
The material
allocation
problem in the
steel industry

H. Yanagisawa

A major challenge in the initial stage of production planning for the
steel industry is the material allocation problem (MAP): finding
the best match of orders and materials (steel slabs and coils) with
respect to an objective function that takes into account order due
dates, preferences for matches, allocated weights, surplus weights
of materials, and other factors. The MAP is NP-hard and is
difficult to solve optimally. We apply a local search algorithm for
the MAP that includes rich moves, such as ejection chain methods.
Our algorithm is yielding considerable cost reduction in a real
steelworks. In particular, a two-variable integer programming
(TVIP) neighborhood search technique contributed to the cost
reductions. TVIP defines a neighborhood space for the local search
as a two-variable integer programming problem and efficiently
finds a solution in the neighborhood. By using TVIP, the number
of small batches of surplus material can be successfully reduced.

Introduction
Steelworks usually produce considerable surplus

inventory, as when orders are canceled after materials

have been produced or when some finished products are

below the quality levels required for an order. To make

use of surplus inventory, daily production planning is

typically divided into two main steps. In the first step, the

plan tries to satisfy orders as far as possible with existing

materials (such as surplus inventory). In the second step,

the plan designs production units for the manufacture of

the remaining orders.

The material allocation problem (MAP) is a problem in

the first step of the order-fulfillment process. In the MAP,

the existing materials may include work-in-progress

goods and surplus inventory. The work-in-progress goods

are tentatively allocated to some orders, but they can be

reallocated to new orders while solving the MAP.

The MAP is a kind of matching problem on a sparse

bipartite graph, allocating a given set of materials to a

given set of orders. Each order restricts its allocatable

materials through the quality and other attributes of the

order. In Figure 1(a), the dashed line from the material to

an order indicates that the material can be allocated to

that order. The material can be cut into any size and each

order can be satisfied with multiple sources of material.

For example, order A and order B respectively require

five tons and four tons, and material batch V has a weight

of ten tons, which can be allocated to both orders. When

we allocate the material to these orders, the material will

be split into three parts: five tons for order A, four tons

for order B, and one ton remaining as surplus. [The

trimming and yield losses shown in Figure 1(b) are

discussed below in the section on matches]. In the

following argument, we refer to surplus as the remainder

of the material after allocations.

The MAP has several hard constraints that make it

difficult to solve. One of the constraints is a unit weight

constraint: When we allocate a batch of materials to an

order, the materials must be cut into pieces whose sizes

are within the range specified by the order. For example,

suppose that an order requires 12 tons and that maximum

and minimum unit weights specified in the order are five

tons and four tons, respectively. (Customers place

constraints on orders for reasons such as transport

limitations and manufacturing conditions.) When we

allocate a 12-ton batch of material to the order, the only

solution that meets the constraint conditions is to cut it

into three parts of four tons each. Other MAP constraints

are described in the next section.

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 H. YANAGISAWA

363

0018-8646/07/$5.00 ª 2007 IBM

Each solution is evaluated from a broad perspective

that includes the due dates of orders, preferences for

matches, allocated weights, and the surplus weights of

materials. It is evaluated primarily with respect to the

total allocated weight, which also leads to reducing the

total surplus. Because of the unit weight constraint, many

small batches of surplus material remain after these

allocations. Though a large surplus offers possibilities for

allocation to orders in the near future, a small surplus

(typically less than five tons) is hard to allocate because

of the unit weight constraint. Thus, a small surplus is

likely to be discarded, which is a pure loss for the steel

company, so the minimization of the number of small

surpluses is an important evaluation item.

It is easy to show that the MAP is NP-hard because the

MAP includes a generalized assignment problem [1] as a

subproblem. A typical generalized assignment problem

is a problem assigning a set of jobs to a set of machines.

The jobs and the machines correspond respectively

to the orders and the materials in the MAP.

Because the MAP is an NP-hard problem and the sizes

of the instances are very large, we use a local search to

obtain a good solution. Our algorithm is based on

a variable neighborhood search (VNS) [2] strategy.

VNS combines local search with systematic changes of

neighborhood and escape phases from local optima. The

search first explores a small neighborhood around the

current solution and allows an exchange with the current

solution if a better one is found. This process continues

until the search fails to find a better solution. When this

happens, the search explores neighborhoods more distant

from the current solution and continues the process. For

the local search, we use nine types of moves, including

ejection chain search [3]. In the local search algorithm,

we adopt some acceleration techniques, such as the

don’t-look bit [4], and incorporate simple heuristics

for surplus reduction into the local search algorithm.

We found that there are still a number of small

surpluses produced by this basic algorithm, but that some

of them can be removed by trying extensive searches.

Therefore, we use a two-variable integer programming

(TVIP) neighborhood search technique to reduce the

number of small surpluses. TVIP defines a neighborhood

for surplus reduction, and we can show that searching the

neighborhoods is essentially equivalent to solving TVIP

problems. In addition, we use an efficient algorithm to

solve the TVIP problem that combines binary search and

an algorithm for lattice-point counting in right triangles.

For the lattice-point counting, an algorithm exists [5],

but we have developed a simpler one.

The use of our algorithms by a Japanese steel company

yielded considerable cost reductions.

