The material
allocation
problem in the
steel industry

A major challenge in the initial stage of production planning for the
steel industry is the material allocation problem (MAP): finding
the best match of orders and materials (steel slabs and coils) with
respect to an objective function that takes into account order due
dates, preferences for matches, allocated weights, surplus weights
of materials, and other factors. The MAP is NP-hard and is
difficult to solve optimally. We apply a local search algorithm for
the M AP that includes rich moves, such as ejection chain methods.

H. Yanagisawa

Our algorithm is yielding considerable cost reduction in a real
steelworks. In particular, a two-variable integer programming
(TVIP) neighborhood search technique contributed to the cost
reductions. TVIP defines a neighborhood space for the local search
as a two-variable integer programming problem and efficiently
finds a solution in the neighborhood. By using TVIP, the number
of small batches of surplus material can be successfully reduced.

Introduction

Steelworks usually produce considerable surplus
inventory, as when orders are canceled after materials
have been produced or when some finished products are
below the quality levels required for an order. To make
use of surplus inventory, daily production planning is
typically divided into two main steps. In the first step, the
plan tries to satisfy orders as far as possible with existing
materials (such as surplus inventory). In the second step,
the plan designs production units for the manufacture of
the remaining orders.

The material allocation problem (MAP) is a problem in
the first step of the order-fulfillment process. In the MAP,
the existing materials may include work-in-progress
goods and surplus inventory. The work-in-progress goods
are tentatively allocated to some orders, but they can be
reallocated to new orders while solving the MAP.

The MAP is a kind of matching problem on a sparse
bipartite graph, allocating a given set of materials to a
given set of orders. Each order restricts its allocatable
materials through the quality and other attributes of the
order. In Figure 1(a), the dashed line from the material to
an order indicates that the material can be allocated to
that order. The material can be cut into any size and each
order can be satisfied with multiple sources of material.

For example, order A and order B respectively require
five tons and four tons, and material batch V has a weight
of ten tons, which can be allocated to both orders. When
we allocate the material to these orders, the material will
be split into three parts: five tons for order A, four tons
for order B, and one ton remaining as surplus. [The
trimming and yield losses shown in Figure 1(b) are
discussed below in the section on matches]. In the
following argument, we refer to surplus as the remainder
of the material after allocations.

The MAP has several hard constraints that make it
difficult to solve. One of the constraints is a unit weight
constraint: When we allocate a batch of materials to an
order, the materials must be cut into pieces whose sizes
are within the range specified by the order. For example,
suppose that an order requires 12 tons and that maximum
and minimum unit weights specified in the order are five
tons and four tons, respectively. (Customers place
constraints on orders for reasons such as transport
limitations and manufacturing conditions.) When we
allocate a 12-ton batch of material to the order, the only
solution that meets the constraint conditions is to cut it
into three parts of four tons each. Other MAP constraints
are described in the next section.
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(a) Instance of a MAP (t = tons). (b) Material allocation.

Each solution is evaluated from a broad perspective
that includes the due dates of orders, preferences for
matches, allocated weights, and the surplus weights of
materials. It is evaluated primarily with respect to the
total allocated weight, which also leads to reducing the
total surplus. Because of the unit weight constraint, many
small batches of surplus material remain after these
allocations. Though a large surplus offers possibilities for
allocation to orders in the near future, a small surplus
(typically less than five tons) is hard to allocate because
of the unit weight constraint. Thus, a small surplus is
likely to be discarded, which is a pure loss for the steel
company, so the minimization of the number of small
surpluses is an important evaluation item.

It is easy to show that the MAP is NP-hard because the
MAP includes a generalized assignment problem [1] as a
subproblem. A typical generalized assignment problem
is a problem assigning a set of jobs to a set of machines.
The jobs and the machines correspond respectively
to the orders and the materials in the MAP.

Because the MAP is an NP-hard problem and the sizes
of the instances are very large, we use a local search to
obtain a good solution. Our algorithm is based on
a variable neighborhood search (VNS) [2] strategy.

VNS combines local search with systematic changes of
neighborhood and escape phases from local optima. The
search first explores a small neighborhood around the
current solution and allows an exchange with the current
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solution if a better one is found. This process continues
until the search fails to find a better solution. When this
happens, the search explores neighborhoods more distant
from the current solution and continues the process. For
the local search, we use nine types of moves, including
ejection chain search [3]. In the local search algorithm,
we adopt some acceleration techniques, such as the
don’t-look bit [4], and incorporate simple heuristics

for surplus reduction into the local search algorithm.

