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In this paper we present a method for drawing inferences about the
process of financial losses that are associated with the operations of
a business. For example, for a bank such losses may be related to
erroneous transactions, human error, fraud, lawsuits, or power
outages. Information about the frequency and magnitude of losses
is obtained through the search of a number of sources, such as
printed, computerized, or Internet-based publications related to
insurance and finance. The data consists of losses that were
discovered in the search. We assume that the probability
of a loss appearing in the body of sources and also being
discovered increases with the magnitude of the loss. Our
approach simultaneously models the process of losses and the
process of populating the database. The approach is illustrated
using data related to operational risk losses that are of special
interest to the banking industry.

Introduction
Consider a business, such as a bank, that is interested in

estimating the types of risks it faces. For example, banks

have recently become very interested in estimating their

exposure to operational risk, which includes almost all

forms of risk except those related to financial markets and

credit. A classification and explanation of these risks can

be found in the description of the Basel II framework for

international banking [1]. Of special relevance is Section

V of this document, which provides a set of requirements

to be met by a banking institution in order to prove to

the Basel Committee that it ‘‘has an operational risk

management system that is conceptually sound and

is implemented with integrity.’’ Furthermore, the

framework specifies requirements for reporting losses and

for self-assessment. It also offers one of three approaches

for calculating operational risk losses, leaving a

substantial degree of flexibility for the banking institution

to account for business profiles of individual institutions.

Because the new regulations require banks to set aside

resources to cover operational risk losses, the issue of risk

estimation has become an important research subject.

For example, methods for risk modeling, estimation,

management, and hedging are considered in recent books

[2–5]. An extensive summary of operational risk issues

can be found in the January 2002 issue of the Risk

journal; in particular, see [6]. A number of publications

focus on methods emphasizing causal modeling and

management of specific types of risks [7, 8]. Bayesian

methods for risk modeling and estimation are discussed,

for example, in [9, 10]. Statistical issues related to the

estimation of losses are considered in [11, 12].

In this paper, we discuss an approach to modeling that

is most appealing in the early phases of risk modeling,

when reliable data is difficult to obtain and the existing

data sources are known to be incomplete. Specifically, in

the application that inspired this paper, we made use of a

database that contained descriptions of operational losses

suffered by various companies over a number of years.

These losses were generally large, and entries related to the

bank of interest itself were extremely rare. The relevant

data can be found in [13]. This database was in the

initial phase of construction and was thus known to be

incomplete. We can safely assume that it referred to only

a small fraction of losses suffered by various businesses.

The process of populating the database is typically

focused on a certain set of sources. We assume that only

losses that appeared or might have appeared in this set of

sources are relevant. Our main problem of interest is how

to use such a database to gain information about the

stream of losses facing a given institution. A number of

techniques have been used to increase the information

content of databases containing rare events. For example,

in many areas related to health and safety (such as the

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 E. YASHCHIN

309

0018-8646/07/$5.00 ª 2007 IBM



chemical process industry) it is customary to report the

‘‘near-miss’’ incidents and use this information to enhance

the inference related to risks, incident rates, and losses

[14]. However, even with enhancements of this type, we

expect that a substantial portion of risk-contributing

events is likely to remain under-reported, especially in the

early phase of populating the database. For successful

inference under the stated conditions, one must be able

to model the process of populating the database.

The data-collection process is probably the most

challenging part of building an inference system related to

operational losses. Of course, the issues of data quality

and relevance are fundamental, and addressing these

issues is a necessary condition for credible quantitative

analysis of risks pertaining to a given institution. These

issues have been discussed extensively in the literature

[3]. To increase the amount of reliable data relevant to

operational risk modeling, a number of data-sharing

arrangements among banks have been established.

However, the coverage of events related to operational

risk is still quite limited, since a large number of such

losses remain either unreported or not identified as being

relevant for inclusion in a database. Furthermore, the

relevance of the data that has already been collected tends

to diminish with time because of factors such as inflation,

major societal disruptions (such as the terrorism events of

September 11, 2001), or new developments in the field of

information technology. Therefore, data collection is an

ongoing process and is itself exposed to a number of risks.

In this paper, we focus on one of these risks, namely,

under-representation of losses due to the fact that sizable

financial losses are generally more likely to appear in the

set of sources, and be discovered, than losses of moderate

or low magnitude. From the perspective of a given

institution, this phenomenon occurs not only in the

course of populating a database from sources that are

external to this institution, but also in the process of

populating internal databases. Though the Basel II

framework mandates reporting of internal losses, it

offers banks substantial flexibility on choosing reporting

thresholds—and this in itself can create bias, even within

the framework of a single institution. The problem of

systematic biases in the data is of special importance in

the environment in which data sources are assembled, at

least partially, on the basis of automated text analysis of

documents obtained via search of databases containing

nonstructured data or searches of the Internet.

To further understand the concept of external and

internal sources, consider an example of a particular

bank. According to the Basel II regulations, this bank

must maintain a record of all losses exceeding some

threshold. The bank is not obliged to disclose this

information to any external party, except for the Basel

Committee auditors. This is referred to as an internal

source. On the other hand, a large number of bank losses

eventually appear in either publicly available sources

or sources that are part of data-sharing consortia, and

these are referred to as ‘‘external sources.’’

Similarly to the approach presented in this paper, one

may approach the problem of estimating operational

risk losses of medium and large magnitudes in three

stages. The initial goal (stage 1) is to develop methods

for characterizing the stream of losses related to the

operations of both financial and nonfinancial institutions,

observed worldwide, as well as the magnitudes of these

losses; this involves drawing inferences about the hidden

population of losses that are not represented in the

database. The latter goal is achieved by introducing a

concept called the discovery probability curve (DPC),

which specifies the probability that a loss of a given size

will enter the body of sources and be discovered. This

probability curve can itself be subject to an estimation

effort. Subsequently, in the second stage, one may

estimate the fraction of these losses that is related to

financial institutions. Finally, in the third stage, one can

use this model, in conjunction with characteristics of the

specific bank of interest, to estimate model parameters

that relate to the stream of operations-related losses for

this bank. Though we present the general structure for

such causal modeling in the last section of this paper,

the focus of the paper is on problems related to the

first-stage methods for characterizing losses.

The proposed modeling of risks is useful in several

respects. For example, it can be used by a bank, in

conjunction with analysis of internal losses, as a basis for

reserving capital needed to cover operational losses for a

given period. Also, it can be used by insurance companies

to assess the risk (or specific types of risks) related to the

bank and to establish premiums. Although modern banks

are usually self-insured with respect to operational losses,

in the future some banks may prefer to mitigate the effects

of these types of losses through insurance companies. For

example, Financial Institution Operating Risk Insurance

(FIORI) is currently being offered by the Swiss Re

company, one of the world’s largest reinsurers [15].

While some classes of risks may be good candidates

for insurance coverage, other types of risks could be

mitigated by service agreements and risk-sharing

arrangements with other companies. In essence, we

are considering here a situation faced by every newly

emerging branch of insurance when data is sparse and

expensive to collect and risks are poorly understood. The

current literature related to actuarial science does not

appear to provide an agreed-upon statistical methodology

for the establishment of a new area of risk analysis or

insurance. In this work, we attempt to formulate a

framework that may be helpful in the development of

such methodology.
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In the next section, we describe our basic approach.