The rest of this paper is organized as follows: We

describe the details of the MAP, show our basic algorithm

for the MAP, and propose a TVIP technique for surplus

reduction. We then show our experimental results.

Related problems
The MAP is similar to the generalized assignment

problem [1] and the minimum cost flow problem, but

these models cannot deal with the unit weight and other

constraints.

Kalagnanam et al. [6, 7] modeled the MAP (also

known as the surplus inventory matching problem) as

a multiple knapsack problem with color constraints.

Though the problems are similar, our models differ

on many points: For example, the objective in the

Kalagnanam model is to maximize the total allocated

weights, but the objective in our model is to maximize the

total profit. However, the crucial difference is that their

model cannot deal with the minimization of the number

of small surpluses. In [7], Kalagnanam et al. propose a

heuristics based on the maximum flow algorithm for

surplus reduction, but it is designed to reduce the total

surplus, not to reduce the number of small surpluses.

Material allocation problem
In this section, we describe the formulation of the MAP.

In the MAP, the set O of orders, the set S of (steel)

materials, and the set M of the allocatable matches (pairs

of orders and materials) are given. Formally, the MAP is

the following optimization problem:

Figure 1

(a) Instance of a MAP (t � tons). (b) Material allocation.

A: 5 t

B: 4 t

C: 15 t

D: 18 t

E: 9 t

V: 10 t

W: 15 t

X: 3 t

Y: 6 t

Z: 11 t

Order A Order B

Consumed weight

Trimming loss Loss for process yield

Surplus

(a)

(b)

Orders Material

H. YANAGISAWA IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

364

The objective is

max
X
i2O

zo
i
þ
X
j2S

zs
j
�
X
ði; jÞ2M

zm
ij
;

subject to constraints (1) through (8):

zo
i
¼ PF

i
min TW

i

X
ði; jÞ2M

aw
ij

8<
:

9=
; ð8i 2 OÞ ; ð1Þ

X
ði; jÞ2M

aw
ij
� TW

max

i
ð8i 2 OÞ ; ð2Þ

n
ij
PU

min

i
� aw

ij
� n

ij
PU

max

i
½8ði; jÞ 2M �; ð3Þ

where

n
ij
2 Z

þ ½8ði; jÞ 2M� ;

zs
j
¼ PF

j
cw

j
þ C

j
fðSW

j
� cw

j
Þ ð8j 2 SÞ ; ð4Þ

where

fðxÞ ¼ c
1
x
c

2 exp ð�c
3
x

3Þ;

cw
j
� SW

j
ð8j 2 SÞ; ð5Þ

packing constraint; ð6Þ

zm
ij
¼ C

ij
aw

ij
½8ði; jÞ 2M �; ð7Þ

and

cw
j
¼ SW

j
PY

ij
þ
X
ði; jÞ2M

ðaw
ij
=TL

ij
Þ ð8j 2 SÞ; ð8Þ

where

aw
ij
� 0; aw

ij
2 R ½8ði; jÞ 2M �:

The packing constraint (6) is defined in the materials

section below.

The variables are zoi, zsj, zmij, awij, nij, and cwj, and the

other terms are labeled constants associated with orders,

materials, and matches. The variables have the following

meanings:

zoi : objective value for order i.

zsj : objective value for material j.

zmij : objective value for match (i, j).

awij : allocated weight of match (i, j).

nij : number of units for match (i, j).

cwj : allocated weight (including wastes) of material j

[for each i 2 O, j 2 S, and (i, j) 2 M].

In the following subsections, we explain constraints

(1)–(8).

Orders

Constraints (1)–(3) apply to orders. Each i 2 O is

associated with the following properties: maximum unit

weight PUmax
i ð.0Þ; minimum unit weight PUmin

i ð.0Þ;
target weight TWi (.0), maximum total allocatable

weight TWmax
i ð.0Þ; and profit per weight PFi (.0),

where PUmin
i � PUmax

i and TWi � TWmax
i : The weight

TWi is the required weight for the order i, and TWmax
i is

the maximum allocatable weight (so the total allocated

weight for the order i cannot exceed TWmax
i). This

allowance with respect to the target weight is defined to

avoid leaving many small surpluses after allocation. The

profit per weight PFi is a parameter for the objective

function. An order i that is urgent is associated with a

large PFi.

Equation (1) defines the objective value zoi for each

order i. It is defined by the product of the profit per

weight PFi, the minimum value of the target weight

TWi, and the total allocated weight for the order i,

X
ði; jÞ2M

aw
ij

2
4

3
5 :

Since the allowance is only for satisfying the unit weight

constraint, it is preferable to encourage allocating

materials close to the target weight.

Constraint (2) ensures that the total allocated weight

X
ði; jÞ2M

aw
ij

2
4

3
5

does not exceed the maximum allocatable weight TWmax
i .

The unit weight constraint (3) restricts the allocated

materials so that each batch of material that is allocated

to the order i can be cut into pieces in the size

rangeðPUmin

i
; PU

max

i
Þ :

Materials

Constraints (4)–(6) apply to the materials. Each j 2 S

is associated with the following properties: weight

SWj (.0), profit per weight PFj (.0), and cost per weight

Cj (.0). The SWj is the weight of the piece of material

j 2 S. The profit per weight PFj and the cost per weight Cj

are parameters for the objective value. A piece of material

with a high profit per weight PFj is favored for allocation.