We found that there are still a number of small
surpluses produced by this basic algorithm, but that some
of them can be removed by trying extensive searches.
Therefore, we use a two-variable integer programming
(TVIP) neighborhood search technique to reduce the
number of small surpluses. TVIP defines a neighborhood
for surplus reduction, and we can show that searching the
neighborhoods is essentially equivalent to solving TVIP
problems. In addition, we use an efficient algorithm to
solve the TVIP problem that combines binary search and
an algorithm for lattice-point counting in right triangles.
For the lattice-point counting, an algorithm exists [5],
but we have developed a simpler one.

The use of our algorithms by a Japanese steel company
yielded considerable cost reductions.

The rest of this paper is organized as follows: We
describe the details of the MAP, show our basic algorithm
for the MAP, and propose a TVIP technique for surplus
reduction. We then show our experimental results.

The MAP is similar to the generalized assignment
problem [1] and the minimum cost flow problem, but
these models cannot deal with the unit weight and other
constraints.

Kalagnanam et al. [6, 7] modeled the MAP (also
known as the surplus inventory matching problem) as
a multiple knapsack problem with color constraints.
Though the problems are similar, our models differ
on many points: For example, the objective in the
Kalagnanam model is to maximize the total allocated
weights, but the objective in our model is to maximize the
total profit. However, the crucial difference is that their
model cannot deal with the minimization of the number
of small surpluses. In [7], Kalagnanam et al. propose a
heuristics based on the maximum flow algorithm for
surplus reduction, but it is designed to reduce the total
surplus, not to reduce the number of small surpluses.

In this section, we describe the formulation of the MAP.
In the MAP, the set O of orders, the set S of (steel)
materials, and the set M of the allocatable matches (pairs
of orders and materials) are given. Formally, the MAP is
the following optimization problem:
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The objective is

maxE zoi—&—g 8 — E mg,
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subject to constraints (1) through (8):

z0,= PFmin{ TW, Y aw,; s (Vi€ 0); (1)
(i,)eM

> aw, <TW™ (Vi€ 0); (2)
(i.j)eM
n, PUT™ <aw, <n PUM™ [¥(i, ) € M], (3)
where
n; €z |9, j) € M);
zs; = PF,cw, + ij(SW] —aw) (V€S), 4)
where
Sx) = ¢, 5 exp (—eyx);
ow, < SW, (VjeS); (5)
packing constraint, (6)
zm;; = Cijawij V(i, j) € M]; (7)
and
cw, = SW.PY, + Z (anf'l././TLij) (VjeS), (8)

(i.)eM

where

aw; >0, aw; € R[V(i, j) € M].

The packing constraint (6) is defined in the materials
section below.

The variables are zo;, zs;, zm;;, awy, n;, and cw;, and the
other terms are labeled constants associated with orders,
materials, and matches. The variables have the following
meanings:

zo; : objective value for order i.

zs; : objective value for material j.

zm; : objective value for match (i, j).

aw;; : allocated weight of match (i, j).

n; :number of units for match (i, j).

cw; : allocated weight (including wastes) of material j
[for each i € O, j € S, and (i, j) € M].

In the following subsections, we explain constraints

(D~®).
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Orders

Constraints (1)—(3) apply to orders. Each i € O is
associated with the following properties: maximum unit
weight PU™(>0), minimum unit weight PUM"(>0),
target weight TW; (>0), maximum total allocatable
weight TWP*(>0), and profit per weight PF; (>0),
where PUMM < PUM and TW; < TW™>*. The weight
TW; is the required weight for the order i, and TW™™ is
the maximum allocatable weight (so the total allocated
weight for the order i cannot exceed TW ). This
allowance with respect to the target weight is defined to
avoid leaving many small surpluses after allocation. The
profit per weight PF;is a parameter for the objective
function. An order 7 that is urgent is associated with a
large PF;.

Equation (1) defines the objective value zo; for each
order i. It is defined by the product of the profit per
weight PF;, the minimum value of the target weight
TW,, and the total allocated weight for the order i,

Since the allowance is only for satisfying the unit weight
constraint, it is preferable to encourage allocating
materials close to the target weight.