Subsequently, we consider the problem of estimating

model parameters and the use of goodness-of-fit tests for

various aspects of the model. The fourth section considers

models that are focused on losses that exceed a pre-

specified threshold and discusses tail-based inference for

such models in the presence of size-biased sampling.

Finally, we discuss examples, generalizations, and

directions of future research.

The basic approach
Estimation of the properties of hidden populations has

been considered in the literature in relation to such areas

as demography (e.g., population size estimation [16]),

software reliability (estimation of the number of

software defects hidden in programming code [17]), or

nondestructive evaluation (inferences related to hidden

defects [18]). The corresponding techniques are referred

to in the statistical literature as size-biased sampling.What

makes the present problem special is its strong actuarial

aspect: The questions that are asked in the current

context are much different from those asked in the areas

mentioned above. These questions, in turn, determine the

tools used in the statistical analysis.

We now introduce the approach for addressing

questions arising in the context of risk estimation. Our

basic assumptions are as follows:

� The process of losses is modeled as a homogeneous

Poisson distribution with a rate of k events per year.
� The underlying distribution of loss magnitudes is

described by some density f (x) that belongs to one

of the families that are typically used to describe

distribution of losses [5, 19]. For example, the Pareto,

Weibull, or lognormal families can be considered

good candidates.
� If a loss of magnitude x occurs, its probability of

being discovered in the process of populating a

database is p(x), where p is a monotone function with

a value from 0 to 1. In essence, we demand that p(x)

satisfy the properties of a cumulative distribution

function (cdf). Some considerations that might be

instrumental in selecting the suitable form of p(x) are

given below. We henceforth frequently refer to this

function as the discovery probability curve, or DPC.

We note that in more complex applications, the rate k,
as well as the parameters associated with the distribution

of losses and the DPC that corresponds to these losses,

will depend on a set of factors, as is discussed in the last

section.

To illustrate the basic ideas of our approach, we briefly

discuss the data given in Appendix A of [13]. This data

contains records of 226 losses assembled from public

sources (e.g., news reports) and their degree of relevance

to the banking industry. The losses are in Deutsche marks

(DM). In 1998, when the database was populated, the

exchange rate was approximately one U.S. dollar

(1 USD) ¼ 1.8 DM. Record No. 12 (a 177-DM loss by

AVA, or Asesores de Valores, the institution that suffered

the loss) is considered an outlier and it is not used in the

analysis. Therefore, our data consists of 225 observations.

In our initial analysis, we subdivided the data

randomly into two parts, the learning sample and the test

sample. All of the methods discussed below were first

applied to the learning sample and then validated on

the test sample. In this paper, however, we show results

only for the overall sample. Among several candidate

distributions used by practitioners for describing the

magnitude of losses (e.g., see [5, 19]), we considered the

Weibull and Pareto distributions. Because our sample size

was very small, the simplicity of these distributions was a

strong factor in our decision to use them in order to avoid

well-known data-analysis problems such as overfitting,

with the resulting loss of predictive ability. In Figure 1 we

show the observed losses on the Weibull probability plot.

The Weibull cdf F(x) and density f (x) are given by

FðxÞ ¼ 1� exp½�ðx=bÞc�; x . 0;

fðxÞ ¼ ðc=bÞðx=bÞc�1
exp½�ðx=bÞc� ; ð1Þ

and the estimated parameters of the ‘‘law’’ (i.e., the

Figure 1

Observed losses (in Deutsche marks) from Appendix A in [13] 

plotted on the Weibull probability plot. The straight line 

corresponds to the parameter values (c � 0.32, b � 4.9 � 107). 
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Weibull cdf) are ĉ¼ 0.32 and b̂ ¼ 4.9 3 107. From

Figure 1 it may initially appear that the distribution is

consistent with this law, except that the smaller losses are

missing, presumably because it is difficult for such losses

to enter the set of sources and to be discovered.

Upon closer inspection, however, such a simplistic

explanation becomes unsatisfactory. Suppose that the

population of losses is indeed distributed in accordance

with the above Weibull law. Then the fraction of

operational losses below 108 DM ’ $55M, or 55 million

U.S. dollars, in the overall population is estimated to be

75%, which appears to be much too small, given that the

data collection effort was not limited a priori to sources

that focus only on low-frequency and high-impact events.

Despite these reservations, the fact that the Weibull

probability plot is linear in the upper tail (i.e., for large

observed losses) suggests that the upper tail of the

distribution may indeed be Weibull (albeit with different

parameters) and, with a suitably chosen and plausible

DPC, p(x), we may obtain results that are consistent

with the data.

To illustrate this point, we may switch to

logarithmically transformed data. In the discussion that

follows, we work primarily with the observations

y ¼ ln(x). If the losses are distributed in accordance

with Equation (1), the cdf and density of log losses are

~FðyÞ ¼ 1� exp �exp½ðy� u
1
Þ=u

2
�

� �
;

~fðyÞ ¼ u
�1

2
exp �exp½ðy� u

1
Þ=u

2
� þ ðy� u

1
Þ=u

2

� �
: ð2Þ

[Note that throughout this paper, the tilde (;) indicates

quantities associated with log losses.] It is easy to see that

u
1
¼ lnðbÞ; u

2
¼ 1=c: ð3Þ

Now let us define the DPC in terms of a logistic curve:

~pðyÞ ¼ 1þ exp½�ðy� v
1
Þ=v

2
�

� ��1
: ð4Þ

We select the DPC parameters (v1, v2)¼ (14, 1.7), using

some prior expectation based on knowledge about the

data-collection mechanism, and we estimate the Weibull

loss distribution parameters on the basis of this selection,

using methods described in subsequent sections.

We next use the resulting estimated parameters

(u1, u2)¼ (10.2, 7.5), jointly with (v1, v2) ¼ (14, 1.7),

to simulate the process of losses and discovery. The

resulting plot is shown in Figure 2. One can see that the

simulated loss data is quite similar to that presented in

Figure 1. Now, for the underlying Weibull law, the

fraction of operational losses below 108 DM in the

overall population is estimated to be 0.96, which is more

consistent with our expectations. Notice that the fitted

distribution is defined for losses as small as 1 DM,

indicating that this model extrapolates far beyond the

range of the losses that were actually observed. This type

of extrapolation does not normally interfere with the

estimation of quantities important for decision-making,

such as those associated with value-at-risk (VAR), which

is a well-known category of risk metric [5]. An immediate

question arises as to whether the particular distributions

selected above are plausible and do not conflict with

actual measurements. In the following sections, we

develop methods for answering such questions and

for fitting models of this type.

While the selection of the distribution of loss

magnitudes can be motivated to some extent by models

prevalent in the actuarial literature, the selection of the

DPC is more problematic. On the basis of experience so

far, it appears reasonable to require that the DPC curve

satisfy the following relation: For every g . 0 there exists

xg so that

1� p½ð1þ gÞx� � ½1� pðxÞ�1þg ð5Þ

for all x � xg. For example, let us select g ¼ 1 and

consider an event resulting in a loss of some high

magnitude corresponding to a value of 2x. Let us suppose

Figure 2

Simulated replica (asterisks) of the data obtained by combining 

Weibull-distributed losses (circles) with parameters c � 0.133, 

b � 26,900 (i.e., u1 � 10.2, u2 � 7.5, which corresponds to the 

solid straight line) and a logistic DPC with parameters (v1, v2) � 

(14, 1.7). The dotted straight line corresponds to (c � 0.31, 

b � 5.9 � 107).
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that this loss can be documented in one of two ways: 1) as

a single loss of magnitude 2x, or 2) as a pair of losses of

magnitude x each, which are introduced independently

into the body of sources. In the latter case, the event

will be discovered if at least one of the pair of losses is

discovered. The criterion in Equation (5) states that the

probability of overlooking the event under the first

scenario is greater than the probability of overlooking

it under the second scenario.

