r < 1. In what follows, we assume that
{ =0. Under this assumption, the function p;(x) results,
in terms of log losses y, in the logistic distribution in
Equation (4) with v; = In(%), v, = 1/r. The function
po(x) results in the distribution

Py(») = 1 —exp{=[In(2)] X exp|(y = v,)/7,]}, (8)

with parameters v; = In[In(2)/r] 4+ In(h) and v, = 1/r. The
correction factor In[In(2)] =~ —0.3665 is introduced in
order to ensure that v; is the median point of the DPC
P2y).

Note that distributions (7) and (8) both belong to a
location-scale family with location and scale parameters
vy and vy, respectively. Our discussion is limited to the
case of the logistic DPC p( y) given in Equation (4).

The density of log losses is represented by 7(y |u), and
p(y|v) is the DPC; u and v are the corresponding vectors
that describe the density of log losses and DPC,
respectively. The density of a log loss y that is conditional
on this loss appearing in the body of sources and being
discovered in a source is given by

J.0luw) =1 [w)p(y|v)] /Clu,v), ©)

where the mean value of the discovery probability,
represented by the normalizing constant C(u, v), is given
by

Cw)= [ ol a. (10

Suppose that the overall number of losses recorded in the
set of sources is NV and the actual number of discovered
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losses is k; the corresponding log losses are yy, ¥z, * -+, V-
Our challenge is to estimate the parameters u, v and N.

Likelihood-based estimation
The log-likelihood of the observed data is given by

L(uv v7N‘y]7y27 "'7yk)
:1n<]lg> +kXInC(u, v) + (N — k) XIn[l — C(u, v)]
k
+ > [703 )], (11)

i=1

where the first three terms (that is, all items between the
=symbol and the summation) are related to the binomial
probability of discovering k losses, and the last term
represents magnitudes of log losses, conditional on being
discovered. The inference can now be based on this log-
likelihood. When nothing else is known about the
parameters, one can derive the maximum likelihood
estimators (MLEs) by finding the parameters that
maximize Equation (11). In this paper, we do not perform
such a likelihood analysis; instead, we work with a
somewhat simplified form of the likelihood that arises
when it is known a priori that N is large and C is small.
The presented approach adequately represents the main
ideas and is sufficiently accurate to address the problems
that motivated this research. Analysis of the exact
likelihood in Equation (11) can be performed in a similar
way.

When it is known a priori that N is large and only a
small fraction of the losses have been discovered, one can
approximate the binomial term in Equation (11) by the
corresponding Poisson term. The approximate log-
likelihood becomes

k —NC(uy)
NC(u,v)| e
Ll(uavaN|y]ay27"'ayk)wln{[ ( )11' }

+ ijln[ﬁ(yilu,v)]. (12)

In the process of maximum likelihood estimation, one can
take advantage of the fact that for given u and v the
likelihood is maximized when

N=N=k/C(u,v), (13)

indicating that one can expect to obtain estimates of good
quality based on the conditional distribution of the
observed losses only. For values of C that are not very
small, the estimate in Equation (13) is still quite sensible,
and it can be substituted into Equation (11) to yield
(after using Stirling’s expansion and some algebra)

an approximate likelihood
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Ly(u, v, N =Ny, vy = »)
kk —k
( ) +Zln[ (v, lu, V}
C*(u, v)
= 05 Infl — Clar, V)] = g

C(u, v)

+0 5

(14)

Such an estimation technique is similar to the so-called
“profile likelihood” methodology. In most practical
applications, the second term dominates the last three,
and we can, once again, obtain parameter estimates
of good quality based on this term only. We restrict
ourselves to using estimates based on the second term
of Equation (12).

After substituting Equation (13) into Equation (12), we
can obtain the estimates by solving the gradient
equations,

Vv f y ‘ vuC(u’ V)
Z: = kX Clu,v) ’
(15)
V,p y | V,C(u, v)
; = kX C(u, v)

The equations (15) can be solved by using a simple
iterative scheme that starts from some initial values
@, v9) and proceeds using the following estimation
procedure:

e Step I: For the current values (u, v) = (u”, »?),
compute C(u, v) and its gradient vectors by u and v,
V.C(u, v) and V,C(u, v).

e Step 2: Substitute the resulting values in the right-
hand side of Equations (15) and solve the two groups
of equations separately. Assign the solutions to
[, D]

® Step 3: Iterate Step 1 and Step 2 until the convergence
occurs. Accept the result if it passes tests for local
optimality, sanity (i.e., plausibility) and goodness of
fit, as described later.