A piece of material with a high cost Cj should not be

discarded.

Equation (4) defines the objective value zsj. The cwj

is the consumed weight of the material j, which can be

assumed to be an approximation of the sum of the

allocated weights, so

cw
j
’
X
ði; jÞ2M

aw
ij
:

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 H. YANAGISAWA

365

[The precise definition of cwj is given in Equation (8)].

Hence, the argument SWj � cwj for the function f

represents the surplus weight of the material. The

function f(x) is defined so that small surplus x (typically

x , 5) leads to a large penalty. In our parameter settings,

we set c1¼ 100, c2¼ 0.3, and c3¼ 0.05. Figure 2 shows the

graph.

Constraint (5) ensures that consumed weight does not

exceed the weight of the available material.

Constraint (6) is a packing constraint, which restricts

the combinations of allocations of a material. Each piece

of material is associated with a symmetric function

g : M 3 M ! fTRUE, FALSEg, as shown in Table 1.

When we allocate a piece of material j to orders by using

two matches m1, m2 2 M, m1 and m2 must satisfy

g(m1, m2) ¼ TRUE. When we allocate some material

into three or more matches, each pair of matches must

satisfy the function g. The packing constraint is due to

the layout of the factory. Orders are associated with

a unique route to fulfill the order according to its

specifications. If orders with different routes are packed

in the same batch of material, it may be impossible

to cut the materials for the orders.

Matches

Equations (7) and (8) apply to matches. Each

(i, j) 2 M (� O 3 S) is associated with the following

properties: cost Cij (�0), trimming loss TLij

(0 , TLij � 1), and process yield PYij (0 , PYij � 1).

The cost Cij is a parameter for the objective function.

A match with a high Cij is favored for allocation.

TLi, j and PYi, j are for the yield loss calculation.

Equation (7) defines the objective value for the piece

of material j. The objective value for each piece of

material j is defined by the product of the cost Cij

and the allocated weight of the match awij.

Equation (8) defines the consumed weight cwj of a

material j. When we allocate material to orders, two types

of losses arise: Loss for process yield and trimming loss

[Figure 1(b)]. The loss for process yield always arises

when we allocate material to orders. (If a piece of

material is not allocated to any orders, there is no loss

for process yield.) The term SWjPYij in Equation (8)

represents the loss for the process yield. The process

yield PYij is set so that PYi1; j ¼ PYi2; j holds if

g[(i1, j), (i2, j)]¼ TRUE for (i1, j), (i2, j) 2 M. The

trimming loss arises when the width of the material

is larger than the required width of the order. The term

awij/TLij in Equation (8) represents the trimming loss

for allocating match (i, j) with the weight of awij.

In the MAP, the objective is to maximize the value of

the objective function. Because both the profit PFi of each

order and the profit PFj of each piece of material are

relatively larger than the cost Cij of each match, we obtain

the highest score when the total allocated weight to an

order i is equal to the target weight TWi.

Because the formulation of the MAP contains

nonlinear functions, we cannot use mixed-integer

programming (MIP) solvers, such as ILOG CPLEX**.

Therefore, we have designed a heuristic algorithm for

this problem.

Basic algorithm

In this section we give an overview of our algorithm.

In the first subsection, we describe our local search

algorithm, in the second we show our acceleration

techniques for the local search, and in the third we

show our basic heuristics to reduce the surpluses.

Local search

As explained above in the Introduction, our algorithm is

based on a VNS strategy. To construct an initial solution

for the local search, we use a random fit strategy (a simple

randomized variant of first fit). The random fit strategy

permutes the matches in a random order, and our

algorithm allocates the matches as far as possible one

by one in that order.

Table 1 Example of the function g: M 3 M ! fTRUE,

FALSEg.

m1 m2 m3

m1 - T F

m2 T - F

m3 F F -

Figure 2

Penalty function f(x) with parameters c1 � 100, c2 � 0.3, and

c3 � 0.05.

100

80

60

40

20

0
0

x

f(
x)

2 4 6 8 10

H. YANAGISAWA IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

366

For VNS, we constructed the following nine types of

moves, which are divided into five groups. All of the

moves are designed so that the objective score improves

primarily by increasing the total weight of allocated

materials.

Basic moves

In this group, we have two types of moves, a simple move

and a flip move. In the simple move, shown in Figure 3(a),

we try to allocate a match when there is an allocatable

match that is not allocated in the current solution. In the

flip move, we remove a match and replace it with another

match. Figure 3(b) illustrates a flip: We remove the match

(A, X) and replace it with the match (A, Y). The allocated

weight of the match is set to 0 in the removing step, and the

allocated weight in the replacing step is as close as possible

to the target weight of the order. The changes of the

allocatedweights are done similarly in the followingmoves.

Cyclic moves

In this group, we have two types of moves, a two-cyclic

move and a three-cyclic move. In both moves, we exchange

matches cyclically—i.e., some allocated materials are

unallocated and replaced with other allocations. For

example, a three-cyclic move is shown in Figure 3(c): We

remove the three matches (A, Z), (B, X), and (C, Y) and

replace them with the three matches (A, X), (B, Y), and

(C, Z). The two-cyclic move is defined similarly but can

also be regarded (less formally) as a swap.