Of special interest are DPC curves that satisfy

Equation (5) for every g . 0 and x . 0. After performing

algebraic manipulation, one can show that two curves of

this type are

p
1
ðxÞ ¼ 1� 1þ ½ðx� fÞ=h�r

� ��1
; x . f ; ð6Þ

with shift, scale, and shape parameters (f . 0, h . 0,

0 , r � 1), and

p
2
ðxÞ ¼ 1� exp �½ðx� fÞ=h�r

� �
; x . f ð7Þ

(i.e., a shifted Weibull distribution) with the shape

parameter 0 , r � 1. In what follows, we assume that

f ¼ 0. Under this assumption, the function p1(x) results,

in terms of log losses y, in the logistic distribution in

Equation (4) with v1 ¼ ln(h), v2 ¼ 1/r. The function

p2(x) results in the distribution

~p
2
ðyÞ ¼ 1� exp �½lnð2Þ�3 exp½ðy� v

1
Þ=v

2
�

� �
; ð8Þ

with parameters v1 ¼ ln[ln(2)/r] þ ln(h) and v2¼ 1/r. The

correction factor ln[ln(2)] ’ �0.3665 is introduced in

order to ensure that v1 is the median point of the DPC

~p2(y).

Note that distributions (7) and (8) both belong to a

location-scale family with location and scale parameters

v1 and v2, respectively. Our discussion is limited to the

case of the logistic DPC ~p( y) given in Equation (4).

The estimation problem
The density of log losses is represented by ~f ( y ju), and
~p( y jv) is the DPC; u and v are the corresponding vectors

that describe the density of log losses and DPC,

respectively. The density of a log loss y that is conditional

on this loss appearing in the body of sources and being

discovered in a source is given by

~f
c
ðy ju; vÞ ¼ ½ ~fðy juÞ~pðy jvÞ� =Cðu; vÞ; ð9Þ

where the mean value of the discovery probability,

represented by the normalizing constant C(u, v), is given

by

Cðu; vÞ ¼
Z ‘

�‘

~fðy juÞ~pðy jvÞdy: ð10Þ

Suppose that the overall number of losses recorded in the

set of sources is N and the actual number of discovered

losses is k; the corresponding log losses are y1, y2, � � �, yk.
Our challenge is to estimate the parameters u, v and N.

Likelihood-based estimation

The log-likelihood of the observed data is given by

Lðu; v;N jy
1
; y

2
; � � � ; y

k
Þ

¼ ln
N
k

� �
þ k3 lnCðu; vÞ þ ðN� kÞ3 ln½1� Cðu; vÞ�

þ
Xk
i¼1

ln ~f
c
ðy

i
ju; vÞ

h i
; ð11Þ

where the first three terms (that is, all items between the

¼ symbol and the summation) are related to the binomial

probability of discovering k losses, and the last term

represents magnitudes of log losses, conditional on being

discovered. The inference can now be based on this log-

likelihood. When nothing else is known about the

parameters, one can derive the maximum likelihood

estimators (MLEs) by finding the parameters that

maximize Equation (11). In this paper, we do not perform

such a likelihood analysis; instead, we work with a

somewhat simplified form of the likelihood that arises

when it is known a priori that N is large and C is small.

The presented approach adequately represents the main

ideas and is sufficiently accurate to address the problems

that motivated this research. Analysis of the exact

likelihood in Equation (11) can be performed in a similar

way.

When it is known a priori that N is large and only a

small fraction of the losses have been discovered, one can

approximate the binomial term in Equation (11) by the

corresponding Poisson term. The approximate log-

likelihood becomes

L
1
ðu; v; N jy

1
; y

2
; � � � ; y

k
Þ’ ln

½NCðu; vÞ�ke�NCðu;vÞ

k!

( )

þ
Xk
i¼1

ln ~f
c
ðy

i
ju; vÞ

h i
: ð12Þ

In the process of maximum likelihood estimation, one can

take advantage of the fact that for given u and v the

likelihood is maximized when

N ¼ N̂ ¼ k=Cðu; vÞ; ð13Þ

indicating that one can expect to obtain estimates of good

quality based on the conditional distribution of the

observed losses only. For values of C that are not very

small, the estimate in Equation (13) is still quite sensible,

and it can be substituted into Equation (11) to yield

(after using Stirling’s expansion and some algebra)

an approximate likelihood
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L
2
ðu; v;N ¼ N̂ jy

1
; y

2
; � � � ; y

k
Þ

¼ ln
k
k
e
�k

k!

 !
þ
Xk
i¼1

ln ~f
c
ðy

i
ju; vÞ

h i

� 0:5 ln½1� Cðu; vÞ� � C
2ðu; vÞ

12k½1� Cðu; vÞ�

þO
C

3ðu; vÞ
k

2

" #
: ð14Þ

Such an estimation technique is similar to the so-called

‘‘profile likelihood’’ methodology. In most practical

applications, the second term dominates the last three,

and we can, once again, obtain parameter estimates

of good quality based on this term only. We restrict

ourselves to using estimates based on the second term

of Equation (12).

After substituting Equation (13) into Equation (12), we

can obtain the estimates by solving the gradient

equations,

Xk
i¼1

ru
~fðy

i
juÞ

~fðy
i
juÞ

¼ k3
ruCðu; vÞ
Cðu; vÞ ;

Xk
i¼1

rv ~pðy
i
juÞ

~pðy
i
juÞ ¼ k3

rvCðu; vÞ
Cðu; vÞ :

ð15Þ

8>>>>><
>>>>>:
The equations (15) can be solved by using a simple

iterative scheme that starts from some initial values

(u(0), v(0)) and proceeds using the following estimation

procedure:

� Step 1: For the current values (u, v)¼ (u(i), v(i)),

compute C(u, v) and its gradient vectors by u and v,

ruC(u, v) and rvC(u, v).
� Step 2: Substitute the resulting values in the right-

hand side of Equations (15) and solve the two groups

of equations separately. Assign the solutions to

[u(iþ1), v(iþ1)].
� Step 3: Iterate Step 1 and Step 2 until the convergence

occurs. Accept the result if it passes tests for local

optimality, sanity (i.e., plausibility) and goodness of

fit, as described later.

It is important to note that the above procedure does

not guarantee that convergence will occur. Furthermore,

the tests in Step 3 are essential because even if

convergence occurs, the limiting point is not guaranteed

to be a local maximum of the approximate log-likelihood

in Equation (12). Finally, the limiting point is not

guaranteed to correspond to a global maximum. This

correspondence would guarantee asymptotically optimal

behavior of the resulting estimates, given that we are

dealing primarily with densities that conform to the so-

called regularity conditions [20, Sec. 6] and smooth DPCs.