Constraint (2) ensures that the total allocated weight

does not exceed the maximum allocatable weight 7W ™.
The unit weight constraint (3) restricts the allocated

materials so that each batch of material that is allocated

to the order 7 can be cut into pieces in the size

range(PU; ", PU;")

Materials

Constraints (4)—(6) apply to the materials. Each j € S

is associated with the following properties: weight

SW; (>0), profit per weight PF; (>0), and cost per weight

C; (>0). The SW; is the weight of the piece of material

Jj € S. The profit per weight PF; and the cost per weight C;

are parameters for the objective value. A piece of material
with a high profit per weight PF;is favored for allocation.
A piece of material with a high cost C; should not be
discarded.

Equation (4) defines the objective value zs;. The cw;
is the consumed weight of the material j, which can be
assumed to be an approximation of the sum of the
allocated weights, so

cw. =~ E aw...
J y

(i,j)eM
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[The precise definition of cw; is given in Equation (8)].
Hence, the argument SW; — cw; for the function f
represents the surplus weight of the material. The
function f{x) is defined so that small surplus x (typically
x < 5) leads to a large penalty. In our parameter settings,
we set ¢; =100, ¢, =0.3, and ¢; =0.05. Figure 2 shows the
graph.

Constraint (5) ensures that consumed weight does not
exceed the weight of the available material.

Constraint (6) is a packing constraint, which restricts
the combinations of allocations of a material. Each piece
of material is associated with a symmetric function
g: M X M — {TRUE, FALSE}, as shown in Table 1.
When we allocate a piece of material j to orders by using
two matches m;, m, € M, m; and m, must satisfy
g(my, my) = TRUE. When we allocate some material
into three or more matches, each pair of matches must
satisfy the function g. The packing constraint is due to
the layout of the factory. Orders are associated with
a unique route to fulfill the order according to its
specifications. If orders with different routes are packed
in the same batch of material, it may be impossible
to cut the materials for the orders.
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Matches

Equations (7) and (8) apply to matches. Each

(i, j)) € M (C O X S) is associated with the following
properties: cost Cj; (>0), trimming loss TL;

(0 < TL; < 1), and process yield PY; (0 < PY; < 1).
The cost Cj; is a parameter for the objective function.
A match with a high C;; is favored for allocation.
TL;;and PY;; are for the yield loss calculation.

Equation (7) defines the objective value for the piece
of material j. The objective value for each piece of
material j is defined by the product of the cost C;
and the allocated weight of the match aw;;.

Equation (8) defines the consumed weight cw; of a
material j. When we allocate material to orders, two types
of losses arise: Loss for process yield and trimming loss
[Figure 1(b)]. The loss for process yield always arises
when we allocate material to orders. (If a piece of
material is not allocated to any orders, there is no loss
for process yield.) The term SW;PY;; in Equation (8)
represents the loss for the process yield. The process
yield PY; is set so that PY; ;= PY;, ; holds if
gl(ir, ), (i2, )] = TRUE for (i1, )), (i, j) € M. The
trimming loss arises when the width of the material
is larger than the required width of the order. The term
aw;/TL; in Equation (8) represents the trimming loss
for allocating match (i, j) with the weight of aw;.

In the MAP, the objective is to maximize the value of
the objective function. Because both the profit PF; of each
order and the profit PF; of each piece of material are
relatively larger than the cost C;; of each match, we obtain
the highest score when the total allocated weight to an
order 7 is equal to the target weight TW,.

Because the formulation of the MAP contains
nonlinear functions, we cannot use mixed-integer
programming (MIP) solvers, such as ILOG CPLEX**.
Therefore, we have designed a heuristic algorithm for
this problem.

In this section we give an overview of our algorithm.
In the first subsection, we describe our local search
algorithm, in the second we show our acceleration
techniques for the local search, and in the third we
show our basic heuristics to reduce the surpluses.

Local search

As explained above in the Introduction, our algorithm is
based on a VNS strategy. To construct an initial solution
for the local search, we use a random fit strategy (a simple
randomized variant of first fit). The random fit strategy
permutes the matches in a random order, and our
algorithm allocates the matches as far as possible one
by one in that order.
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For VNS, we constructed the following nine types of
moves, which are divided into five groups. All of the
moves are designed so that the objective score improves
primarily by increasing the total weight of allocated
materials.