Shift moves

In this group, we have two types of moves, a one-shift

move and a two-shift move. In both moves we remove a

match and replace it with another match, and this move

triggers additional allocations. For example, a two-shift

move is shown in Figure 3(d): We remove the two

matches (B, X) and (C, Y) and replace them with the

three matches (A, X), (B, Y), and (C, Z). The one-shift

move is defined in a similar way: We remove a match and

replace it with two matches.

Combination moves

In this group, we have two types of moves, an order-

optimal (order-opt) move and a material-optimal (material-

opt) move. In the order-opt (material-opt) move, we

remove all allocated matches with respect to a single

order (material) and reallocate with the best allocations

with respect to the order (material). Strictly speaking,

we cannot find the best allocations among all of the

candidates because there are too many candidates due

to the complex objective function, even if the order or

material has a few allocatable matches. Therefore, the

reallocations are done using suboptimal allocations. For

the order-opt moves, we simply assume that only one

piece of material can have a surplus in the best allocation

and find suboptimal allocations under that assumption.

Suppose that the order has k allocatable matches. Then,

by that assumption, k� 1 matches are assumed to be fully

allocated or not allocated, and one batch of material can

be partially allocated. Thus, there are at most k(2k�1)

candidates. Our algorithm finds the best allocation

among them and replaces the old allocations with the best

one. Similarly, for material-opt moves we assume that the

orders, except for one, are allocated by their target

weights, and the reallocations are done by using the

suboptimal allocations.

Ejection chain search

The ejection chain search is the ninth move. This move is

an extension of the shift moves; i.e., the ejection chain

search performs a k-shift move for any integer k (see

Figure 4). This type of move is used, for example, by

Glover [3]. Because the ejection chain search is time-

consuming, we first use one-shift and two-shift moves

and then use the ejection chain search for k � 3.

To find an ejection chain, we use the concept of an

improvement graph (Figure 4). An improvement graph is

constructed from a current solution. Each node in the

improvement graph corresponds to an allocated match in

Figure 3

Examples of moves: (a) Simple move; (b) flip move; (c) three-

cyclic move; (d) two-shift move.

(b)

(a)

(c)

(d)

A

X

Y

A

B

X

Y

C Z

A

B

X

Y

A

A

B

C

A

B

X

Y

X

Y

Z

X

Y

C Z C Z

A X A X

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 H. YANAGISAWA

367

the solution and is associated with a profit (the change in

the objective value) when we remove the corresponding

match. (Note that the profit is usually a negative value.)

For example, node A shows that we reduce the objective

value by 1 if we unallocate match (A, V). Each directed

edge in the improvement graph corresponds to a match

that is not allocated in the current solution. To illustrate,

suppose that there are two allocated matches (A, V) and

(B, W) and that a match (B, V) can be allocated if we

remove the two matches (A, V) and (B, W). Then a

directed edge corresponding to the match (B, V) is added

to the improvement graph [the direction is from (A, V) to

(B, W)]. The directed edge is associated with the profit

when we allocate the match (B, V) in a situation in which

the matches (A, V) and (B, W) are unallocated. For

example, Figure 4 shows that we gain 2 in the objective

score if we unallocate matches (A, V) and (B, W) and

allocate match (B, V).

We search for a directed path or a cycle in the

improvement graph that satisfies the following condition:

Any two matches that correspond to two directed edges

in the path or the cycle do not have a shared order or

piece of material. If the path or the cycle satisfies this

condition, the total profit associated with the path or the

cycle is equal to the profit when we remove the matches

that correspond to the nodes in the path or the cycle and

replace the matches that correspond to the directed

edges in the path or the cycle. For example, from the

improvement graph in Figure 4, it can be seen that the

allocations on the left are improved into the allocations

on the right by using the path with solid arrows.

Therefore, all we have to do is to find a path or a cycle

that satisfies the above condition in the improvement

graph. In our implementation, this is done by a brute-

force strategy. Though brute force is normally time-

consuming, the algorithm finishes in a reasonable time

when this search is applied to a current solution that all

of the other moves cannot improve.

Variable neighborhood search

Overall, our algorithm applies the nine types of moves in

the following order:

1. Simple move.

2. Flip move.

3. One-shift move.

4. Two-cyclic move.

5. Order-opt move.

6. Material-opt move.

7. Two-shift move.

8. Three-cyclic move.

9. Ejection chain search.

If a move successfully improves a current solution, our

algorithm goes back to the first move (the simple move)

and continues. If a move fails to improve a current

solution, it tries the next move. Our algorithm finishes

when all moves fail to improve the current solution.

This order is approximately an increasing order of the

neighborhood space of each move. Though this order

may not be the best one, our experiments show that this

order is the best among several candidates with respect to

average execution time.

Acceleration

We now describe three techniques used to accelerate our

local search algorithm.