Our experience with losses distributed according to

Weibull or Pareto distributions, in conjunction with a

logistic DPC in Equation (4), suggests that the above

estimation procedure is reliable for these distribution

families. We did not observe the procedure to fail, using

either real or simulated data. In these cases, we also did

not see evidence of multiple maxima, despite the fact that

the likelihood function is definitely not log-concave.

The tests for ‘‘sanity’’ mentioned in the above

procedure are needed because a) it may be quite

difficult to foresee the implications of mis-specifying

the shape and/or parameters of the DPC, especially

for small sample sizes, and b) the solution of

Equation (15) maximizes the approximate log-

likelihood in Equation (12) and not the exact likelihood,

Equation (11). Therefore, if for the resulting estimates

(û, v̂) the value C(û, v̂) is not small enough to justify the

Poisson approximation used to obtain Equation (15), this

solution should be considered suspicious. In such

situations, one can expect that solving the equations

based on L2 given by Equation (14), or even solving the

exact profile likelihood equations, will also result in a

relatively large value of C(û, v̂). In many practical

situations such an estimate would be considered

implausible, since one would generally expect that the

process of populating a database is capable of exploring

only a small fraction of the body of sources, and that

even within this fraction most of the losses would remain

undetected.

Therefore, failure of the equations (15) to produce a

value of discovery probability, C(û, v̂), that is small

enough to be compatible with one’s expectation indicates

that the estimation based on a full optimization approach

may be inadequate, and some additional restrictions on

parameters are necessary.

Once the estimates (û, v̂) have been obtained, the

estimate N̂ is obtained by substituting these values into

Equation (13).

Constrained estimation and inference

Many problems related to the model described above

involve maximization of the likelihood function in the

presence of some constraints on the parameters. For

example, after obtaining the ML estimates, one may

decide that the resulting value of C(û, v̂) is too high to be

plausible, and carry out estimation under the constraint

Cðu; vÞ ¼ c
0
; ð16Þ

where c0 is chosen to represent the highest value of C(û, v̂)
that one is comfortable using. The estimation can be

carried out by introducing a Lagrange multiplier b
associated with this constraint and finding the stationary

point of the Lagrangian,
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Lbðu; v;N jy
1
; y

2
; � � � ; y

k
Þ ¼ Lðu; v;N jy

1
; y

2
; � � � ; y

k
Þ

� b½ln Cðu; vÞ � ln c
0
� ; ð17Þ

by solving the gradient equations

Xk
i¼1

ru
~fðy

i
juÞ

~fðy
i
juÞ

¼ ðkþ bÞ3
ruCðu; vÞ
Cðu; vÞ ;

Xk
i¼1

rv ~pðy
i
juÞ

~pðy
i
juÞ ¼ ðkþ bÞ3

rvCðu; vÞ
Cðu; vÞ ;

Cðu; vÞ ¼ c
0
:

ð18Þ

8>>>>>>>><
>>>>>>>>:
The above equations can be solved by repeating, for

various values of b, the process similar to the procedure

described in the previous section until a value of b is

found for which the constraint in Equation (16) is

satisfied. The details of this algorithm are omitted

for brevity.

Constrained optimization may also be used in

conjunction with the likelihood analysis when one

is willing to assume that some components of the

parameters are known. This leads to a reduced system

in Equation (15) that contains only the equations

corresponding to unknown parameters. This system can

be solved by using a procedure of the type described in

the previous section. For example, under the assumption

that the vector v that characterizes the DPC is known and

equal to v0, the estimation process involves solving the

system

Xk
i¼1

ru
~fðy

i
juÞ

~fðy
i
juÞ

¼ k3
ruCðu; v

0
Þ

Cðu; v
0
Þ : ð19Þ

Constrained estimation also plays an important role

in inference related to the parameters of interest. For

example, let us assume that v is known and equal to

v0, and one is interested in testing the hypothesis

H0: C(u, v0)¼ c against the alternative C(u, v0) , c,

at the significance level c. To achieve this goal, we can

compute the maximum value of the log-likelihood

under the constraint C(u, v0) ¼ c (where we denote the

constrained and unconstrained estimates by ûc and û,
respectively) and reject H0 if C(û, v0) , c and if

W
c
ðcÞ¼def

2 L½û; v
0
; k=Cðû; v

0
Þ�

�
� L½û

c
; v

0
; k=Cðû

c
; v

0
Þ�g. v

2

1�cð1Þ: ð20Þ

[Note that Equation (20) is both a definition and a

condition, and that ‘‘(1)’’ refers to one degree of freedom

of the chi-square distribution.] Furthermore, confidence

bounds are obtained simply by collecting values that are

not rejected by the corresponding test. For example, the

value of c in the domain c . C(û, v0) for which the

inequality in Equation (20) becomes an equality represents

a (1� c)3 100% upper confidence bound for C(u, v0). As

usual, a two-sided (1 � c) 3 100% confidence interval is

obtained by combining lower and upper (1� c/2)3 100%

confidence bounds. It is important to note that the

threshold v2
1�c (1) is based on the asymptotic theory,

and its adequacy for small sample sizes has to be

confirmed, for example, by using a simulation study.

Likelihood-based inference about C(u, v) does not lead

directly to inference about N. In particular, if (C, C )

is the (1 � c) 3 100% confidence interval for C, then

(k/C, k/C) does not provide enough coverage to serve as

the (1 � c) 3 100% confidence interval for N; however,

these bounds are useful as initial points in the numeric

procedure described below. To test the hypothesis that

N¼ n against the alternative N , n, we must compute the

maximum value of the log-likelihood function under the

constraint N¼ n. As can be seen from Equation (12), this

goal can be achieved by solving the gradient equations

Xk
i¼1

ru
~fðy

i
juÞ

~fðy
i
juÞ

¼ n 3 ruCðu; vÞ;

Xk
i¼1

rv ~pðy
i
juÞ

~pðy
i
juÞ ¼ n 3 rvCðu; vÞ

ð21Þ

8>>>>><
>>>>>:
by using a suitably modified estimation procedure of

the type described in the previous section. Denote the

constrained estimates by ðûn; v̂nÞ and the score associated

with N by

W
N
ðnÞ ¼ 2½Lðû; v̂; N̂Þ � Lðû

n
; v̂

n
; nÞ�: ð22Þ

Then the hypothesis is rejected if N̂ . n and

WNðnÞ. v2
1�cð1Þ: The lower (1 � c) 3 100% confidence

bound for N is then the value of n , N̂ for which

WNðnÞ ¼ v2
1�cð1Þ: The upper bound is similarly obtained.

Goodness-of-fit tests
The fact that we have successfully obtained estimates of

the basic parameters does not have great utility unless the

data is compatible with our model. In this section, we

discuss methods that enable one to make a judgment

about such compatibility. We consider two situations. In

the first one, we assume that the population of losses,

whether or not it fits the model, remains homogeneous. In

other words, we cannot readily identify subpopulations

(SPs) for which the underlying model parameters can be

suspected to be different. In the second situation, we have

reasons to suspect nonhomogeneity and must test

whether this is indeed the case.