It is important to note that the above procedure does
not guarantee that convergence will occur. Furthermore,
the tests in Step 3 are essential because even if
convergence occurs, the limiting point is not guaranteed
to be a local maximum of the approximate log-likelihood
in Equation (12). Finally, the limiting point is not
guaranteed to correspond to a global maximum. This
correspondence would guarantee asymptotically optimal
behavior of the resulting estimates, given that we are
dealing primarily with densities that conform to the so-
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called regularity conditions [20, Sec. 6] and smooth DPCs.
Our experience with losses distributed according to
Weibull or Pareto distributions, in conjunction with a
logistic DPC in Equation (4), suggests that the above
estimation procedure is reliable for these distribution
families. We did not observe the procedure to fail, using
either real or simulated data. In these cases, we also did
not see evidence of multiple maxima, despite the fact that
the likelihood function is definitely not log-concave.

The tests for “sanity” mentioned in the above
procedure are needed because a) it may be quite
difficult to foresee the implications of mis-specifying
the shape and/or parameters of the DPC, especially
for small sample sizes, and b) the solution of
Equation (15) maximizes the approximate log-
likelihood in Equation (12) and not the exact likelihood,
Equation (11). Therefore, if for the resulting estimates
(@, v) the value C(z, v) is not small enough to justify the
Poisson approximation used to obtain Equation (15), this
solution should be considered suspicious. In such
situations, one can expect that solving the equations
based on L, given by Equation (14), or even solving the
exact profile likelihood equations, will also result in a
relatively large value of C(a, v). In many practical
situations such an estimate would be considered
implausible, since one would generally expect that the
process of populating a database is capable of exploring
only a small fraction of the body of sources, and that
even within this fraction most of the losses would remain
undetected.

Therefore, failure of the equations (15) to produce a
value of discovery probability, C(a, v), that is small
enough to be compatible with one’s expectation indicates
that the estimation based on a full optimization approach
may be inadequate, and some additional restrictions on
parameters are necessary.

Once the estimates (&, ») have been obtained, the
estimate N is obtained by substituting these values into
Equation (13).

Constrained estimation and inference

Many problems related to the model described above
involve maximization of the likelihood function in the
presence of some constraints on the parameters. For
example, after obtaining the ML estimates, one may
decide that the resulting value of C(a, v) is too high to be
plausible, and carry out estimation under the constraint

Cu,v) =c,, (16)

where ¢g is chosen to represent the highest value of C(a, v)
that one is comfortable using. The estimation can be
carried out by introducing a Lagrange multiplier f
associated with this constraint and finding the stationary
point of the Lagrangian,
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L/j(uv va‘yp )’27 B yk) = L(uv V7N|y17 y27 ...’y/()
—Pln C(u, v) —Incy], (17)

by solving the gradient equations

A4 fy| V,C(u,v)
Z Fow P ey
k Vp‘ V,C(u, v) (18)
2o = Ky
C(u7v)fco.

The above equations can be solved by repeating, for
various values of f, the process similar to the procedure
described in the previous section until a value of f is
found for which the constraint in Equation (16) is
satisfied. The details of this algorithm are omitted
for brevity.

Constrained optimization may also be used in
conjunction with the likelihood analysis when one
is willing to assume that some components of the
parameters are known. This leads to a reduced system
in Equation (15) that contains only the equations
corresponding to unknown parameters. This system can
be solved by using a procedure of the type described in
the previous section. For example, under the assumption
that the vector v that characterizes the DPC is known and
equal to vy, the estimation process involves solving the
system

a nyl
Z

i=1

£ X Vv, C(u, v,) .

C(u, vo) (19)

Constrained estimation also plays an important role
in inference related to the parameters of interest. For
example, let us assume that v is known and equal to
vy, and one is interested in testing the hypothesis

Hy: C(u, vy) = ¢ against the alternative C(u, vy) < ¢,
at the significance level y. To achieve this goal, we can
compute the maximum value of the log-likelihood
under the constraint C(u, vy) = ¢ (Where we denote the
constrained and unconstrained estimates by &, and u,
respectively) and reject Hy if C(a, vg) < ¢ and if

Vo K/ Cla,v,)]

Llit, vy, o/ Cl v} > 17, (1). (20)

[Note that Equation (20) is both a definition and a

condition, and that “(1)” refers to one degree of freedom
of the chi-square distribution.] Furthermore, confidence
bounds are obtained simply by collecting values that are
not rejected by the corresponding test. For example, the
value of ¢ in the domain ¢ > C(&, vy) for which the

inequality in Equation (20) becomes an equality represents

¥ ()€ 2{Lla,v
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a (1 —y) X 100% upper confidence bound for C(u, vy). As
usual, a two-sided (1 — y) X 100% confidence interval is
obtained by combining lower and upper (1 — y/2) X 100%
confidence bounds. It is important to note that the
threshold X%ﬂ, (1) is based on the asymptotic theory,
and its adequacy for small sample sizes has to be
confirmed, for example, by using a simulation study.
Likelihood-based inference about C(u, v) does not lead
directly to inference about N. In particular, if (C, C)
is the (1 — y) X 100% confidence interval for C, then
(k/C, k/ C) does not provide enough coverage to serve as
the (1 — y) X 100% confidence interval for N; however,
these bounds are useful as initial points in the numeric
procedure described below. To test the hypothesis that
N =n against the alternative N < n, we must compute the
maximum value of the log-likelihood function under the
constraint N =n. As can be seen from Equation (12), this
goal can be achieved by solving the gradient equations