Dealing with the unit weight constraints

Suppose there is an order whose minimum unit weight

and maximum unit weight are a and b, respectively. When

we check whether or not a given weight x satisfies the

unit weight constraint of the order, the usual method

is to check whether an � x � bn holds by repeatedly

incrementing the integer n by 1. Since it is easy to prove

that an � x � bn holds if and only if x � bx/bc b holds,1

we check the unit weight constraint with this inequality,

Figure 4

Ejection chain search and improvement graph.

(A, V), �1

(B, W), �2

(C, X), �2

(E, Y), �4

(E, Z), �3

(D, Y), �4

(D, X), �9

(C, W), �1

(B, V), �4

A

B

C

D

E

V

W

X

Y

Z

A

B

C

D

E

V

W

X

Y

Z

1In this paper, bxc denotes the greatest integer not more than x and dxe denotes the
least integer not less than x.

H. YANAGISAWA IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

368

which makes our algorithm efficient. If the weight x does

not satisfy the unit weight constraint, it is also easy to

show that dx/ae a is the minimum weight not less than x

that satisfies the unit weight constraints, and that bx/ac b
is the maximum weight not more than x that satisfies the

unit weight constraint. These facts are also used in our

algorithm.

Don’t-look bit

We used the don’t-look bit technique [4] to accelerate the

local searches. This technique skips duplicates when

trying to apply moves. In our implementation, we used

this technique only to accelerate the local searches,

though there are some implementations in which they

accelerate local searches while sacrificing the quality

of the solutions obtained in the local searches.

Grouping

Because of the packing constraint, some combinations of

matches cannot be allocated at the same time. Therefore,

to reduce the computation time for applying moves, we

divide the matches associated with each batch of material

into groups such that no pair of matches in different

groups can be allocated at the same time. Since the

function g for each batch of material can be regarded

as an adjacency matrix for an undirected graph [i.e., if

g(m1, m2) ¼ TRUE, we can assume that the nodes m1

and m2 are connected by an edge], the grouping is done

by identifying the connected components in the graph.

Reducing surplus

It is important to reduce the number of surpluses,

especially the number of small surpluses. To avoid leaving

a surplus, our basic algorithm uses a simple heuristic that

tries to satisfy orders not only by their target weights but

also by using the weights without surplus material. For

example, suppose that a material with a weight of 5 tons

is allocatable to an order that requires 4.5 tons. We

normally try to allocate the material by the weight of

4.5 tons, but we also try to allocate the material with the

weight of 5 tons if the order has enough allowance (i.e.,

the maximum allocatable weight for the order is at least

5 tons). Because a small surplus leads to a bad objective

value in the objective function, the allocation of 5 tons is

likely to be selected. This simple heuristic significantly

reduces surplus materials.

TVIP local search
The heuristic for surplus reduction in the previous section

is not fully satisfactory. There still remain a certain

number of surplus pieces of material that could be further

reduced. Figure 5 illustrates an example in which the

order A requires 14.3 tons and the order B requires

4.2 tons. Suppose that the minimum and maximum unit

weights of the order A are 1.7 tons and 1.9 tons, and that

the minimum and maximum unit weights of the order B

are 2.0 tons and 2.3 tons. For this instance, the heuristic

in the previous section fails to allocate the remaining

surplus, while we can eliminate that surplus by allocating

the material for order A with 5.6 tons and for order B

with 4.4 tons. Therefore, we propose a move to deal with

this problem which assuredly determines whether or not

we can eliminate a surplus.

TVIP

We designed a move called the TVIP neighborhood

search. In the TVIP, we release all allocations with respect

to a batch of material with a surplus and reallocate the

material without the surplus. The reallocation is done by

trying all of the combinations of allocatable matches, but

it is not trivial, even when the number of candidate

matches is small. This move is inserted after the three-

exchange move in the VNS.

Usually only a few batches of materials are split into

more than two orders, so we focus on allocating the batch

of material to at most two orders in the TVIP. It is trivial

to check whether the material can be allocated to a single

order without any surplus. Therefore, we focus on

determining whether or not a batch of material can be

allocated to two orders.

Suppose that we are given two orders A and B as well

as a piece of material that has a weight of w tons and is

allocatable to both orders. Suppose that the maximum

unit weights of the orders A and B are uau and ubu, the

minimum unit weights of the orders A and B are ual and

ubl, and the maximum allocatable weights of the orders

A and B are au and bu, respectively. Let al¼ 0 and bl¼ 0.

(To simplify the following arguments, we assume that the

losses for process yield and trimming do not arise when

we allocate matches. We can show that TVIP works,

even if we remove this assumption.)

Determining whether the material can be allocated to

the orders without a surplus is equivalent to determining

Figure 5

Example of an order with an unallocated surplus.

Surplus: 0.5 t

A: 14.3 t

B: 4.2 t

X: 9.0 t

Y: 10.0 t

9.0 t

5.3 t

4.2 t

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 H. YANAGISAWA

369

whether there is a feasible solution subject to the

following conditions:

x
a
n
a
þ x

b
n
b
¼ w ;

a
l
� x

a
n
a
� a

u
; ð9aÞ

b
l
� x

b
n
b
� b

u
; ð9bÞ

u
al
� x

a
� u

au
; ð9cÞ

u
bl
� x

b
� u

bu
; ð9dÞ

where

x
a
; x

b
2 R

þ

and

n
a
; n

b
2 Z

þ
:

We do not specify objective functions in the conditions

(9) because we are concentrating only on reducing the

number of surpluses in this section, and every feasible

solution has no surplus.