Basic moves

In this group, we have two types of moves, a simple move
and a flip move. In the simple move, shown in Figure 3(a),
we try to allocate a match when there is an allocatable
match that is not allocated in the current solution. In the
flip move, we remove a match and replace it with another
match. Figure 3(b) illustrates a flip: We remove the match
(A, X) and replace it with the match (A, Y). The allocated
weight of the match is set to 0 in the removing step, and the
allocated weight in the replacing step is as close as possible
to the target weight of the order. The changes of the
allocated weights are done similarly in the following moves.

Cyclic moves

In this group, we have two types of moves, a two-cyclic
move and a three-cyclic move. In both moves, we exchange
matches cyclically—i.e., some allocated materials are
unallocated and replaced with other allocations. For
example, a three-cyclic move is shown in Figure 3(c): We
remove the three matches (A, Z), (B, X), and (C, Y) and
replace them with the three matches (A, X), (B, Y), and
(C, Z). The two-cyclic move is defined similarly but can
also be regarded (less formally) as a swap.

Shift moves

In this group, we have two types of moves, a one-shift
move and a two-shift move. In both moves we remove a
match and replace it with another match, and this move
triggers additional allocations. For example, a two-shift
move is shown in Figure 3(d): We remove the two
matches (B, X) and (C, Y) and replace them with the
three matches (A, X), (B, Y), and (C, Z). The one-shift
move is defined in a similar way: We remove a match and
replace it with two matches.

Combination moves

In this group, we have two types of moves, an order-
optimal (order-opt) move and a material-optimal (material-
opt) move. In the order-opt (material-opt) move, we
remove all allocated matches with respect to a single
order (material) and reallocate with the best allocations
with respect to the order (material). Strictly speaking,
we cannot find the best allocations among all of the
candidates because there are too many candidates due
to the complex objective function, even if the order or
material has a few allocatable matches. Therefore, the
reallocations are done using suboptimal allocations. For
the order-opt moves, we simply assume that only one
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Examples of moves: (a) Simple move; (b) flip move; (c) three-
cyclic move; (d) two-shift move.

piece of material can have a surplus in the best allocation
and find suboptimal allocations under that assumption.
Suppose that the order has k allocatable matches. Then,
by that assumption, kK — 1 matches are assumed to be fully
allocated or not allocated, and one batch of material can
be partially allocated. Thus, there are at most k(21
candidates. Our algorithm finds the best allocation
among them and replaces the old allocations with the best
one. Similarly, for material-opt moves we assume that the
orders, except for one, are allocated by their target
weights, and the reallocations are done by using the
suboptimal allocations.

Ejection chain search

The ejection chain search is the ninth move. This move is
an extension of the shift moves; i.e., the ejection chain
search performs a k-shift move for any integer k (see
Figure 4). This type of move is used, for example, by
Glover [3]. Because the ejection chain search is time-
consuming, we first use one-shift and two-shift moves
and then use the ejection chain search for k > 3.

To find an ejection chain, we use the concept of an
improvement graph (Figure 4). An improvement graph is
constructed from a current solution. Each node in the
improvement graph corresponds to an allocated match in
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the solution and is associated with a profit (the change in
the objective value) when we remove the corresponding
match. (Note that the profit is usually a negative value.)
For example, node A shows that we reduce the objective
value by 1 if we unallocate match (A, V). Each directed
edge in the improvement graph corresponds to a match
that is not allocated in the current solution. To illustrate,
suppose that there are two allocated matches (A, V) and
(B, W) and that a match (B, V) can be allocated if we
remove the two matches (A, V) and (B, W). Then a
directed edge corresponding to the match (B, V) is added
to the improvement graph [the direction is from (A, V) to
(B, W)]. The directed edge is associated with the profit
when we allocate the match (B, V) in a situation in which
the matches (A, V) and (B, W) are unallocated. For
example, Figure 4 shows that we gain 2 in the objective
score if we unallocate matches (A, V) and (B, W) and
allocate match (B, V).