Zv fy | =n XV, Cu,v),

o (1)
szivvﬁ(yi\u) =nXV Clu,v)

i=1 ﬁ(yl‘u) ’ ’

by using a suitably modified estimation procedure of
the type described in the previous section. Denote the
constrained estimates by (&,, v,) and the score associated
with N by

n’n’

¥, (n) =2[L(@,v,N) — L(@,,»,,n)). (22)

Then the hypothesis is rejected if N > n and

Yx(n) > 7, (1). The lower (1 — ) X 100% confidence
bound for N is then the value of n < N for which
Yy(n) = yylfy( ). The upper bound is similarly obtained.

The fact that we have successfully obtained estimates of
the basic parameters does not have great utility unless the
data is compatible with our model. In this section, we
discuss methods that enable one to make a judgment
about such compatibility. We consider two situations. In
the first one, we assume that the population of losses,
whether or not it fits the model, remains homogeneous. In
other words, we cannot readily identify subpopulations
(SPs) for which the underlying model parameters can be
suspected to be different. In the second situation, we have
reasons to suspect nonhomogeneity and must test
whether this is indeed the case.

Homogeneous population

Consider the case in which the estimated model does not
fit the population of losses. When this case is associated
with the choice of a wrong model rather than with the
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presence of subpopulations, one can use a number of
graphical and analytical tools to test the adequacy of the
model. One important graphical tool is the probability
plot. Denote the ordered observations (log losses) by
Yay Y@y -+ Ya- Denote the cdf of the observations,
conditional on discovery, by

Fvluy)= [ F(t|u,v)di

%

[ [atwptlvyar ey (23)

Suppose that the estimates of the parameters are (&, v).
One form of a probability plot is obtained by plotting, for
i=1,2,---, k, the points [i/(k + 1), Fc(y(,»)m, v)]. The
failure of these points to form a straight line with slope 1
is an indication of a lack of fit. Some standard tests, such
as the Kolmogorov—Smirnov test or the Anderson—
Darling test, can be used to test for the significance of
the observed lack of fit. In cases in which parameters
are estimated on the basis of the same data that is

used in goodness-of-fit tests, we recommend the use of
appropriately adjusted significance levels [21]. Another
form of the probability plot is sometimes useful in models
involving special parametric structure, such as location-
scale equivariance. This form is obtained by computing
the scores s; = I:“L,_l[i/(k + 1)] and plotting the points
ey 0, i=1,2,--- k.

Another useful method is to compare the log-
likelihoods corresponding to individual losses with
respect to the expected values. Denote the mean and
variance of a single log-likelihood term by

_Zf(z|u)ﬁ(t|v) xIn| f(t|u)p(e]v) | dr

Elu,) = Clu,v)

— InC(u, v),

[ttty x [ty a
Vi, v) == Clu,v)
— [E(w,v) + InCu,v)]". (24)

Now assume that the model is correct and that the
components of the model conform to well-known
regularity conditions that ensure the conventional
asymptotic properties of the estimators (&, 7). Then,
for sufficiently large k, the normalized discrepancy

{ iln [f;.(y,»lﬁ,ﬁ)] } — kE(@, )
Z =

i=1

Vi, ) (25)

can be treated as a realization of a standard normal
random variable. We can therefore reject, at the level of
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significance y, the hypothesis that the observed losses
come from the postulated model if |Z| > z,_,. For
smaller sample sizes one may need to introduce

more general distributions (e.g., possibly a Student’s
t-distribution) in order to describe the stochastic behavior
of Equation (25) and to obtain suitable rejection
threshold values. It is important to note, however, that if
the distribution of log losses belongs to a location-scale
family, and the DPC is a function of (y — v;)/v,, the
distribution of Equation (25) is characterized by the pair
of values, a; = (u; — vy)/v> and a, = u,/v,. This fact greatly
simplifies the work needed to establish goodness of

fit, since the quantiles of the test statistic can be pre-
computed (or tabulated) in the form of a three-way table
containing a collection of tail quantiles of Equation (25)
for every pair of values (a;, ay). This point is also relevant
for other goodness-of-fit tests considered in this paper,
such as Kolmogorov—Smirnov and Anderson—Darling
tests.

One can make use of a number of additional goodness-
of-fit tests to be found in [21]. When applying such tests,
researchers should be aware that it is important to
remember that practically every model of a fixed level of
complexity will be rejected when the sample size becomes
sufficiently large. As noted by statistics expert George
E. P. Box, “All models are wrong, but some are useful.”
Therefore, model rejection typically leads one to examine
aspects of the model that contradict the data. One may
decide that the presence of subpopulations has led to
model rejection, and then one may switch to a more
complex model. On the other hand, one may find the
violations that led to rejection of the model to be of little
practical significance, and thus one may declare the model
under consideration to be useful despite these violations.