Homogeneous population

Consider the case in which the estimated model does not

fit the population of losses. When this case is associated

with the choice of a wrong model rather than with the
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presence of subpopulations, one can use a number of

graphical and analytical tools to test the adequacy of the

model. One important graphical tool is the probability

plot. Denote the ordered observations (log losses) by

y(1), y(2), � � �, y(k). Denote the cdf of the observations,

conditional on discovery, by

~F
c
ðy ju; vÞ ¼

Z y

�‘

~f
c
ðt ju; vÞdt

¼
Z y

�‘

~fðt juÞ~pðt jvÞdt
h i

=Cðu; vÞ : ð23Þ

Suppose that the estimates of the parameters are ðû; v̂Þ:
One form of a probability plot is obtained by plotting, for

i ¼ 1, 2, � � �, k, the points [i/(k þ 1), ~Fc(y(i) j û, v̂)]. The
failure of these points to form a straight line with slope 1

is an indication of a lack of fit. Some standard tests, such

as the Kolmogorov–Smirnov test or the Anderson–

Darling test, can be used to test for the significance of

the observed lack of fit. In cases in which parameters

are estimated on the basis of the same data that is

used in goodness-of-fit tests, we recommend the use of

appropriately adjusted significance levels [21]. Another

form of the probability plot is sometimes useful in models

involving special parametric structure, such as location-

scale equivariance. This form is obtained by computing

the scores si ¼ ~F
�1

c [i/(k þ 1)] and plotting the points

(y(i ), si), i ¼ 1, 2, � � �, k.
Another useful method is to compare the log-

likelihoods corresponding to individual losses with

respect to the expected values. Denote the mean and

variance of a single log-likelihood term by

Eðu; vÞ ¼

Z ‘

�‘

~fðt juÞ~pðt jvÞ3 ln ~fðt juÞ~pðt jvÞ
h i

dt

Cðu; vÞ

� ln Cðu; vÞ;

Vðu; vÞ ¼

Z ‘

�‘

~fðt juÞ~pðt jvÞ 3 ln
2 ~fðt juÞ~pðt jvÞ
h i

dt

Cðu; vÞ

� Eðu; vÞ þ ln Cðu; vÞ½ �2 : ð24Þ

Now assume that the model is correct and that the

components of the model conform to well-known

regularity conditions that ensure the conventional

asymptotic properties of the estimators ðû; v̂Þ: Then,
for sufficiently large k, the normalized discrepancy

Z ¼

Xk
i¼1

ln ~f
c
ðy

i
j û; v̂Þ

h i( )
� kEðû; v̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kVðû; v̂Þ

p ð25Þ

can be treated as a realization of a standard normal

random variable. We can therefore reject, at the level of

significance c, the hypothesis that the observed losses

come from the postulated model if jZj . z1�c/2. For

smaller sample sizes one may need to introduce

more general distributions (e.g., possibly a Student’s

t-distribution) in order to describe the stochastic behavior

of Equation (25) and to obtain suitable rejection

threshold values. It is important to note, however, that if

the distribution of log losses belongs to a location-scale

family, and the DPC is a function of (y � v1)/v2, the

distribution of Equation (25) is characterized by the pair

of values, a1¼ (u1� v1)/v2 and a2¼ u2/v2. This fact greatly

simplifies the work needed to establish goodness of

fit, since the quantiles of the test statistic can be pre-

computed (or tabulated) in the form of a three-way table

containing a collection of tail quantiles of Equation (25)

for every pair of values (a1, a2). This point is also relevant

for other goodness-of-fit tests considered in this paper,

such as Kolmogorov–Smirnov and Anderson–Darling

tests.

One can make use of a number of additional goodness-

of-fit tests to be found in [21]. When applying such tests,

researchers should be aware that it is important to

remember that practically every model of a fixed level of

complexity will be rejected when the sample size becomes

sufficiently large. As noted by statistics expert George

E. P. Box, ‘‘All models are wrong, but some are useful.’’

Therefore, model rejection typically leads one to examine

aspects of the model that contradict the data. One may

decide that the presence of subpopulations has led to

model rejection, and then one may switch to a more

complex model. On the other hand, one may find the

violations that led to rejection of the model to be of little

practical significance, and thus one may declare the model

under consideration to be useful despite these violations.

Nonhomogeneous population

In the process of data collection, one generally tries to

ensure a high degree of data homogeneity in order

to prevent biases related to influential unidentified

subpopulations, by performing an appropriate

identification and classification of the losses. It is

particularly important to prevent ‘‘hidden factors’’ from

increasing the variability of the data or creating trends

that must be addressed via segmentation or some other

form of fragmentation of the data set. Such fragmentation

could greatly increase the complexity of the model and

thus lead to loss of statistical power, for example, as

measured by the predictive ability of the model.

In many situations, however, subpopulations may

occur naturally; under such conditions, one must decide

whether a given subset of data should be treated as

one coming from a homogeneous population or as

one coming from a population that contains several

subpopulations. Consider, for example, the case in which

E. YASHCHIN IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

316



the data set contains losses corresponding to two types

of businesses: banking and others. If we disregard the

distinction between the subpopulations and apply one of

the tests described above, we might reach a conclusion

that some given model adequately represents the observed

losses. However, fitting two separate models to

subpopulations of interest may explain the data much

better. Suppose, for example, that we have identified m

subpopulations P1, P2, � � �, Pm for which we suspect that

the parameters of the underlying population of losses are

different, but the DPCs are the same and are assumed to

be known. One possible test for homogeneity could be

based on the following statistic:

T ¼ 2
Xm
j¼1

Lðû
j
; v; N̂

j
j y

j
Þ � Lðû; v; N̂ j yÞ

" #
; ð26Þ

where

� yj is the subsample of losses corresponding to the jth

subpopulation.
� ûj is the vector of estimated parameters based on the

data for the jth subpopulation only.
� N̂j is the estimated number of losses in the jth

subpopulation. The estimation is based on yj only.
� L(ûj, v, N̂j jyj) is the maximum log-likelihood based on

the data corresponding to the jth subpopulation only.
� y is the overall sample.
� û is the vector of estimated parameters based on the

complete sample.
� N̂ is the estimated overall number of losses.
� L(û, v, N̂ jy) is the maximum log-likelihood based on

the complete sample.

If the population is homogeneous and the sample sizes

of subpopulations are sufficiently large, the statistic T

should have a chi-square distribution, with the number of

degrees of freedom equal to the product of m and the

number of parameters in which the subpopulations differ

from one another. For example, if the distributions of log

losses corresponding to different populations can differ

in both location and scale, the number of degrees of

freedom is 2m. We reject the homogeneity hypothesis at

the level of significance c if T exceeds the (1� c)3100%th

quantile of the chi-square distribution mentioned above.

It is not difficult to generalize the above test for the case

in which the DPC parameters for various subpopulations

can also be different.

Tail-based inference
As mentioned in the previous section, one can still

make use of the model under consideration even if the

goodness-of-fit tests, which are based on the complete

data set, suggest its rejection. Consider a situation in

which the company must estimate the reserves needed

to cover the overall losses in the coming year. Consider

two types of losses: small losses (not exceeding some

prescribed level A) and large losses (greater than A). The

company has enough internal information to estimate the

magnitude and frequency of small losses. Larger losses,

however, are rarely observed within the company,

providing no solid basis for statistical estimation. It is

then natural to perform the data analysis under the

working assumption that the distribution of large losses

pertaining to the business of the company can be

estimated on the basis of observed losses suffered by

‘‘similar’’ companies. The company performs a search of

the body of sources in order to collect information on

such losses. Suppose that most of the discovered losses

are greater than A, and our attempt to fit a model

involving, for example, Weibull losses and logistic DPC

fails; nonetheless, a possibility exists that this model will

fit suitably transformed data if we limit our attention to

the population of losses that are greater than A. For

example, such a model could well fit some form of

excess loss data, such as (xi � A) or ln(xi/A � 1).