In the conditions in (9), xa, xb, na, and nb are variables

that respectively represent a unit weight for order A, a

unit weight for order B, the number of units for order A,

and the number of units for order B, respectively. Hence,

xana and xbnb represent the weights of allocations for

order A and order B.

Finding allocations without any surplus does not

always lead to a better solution with respect to the

objective function. However, because of the importance

of reducing the number of small surpluses, finding

allocations with no surplus usually leads to a better

solution with respect to the objective function.

Equivalence with TVIP

Though finding a feasible solution of the conditions in (9)

is not trivial, there is an efficient algorithm for finding a

feasible solution. Suppose that the conditions have a

feasible solution xa, xb, na, nb. Then there exists another

solution x
0

a; x
0

b; n
0

a; n
0

b such that at least one of the eight

equalities in (9a–d) holds (by perturbing xa and xb). When

any of the four equalities in (9a) or (9b) holds, it is easy to

find a feasible solution for all of the conditions in (9). For

example, when we assume that there is a feasible solution

such that x
0

an
0

a ¼ al; we only have to check whether or not

the order B can be allocated with the weight w� al, which

is a trivial check. The other three cases can be tested in a

similar way. When any of the four equalities in (9c) or

(9d) holds, we can also find a feasible solution efficiently.

To prove this, first we show that there is an equivalent

TVIP formulation for each case. If x
0

a ¼ ual; the

conditions in (9) are equivalent to the following TVIP

problem, subject to

x
a
n
a
þ x

b
n
b
¼ w ;

a
l
� u

al
n
a
� a

u
;

b
l
� w� u

al
n
a
� b

u
;

u
al
n
b
� w� u

al
n
a
� u

bu
n
b
;

n
a
; n

b
2 Z

þ
:

ð10Þ

8>>>>>>>>><
>>>>>>>>>:

For the other three cases, we find similar TVIP

problems. Thus, all we have to do is solve a TVIP

problem (10) efficiently.

Algorithm for TVIP

The feasible region for the integer programming problem

of (10) is depicted by the region ABCD in Figure 6,

where

n
al
¼ max a

l
=u

al
; ðw� b

u
Þ=u

al

� �

and

n
au
¼ min a

u
=u

al
; ðw� b

l
Þ=u

al

� �
:

Finding a feasible solution for the integer programming

of (10) is equivalent to finding a lattice point (a point with

integer coordinates) in that region.

It is easy to find a lattice point on line segments by

using the following lemma (see Theorems 2–4 on p. 24

of [8]).

Lemma 1

The linear Diophantine equation ax þ by¼ c has a

solution if and only if c is divisible by d, where

d ¼ GCD(a, b) (the greatest common divisor of

a and b). Furthermore, if (x0, y0) is a solution of this

equation, the set of solutions of the equation consists

of all integer pairs (x, y), where

x ¼ x
0
þ b

d
k; y ¼ y

0
� a

d
k ðk ¼ � � � ;�2;�1; 0; 1; 2; � � �Þ:

By using the extended Euclidean algorithm [9],

GCD(a, b) as well as the integers x0 and y0 such that

Figure 6

Feasible region for the integer programming problem of Equation

(10).

B

A

D

C

ual
. na � ubu . nb � w

ual
. na � ubl

. nb � w

na � nal na � nau

H. YANAGISAWA IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

370

ax0þ by0¼ GCD(a, b) can be computed. Thus, by using

Lemma 1, it is easy to check whether or not there exists

a lattice point on a given segment.

To find a lattice point inside the above region, we use a

binary search (using vertical lines to divide the region). In

order to do the binary search, we need an algorithm to

determine whether or not a lattice point is in a given

region. It is sufficient if there is an algorithm for counting

the number of lattice points in a given region. The

following is an efficient algorithm for counting lattice

points in right triangles:

Algorithm calcN(a, b, c)

a, b, and c are positive integers such that a � b

begin

m :¼ bc/ac;
if a¼ b then

return m(m � 1)/2;

else

k :¼ b(a � 1)/bc; h ¼ b(c � am)/bc;
t :¼ km(m � 1)/2þ mh

return calcN[b, a � bk, c� b(km þ h)]þ t;

endif

end

This algorithm counts the number of lattice points in

triangle

Tða; b; cÞ ¼ ðx; yÞ 2 R
2jaxþ by � c; x . 0; y . 0

n o
:

Since the region can easily be divided into right triangles

and rectangles, we can count the number of lattice points

in the region efficiently. Thus, we can find a lattice point

in the given region by using a binary search.

Remarks

Lattice-point-counting algorithms have been studied

intensively for high-dimensional cases. For example,

Barvinok gives an efficient algorithm [10], but it is

theoretical and too complicated. (The algorithm is not

explicitly described. To the best of our knowledge, there

exists only one implementation of the algorithm, named

LattE [11] because of its complication). For a two-

dimensional case, Beck and Robins give an algorithm [5]

that is much simpler, but still more complex than ours

(the time complexity of our algorithm is the same as that

of the algorithm of Beck and Robins). The correctness of

our algorithm is given in [12]. Note that our algorithm

deals only with integers, which contributes to its

simplicity. We also note that Eisenbrand and Rote give

an algorithm for solving TVIP [13], but their algorithm

is also theoretical and not practical. (Their algorithm is

fast when integers require long bits to encode them;

i.e., integers are encoded far longer than 32 bits or

64 bits.)