Nonhomogeneous population

In the process of data collection, one generally tries to
ensure a high degree of data homogeneity in order

to prevent biases related to influential unidentified
subpopulations, by performing an appropriate
identification and classification of the losses. It is
particularly important to prevent “hidden factors” from
increasing the variability of the data or creating trends
that must be addressed via segmentation or some other
form of fragmentation of the data set. Such fragmentation
could greatly increase the complexity of the model and
thus lead to loss of statistical power, for example, as
measured by the predictive ability of the model.

In many situations, however, subpopulations may
occur naturally; under such conditions, one must decide
whether a given subset of data should be treated as
one coming from a homogeneous population or as
one coming from a population that contains several
subpopulations. Consider, for example, the case in which
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the data set contains losses corresponding to two types
of businesses: banking and others. If we disregard the
distinction between the subpopulations and apply one of
the tests described above, we might reach a conclusion
that some given model adequately represents the observed
losses. However, fitting two separate models to
subpopulations of interest may explain the data much
better. Suppose, for example, that we have identified m
subpopulations Py, P», ---, P,, for which we suspect that
the parameters of the underlying population of losses are
different, but the DPCs are the same and are assumed to
be known. One possible test for homogeneity could be
based on the following statistic:

T=2

L(ﬁﬁva]"yj) - L(itavaN|y) ) (26)
=1

where

* y; is the subsample of losses corresponding to the jth
subpopulation.

* u; is the vector of estimated parameters based on the
data for the jth subpopulation only.

U Ni is the estimated number of losses in the jth
subpopulation. The estimation is based on y; only.

e L(uj, v, Nj| ;) is the maximum log-likelihood based on
the data corresponding to the jth subpopulation only.

* yis the overall sample.

* 1 is the vector of estimated parameters based on the
complete sample.

e N is the estimated overall number of losses.

o L@, v, N |») is the maximum log-likelihood based on
the complete sample.

If the population is homogeneous and the sample sizes
of subpopulations are sufficiently large, the statistic T
should have a chi-square distribution, with the number of
degrees of freedom equal to the product of m and the
number of parameters in which the subpopulations differ
from one another. For example, if the distributions of log
losses corresponding to different populations can differ
in both location and scale, the number of degrees of
freedom is 2m. We reject the homogeneity hypothesis at
the level of significance y if T exceeds the (1 — y) X 100%th
quantile of the chi-square distribution mentioned above.

It is not difficult to generalize the above test for the case
in which the DPC parameters for various subpopulations
can also be different.

As mentioned in the previous section, one can still
make use of the model under consideration even if the
goodness-of-fit tests, which are based on the complete
data set, suggest its rejection. Consider a situation in
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which the company must estimate the reserves needed
to cover the overall losses in the coming year. Consider
two types of losses: small losses (not exceeding some
prescribed level 4) and large losses (greater than A). The
company has enough internal information to estimate the
magnitude and frequency of small losses. Larger losses,
however, are rarely observed within the company,
providing no solid basis for statistical estimation. It is
then natural to perform the data analysis under the
working assumption that the distribution of large losses
pertaining to the business of the company can be
estimated on the basis of observed losses suffered by
“similar” companies. The company performs a search of
the body of sources in order to collect information on
such losses. Suppose that most of the discovered losses
are greater than A, and our attempt to fit a model
involving, for example, Weibull losses and logistic DPC
fails; nonetheless, a possibility exists that this model will
fit suitably transformed data if we limit our attention to
the population of losses that are greater than A. For
example, such a model could well fit some form of
excess loss data, such as (x; — A4) or In(x;/4 — 1).
Estimation in the domain x > 4 is of primary interest in
the field of insurance. Suppose that the company intends to
insure itself against losses exceeding A (here A could also
represent the deductible demanded by the insurance
company). From the point of view of the insurance
company, losses below A4 are of no interest, and its
risk analysis can be performed solely on the basis of a
distribution that fits the data only in the domain x > 4
(i.e., in the “tail area” of the data for large observed losses).
Instead of fitting some distribution to some form
of excess loss data as suggested above, we may use an
alternative approach inspired by the asymptotic theory of
sample extremes [22]. One of the main subjects of this
theory is the analysis of distributions that have a Pareto
tail index, that is,

1 — F(x)~x “L(x), asx— . (27)

Here, L(x) is some slowly varying function, that is, a
function that satisfies the relation

L(tx)/L(x) = 1 asx — o, (28)

for every t > 0. Many examples exist of this class of
distributions with a Pareto tail index, and the class
includes many of the distributions used by practitioners
to model losses. When A4 is a large number, as is the case
in insurance applications or the problem of operational
risk estimation described at the beginning of the section,
the distribution of the data in the domain x > 4 is given
by

Flx|x>4) =1 - (x/4) “[L(x)/L(4)]
~1—(x/4)", x>A4. (29)
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Table 1

Losses (in DM) corresponding to selected values of DPC for Weibull-logistic (WL) and Pareto—logistic (PL) models. (The

column heads indicate DPC percentiles corresponding to probabilities of loss discovery. For example, the column corresponding to
DPC = 0.5 shows the losses for which the probability of discovery is 0.5.)