We search for a directed path or a cycle in the
improvement graph that satisfies the following condition:
Any two matches that correspond to two directed edges
in the path or the cycle do not have a shared order or
piece of material. If the path or the cycle satisfies this
condition, the total profit associated with the path or the
cycle is equal to the profit when we remove the matches
that correspond to the nodes in the path or the cycle and
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replace the matches that correspond to the directed
edges in the path or the cycle. For example, from the
improvement graph in Figure 4, it can be seen that the
allocations on the left are improved into the allocations
on the right by using the path with solid arrows.

Therefore, all we have to do is to find a path or a cycle
that satisfies the above condition in the improvement
graph. In our implementation, this is done by a brute-
force strategy. Though brute force is normally time-
consuming, the algorithm finishes in a reasonable time
when this search is applied to a current solution that all
of the other moves cannot improve.

Variable neighborhood search
Overall, our algorithm applies the nine types of moves in
the following order:

Simple move.

Flip move.

One-shift move.
Two-cyclic move.
Order-opt move.
Material-opt move.
Two-shift move.
Three-cyclic move.
Ejection chain search.

A I I

If a move successfully improves a current solution, our
algorithm goes back to the first move (the simple move)
and continues. If a move fails to improve a current
solution, it tries the next move. Our algorithm finishes
when all moves fail to improve the current solution.
This order is approximately an increasing order of the
neighborhood space of each move. Though this order
may not be the best one, our experiments show that this
order is the best among several candidates with respect to
average execution time.

Acceleration
We now describe three techniques used to accelerate our
local search algorithm.

Dealing with the unit weight constraints

Suppose there is an order whose minimum unit weight
and maximum unit weight are ¢ and b, respectively. When
we check whether or not a given weight x satisfies the
unit weight constraint of the order, the usual method

is to check whether an < x < bn holds by repeatedly
incrementing the integer n by 1. Since it is easy to prove
that an < x < bn holds if and only if x < |x/b]| b holds,"
we check the unit weight constraint with this inequality,

'In this paper, | x| denotes the greatest integer not more than x and [x] denotes the
least integer not less than x.
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which makes our algorithm efficient. If the weight x does
not satisfy the unit weight constraint, it is also easy to
show that [x/a] « is the minimum weight not less than x
that satisfies the unit weight constraints, and that |x/a] b
is the maximum weight not more than x that satisfies the
unit weight constraint. These facts are also used in our
algorithm.

Don’t-look bit

We used the don’t-look bit technique [4] to accelerate the
local searches. This technique skips duplicates when
trying to apply moves. In our implementation, we used
this technique only to accelerate the local searches,
though there are some implementations in which they
accelerate local searches while sacrificing the quality

of the solutions obtained in the local searches.

Grouping

Because of the packing constraint, some combinations of
matches cannot be allocated at the same time. Therefore,
to reduce the computation time for applying moves, we
divide the matches associated with each batch of material
into groups such that no pair of matches in different
groups can be allocated at the same time. Since the
function g for each batch of material can be regarded

as an adjacency matrix for an undirected graph [i.e., if
g(my, my) = TRUE, we can assume that the nodes m;
and m, are connected by an edge], the grouping is done
by identifying the connected components in the graph.

Reducing surplus

It is important to reduce the number of surpluses,
especially the number of small surpluses. To avoid leaving
a surplus, our basic algorithm uses a simple heuristic that
tries to satisfy orders not only by their target weights but
also by using the weights without surplus material. For
example, suppose that a material with a weight of 5 tons
is allocatable to an order that requires 4.5 tons. We
normally try to allocate the material by the weight of
4.5 tons, but we also try to allocate the material with the
weight of 5 tons if the order has enough allowance (i.e.,
the maximum allocatable weight for the order is at least
5 tons). Because a small surplus leads to a bad objective
value in the objective function, the allocation of 5 tons is
likely to be selected. This simple heuristic significantly
reduces surplus materials.

The heuristic for surplus reduction in the previous section
is not fully satisfactory. There still remain a certain
number of surplus pieces of material that could be further
reduced. Figure 5 illustrates an example in which the
order A requires 14.3 tons and the order B requires

4.2 tons. Suppose that the minimum and maximum unit
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Example of an order with an unallocated surplus.

weights of the order A are 1.7 tons and 1.9 tons, and that
the minimum and maximum unit weights of the order B
are 2.0 tons and 2.3 tons. For this instance, the heuristic
in the previous section fails to allocate the remaining
surplus, while we can eliminate that surplus by allocating
the material for order A with 5.6 tons and for order B
with 4.4 tons. Therefore, we propose a move to deal with
this problem which assuredly determines whether or not
we can eliminate a surplus.