It might seem that lattice points could be found by

using simpler heuristics. A heuristic may suffice if there is

a lattice point in the region, but in most cases the region

does not contain any lattice point. This is because the

solutions we consider here were supplied by the simple

surplus-reduction heuristics in the previous section. Our

algorithm is especially efficient if the region contains no

lattice points, because in those cases we avoid the binary

search.

Experiments
In this section, we show experimental results for our

algorithm. All tests were executed on a PC workstation,

an Intel Pentium** 4 running at 3.0 GHz, with 1 GB

RAM using Microsoft Windows Server** 2003. The

maximum time for execution was set to 3,600 seconds

(one hour). This limitation is not too long for our client

because the program runs at night.

To test our algorithm, we used six instances, sized as

shown in Table 2. The differences among the six instances

are the numbers of orders and materials. All of the

instances were generated randomly in the following

manner.

First, all matches were randomly generated. Every

order was randomly divided into three groups (I, II, and

III), and the packing constraints in the materials were

determined so that orders in the same group could be

allocated at the same time and orders in different groups

could not be allocated at the same time.

The target weights of each order were randomly chosen

from the range of 2.0–12.0 tons. The maximum total

allocatable weights for each order were set to 1.2 times

the target weight of the order. The minimum unit weight

for each order was randomly chosen from 0.5 tons to 0.9

times the target weight of the order. The maximum unit

weight for each order was randomly chosen from 0.5 tons

to 1.5 times the minimum unit weight of the order. The

profit per weight for each order was randomly chosen

from the range [0–500].

The weight of each batch of material was randomly

chosen from the range of 12.0–18.0 tons. The profit per

Table 2 Sizes of instances.

Instance Orders No. of materials No. of matches

A 2,000 4,000 50,000

B 3,000 5,000 50,000

C 2,000 4,000 50,000

D 3,000 5,000 50,000

E 2,000 6,000 50,000

F 3,000 6,000 50,000

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 H. YANAGISAWA

371

weight for each material was randomly chosen from the

range 0–500. The cost for each material was set to 1.

The cost of each match was set to 0. The trimming loss

for each match was randomly chosen from the range

[0.90–1.00]. The process yield of each match was set

according to the group of the order of the match. The

process yield was set respectively to 1.00, 0.98, and 0.96

for the group of orders I, II, and III.

We first tested the performance of our local search;

Table 3 shows the results. As the initial solutions were

made by the random fit algorithm explained above in the

section on local search, we executed our algorithm five

times for each instance. The results in Table 3 are

averaged over the five executions.

The table shows that our algorithm runs within

the specified times and improves the objective values

considerably from the initial solutions. The gaps show

that objective values differ within only 0.3% after local

searches. These results show that our local search

algorithm works well and produces near-optimal

solutions. The results of Kalagnanam et al. are for

reference only. Because their algorithm was not designed

for our model, a direct comparison cannot be made with

this data, and we cannot conclude that our algorithm

is superior to theirs from these experiments alone.

We used a different experiment to show the

performance of our TVIP technique for surplus

reduction. We executed our algorithm with and without

TVIP five times each. Table 4 shows the results. For each

instance, it contains the average number of small

surpluses without TVIP, the average number of small

surpluses with TVIP, the average reduction ratio of

surpluses, and the average ratio of increase of execution

times. The numbers in parentheses are the average

execution times.

Table 4 shows that TVIP succeeds in reducing the

number of small surpluses without significantly increasing

the computation time, which shows the effectiveness of

applying TVIP in addition to the heuristics for surplus

reduction in the basic algorithm. While the reduction

is roughly 0.5–3.5 percent on random data in the

experiments, TVIP reduces the number of small surpluses

5–10 percent on real data, which yields considerable profit

to a steelworks.

We conducted another experiment to compare TVIP

and the maximum-flow-based heuristics of Kalagnanam

et al. [7], in which we replaced TVIP in our algorithm

with their heuristics. However, the results showed that

their heuristics did not improve either solution; that is, it

produced the same solutions as our algorithm without

TVIP. This shows that their heuristics may be effective

Table 3 Experimental performance results for local search.

Instance Objective value of

initial solution

Average objective value

after local search

Average

time (s)

Gap

(%)

Objective value of

Kalagnanam et al. [7]

A 756,683 7,644,174 269 0.16 5,650,904

B 777,064 11,170,235 391 0.26 8,471,049

C 764,954 7,639,779 248 0.16 5,761,081

D 872,737 11,203,976 359 0.16 8,579,216

E 785,952 7,629,990 196 0.06 5,826,122

F 892,738 11,214,853 285 0.15 8,662,206

Table 4 Surplus reduction with and without TVIP. Average execution times are shown in parentheses.