Estimation in the domain x . A is of primary interest in

the field of insurance. Suppose that the company intends to

insure itself against losses exceeding A (here A could also

represent the deductible demanded by the insurance

company). From the point of view of the insurance

company, losses below A are of no interest, and its

risk analysis can be performed solely on the basis of a

distribution that fits the data only in the domain x . A

(i.e., in the ‘‘tail area’’ of the data for large observed losses).

Instead of fitting some distribution to some form

of excess loss data as suggested above, we may use an

alternative approach inspired by the asymptotic theory of

sample extremes [22]. One of the main subjects of this

theory is the analysis of distributions that have a Pareto

tail index, that is,

1� FðxÞ;x
�a
LðxÞ; as x! ‘: ð27Þ

Here, L(x) is some slowly varying function, that is, a

function that satisfies the relation

LðtxÞ=LðxÞ ! 1 as x! ‘; ð28Þ

for every t . 0. Many examples exist of this class of

distributions with a Pareto tail index, and the class

includes many of the distributions used by practitioners

to model losses. When A is a large number, as is the case

in insurance applications or the problem of operational

risk estimation described at the beginning of the section,

the distribution of the data in the domain x . A is given

by

Fðx jx . AÞ ¼ 1� ðx=AÞ�a½LðxÞ=LðAÞ�

’ 1� ðx=AÞ�a; x . A: ð29Þ
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This approximation, suggested by Equation (28), can be

justified in many practical situations. In the simplest case,

in which the distribution of losses in the range of interest

x . b is a two-parameter Pareto,

FðxÞ ¼ 1� ðx=bÞ�a; x . b; ð30Þ

i.e., L(x) [ 1, the approximation in Equation (29) reduces

to equality; in other words, F(x jx . A) ¼ 1� (x/A)�a

exactly, not approximately. In terms of logarithms,

the distribution becomes shifted exponential, that is,

~fðy jy . u
1
Þ ¼ 1� exp½�ðy� u

1
Þ=u

2
�;

~fðy jy . u
1
Þ ¼ u

�1

2
exp½�ðy� u

1
Þ=u

2
�; y . u

1
; ð31Þ

where

u
1
¼ lnðAÞ; u

2
¼ 1=a: ð32Þ

The above argument illustrates the point that in the

tail area, the location-scale distribution families once

again lead to relatively tractable models; however, as in

Equation (31), the location parameter typically turns out

to be the left endpoint of the corresponding distribution.

The model in Equation (29) is a special case of the

generalized Pareto distribution (GPD), which can be

represented in the form

Fðx jx . AÞ ¼
1� ½1þ nðx� AÞ=b��1=n

; n 6¼ 0; x . A;

1� exp½�ðx� AÞ=b�; n ¼ 0; x . A;

8<
:

ð33Þ

where n 6¼ 0 and b ¼ An. The latter model covers more

general tail behavior, since it can be adapted to the case in

which the tail of F(x) cannot be represented in the form

shown in Equation (27) [23–25]. Although this model

does not generally represent a location-scale family, we

advise researchers to explore the model once the amount

of available data can support the added complexity.

In general, the case in which the log losses a) are treated

as left-censored (i.e., only losses above some threshold are

available), b) are assumed to come from the distribution
~f (y jy . u1; u), and c) are observed in accordance with

some DPC ~p(yi jv), the problem of inference is similar

to that described in the sections on likelihood-based

estimation and goodness-of-fit tests. From a practical

standpoint, the analysis described in these two sections is

frequently simpler because in many applications u1 can be

treated as known, and thus we have fewer parameters

to estimate.

Examples
For purposes of illustration, we may consider the data in

Appendix A of [13]. To demonstrate the application of

the described methods, we consider two cases: In the first

case we fit the Weibull–logistic (WL) scheme to the entire

distribution of losses contained in the set of sources. In

the second case, we focus exclusively on large losses (i.e.,

those exceeding some ‘‘deductible’’ or other boundary of

interest), disregarding the possible lack of fit for the

distribution as a whole. We then apply the Pareto–logistic

(PL) model to the data. As can be seen, the PL model

provides a better fit to the data than the WL model.

Global Weibull–logistic model

In this section, we assume that the underlying distribution

of losses is Weibull, i.e., that the log losses are distributed

in accordance with Equation (2) and that the DPC is

represented by the logistic equation in Equation (4). In

the first phase, let us estimate the parameters (u, v, N)

without imposing any restrictions on them. Maximization

of the log-likelihood Equation (12) leads to the estimates

û ¼ (17.1, 3.74) and v̂ ¼ (8.78, 0.34) which imply, by

Equation (10), that C(û, v̂)¼ 0.90 and, by Equation (13),

that N̂ ¼ 225/0.90 ¼ 250. In other words, the ‘‘best’’

explanation of the data offered by an unconstrained

model is due to the fact that the losses correspond to the

Weibull distribution with a very large scale parameter,

e17.1 ¼ 2.67 3 107 and not a very small shape parameter,

c¼ 1/3.74¼ 0.27. Thus, the underlying set of sources does

not contain many small and moderate losses. The loss

corresponding to the probability of discovery 0.5 is

[e8.78¼6,500], and losses corresponding to the probability

of discovery 0.1, 0.25, 0.5, 0.75, 0.9, and 0.99 are given

in the first line of Table 1. The unconstrained approach

Table 1 Losses (in DM) corresponding to selected values of DPC for Weibull–logistic (WL) and Pareto–logistic (PL) models. (The

column heads indicate DPC percentiles corresponding to probabilities of loss discovery. For example, the column corresponding to

DPC ¼ 0.5 shows the losses for which the probability of discovery is 0.5.)

Model Percentiles: 0.1 0.25 0.5 0.75 0.9 0.99

WL, u ¼ (17.1, 3.74), v ¼ (8.78, 0.34) 3,100 4,500 6,500 9,400 14,000 31,000

WL, u ¼ (10.2, 7.5), v ¼ (14, 1.7) 28,000 1.9 3 105 1.2 3 106 1.8 3 106 5.0 3 107 3.0 3 l09

PL, u ¼ (14, 1.14), v ¼ (19.7, 0.98) 4.2 3 107 1.2 3 108 3.2 3 108 1.1 3 109 3.2 3 l09 3.4 3 1010

PL, u ¼ (14, 1.97), v ¼ (17, 1) 2.7 3 106 8.1 3 106 2.4 3 107 7.2 3 107 2.2 3 108 2.4 3 109
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essentially suggests that all losses, except those less than

30,000,arediscoveredandrepresented in theavailabledata.

From a practical standpoint, this explanation, of

course, does not make sense, because our data set

contains just 225 recorded losses; if all of the losses above

30,000 were discoverable, the resultant data set would

have been much larger. This example illustrates what may

happen if one does not consider a priori the plausible

values of the parameters, and if one relies on statistical

estimation to discover them. In the next step, assume

that one has reason to believe that the DPC parameters

can be treated as known and equal to v0 ¼ (14, 1.7).