TVIP

We designed a move called the TVIP neighborhood
search. In the TVIP, we release all allocations with respect
to a batch of material with a surplus and reallocate the
material without the surplus. The reallocation is done by
trying all of the combinations of allocatable matches, but
it is not trivial, even when the number of candidate
matches is small. This move is inserted after the three-
exchange move in the VNS.

Usually only a few batches of materials are split into
more than two orders, so we focus on allocating the batch
of material to at most two orders in the TVIP. It is trivial
to check whether the material can be allocated to a single
order without any surplus. Therefore, we focus on
determining whether or not a batch of material can be
allocated to two orders.

Suppose that we are given two orders A and B as well
as a piece of material that has a weight of w tons and is
allocatable to both orders. Suppose that the maximum
unit weights of the orders A and B are u,, and u,,, the
minimum unit weights of the orders A and B are u,, and
up;, and the maximum allocatable weights of the orders
A and B are a, and b, respectively. Let ;=0 and b, =0.
(To simplify the following arguments, we assume that the
losses for process yield and trimming do not arise when
we allocate matches. We can show that TVIP works,
even if we remove this assumption.)

Determining whether the material can be allocated to
the orders without a surplus is equivalent to determining
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(10).

whether there is a feasible solution subject to the
following conditions:

XN, +x,n =w,

a<xn <a, (9a)
b, <xn, <b , (9b)
ual S xa S uau ’ (90)
u, <x, <uy (9d)
where

+
X, X, €R
and

+
n,n,€Z .

We do not specify objective functions in the conditions
(9) because we are concentrating only on reducing the
number of surpluses in this section, and every feasible
solution has no surplus.

In the conditions in (9), x,, X, 1, and ny, are variables
that respectively represent a unit weight for order A, a
unit weight for order B, the number of units for order A,
and the number of units for order B, respectively. Hence,
x,n, and x,n, represent the weights of allocations for
order A and order B.

Finding allocations without any surplus does not
always lead to a better solution with respect to the
objective function. However, because of the importance
of reducing the number of small surpluses, finding
allocations with no surplus usually leads to a better
solution with respect to the objective function.

Equivalence with TVIP

Though finding a feasible solution of the conditions in (9)
is not trivial, there is an efficient algorithm for finding a
feasible solution. Suppose that the conditions have a
feasible solution x,, xp, 1, 1. Then there exists another
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solution x,, x,, n,, n, such that at least one of the eight
equalities in (9a—d) holds (by perturbing x, and x;). When
any of the four equalities in (9a) or (9b) holds, it is easy to
find a feasible solution for all of the conditions in (9). For
example, when we assume that there is a feasible solution
such that x,n, = a;, we only have to check whether or not
the order B can be allocated with the weight w — @, which
is a trivial check. The other three cases can be tested in a
similar way. When any of the four equalities in (9¢) or
(9d) holds, we can also find a feasible solution efficiently.
To prove this, first we show that there is an equivalent
TVIP formulation for each case. If x; = uy, the
conditions in (9) are equivalent to the following TVIP
problem, subject to

xn, +xn, =w,

LZ[ S ualnu < au ’

bl Sw— UM, < bu ’ (]0)

ua/nh Sw— ua/na < uhunb ’

+
n,n, €72 .

For the other three cases, we find similar TVIP
problems. Thus, all we have to do is solve a TVIP
problem (10) efficiently.

Algorithm for TVIP

The feasible region for the integer programming problem
of (10) is depicted by the region ABCD in Figure 6,
where

nal = max {a//ua/’ (W - bu)/ua/}

and
n, =min{a fu, (w—>b)/u,}.

Finding a feasible solution for the integer programming
of (10) is equivalent to finding a lattice point (a point with
integer coordinates) in that region.

It is easy to find a lattice point on line segments by
using the following lemma (see Theorems 2—4 on p. 24

of [8]).