Instance Average number of

small surpluses

without TVIP (s)

Average number of

small surpluses

with TVIP (s)

Average

reduction of

surpluses (%)

Average

increase in

time (%)

A 310.6 (272) 306.6 (269) 2.39 �2.10

B 435.0 (390) 427.0 (391) 1.84 0.26

C 309.6 (249) 307.2 (248) 0.78 �0.41

D 479.8 (343) 464.4 (359) 3.21 4.66

E 331.2 (193) 326.4 (196) 1.45 1.55

F 472.2 (286) 462.8 (285) 2.00 �0.35

H. YANAGISAWA IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

372

for reducing the total number of surpluses but are not as

effective for reducing the number of small surpluses.

Concluding remarks
We constructed an algorithm based on variable

neighborhood search for the MAP, which has resulted

in considerable cost savings in a real steelworks. In

particular, our TVIP technique has contributed to

reducing the number of small surpluses of material

without significantly increasing the computation times.

TVIP can be applied to other problems in real

applications that cannot be modeled as well-known

simplified models. Such problems can essentially include

TVIP problems as subproblems. Even if the integer

programming is associated with an objective function,

the binary search in TVIP can find the best solution.

Our future work is to generalize our TVIP technique

in order to adapt it to three or more variable integer

programming problems. This generalization will depend

on a practical and efficient algorithm for solving fixed-

variable integer programming problems or a practical and

efficient algorithm for lattice-point counting in fixed-

dimensional polytopes (higher-dimensional analogs of

polygons and polyhedrons).

Acknowledgments
We thank the IBM workers who made a dedicated effort

to deliver our algorithm to the client. We also thank our

colleagues, especially Takayuki Osogami, for their useful

comments on this paper.

**Trademark, service mark, or registered trademark of ILOG Inc.,
Intel Corporation, or Microsoft Corporation in the United States,
other countries, or both.

References
1. G. T. Ross and R. M. Soland, ‘‘A Branch and Bound

Algorithm for the Generalized Assignment Problem,’’ Math.
Program. 8, No. 1, 91–103 (1975).

2. P. Hansen and N. Mladenovic, ‘‘An Introduction to Variable
Neighborhood Search,’’Meta-Heuristics: Advances and Trends
in Local Search Paradigms for Optimization, S. Voss, S.
Martello, I. H. Osman, and C. Roucairol, Editors, Kluwer
Academic Publishers, Boston, MA, 1999, pp. 433–458.

3. F. Glover, ‘‘Ejection Chains, Reference Structures and
Alternating Path Methods for Traveling Salesman Problems,’’
Discrete Appl. Math. 65, No. 1, 223–253 (1996).

4. J. L. Bentley, ‘‘Fast Algorithms for Geometric Traveling
Salesman Problems,’’ ORSA J. Computing 4, No. 4, 387–411
(1992).

5. M. Beck and S. Robins, ‘‘Explicit and Efficient Formulas
for the Lattice Point Count in Rational Polygons Using
Dedekind–Rademacher Sums,’’ Discrete & Computational
Geometry 27, No. 4, 443–459 (2002).

6. J. R. Kalagnanam, M. W. Dawande, M. Trumbo, and H. S.
Lee, ‘‘Inventory Matching Problems in the Steel Industry,’’
Technical Report RC-21171, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 1998.

7. J. R. Kalagnanam, M. W. Dawande, M. Trumbo, and H. S.
Lee, ‘‘The Surplus Inventory Matching Problem in the Process
Industry,’’ Oper. Res. 48, No. 4, 505–516 (2000).

8. G. E. Andrews, Number Theory, Dover Publications, Inc.,
New York, 1994.

9. T. T. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms, MIT Press, Cambridge, MA, 1990.

10. A. I. Barvinok, ‘‘Computing the Ehrhart Polynomial of a
Convex Lattice Polytope,’’ Discrete & Computational
Geometry 12, No. 1, 35–48 (1994).

11. J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida,
‘‘Effective Lattice Point Counting in Rational Convex
Polytopes,’’ J. Symbol. Comput. 38, No. 4, 1273–1302 (2004).

12. H. Yanagisawa, ‘‘A Simple Algorithm for Lattice Point
Counting in Rational Polygons,’’ Technical Report RT-0622,
Tokyo Research Laboratory, IBM Japan, Ltd., Yamato-shi,
Kanagawa-ken, 242-8502, Japan, 2005.

13. F. Eisenbrand and R. Rote, ‘‘Fast 2-Variable Integer
Programming,’’ Proceedings of the 8th International IPCO
Conference on Integer Programming and Combinatorial
Optimization, Utrecht, The Netherlands, 2001, pp. 78–89.

Received September 19, 2006; accepted for publication

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 H. YANAGISAWA

373

November 28, 2006; Internet publication May 18, 2007

Hiroki Yanagisawa IBM Research Division, Tokyo Research
Laboratory, 1623-14, Shimo-tsuruma, Yamato-shi, Kanagawa
242-8502, Japan (yanagis@jp.ibm.com). Mr. Yanagisawa
received B.S. and M.S. degrees in computer science from Kyoto
University, where he specialized in approximation algorithms on
combinatorial optimization problems. In 2003 he joined the IBM
Research Division, where he works on optimization problems in
manufacturing industries and logistics. Mr. Yanagisawa’s research
interests include algorithms in operations research and computer
science.

H. YANAGISAWA IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

374