Model Percentiles: 0.1 0.25 0.5 0.75 0.9 0.99
WL, u = (17.1, 3.74), v = (8.78, 0.34) 3,100 4,500 6,500 9,400 14,000 31,000
WL, u = (102, 7.5), v = (14, 1.7) 28,000 1.9 x 10° 1.2 x 10° 1.8 x 10° 5.0 x 107 3.0 X 10°
PL, u = (14, 1.14), v = (19.7, 0.98) 4.2 % 107 1.2 x 10® 3.2 % 108 1.1 x 10° 3.2 x 10° 3.4 x 10"
PL, u = (14, 1.97), v = (17, 1) 2.7 % 10° 8.1 X 10° 2.4 % 107 7.2 X 107 2.2 % 108 24 % 10°

This approximation, suggested by Equation (28), can be
justified in many practical situations. In the simplest case,
in which the distribution of losses in the range of interest
x>bisa two-parameter Pareto,

F(x)=1-(x/b)", x>b, (30)

i.e., L(x) = 1, the approximation in Equation (29) reduces
to equality; in other words, F(x|x > A)=1— (x/4)™
exactly, not approximately. In terms of logarithms,

the distribution becomes shifted exponential, that is,

Sy >u) =1—exp[—(y —u,)/u,),

FOly=u) =u; expl—(y —u)/uw), y>u,  (31)
where
u, =In(4), u,=1/a (32)

The above argument illustrates the point that in the
tail area, the location-scale distribution families once
again lead to relatively tractable models; however, as in
Equation (31), the location parameter typically turns out
to be the left endpoint of the corresponding distribution.
The model in Equation (29) is a special case of the
generalized Pareto distribution (GPD), which can be
represented in the form

1 - [1 +£(X_A)/ﬁ]7l/€7 67&07 X>A7
1 —exp[—(x—4)/ ],

F(x|x>A4) = :
E=0,x> A4,

(33)

where & # 0 and ff = A¢&. The latter model covers more
general tail behavior, since it can be adapted to the case in
which the tail of F(x) cannot be represented in the form
shown in Equation (27) [23-25]. Although this model
does not generally represent a location-scale family, we
advise researchers to explore the model once the amount
of available data can support the added complexity.

In general, the case in which the log losses a) are treated
as left-censored (i.e., only losses above some threshold are
available), b) are assumed to come from the distribution
fy |v > uy; u), and c) are observed in accordance with
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some DPC p(y;|v), the problem of inference is similar
to that described in the sections on likelihood-based
estimation and goodness-of-fit tests. From a practical
standpoint, the analysis described in these two sections is
frequently simpler because in many applications u; can be
treated as known, and thus we have fewer parameters
to estimate.

Examples

For purposes of illustration, we may consider the data in
Appendix A of [13]. To demonstrate the application of
the described methods, we consider two cases: In the first
case we fit the Weibull-logistic (WL) scheme to the entire
distribution of losses contained in the set of sources. In
the second case, we focus exclusively on large losses (i.e.,
those exceeding some “deductible” or other boundary of
interest), disregarding the possible lack of fit for the
distribution as a whole. We then apply the Pareto—logistic
(PL) model to the data. As can be seen, the PL model
provides a better fit to the data than the WL model.

Global Weibull-logistic model

In this section, we assume that the underlying distribution
of losses is Weibull, i.e., that the log losses are distributed
in accordance with Equation (2) and that the DPC is
represented by the logistic equation in Equation (4). In
the first phase, let us estimate the parameters (u, v, N)
without imposing any restrictions on them. Maximization
of the log-likelihood Equation (12) leads to the estimates
u=(17.1, 3.74) and » = (8.78, 0.34) which imply, by
Equation (10), that C(&, v) =0.90 and, by Equation (13),
that N = 225/0.90 = 250. In other words, the “best”
explanation of the data offered by an unconstrained
model is due to the fact that the losses correspond to the
Weibull distribution with a very large scale parameter,
e'71=2.67 X 107 and not a very small shape parameter,
¢=1/3.74=0.27. Thus, the underlying set of sources does
not contain many small and moderate losses. The loss
corresponding to the probability of discovery 0.5 is
[378 = 6,500], and losses corresponding to the probability
of discovery 0.1, 0.25, 0.5, 0.75, 0.9, and 0.99 are given
in the first line of Table 1. The unconstrained approach
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essentially suggests that all losses, except those less than
30,000, are discovered and represented in the available data.