Lemma 1

The linear Diophantine equation ax 4+ by = ¢ has a

solution if and only if ¢ is divisible by d, where

d = GCD(a, b) (the greatest common divisor of

a and b). Furthermore, if (xo, yo) is a solution of this

equation, the set of solutions of the equation consists

of all integer pairs (x, y), where

x:x0+gk,y:yo—§k (k=--+,-2,-1,0,1,2, --).
By using the extended Euclidean algorithm [9],

GCD(a, b) as well as the integers xo and y, such that
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axo + byy = GCD(a, b) can be computed. Thus, by using
Lemma 1, it is easy to check whether or not there exists
a lattice point on a given segment.

To find a lattice point inside the above region, we use a
binary search (using vertical lines to divide the region). In
order to do the binary search, we need an algorithm to
determine whether or not a lattice point is in a given
region. It is sufficient if there is an algorithm for counting
the number of lattice points in a given region. The
following is an efficient algorithm for counting lattice
points in right triangles:

Algorithm calcN(a, b, ¢)
a, b, and c are positive integers such that a > b
begin
m = |clal;
if a = b then
return m(m — 1)/2;
else
k= [(a— D/bJ; h=(c — am)/b;
t :=km(@m — 1)/2 4+ mh
return calcN[b, a — bk, ¢ — b(km + h)] + t;
endif
end

This algorithm counts the number of lattice points in
triangle

T(a, b, ¢) = {(x7 y) € R2|ax+by <¢, x>0, y>0}.

Since the region can easily be divided into right triangles
and rectangles, we can count the number of lattice points
in the region efficiently. Thus, we can find a lattice point
in the given region by using a binary search.

Remarks

Lattice-point-counting algorithms have been studied
intensively for high-dimensional cases. For example,
Barvinok gives an efficient algorithm [10], but it is
theoretical and too complicated. (The algorithm is not
explicitly described. To the best of our knowledge, there
exists only one implementation of the algorithm, named
LattE [11] because of its complication). For a two-
dimensional case, Beck and Robins give an algorithm [5]
that is much simpler, but still more complex than ours
(the time complexity of our algorithm is the same as that
of the algorithm of Beck and Robins). The correctness of
our algorithm is given in [12]. Note that our algorithm
deals only with integers, which contributes to its
simplicity. We also note that Eisenbrand and Rote give
an algorithm for solving TVIP [13], but their algorithm
is also theoretical and not practical. (Their algorithm is
fast when integers require long bits to encode them;

i.e., integers are encoded far longer than 32 bits or

64 bits.)
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Sizes of instances.

Instance Orders No. of materials No. of matches
A 2,000 4,000 50,000
B 3,000 5,000 50,000
C 2,000 4,000 50,000
D 3,000 5,000 50,000
E 2,000 6,000 50,000
F 3,000 6,000 50,000

It might seem that lattice points could be found by
using simpler heuristics. A heuristic may suffice if there is
a lattice point in the region, but in most cases the region
does not contain any lattice point. This is because the
solutions we consider here were supplied by the simple
surplus-reduction heuristics in the previous section. Our
algorithm is especially efficient if the region contains no
lattice points, because in those cases we avoid the binary
search.

In this section, we show experimental results for our
algorithm. All tests were executed on a PC workstation,
an Intel Pentium™** 4 running at 3.0 GHz, with 1 GB
RAM using Microsoft Windows Server** 2003. The
maximum time for execution was set to 3,600 seconds
(one hour). This limitation is not too long for our client
because the program runs at night.

To test our algorithm, we used six instances, sized as
shown in Table 2. The differences among the six instances
are the numbers of orders and materials. All of the
instances were generated randomly in the following
manner.

First, all matches were randomly generated. Every
order was randomly divided into three groups (I, II, and
III), and the packing constraints in the materials were
determined so that orders in the same group could be
allocated at the same time and orders in different groups
could not be allocated at the same time.

The target weights of each order were randomly chosen
from the range of 2.0-12.0 tons. The maximum total
allocatable weights for each order were set to 1.2 times
the target weight of the order. The minimum unit weight
for each order was randomly chosen from 0.5 tons to 0.9
times the target weight of the order. The maximum unit
weight for each order was randomly chosen from 0.5 tons
to 1.5 times the minimum unit weight of the order. The
profit per weight for each order was randomly chosen
from the range [0-500].

The weight of each batch of material was randomly
chosen from the range of 12.0-18.0 tons. The profit per
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Table 3  Experimental performance results for local search.