This suggests that the loss corresponding to the

probability of discovery 0.5 is 1.2 million Deutsche

marks, and losses corresponding to other values of the

probability of discovery are given in the second row

of data in Table 1. Use of the constrained estimation

procedure described above in the section on constrained

estimation and inference leads to the estimate

û ¼ (10.2, 7.5), which appears more sensible from

a practical point of view. The large losses are now

explained less by a large scale parameter, as in the

unconstrained case, than by a smaller shape parameter.

This suggests that the bulk of the losses in the body of

sources are still undiscovered: The estimated proportion

of discovered losses is C(û, v0)¼ 0.20; consequently, the

estimated number of losses recorded in the set of sources

is N̂ ¼ 225/0.20 ¼ 1,125.

As noted in the Introduction, a simulated sample

from this model is shown in Figure 2. Even in the

unconstrained case, we have no assurance that the model

corresponding to estimated parameter values will fit the

data. Once constraints are imposed, it is quite possible

that the model will fit poorly, and careful examination

of goodness-of-fit issues is appropriate. We apply some

of the techniques described in the sections discussing

estimation and goodness-of-fit tests to measure the extent

to which the constraint v0¼ (14, 1.7) is compatible with

the data. At this point, let us assume, for the sake of

argument, that the analyst had prior knowledge not only

about v, but also about u, and that the values û ¼ (10.2,

7.5) were in fact anticipated a priori. Such an assumption

can be justified, for example, in situations in which the

model is estimated on the basis of the learning sample and

then applied to the test sample, as mentioned early in this

paper in the section on the basic approach. Under this

assumption, we could test the data for conformance with

a fully specified model. In particular, let us consider the

probability plot in Figure 3. The maximal deviation from

the straight line, corresponding to the hypothesized

model, is 0.09. In accordance with common statistical

practice, we would reject the hypothesis that the model

fits the data if this deviation exceeds the critical 5% value

for the Kolmogorov–Smirnov statistic. Since this critical

value is known to be 1:36=
ffiffiffiffiffiffiffiffi
225
p

¼ 0:09 (see Table 54 in

[26]), we have insufficient evidence that the model does

not fit the data. However, one could apply an alternative

(Anderson–Darling) goodness-of-fit test that tends to be

more sensitive with respect to deviations in the tails. The

value of the Anderson–Darling statistic is 3.05, which

corresponds to the 2.5% percentile of its distribution

under the assumption that the model is adequate;

therefore, the fit in the tail area is definitely problematic.

To apply a test based on the likelihood function, note

that the log-likelihood of the data in the constrained

model is �605. The formulas in Equation (24) suggest

that for data coming from the model with parameters

û ¼ (10.2, 7.5) and v̂ ¼ (14, 1.7), the average score per

observed loss is E(û, v̂) ¼�2.63 and the variance is

V(û, v̂) ¼ 0.55. This suggests that the value of the

log-likelihood observed under the estimated model

is approximately normal, with mean and standard

deviation �2.62 3 225 ¼�591 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:55 3 225
p

¼ 11:1;

respectively. The value �605 is within 1.27 standard

deviations from the mean, which corresponds to the

p-value of 0.1 for the one-sided goodness-of-fit test;

thus, this test does not lead to rejection of the model.

One may notice that even under the assumption that

the model is completely specified, the constrained model

is barely acceptable, and it does not even have some

features that a practitioner may desire. In particular,

given that the provided data is the result of a limited

search effort, the probability 0.1 of discovering a loss of

Figure 3

Probability plots. Weibull–logistic (WL) model with parameters 

u � (10.2, 7.5), v � (14, 1.7) (dashed line), and Pareto–logistic 

(PL) model with parameters u � (14, 1.97), v � (17, 1) in the 

domain y > 14 (wavy solid line). The maximal Kolmogorov– 

Smirnov deviation is shown as a short vertical line for the WL 

model. The x and y axes refer to probabilities, and the coordinates 

of points on the graph are i/(k � 1), Fc ( y(i) | u, v).
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magnitude 28,000 in the body of sources appears to be

too high, and the overall probability of discovery 0.2 also

appears to be too high. However, our analysis shows that

an attempt to obtain a much better model of the Weibull–

logistic type for the available data set is not successful:

Models that appear more attractive from the practical

standpoint unfortunately do not fit the data, especially

for lower loss values. The fit in the right tail (i.e.,

for higher loss values) is also problematic, as can

be seen from Figure 2, in which the right tail bends

slightly in comparison with the depiction in Figure 1.

The difficulties with the model describing the data are

primarily related to the fact that at the time the data

became available to us, the efforts of populating the

database were in the very initial stage and gave rise to

very uneven coverage. Furthermore, some values of the

data have a much higher probability than the neighboring

data, which exposes the fact that a Weibull model is

a priori just a convenient mathematical approximation.

For example, a typical small fine imposed by a judge

against an operational-risk-related violation, and

reported in the press, is much more likely to be $10,000

(DM 18,497 in the data set) than $9,000. Though such

partial grouping (e.g., in which loss values tend to cluster

around some ‘‘round’’ quantities such as $10,000) does

not prevent the estimation process from producing useful

results, it is advisable to define, for every individual study,

the effect of grouping on both estimation and goodness-

of-fit tests.

Finally, we test whether, under the assumption that the

model is WL with v̂ ¼ (14, 1.7), the population of losses

classified as being of ‘‘high’’ or ‘‘medium’’ relevance

(subpopulation 1, denoted SP1) differs significantly from

the population classified as being of ‘‘low’’ relevance

(subpopulation 2). Let us fit two separate models for the

two subsamples. The estimated population parameters

(based on a sample size of 140) for SP1 are û1¼ (9.8, 7.9),

and the maximal value of the log-likelihood is�385. (The
model cannot be rejected by a goodness-of-fit test, but the

quality of the fit is marginal.) The parameters for SP2,

based on a sample size of 85, are û2¼ (10.7, 7.0). The

maximal value of the log-likelihood is �220, and the fit

is very good. As indicated earlier, the maximum log-

likelihood value for the complete data set was �605. To
test whether the complete data set is explained better by

two separate models, one for SP1 and the other for SP2,

rather than by a single model, we must compute T.

Because we have two subpopulations that differ in two

parameters, T should be compared to v2
0:95ð4Þ ¼ 9:49: In

our case, T¼ 2 3 (�385� 220þ 605)¼ 0, indicating that

we have no evidence, using the given DPC, to conclude

that there is a significant difference between the loss

distributions corresponding to SP1 and SP2.

Note that the assumption that the model is fully

specified is quite consequential, and in many practical

situations one will have to assess the validity of the model

on the basis of ‘‘in-sample’’ data. In other words, when

using ‘‘in-sample’’ data we estimate the model on the

basis of a given sample, and then use the same sample to

test goodness of fit. In such situations, significance values

(or p-values) for the tests mentioned above must be

adjusted by accounting for the fact that the model

parameters u were estimated from the same data that was

used in goodness-of-fit tests, resulting in a fit that appears

to be better than what would be expected under a fully

specified model. To obtain the significance values, one

can conduct simulations in order to study the behavior

of the test statistics under the assumption that the true

values of the parameters are equal to the estimated

values. In every simulation run, one obtains a new set of

losses, estimates the model parameters, substitutes these

estimates into a given goodness-of-fit statistic, and

computes the discrepancy. This type of technique is called

the ‘‘parametric bootstrap’’ [27]. In particular, for the

above WL model with û ¼ (10.2, 7.5) and v0 ¼ (14, 1.7),

the significance levels of the Kolmogorov–Smirnov and

Anderson–Darling tests are estimated to be 0.001 and

,0.001, respectively, indicating that an incompletely

specified model of this type (i.e., u estimated solely

on the basis of the same data that is used to test goodness

of fit) would be promptly rejected.