From a practical standpoint, this explanation, of
course, does not make sense, because our data set
contains just 225 recorded losses; if all of the losses above
30,000 were discoverable, the resultant data set would
have been much larger. This example illustrates what may
happen if one does not consider a priori the plausible
values of the parameters, and if one relies on statistical
estimation to discover them. In the next step, assume
that one has reason to believe that the DPC parameters
can be treated as known and equal to vy = (14, 1.7).
This suggests that the loss corresponding to the
probability of discovery 0.5 is 1.2 million Deutsche
marks, and losses corresponding to other values of the
probability of discovery are given in the second row
of data in Table 1. Use of the constrained estimation
procedure described above in the section on constrained
estimation and inference leads to the estimate
u = (10.2, 7.5), which appears more sensible from
a practical point of view. The large losses are now
explained less by a large scale parameter, as in the
unconstrained case, than by a smaller shape parameter.
This suggests that the bulk of the losses in the body of
sources are still undiscovered: The estimated proportion
of discovered losses is C(&, vy) = 0.20; consequently, the
estimated number of losses recorded in the set of sources
is N =225/0.20 = 1,125.

As noted in the Introduction, a simulated sample
from this model is shown in Figure 2. Even in the
unconstrained case, we have no assurance that the model
corresponding to estimated parameter values will fit the
data. Once constraints are imposed, it is quite possible
that the model will fit poorly, and careful examination
of goodness-of-fit issues is appropriate. We apply some
of the techniques described in the sections discussing
estimation and goodness-of-fit tests to measure the extent
to which the constraint vq = (14, 1.7) is compatible with
the data. At this point, let us assume, for the sake of
argument, that the analyst had prior knowledge not only
about v, but also about u, and that the values &z = (10.2,
7.5) were in fact anticipated a priori. Such an assumption
can be justified, for example, in situations in which the
model is estimated on the basis of the learning sample and
then applied to the test sample, as mentioned early in this
paper in the section on the basic approach. Under this
assumption, we could test the data for conformance with
a fully specified model. In particular, let us consider the
probability plot in Figure 3. The maximal deviation from
the straight line, corresponding to the hypothesized
model, is 0.09. In accordance with common statistical
practice, we would reject the hypothesis that the model
fits the data if this deviation exceeds the critical 5% value
for the Kolmogorov—Smirnov statistic. Since this critical

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

0.8}

0.6 |- 7

04} 2

02} -

0 0.2 0.4 0.6 0.8 1.0

Probability plots. Weibull-logistic (WL) model with parameters
u = (10.2, 7.5), v = (14, 1.7) (dashed line), and Pareto—logistic
(PL) model with parameters # = (14, 1.97), v = (17, 1) in the
domain y > 14 (wavy solid line). The maximal Kolmogorov—
Smirnov deviation is shown as a short vertical line for the WL
model. The x and y axes refer to probabilities, and the coordinates
of points on the graph are i/(k + 1), £ (v | u,v).

value is known to be 1.36/1/225 = 0.09 (see Table 54 in
[26]), we have insufficient evidence that the model does
not fit the data. However, one could apply an alternative
(Anderson—Darling) goodness-of-fit test that tends to be
more sensitive with respect to deviations in the tails. The
value of the Anderson—Darling statistic is 3.05, which
corresponds to the 2.5% percentile of its distribution
under the assumption that the model is adequate;
therefore, the fit in the tail area is definitely problematic.
To apply a test based on the likelihood function, note
that the log-likelihood of the data in the constrained
model is —605. The formulas in Equation (24) suggest
that for data coming from the model with parameters
u=(10.2, 7.5) and v = (14, 1.7), the average score per
observed loss is E(&, v) =—2.63 and the variance is
V(a, v) = 0.55. This suggests that the value of the
log-likelihood observed under the estimated model
is approximately normal, with mean and standard
deviation —2.62 X 225 =-591 and v0.55 X 225 =11.1,
respectively. The value —605 is within 1.27 standard
deviations from the mean, which corresponds to the
p-value of 0.1 for the one-sided goodness-of-fit test;
thus, this test does not lead to rejection of the model.
One may notice that even under the assumption that
the model is completely specified, the constrained model
is barely acceptable, and it does not even have some
features that a practitioner may desire. In particular,
given that the provided data is the result of a limited
search effort, the probability 0.1 of discovering a loss of

E. YASHCHIN

319



320

magnitude 28,000 in the body of sources appears to be
too high, and the overall probability of discovery 0.2 also
appears to be too high. However, our analysis shows that
an attempt to obtain a much better model of the Weibull—
logistic type for the available data set is not successful:
Models that appear more attractive from the practical
standpoint unfortunately do not fit the data, especially
for lower loss values. The fit in the right tail (i.e.,

for higher loss values) is also problematic, as can

be seen from Figure 2, in which the right tail bends
slightly in comparison with the depiction in Figure 1.
The difficulties with the model describing the data are
primarily related to the fact that at the time the data
became available to us, the efforts of populating the
database were in the very initial stage and gave rise to
very uneven coverage. Furthermore, some values of the
data have a much higher probability than the neighboring
data, which exposes the fact that a Weibull model is

a priori just a convenient mathematical approximation.
For example, a typical small fine imposed by a judge
against an operational-risk-related violation, and
reported in the press, is much more likely to be $10,000
(DM 18,497 in the data set) than $9,000. Though such
partial grouping (e.g., in which loss values tend to cluster
around some “round” quantities such as $10,000) does
not prevent the estimation process from producing useful
results, it is advisable to define, for every individual study,
the effect of grouping on both estimation and goodness-
of-fit tests.