Instance Objective value of Average objective value Average Gap Objective value of
initial solution after local search time (s) (%) Kalagnanam et al. [7]
A 756,683 7,644,174 269 0.16 5,650,904
B 777,064 11,170,235 391 0.26 8,471,049
C 764,954 7,639,779 248 0.16 5,761,081
D 872,737 11,203,976 359 0.16 8,579,216
E 785,952 7,629,990 196 0.06 5,826,122
F 892,738 11,214,853 285 0.15 8,602,206
Table 4 Surplus reduction with and without TVIP. Average execution times are shown in parentheses.
Instance Average number of Average number of Average Average
small surpluses small surpluses reduction of increase in
without TVIP (s) with TVIP (s) surpluses (%) time (%)
A 310.6 (272) 306.6 (269) 2.39 -2.10
B 435.0 (390) 427.0 (391) 1.84 0.26
C 309.6 (249) 307.2 (248) 0.78 —0.41
D 479.8 (343) 464.4 (359) 3.21 4.66
E 331.2 (193) 326.4 (196) 1.45 1.55
F 472.2 (286) 462.8 (285) 2.00 —0.35

weight for each material was randomly chosen from the
range 0—500. The cost for each material was set to 1.

The cost of each match was set to 0. The trimming loss
for each match was randomly chosen from the range
[0.90-1.00]. The process yield of each match was set
according to the group of the order of the match. The
process yield was set respectively to 1.00, 0.98, and 0.96
for the group of orders I, II, and III.

We first tested the performance of our local search;
Table 3 shows the results. As the initial solutions were
made by the random fit algorithm explained above in the
section on local search, we executed our algorithm five
times for each instance. The results in Table 3 are
averaged over the five executions.

The table shows that our algorithm runs within
the specified times and improves the objective values
considerably from the initial solutions. The gaps show
that objective values differ within only 0.3% after local
searches. These results show that our local search
algorithm works well and produces near-optimal
solutions. The results of Kalagnanam et al. are for
reference only. Because their algorithm was not designed
for our model, a direct comparison cannot be made with
this data, and we cannot conclude that our algorithm
is superior to theirs from these experiments alone.

H. YANAGISAWA

We used a different experiment to show the
performance of our TVIP technique for surplus
reduction. We executed our algorithm with and without
TVIP five times each. Table 4 shows the results. For each
instance, it contains the average number of small
surpluses without TVIP, the average number of small
surpluses with TVIP, the average reduction ratio of
surpluses, and the average ratio of increase of execution
times. The numbers in parentheses are the average
execution times.

Table 4 shows that TVIP succeeds in reducing the
number of small surpluses without significantly increasing
the computation time, which shows the effectiveness of
applying TVIP in addition to the heuristics for surplus
reduction in the basic algorithm. While the reduction
is roughly 0.5-3.5 percent on random data in the
experiments, TVIP reduces the number of small surpluses
5-10 percent on real data, which yields considerable profit
to a steelworks.

We conducted another experiment to compare TVIP
and the maximum-flow-based heuristics of Kalagnanam
et al. [7], in which we replaced TVIP in our algorithm
with their heuristics. However, the results showed that
their heuristics did not improve either solution; that is, it
produced the same solutions as our algorithm without
TVIP. This shows that their heuristics may be effective
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for reducing the total number of surpluses but are not as
effective for reducing the number of small surpluses.

We constructed an algorithm based on variable
neighborhood search for the MAP, which has resulted
in considerable cost savings in a real steelworks. In
particular, our TVIP technique has contributed to
reducing the number of small surpluses of material
without significantly increasing the computation times.

TVIP can be applied to other problems in real
applications that cannot be modeled as well-known
simplified models. Such problems can essentially include
TVIP problems as subproblems. Even if the integer
programming is associated with an objective function,
the binary search in TVIP can find the best solution.

Our future work is to generalize our TVIP technique
in order to adapt it to three or more variable integer
programming problems. This generalization will depend
on a practical and efficient algorithm for solving fixed-
variable integer programming problems or a practical and
efficient algorithm for lattice-point counting in fixed-
dimensional polytopes (higher-dimensional analogs of
polygons and polyhedrons).

We thank the IBM workers who made a dedicated effort
to deliver our algorithm to the client. We also thank our
colleagues, especially Takayuki Osogami, for their useful
comments on this paper.
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