Tail Pareto–logistic (PL) model

We may now consider the situation from the perspective

of the insurance company and assume that only losses

exceeding A ¼ 1.2M (the deductible) are of interest. We

further assume that the distribution of losses follows a

two-parameter Pareto distribution. As noted in the

previous section, this implies that the log losses are

distributed in accordance with Equation (31), with

u1 ¼ ln(1.2 3 106) ¼ 14. The only parameters of interest

are v, the scale u2, and N. The relevant data is now

reduced from 225 to 163 losses that exceed 1.2M.

First, let us apply the unconstrained model.

Maximization of the likelihood based on conditional

density functions leads to the estimates û2 ¼ 1.14 and

v̂ ¼ (19.7, 0.98). Therefore, C(û, v̂) ¼ 0.02, and the total

number of losses contained in the set of sources that

exceed 1.2M is estimated to be N̂ ¼ 163/0.02 ¼ 8,150.

This model suggests that the loss that has the probability

of 0.5 to enter into the set of sources and be discovered

is 3.7 3 108. Losses corresponding to various values of

the DPC are shown in the third row of data in Table 1.

Once again, we have a reason to be disappointed by the

results of the automatic search for the model parameters.

Under the DPC corresponding to this model (see

Table 1), losses of very high magnitude have an
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uncomfortably high chance of being overlooked in the

process of populating the database. One can then choose

to override the estimated v̂ by introducing a constraint

that the parameters of the logistic DPC are v̂0 ¼ (17, 1).

Under this constraint, the magnitude of a loss that has a

0.5 probability to be discovered is 2.43 107. Other values

(see Table 1) also appear to be more reasonable to a

decision maker. The resulting estimate of the scale

corresponds to u2¼ 1.97. The estimated overall discovery

probability is now much larger, namely C(û, v0) ¼ 0.30,

leading to 163/0.3 ¼ 543 as the estimate of the total

number of losses of magnitude exceeding 1.2M in the

time period of interest.

To check whether the resulting PL model fits the data

for losses exceeding 1.2M, with parameters û¼ (14, 1.97)

and v0¼ (17, 1), we once again consider two cases. In case

(a), the parameter u0¼ (14, 1.97) is assumed to be

provided externally (for example, based on the training

data set); in case (b) it is assumed to be estimated from the

data, as illustrated above.

In case (a), we first examine the probability plot in

Figure 3. Both the Kolmogorov–Smirnov and Anderson–

Darling tests suggest that the fit is good. The mean

and variance of the log-likelihood score corresponding

to a single measurement are E(u0, v0) ¼�2.19 and

V(u0, v0) ¼ 0.55. Therefore, the mean and

standard deviation of the log-likelihood under the

assumption of the above model are �2.19 3 163 ¼�356
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:55 3 163
p

¼ 9:4: The maximal log-likelihood

computed for the available data under the constraint

v ¼ v0 ¼ (17, 1) is �353, which is in agreement with the

mean and standard deviation computed above. In

case (b), the goodness of fit is still acceptable: For

example, the significance levels of the Kolmogorov–

Smirnov and Anderson–Darling tests are estimated

to be 0.12 and 0.05, respectively.

Conclusions and directions of future research
The process of data collection for the estimation of the

intensity and stochastic characteristics of losses is

typically conducted under conditions that induce

biases. The presence of these biases requires the use of

special statistical techniques, some of which originate

in other fields in which data bias is also a problem. The

framework of size-biased sampling appears to be useful

for identifying and correcting biases related to the sizes

of the losses, and for early identification of models that

are suitable for characterizing the process of losses. In

particular, this framework may be used to obtain the

basic ‘‘building blocks’’ characterizing various categories

of losses from which a more comprehensive model can

eventually be obtained.

The limited scope of the data set that served as the basis

of this research enables us to answer only a few basic

questions by assuming a given model with some very

simple data categorization. One would need a much more

elaborate data set in order to address more complex

questions. For example, consider the problem of building

a model in order to estimate operational risk losses for a

given enterprise. A database suitable for such estimation

would consist of a list of losses, and for each record we

would have not only loss magnitude and relevance, but

also such entries as industry, number of employees, type

of loss, and market value of the bank. A promising

strategy for risk estimation suggests that we

� Establish, for each factor, whether it affects a) the

intensity (i.e., rate) of losses k, b) (u1, u2), or c)
(v1, v2). (Some effects can be reasonably postulated;

for example, for some types of losses the rate of losses

could be assumed to be roughly proportional to the

number of employees. Such a priori relationships can

simplify the subsequent analysis considerably. Their

validity can be tested by using post-estimation

goodness-of-fit procedures.)
� Estimate the relationship between factors and the

basic model parameters, k, (u1, u2), (v1, v2).
� For a given enterprise P, evaluate, on the basis of

the above model, the corresponding parameters,

kP, (u1P, u2P), (v1P, v2P).
� Evaluate risks (for example, value-at-risk, or VAR)

related to P on the basis of the estimated parameters.

The proposed framework may be used not only for

modeling the process of external losses, but also for the

analysis of internal losses pertaining to a given institution

of interest. Although one can expect that the internal

databases (i.e., databases that contain information that

comes from inside a company) are much better structured

and maintained than databases based on external

searches, biases related to the size of losses are likely to

remain a factor of concern. The bias-causing mechanisms

for various classes of internal losses, however, are likely

to be of a different nature than those related to external

data sources. Furthermore, bias in internal data may be a

lesser factor in determining deleterious exposure to tail

events and VAR than biases related to external data

sources, possibly necessitating modifications in the

statistical inference procedure.

Another possible extension of the proposed approach is

related to an inference system based on three sources of

data: internal losses, external losses coming from a shared

database pertaining to the same type of business (for

example, banking institutions only), and losses discovered

by searches of external sources that may be related to

a much broader class of institutions.

In our analysis we emphasized the so-called

‘‘frequentist’’ inference techniques, whereby we
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considered the parameters as fixed (although possibly

unknown) quantities. However, under the described

conditions, we might benefit from the alternative

statistical methodology, namely, Bayesian inference,

which considers the parameters as random variables

having some prior distribution. For example, given the

very small sample size, we typically considered the

parameters v of the DPC as known quantities. By using a

Bayesian approach, one could associate some degree of

uncertainty with these parameters. Bayesian inference

may also be useful in aggregating information obtained

from several databases, as described above.

Finally, it is important to note that the presented

approach takes into account only one source of bias,

namely under-reporting related to the size of the loss.

However, in practice the process of populating a database

may involve other biases that are equally serious. One

such bias may be related to the multivariate nature of the

process of losses that could have a profound effect on

VAR estimation. For example, an event represented in a

database as a computer failure may actually be caused by

a massive power outage, affecting a larger class of losses

and magnitudes that are not represented in a database.

Therefore, accurate modeling of the risk exposure may

benefit from the use of a larger range of databases,

necessitating a more complex modeling effort.
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