Finally, we test whether, under the assumption that the
model is WL with ¥ = (14, 1.7), the population of losses
classified as being of “high” or “medium” relevance
(subpopulation 1, denoted SP1) differs significantly from
the population classified as being of “low” relevance
(subpopulation 2). Let us fit two separate models for the
two subsamples. The estimated population parameters
(based on a sample size of 140) for SP1 are u; = (9.8, 7.9),
and the maximal value of the log-likelihood is —385. (The
model cannot be rejected by a goodness-of-fit test, but the
quality of the fit is marginal.) The parameters for SP2,
based on a sample size of 85, are &, = (10.7, 7.0). The
maximal value of the log-likelihood is —220, and the fit
is very good. As indicated earlier, the maximum log-
likelihood value for the complete data set was —605. To
test whether the complete data set is explained better by
two separate models, one for SP1 and the other for SP2,
rather than by a single model, we must compute 7.
Because we have two subpopulations that differ in two
parameters, 7 should be compared to z345(4) = 9.49. In
our case, T =2 X (—385 — 220 + 605) = 0, indicating that
we have no evidence, using the given DPC, to conclude
that there is a significant difference between the loss
distributions corresponding to SP1 and SP2.
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Note that the assumption that the model is fully
specified is quite consequential, and in many practical
situations one will have to assess the validity of the model
on the basis of “in-sample” data. In other words, when
using “in-sample” data we estimate the model on the
basis of a given sample, and then use the same sample to
test goodness of fit. In such situations, significance values
(or p-values) for the tests mentioned above must be
adjusted by accounting for the fact that the model
parameters u were estimated from the same data that was
used in goodness-of-fit tests, resulting in a fit that appears
to be better than what would be expected under a fully
specified model. To obtain the significance values, one
can conduct simulations in order to study the behavior
of the test statistics under the assumption that the true
values of the parameters are equal to the estimated
values. In every simulation run, one obtains a new set of
losses, estimates the model parameters, substitutes these
estimates into a given goodness-of-fit statistic, and
computes the discrepancy. This type of technique is called
the “parametric bootstrap” [27]. In particular, for the
above WL model with & = (10.2, 7.5) and v, = (14, 1.7),
the significance levels of the Kolmogorov—Smirnov and
Anderson—Darling tests are estimated to be 0.001 and
<0.001, respectively, indicating that an incompletely
specified model of this type (i.e., # estimated solely
on the basis of the same data that is used to test goodness
of fit) would be promptly rejected.

Tail Pareto—logistic (PL) model

We may now consider the situation from the perspective
of the insurance company and assume that only losses
exceeding A = 1.2M (the deductible) are of interest. We
further assume that the distribution of losses follows a
two-parameter Pareto distribution. As noted in the
previous section, this implies that the log losses are
distributed in accordance with Equation (31), with

u; =1In(1.2 X 10° = 14. The only parameters of interest
are v, the scale u,, and N. The relevant data is now
reduced from 225 to 163 losses that exceed 1.2M.

First, let us apply the unconstrained model.
Maximization of the likelihood based on conditional
density functions leads to the estimates &, = 1.14 and
v =(19.7, 0.98). Therefore, C(a, v) = 0.02, and the total
number of losses contained in the set of sources that
exceed 1.2M is estimated to be N = 163/0.02 = 8,150.
This model suggests that the loss that has the probability
of 0.5 to enter into the set of sources and be discovered
is 3.7 X 10®. Losses corresponding to various values of
the DPC are shown in the third row of data in Table 1.

Once again, we have a reason to be disappointed by the
results of the automatic search for the model parameters.
Under the DPC corresponding to this model (see
Table 1), losses of very high magnitude have an
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uncomfortably high chance of being overlooked in the
process of populating the database. One can then choose
to override the estimated v by introducing a constraint
that the parameters of the logistic DPC are vy = (17, 1).
Under this constraint, the magnitude of a loss that has a
0.5 probability to be discovered is 2.4 X 10”. Other values
(see Table 1) also appear to be more reasonable to a
decision maker. The resulting estimate of the scale
corresponds to u, = 1.97. The estimated overall discovery
probability is now much larger, namely C(&, vy) = 0.30,
leading to 163/0.3 = 543 as the estimate of the total
number of losses of magnitude exceeding 1.2M in the
time period of interest.

To check whether the resulting PL model fits the data
for losses exceeding 1.2M, with parameters & = (14, 1.97)
and vo= (17, 1), we once again consider two cases. In case
(a), the parameter ug = (14, 1.97) is assumed to be
provided externally (for example, based on the training
data set); in case (b) it is assumed to be estimated from the
data, as illustrated above.

In case (a), we first examine the probability plot in
Figure 3. Both the Kolmogorov—Smirnov and Anderson—
Darling tests suggest that the fit is good. The mean
and variance of the log-likelihood score corresponding
to a single measurement are E(ug, vo) =—2.19 and
V(ug, vo) = 0.55. Therefore, the mean and
standard deviation of the log-likelihood under the
assumption of the above model are —2.19 X 163 =—-356
and v0.55 X 163 = 9.4. The maximal log-likelihood
computed for the available data under the constraint
v=vy= (17, 1) is =353, which is in agreement with the
mean and standard deviation computed above. In
case (b), the goodness of fit is still acceptable: For
example, the significance levels of the Kolmogorov—
Smirnov and Anderson—Darling tests are estimated
to be 0.12 and 0.05, respectively.

The process of data collection for the estimation of the
intensity and stochastic characteristics of losses is
typically conducted under conditions that induce
biases. The presence of these biases requires the use of
special statistical techniques, some of which originate
in other fields in which data bias is also a problem. The
framework of size-biased sampling appears to be useful
for identifying and correcting biases related to the sizes
of the losses, and for early identification of models that
are suitable for characterizing the process of losses. In
particular, this framework may be used to obtain the
basic “building blocks” characterizing various categories
of losses from which a more comprehensive model can
eventually be obtained.

The limited scope of the data set that served as the basis
of this research enables us to answer only a few basic
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questions by assuming a given model with some very
simple data categorization. One would need a much more
elaborate data set in order to address more complex
questions. For example, consider the problem of building
a model in order to estimate operational risk losses for a
given enterprise. A database suitable for such estimation
would consist of a list of losses, and for each record we
would have not only loss magnitude and relevance, but
also such entries as industry, number of employees, type
of loss, and market value of the bank. A promising
strategy for risk estimation suggests that we

e Establish, for each factor, whether it affects a) the
intensity (i.e., rate) of losses 4, b) (uy, us), or ¢)
(v1, v). (Some effects can be reasonably postulated;
for example, for some types of losses the rate of losses
could be assumed to be roughly proportional to the
number of employees. Such « priori relationships can
simplify the subsequent analysis considerably. Their
validity can be tested by using post-estimation
goodness-of-fit procedures.)

¢ Estimate the relationship between factors and the
basic model parameters, 4, (11, us), (vi, v2).

e For a given enterprise P, evaluate, on the basis of
the above model, the corresponding parameters,
Ap, (U1 p, Uzp), (Vip, V2p).

e Evaluate risks (for example, value-at-risk, or VAR)
related to P on the basis of the estimated parameters.

The proposed framework may be used not only for
modeling the process of external losses, but also for the
analysis of internal losses pertaining to a given institution
of interest. Although one can expect that the internal
databases (i.e., databases that contain information that
comes from inside a company) are much better structured
and maintained than databases based on external
searches, biases related to the size of losses are likely to
remain a factor of concern. The bias-causing mechanisms
for various classes of internal losses, however, are likely
to be of a different nature than those related to external
data sources. Furthermore, bias in internal data may be a
lesser factor in determining deleterious exposure to tail
events and VAR than biases related to external data
sources, possibly necessitating modifications in the
statistical inference procedure.

Another possible extension of the proposed approach is
related to an inference system based on three sources of
data: internal losses, external losses coming from a shared
database pertaining to the same type of business (for
example, banking institutions only), and losses discovered
by searches of external sources that may be related to
a much broader class of institutions.

In our analysis we emphasized the so-called
“frequentist” inference techniques, whereby we
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considered the parameters as fixed (although possibly
unknown) quantities. However, under the described
conditions, we might benefit from the alternative
statistical methodology, namely, Bayesian inference,
which considers the parameters as random variables
having some prior distribution. For example, given the
very small sample size, we typically considered the
parameters v of the DPC as known quantities. By using a
Bayesian approach, one could associate some degree of
uncertainty with these parameters. Bayesian inference
may also be useful in aggregating information obtained
from several databases, as described above.

Finally, it is important to note that the presented
approach takes into account only one source of bias,
namely under-reporting related to the size of the loss.
However, in practice the process of populating a database
may involve other biases that are equally serious. One
such bias may be related to the multivariate nature of the
process of losses that could have a profound effect on
VAR estimation. For example, an event represented in a
database as a computer failure may actually be caused by
a massive power outage, affecting a larger class of losses
and magnitudes that are not represented in a database.
Therefore, accurate modeling of the risk exposure may
benefit from the use of a larger range of databases,
necessitating a more complex modeling effort.
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